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The Eastin-Knill theorem is a central result of quantum error correction theory and states that
a quantum code cannot correct errors exactly, possess continuous symmetries, and implement a
universal set of gates transversely. As a way to circumvent this result, there are several approaches
in which one gives up on either exact error correction or continuous symmetries. In this context, it
is common to employ a complementary measure of fidelity as a way to quantify quantum state dis-
tinguishability and benchmark approximations in error correction. Despite having useful properties,
evaluating fidelity measures stands as a challenging task for quantum states with a large number
of entangled qubits. With that in mind, we address two distance measures based on the sub- and
superfidelities as a way to bound error approximations, which in turn require a lower computational
cost. We model the lack of exact error correction to be equivalent to the action of a single dephasing
channel, evaluate the proposed fidelity-based distances both analytically and numerically, and ob-
tain a closed-form expression for a general N -qubit quantum state. We illustrate our bounds with
two paradigmatic examples, an N -qubit mixed GHZ state and an N -qubit mixed W state.

I. INTRODUCTION

Quantum computers are among the most anticipated
technological novelties of the present century. Their
expected applicability ranges from the development of
quantum algorithms to solve classically intractable phys-
ical problems [1, 2], to the efficient simulation of many-
particle quantum systems [3, 4]. However, a quantum
computer with many qubits, i.e., from several dozens to
a few hundred in the noisy intermediate-scale quantum
(NISQ) era [5], is subject to interaction with the environ-
ment in such a way that the computations are unreliable.
It is necessary to employ a scheme that allows for reliable
computations, providing fault tolerance [6–8].

Quantum error correction (QEC) arises as a mecha-
nism to accomplish such a task [9–15]. The idea consists
of encoding information by using entanglement in a such
way that the encoded information is protected against
noise, yielding reliable computations. Furthermore, one
is interested not only in maintaining reliable information
but also in performing operations. Hence, despite seek-
ing isolation with respect to the environment, a QEC
scheme should provide ways to allow performing opera-
tions. In this regard, a convenient way to guarantee QEC
while performing operations comes from transversal gates
in quantum error-correcting codes [16, 17]. Transversal
gates act independently on each qubit in such a way that
a faulty gate will only compromise single qubits, which
means that errors are not spread out throughout the com-
putation.

A drawback from error-correcting codes with transver-
sal gates comes from the no-go theorem derived by
Eastin and Knill [18], which states that a quantum error-
correcting code cannot exactly correct errors, possess
continuous symmetries, and allow the implementation of
a universal set of transversal gates. This result suggests
that one must give up on either continuous symmetries

of quantum error-correcting codes (covariant codes) or
exact QEC. Motivated by the wide variety of phenomena
in which covariant codes play a role, such as quantum
reference frames [19, 20], resource theories [21, 22], and
quantum gravity [23–25] via the anti-de Sitter (AdS)-
conformal field theory (CFT) correspondence [26, 27], we
choose to give up on exact error correction. In other
words, throughout the paper, we deal with covariant
codes with transversal gates but that correct errors only
approximately.

Lately, there has been a great deal of interest in quan-
tifying the lack of exactness (i.e., the approximation) in
quantum error correction. In particular, methods rang-
ing from quantum metrology to quantum resource the-
ories have been employed in this context [28–40]. Al-
though, in principle, any distinguishability measure could
be employed as a figure of merit for the lack of exact
QEC, fidelity has several good properties which make
it an attractive choice. Overall, we refer to “fidelity
measures” as an umbrella term that encompasses several
measures that include, for example, Uhlmann’s fidelity or
even the so-called quantum infidelity [41, 42]. Nonethe-
less, for a large number of entangled qubits, evaluating
Uhlmann’s fidelity is a challenging task, as it requires
spectral properties of density matrices whose dimensions
grow exponentially with the size of the system.

In this work, we address this issue by proposing two
measures based on the sub- and superfidelities [43, 44] to
bound the approximation error in quantum error correc-
tion. The proposed measures establish lower and upper
bounds to the typical fidelity error measure, while their
evaluation requires a low computational cost. Since our
measures are derived from the quantum fidelity, they in-
herit several useful properties. In particular, the measure
based on the superfidelity defines a bona fide metric in
the space of quantum states, and therefore can be em-
ployed to study underlying geometric concepts. We put
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our bounds to the test by modeling the approximation
in error correction to be an effective dephasing channel.
We evaluate the bounds for two paradigmatic examples,
namely the N -qubit mixed GHZ state and the N -qubit
mixed W state. We also provide exact results for any
quantum state considering our setup.

The text is organized as follows. In Sec. II, we discuss
the main properties of covariant codes and approximate
quantum error correction, laying down the fundamental
ideas and the problem we address. In Sec. III, we review
the main properties of fidelity measures, justifying their
use and motivating our proposal. In Sec. IV, we discuss
our proposed bounds for approximate quantum error cor-
rection. In Sec. V, we consider the approximate error in
quantum error correction to be modeled by a dephasing
channel, and illustrate our proposal by evaluating the
bounds for both the N -qubit mixed GHZ and W states.
To support our predictions, we provide analytical expres-
sions and numerical simulations accordingly. In Sec. VI,
we summarize our results and present the concluding re-
marks.

II. COVARIANT CODES AND APPROXIMATE
QUANTUM ERROR CORRECTION

In this section, we briefly review the main concepts
concerning the subject of approximate quantum error
correction. A quantum code consists of a physical sys-
tem A, a logical system L, and a completely positive and
trace-preserving (CPTP) map called the encoding chan-
nel, which maps the logical system into the physical one.
Both systems have a corresponding finite-dimensional
Hilbert space, denoted by HA (physical) and HL (log-
ical). We assume that the physical system consists of N
smaller subsystems such that A = ⊗Ni=1Ai. We denote
the encoding channel as EA←L and say that the code is
covariant if [45]

EA←L ◦ UθL = UθA ◦ EA←L, (1)

where UθL,A implements the unitary symmetry transfor-
mation in the logical, physical subspace. The superscript
index θ ∈ G denotes the group parameter.

Next, a covariant code is error correcting if, given a
CPTP map NA which acts upon the physical system A
and models the noise, there exists another CPTP map
RL←A such that [28, 46]

RL←A ◦ NA ◦ EA←L = idL, (2)

that is, for an initial state ρ ∈ L1(HL), with L1(H) =
{ρ ∈ H | ρ† = ρ, ρ ≥ 0, Tr(ρ) = 1} being the convex set
of Hermitian, positive semidefinite, and trace-one quan-
tum states, the action of the quantum channels in the
left-hand side of Eq. (2) yield a final state ρ equal to the
initial one.

In practice, the Eastin-Knill theorem forbids the exis-
tence of such codes and this is precisely the manifestation

of approximate quantum error correction [18]. Instead of
recovering the identity channel of the logical subspace in
Eq. (2), we have

RL←A ◦ NA ◦ EA←L = IL 6= idL . (3)

This means that the lack of exact error correction can be
thought of as an effective channel IL acting upon an arbi-
trary quantum state ρ [28–30]. In this scenario, the final
recovered state will differ from the initial state. Here-
after, the effective quantum channel which models the
approximate error correction is taken to be a global de-
phasing channel acting on an arbitrary number of qubits,
each at its respective subspace.

In this context, the natural further step is to quan-
tify how distinguishable the recovered quantum state is
from the input state, in other words, to answer what
is the difference between the effective quantum chan-
nel IL and the logical identity channel idL. Overall,
the current literature employs fidelity measures as use-
ful information-theoretic quantifiers to characterize the
distinguishability between the initial ρ and final IL(ρ)
quantum states [28–30, 47]. In principle, any distin-
guishability measure should suffice; however, as we will
see, fidelity measures have interesting properties which
justify their use.

III. FIDELITIES, SUB- AND SUPERFIDELITIES

Fidelity is a measure of distinguishability between
quantum states. As such, it is defined as [48–52]

F (ρ, σ) =

[
Tr

(√√
ρσ
√
ρ

)]2
. (4)

As a way of distinguishing quantum states, fidelity mea-
sures have several desirable properties that motivate
their use as a figure of merit in our context. In de-
tail, for all quantum states {ρl}l=1,...,4 ∈ L1(H), it
satisfies (i) positivity, 0 ≤ F (ρ1, ρ2) ≤ 1; (ii) sym-
metry, F (ρ1, ρ2) = F (ρ2, ρ1); (iii) unitary invariance,
F (ρ1, ρ2) = F (V ρ1V

†, V ρ2V
†), for any unitary V † =

V −1; (iv) concavity, F (ρ1, µρ2+(1−µ)ρ3) ≥ µF (ρ1, ρ2)+
(1 − µ)F (ρ1, ρ3), with 0 ≤ µ ≤ 1; (v) multiplicativity,
F (ρ1 ⊗ ρ2, ρ3 ⊗ ρ4) = F (ρ1, ρ3)F (ρ2, ρ4); and (vi) mono-
tonicity under CPTP maps, F (ρ, σ) ≤ F (E(ρ), E(σ)),
∀ E(•) ∈ L(H), with L(H) denoting the set of linear
bounded operators on H.

In what we call the standard approach, the error re-
lated to the approximation in quantum error correction
is defined in terms of the so-called Bures distance as fol-
lows [42, 53]

ε(IL, idL) :=
√

1− F (IL, idL) , (5)

that is, one calculates the square root of the infidelity
between the code IL(•) and the logical identity idL(•)
acting implicitly on a quantum state. If the code recov-
ers precisely the logical identity, it means that the error
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correction is exact and thus the approximation error in
Eq. (5) is zero. On the other hand, if the code has orthog-
onal support concerning the logical identity, the fidelity
is zero and the approximation error is maximum.

We point out that, although fidelity stands as a useful
distinguishability measure within the subject of quantum
error correction, it exhibits drawbacks that hinder its ap-
plicability scope. The definition of fidelity in Eq. (4) re-
quires prior knowledge of the spectral properties of the
input and output N -qubit states described by density
matrices whose dimension scales exponentially with the
system size. As a result, evaluating fidelity for higher
dimensional systems is a challenging task, which means
that the standard approach of defining the error approx-
imation is of limited use when considering many qubits.

From now on, we make use of two information-
theoretic quantifiers originally proposed in Refs. [43, 44],
namely, the so-called subfidelity defined as

E(ρ, σ) := Tr(ρσ) +
√

2[Tr(ρσ)]2 − 2Tr(ρσρσ) , (6)

and also the superfidelity, given by

G(ρ, σ) := Tr(ρσ) +
√

[1− Tr(ρ2)][1− Tr(σ2)] . (7)

In particular, the superfidelity for quantum states ρ, σ is
lower bounded in terms of the trace distance as G(ρ, σ) ≥
1 − (1/2)‖ρ − σ‖1, with ‖A‖1 = Tr(

√
A†A) being the

Schatten 1-norm [54]. Furthermore, it has been proved
that the sub- and superfidelities impose lower and upper
bounds to the fidelity, respectively, written as [43, 44]

E(ρ, σ) ≤ F (ρ, σ) ≤ G(ρ, σ) . (8)

In addition, for all quantum states {ρl}l=1,...,4 ∈ L1(H),
it can be proved that the sub- and superfidelities exhibit
the following properties: (i) positivity, 0 ≤ E(ρ1, ρ2) ≤ 1
and 0 ≤ G(ρ1, ρ2) ≤ 1; (ii) symmetry, E(ρ1, ρ2) =
E(ρ2, ρ1) and G(ρ1, ρ2) = G(ρ2, ρ1); (iii) unitary invari-
ance, E(ρ1, ρ2) = E(V ρ1V

†, V ρ2V
†) and G(ρ1, ρ2) =

G(V ρ1V
†, V ρ2V

†), for any unitary V † = V −1; (iv)
concavity, E(ρ1, µρ2 + (1 − µ)ρ3) ≥ E(ρ1, ρ2) + (1 −
µ)E(ρ1, ρ3), and G(ρ1, µρ2+(1−µ)ρ3) ≥ G(ρ1, ρ2)+(1−
µ)G(ρ1, ρ3), with 0 ≤ µ ≤ 1; (v) subfidelity is submulti-
plicative, i.e., E(ρ1 ⊗ ρ2, ρ3 ⊗ ρ4) ≤ E(ρ1, ρ2)E(ρ3, ρ4);
and (vi) superfidelity is supermultiplicative, i.e., G(ρ1 ⊗
ρ2, ρ3⊗ ρ4) ≥ G(ρ1, ρ2)G(ρ3, ρ4). Some remarks are now
in order, and we are ready to address our proposal of
fidelity-based distance measures useful to quantify ap-
proximations in quantum error correction.

IV. BOUNDS FOR APPROXIMATE QUANTUM
ERROR CORRECTION

In the following, we consider the two fidelity-based dis-
tance measures related to the sub- and superfidelities,
respectively,

Dsub(IL, idL) :=
√

1− E(IL, idL) (9)

and

Dsuper(IL, idL) :=
√

1−G(IL, idL) , (10)

where the quantum channels act upon some implicit
quantum state and IL = RL←A◦NA◦EA←L. The relation
between Eqs. (9) and (10) and the standard approach er-
ror approximation [see Eq. (5)] comes from their defini-
tions and the fidelity inequalities in Eq. (8), which yield

Dsuper(IL, idL) ≤ ε(IL, idL) ≤ Dsub(IL, idL) . (11)

Therefore, the distance measures based on the sub- and
the superfidelities are upper and lower bounds, respec-
tively. The inequalities are saturated when the sub- and
the superfidelity recover the fidelity. This happens if at
least one of the states is pure, or if one considers single-
qubit states. In error-correction applications, none of
these conditions is fully satisfied.

Interestingly, it has been shown that the superfidelity-
based distance defines a genuine metric [43, 44]. In-
deed, for arbitrary quantum states ρj ∈ L1(H),
with j = {1, 2, 3}, it satisfies (i) semi-definite pos-
itiveness, Dsuper(ρ1, ρ2) ≥ 0 and Dsuper(ρ1, ρ2) =
0 if and only if ρ1 = ρ2; (ii) symmetry,
Dsuper(ρ1, ρ2) = Dsuper(ρ2, ρ1); and (iii) triangle inequal-
ity, Dsuper(ρ1, ρ3) ≤ Dsuper(ρ1, ρ2) + Dsuper(ρ2, ρ3) [44].
The distance based on the subfidelity does not define a
genuine metric because it is not positive semi-definite.
More concretely, we put the bounds to the test by eval-
uating them while modeling the approximate error in
quantum error correction as a dephasing channel acting
on an N -qubit state.

V. APPLICATION: EFFECTIVE DEPHASING
CHANNEL

To illustrate the usefulness of the fidelity-based dis-
tance measures in Eqs. (9) and (10), and also the chain
of inequalities in Eq. (11), we model the lack of exact er-
ror correction as an effective quantum channel. To do so,
we consider Eq. (3) and set the quantum channel IL(•)
to be a dephasing channel Edeph(•). In addition, we con-
sider the channel acting globally over a given N -qubit
quantum state, which in turn can be written in terms of
the Kraus representation as

E(ρ) =
∑

j1,...,jN

(Kj1 ⊗ . . .⊗KjN )ρ(K†j1 ⊗ . . .⊗K
†
jN

) ,

(12)

for j` = {0, 1}, where ` = {1, 2, . . ., N}, with the Kraus
operators K0 = |0〉〈0|+

√
1− p|1〉〈1| and K1 =

√
p|1〉〈1|,

while 0 ≤ p ≤ 1 stands as the probability of noise being
injected into the system. In the following, we address
the issue of approximate error correction by employing
the subfidelity and superfidelity distance measures by
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means of two paradigmatic probe states: the N -qubit
GHZ mixed state, and the N -qubit W mixed state. In
the Appendix A, we present general, closed-form results
for the sub- and superfidelities with respect to any given
N -qubit quantum state that undergoes the action of the
dephasing quantum operation. This can be accomplished
by recasting the general N -qubit state in terms of the so-
called Fano form [42], and exploiting algebraic properties
of Pauli matrices.

A. GHZ state

In the first example, we consider the initial mixed state
to be

ρGHZ =

(
1− λ
2N

)
I + λ |GHZN 〉〈GHZN | , (13)

with 0 ≤ λ ≤ 1 being the mixing parameter, and |GHZN 〉
denoting the GHZ state of N particles defined as [55]

|GHZN 〉 =
1√
2

(
|0〉⊗N + |1〉⊗N

)
. (14)

The sub- and superfidelity distances for the states ρGHZ

and E(ρGHZ) are given by

Dsub(ρGHZ, E(ρGHZ)) =
√

1− E(ρGHZ, E(ρGHZ)) , (15)

and

Dsuper(ρGHZ, E(ρGHZ)) =
√

1−G(ρGHZ, E(ρGHZ)) ,
(16)

where the information-theoretic quantifiers E(x, y) and
G(x, y) are given in Eqs. (6) and (7), respectively. By
considering the GHZ mixed state in Eq. (13), it can be
verified that its purity becomes

Tr(ρ2GHZ) =
1

2N
(
1 + (2N − 1)λ2

)
, (17)

while the purity of the respective dephased state E(ρGHZ)
[see Eq. (12)] yields

Tr(E(ρGHZ)2) =

=
1

2N
(
1 + (2N−1 − 1 + 2N−1(1− p)N )λ2

)
. (18)

We point out that, for p = 0, Eq. (18) recovers Eq. (17) as
a particular case. Next, the relative purity involving the
density matrices ρGHZ and E(ρGHZ) is written as follows:

Tr(ρGHZE(ρGHZ)) =

=
1

2N

(
1 + (2N−1 − 1 + 2N−1(1− p)N/2)λ2

)
. (19)

We emphasize that Eq. (17) is also recovered from
Eq. (19) by setting the parameter p = 0, which means
that the relative purity collapses into the purity in this
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FIG. 1. (Color online) Plot of the sub- and superfidelity based
distance measures for the mixed N -qubit GHZ state ρGHZ [see
Eq. (13)] and the respective dephased density matrix E(ρGHZ),
for several system sizes N . [(a), (c)] Plots of the quantities
Dsub,super(ρGHZ, E(ρGHZ)) as a function of the probability 0 ≤
p ≤ 1, and choosing the mixing parameter value λ = 0.7. [(b),
(d)] Fidelity-based distances Dsub,super(ρGHZ, E(ρGHZ)) as a
function of the mixing parameter 0 ≤ λ ≤ 1, for a fixed value
p = 0.2.

limiting case. We find that Eqs. (17), (18), and (19) be-
have quadratically respective to the mixing parameter λ,
while Eqs. (18) and (19) exhibit an Nth-order polynomial
dependence on the probability p. Finally, by performing
lengthy calculations, one can verify the result

Tr(ρGHZE(ρGHZ)ρGHZE(ρGHZ)) =

=
1

23N

{
1 + 2N−1

(
(2 + (1− p)N/2)2 + 3 (1− 22−N )

)
λ2

+2N (2N−1 − 1)
(

(2 + (1− p)N/2)2 − 1− 23−N
)
λ3

+2N−1[22N−2(1− p)N + (2N−1 − 1)2(2 + (1− p)N/2)2

−(1− 21−N )(22N−1 − 3)]λ4
}
. (20)

In the following, we numerically investigate the beha-
vior of both fidelity-based distance measures in Eqs. (15)
and (16) by using the aforementioned analytical results
in Eqs. (17)–(20). Figure 1 shows the plot of the dis-
tances based on subfidelity [see Eqs. (15), (19), and (20)]
and superfidelity [see Eqs. (16)–(19)] respective to the
initial N -qubit mixed GHZ state, for different system
sizes N . In Figs. 1(a) and 1(c), by setting the parameter



5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

D
su

b
,s

u
p
er

(ρ
G

H
Z
,E

(ρ
G

H
Z
)) λ = 1

N = 2 N = 3 N = 4

N = 10 N = 100 N → ∞

FIG. 2. (Color online) Plot of the sub- and superfidelity-based
distance measures for the pure N -qubit GHZ state ρGHZ [see
Eq. (14)] and the respective dephased density matrix E(ρGHZ)
as a function of the probability p. Note that both the distance
measures approach the limiting value 1/

√
2 for N →∞.

λ = 0.7, one varies the parameter 0 ≤ p ≤ 1. We find
that the bounds increase as p increases, i.e., the error
approximation gets higher as we take larger values of p.
This is precisely what one would expect from a practical
point of view, as the more likely errors are to occur, the
more likely the final and initial states will be distinct,
which implies a larger error approximation (i.e., smaller
sub- and superfidelities). In Figs. 1(b) and 1(d), one sets
the parameter p = 0.2 and varies the mixing parameter
0 ≤ λ ≤ 1. As λ increases, the bounds become tighter;
this behavior is expected because as the purity of the
state increases, the sub- and superfidelities get closer to
the fidelity, which in turn makes the upper and lower
bounds to the error approximation closer.

Next, Fig. 2 illustrates the behavior of both the sub-
and superfidelity distances for the case of a probe N -
qubit pure GHZ state, as a function of the parameter
0 ≤ p ≤ 1. In this regard, for λ = 1, Eqs. (17)–(20) imply
that both the fidelity-based distance measures saturate
to the Uhlmann fidelity as follows:

Dsub,super(ρGHZ, E(ρGHZ)) =

√
1− (1− p)N/2

2
. (21)

Note that the range of possible values for the error ap-
proximation is influenced by the value of the probabil-
ity. In this sense, smaller p allows for a range of smaller
values of the fidelity-based distance measures. How-
ever, for p → 1, the allowed values increase, as it is
more likely that errors occur, resulting in overall higher
approximations. In particular, Eq. (21) implies that

Dsub,super(ρGHZ, E(ρGHZ)) = 1/
√

2 for N → ∞, regard-
less of the probability 0 ≤ p ≤ 1. In Fig. 2, this asymp-
totic behavior is observed by setting larger system sizes
N .

In Fig. 3, we present the plots of both fidelity-based
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FIG. 3. (Color online) Plot of the sub- and superfidelity-based
distance measures for the mixed N -qubit GHZ state ρGHZ [see
Eq. (13)] and the respective dephased density matrix E(ρGHZ)
as a function of the mixing parameter λ. Here we consider
the case N →∞.

distance measures for the case of a multiparticle mixed
GHZ state, as a function of the parameter 0 ≤ λ ≤ 1, for
N →∞. In this case, with the help of Eqs. (17)–(20), it
can be verified that the subfidelity in Eq. (15) approaches
the asymptotic value

lim
N→∞

Dsub(ρGHZ, E(ρGHZ)) =

√
1− λ2

2
, (22)

while the superfidelity in Eq. (16) becomes

lim
N→∞

Dsuper(ρGHZ, E(ρGHZ)) =

=

√
1− λ2

2
−
√

(1− λ2)(2− λ2)

2
. (23)

We point out that, for N → ∞, Eqs. (22) and (23) are
completely independent of the probability 0 ≤ p ≤ 1 re-
lated to the dephasing channel. Figure 3 shows that, for
small values of λ, the initial state is close to being max-
imally mixed, implying that the bounds are not very re-
strictive. In addition, as λ→ 1, the initial state becomes
purer, to the point where it becomes a completely pure
GHZ state for λ = 1. As a consequence, the sub- and
the superfidelity become the fidelity, and the two bounds
converge to the same value, given by the Uhlmann fi-
delity.

B. W state

The second example we consider is the initial mixed
state given by

ρW =

(
1− λ
2N

)
I + λ |W 〉〈W | , (24)
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FIG. 4. (Color online) Plot of the sub- and superfidelity-based
distance measures for the mixed N -qubit W state ρW [see
Eq. (13)] and the respective dephased density matrix E(ρW),
for several system sizes N . [(a), (c)] Plots of the quantities
Dsub,super(ρW, E(ρW)) as a function of the probability 0 ≤ p ≤
1, and choosing the mixing parameter value λ = 0.7. [(b), (d)]
Fidelity-based distances Dsub,super(ρW, E(ρW)) as a function
of the mixing parameter 0 ≤ λ ≤ 1, for a fixed value p = 0.2.

with 0 ≤ λ ≤ 1, and |W 〉 denotes the W state of N
particles given by [56]

|W 〉 =
1√
N

N∑
l=1

|0〉⊗l−1 ⊗ |1〉l ⊗ |0〉
⊗N−l

. (25)

The fidelity-based distance measures given by the sub-
fidelity and superfidelity for both states ρW and E(ρW)
are given as

Dsub(ρW, E(ρW)) =
√

1− E(ρW, E(ρW)) (26)

and

Dsuper(ρW, E(ρW)) =
√

1−G(ρW, E(ρW)) , (27)

with both the quantities E(x, y) and G(x, y) defined in
Eqs. (6) and (7), respectively. By considering the mixed
W state ρW in Eq. (24), it can be verified that its purity
becomes

Tr(ρ2W) =
1

2N
(
1 + (2N − 1)λ2

)
, (28)
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FIG. 5. (Color online) Plot of the fidelity-based distance mea-
sures Dsub,super(ρW, E(ρW)) [see Eq. (32)] related to the N -
qubit pure W state ρW and the respective dephased density
matrix E(ρW), as a function of the probability p. In par-
ticular, for very large N , note that both distance measures
approach the asymptotic value

√
p.

while the purity of the respective dephased state E(ρW)
yields

Tr(E(ρW)2) =

=
1

2N

[
1 +

(
2N − 1− 2N (N − 1)

N
(2− p)p

)
λ2
]
.

(29)

Note that, by setting p = 0, Eq. (29) recovers Eq. (28)
as a particular case. Next, the relative purity involving
the density matrices ρW and E(ρW) is written as follows

Tr(ρWE(ρW)) =

=
1

2N

[
1 +

(
2N − 1− 2N (N − 1)

N
p

)
λ2
]
. (30)

We emphasize that Eq. (28) is also recovered from
Eq. (30) by setting the parameter p = 0, which means
that the relative purity collapses into the quantum pu-
rity in this limiting case. We find that Eqs. (28)–(30)
behave quadratically respective to the mixing parameter
λ. Finally, by performing lengthy calculations, one can
verify the result

Tr(ρWE(ρW)ρWE(ρW)) =

=
1

23N N2

{
N2 +N [2N (6N − (N − 1)(6− p)p)− 6N ]λ2

+2[4N2 + 22N (2N − (N − 1)p)(N − (N − 1)p)

−2NN(6N − (N − 1)(6− p)p)]λ3 + [23N (N − (N − 1)p)2

−22N+1(2N − (N − 1)p)(N − (N − 1)p)− 3N2

+2NN(6N − (N − 1)(6− p)p)]λ4
}
. (31)

Next, by applying Eqs. (28)–(31), we present nu-
merical simulations for the aforementioned fidelity-based
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distance measures. In Fig. 4, we plot the quanti-
fiers Dsub(ρW, E(ρW)) [see Eqs. (26), (30) and (31)] and
Dsuper(ρW, E(ρW)) [see Eqs. (27), (28), (29) and (30)]
with respect to the initial mixed N -qubit W state, for
different system sizes. In Figs. 4(a) and 4(c), we set the
parameter λ = 0.7, and consider the range 0 ≤ p ≤ 1.
We find that Dsub,super(ρW, E(ρW)) increases as p in-
creases, with the superfidelity based distance approach-
ing small values for small p. In Figs. 4(b) and 4(d), one
sets the probability p = 0.2 while varying the mixing
parameter 0 ≤ λ ≤ 1. We find that the subfidelity-
based (superfidelity-based) distance decreases (increases)
as λ increases. In other words, the bounds become
tighter as expected when the purity of the initial state
increases. On the one hand, for small values of p, we find
that Dsub(ρW, E(ρW)) approaches the unity as one in-
creases the system size N . On the other hand, note that
Dsuper(ρW, E(ρW)) becomes zero as p approaches zero.

Figure 5 shows the plot of the fidelity-based distance
Dsub,super(ρW, E(ρW)) respective to the initial pure W
state of N particles, as a function of the probability 0 ≤
p ≤ 1, for different values of system sizes N . In detail,
by setting λ = 1, one finds that both the distance-based
subfidelity and superfidelity saturate to the fidelity-based
distance measure, yielding

Dsub,super(ρW, E(ρW)) =

√
(N − 1)p

N
, (32)

which in turn holds for all 0 ≤ p ≤ 1. On the one
hand, we find that the fidelity-based distance measure
vanishes for small values of p, regardless of the system
size N [see Fig. 5]. On the other hand, for p → 1, note
that Dsub,super(ρW, E(ρW)) approaches unity for larger
system sizes. We point out that, for the case N → ∞,
the fidelity-based distance in Eq. (32) approaches the
asymptotic value

√
p, with 0 ≤ p ≤ 1. This is shown in

Fig. 5, where Dsub,super(ρW, E(ρW)) smoothly approaches
the value

√
p for larger N .

Next, Fig. 6 shows both subfidelity and superfidelity
distances in the limiting case N →∞, for a given probe
N -qubit mixed W state with 0 ≤ λ ≤ 1. We find that
the distance measure based on subfidelity in Eq. (26)
approaches the asymptotic value

lim
N→∞

Dsub(ρW, E(ρW)) =
√

1− (1− p)λ2 , (33)

for all 0 ≤ p ≤ 1, while the superfidelity-based distance
measure in Eq. (27) becomes

lim
N→∞

Dsuper(ρW, E(ρW)) =

=

√
1− (1− p)λ2 −

√
(1− λ2)(1− (1− p)2λ2) . (34)

In Fig. 6(a), we set p = 0.2 and plot the fidelity-based dis-
tance measures in Eqs. (33) and (34) as a function of the
mixing parameter 0 ≤ λ ≤ 1. On the one hand, for small
values of λ, we find that Dsuper(ρW, E(ρW)) smoothly
vanishes, while Dsub(ρW, E(ρW)) approaches unity. On

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(a)

λ

D
(ρ

W
,E

(ρ
W

))

p = 0.2, N → ∞

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(b)

p

λ = 0.7, N → ∞

Dsub(ρW, E(ρW)) Dsuper(ρW, E(ρW))

FIG. 6. (Color online) Plot of the sub- and superfidelity based
distance measures for the N -qubit W state ρW and the respec-
tive dephased density matrix E(ρW) [see Eqs. (33) and (34)].
Here we consider the case N → ∞. We consider the asymp-
totic fidelity-based distance measures Dsub,super(ρW, E(ρW))
for values (a) p = 0.2 and 0 ≤ λ ≤ 1, and (b) λ = 0.7 and
0 ≤ p ≤ 1.

the other hand, as λ → 1, the two quantities provide
tighter bounds. In particular, for λ = 1, both the asymp-
totic quantities saturate to the standard fidelity mea-
sure. In Fig. 6(b), with λ = 0.7, we show plots of the
aforementioned asymptotic fidelity-based distance mea-
sures as a function of the probability 0 ≤ p ≤ 1. Note
that, for p→ 1, the subfidelity-based distance approaches
unity. In Figs. 6(a) and 6(b), the shaded gray region sets
the possible values of the standard fidelity-based distance
measure, and thus the inequality in Eq. (11) is fulfilled
for all 0 ≤ λ ≤ 1 and 0 ≤ p ≤ 1.

VI. CONCLUSIONS

In this work, motivated by the hardships of evaluat-
ing the fidelity for general N -qubit states, we provide an
approach to quantify the error approximation in quan-
tum error correction. We propose two distance measures
based on sub- and superfidelities, and discuss their useful-
ness to bound the error approximation. We also provide
concrete tests of our bounds.

By considering the approximation in quantum error
correction [see Eq. (3)] to be modeled as a dephasing
channel, we evaluate our bounds for two paradigmatic
quantum states, namely both the mixed N -qubit GHZ
and W quantum states. We provide analytical results for
both the sub- and superfidelities, and also present numer-
ical simulations to support our predictions. In addition,
we also provide closed-form expressions for the fidelity-
based distance measures for general initial N -qubit quan-
tum states undergoing the action of the dephasing chan-
nel [see the Appendix A]. We see our bounds as an im-
portant step in characterizing approximate quantum er-
ror correction, mainly because of the fact that the eval-
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uation of both the sub- and superfidelity requires lower
computational cost in contrast with the typical approach
based on Uhlmann’s fidelity.

For the initial mixed GHZ state, we observe that the
probability parameter p modulates the possible numeri-
cal values. As p increases, the bounds increase accord-
ingly. This behavior is expected because as the noise
injection increases, the distance between the initial and
final states also increases. The bounds become tighter
as the mixture parameter λ increase; in particular, they
converge to the same value for a completely pure initial
state. This is a consistency check that our bounds satisfy,
because the sub- and superfidelities recover the fidelity
for pure states. As the number of qubits increases, we
observe that the two bounds converge to limiting values
that depend only on the initial mixture parameter.

Next, for the initial mixed W state, the parameter p
also modulates the numerical values, with the bounds
increasing accordingly. We find that the bounds become
more stringent as the purity of the initial state increases.
On the one hand, for initial pure W states with λ = 1, the
bounds saturate to a value that depends on the square
root of p. On the other hand, for N -qubit mixed W
states with larger N , the bounds reach an asymptotic
value that depends on both 0 ≤ λ ≤ 1 and 0 ≤ p ≤ 1,
in contrast with the case of the mixed GHZ states where
the bounds depend only on the mixing parameter.

The theory of quantum error correction is seeing rapid
development, and the study of approximate error correc-
tion is an important aspect of it. For example, recent
applications of approximate error correction address the
interplay of metrological bounds and global symmetries
in AdS-CFT. Hence, as the relation between those areas
has been a fruitful one, it would be interesting to further
study the usefulness of our bounds in those contexts. Fur-
thermore, from the fact that the distance measure based
on the superfidelity [see Eq. (10)] defines a bona fide met-
ric on the space of quantum states [44], it would be in-
teresting to further reinterpret our results by exploiting
the interplay between the subjects of quantum error cor-
rection and information geometry. Noteworthy, recent
studies addressed the link of complexity with efficiency
for designing quantum error-correcting codes within the
framework of information geometry [57]. Remarkably,
one finds that the efficiency and the information geomet-
ric complexity are related to the so-called entropic speed
for optimal paths connecting initial and final states for
a given physical process [58–60]. In order to address our
results within the viewpoint of information geometry, we
expect to investigate the family of underlying contrac-
tive Riemannian metrics (in a metric spaces sense) re-
lated to the superfidelity distance measure. Indeed, the
so-called Morozova-Čencov-Petz theorem predicts an in-
finite family of Riemannian metrics equipping the mani-
fold of quantum states [42, 61–63]. Within this perspec-
tive, for example, one can address the link between com-
plexity and efficiency of quantum correction protocols for
different Riemannian metrics. Finally, one can investi-

gate how the sub- and superfidelity measures would be-
have for other quantum channels, e.g., depolarizing or
amplitude damping. We intend to explore these ideas in
further work.
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Pesquisa e ao Desenvolvimento Cient́ıfico e Tecnológico
do Maranhão (FAPEMA). G. F. acknowledges support
from Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior–Brasil (CAPES) (Finance Code 001).

APPENDIX

A. GENERAL CASE

In this appendix, we provide general results for the sub-
fidelity and superfidelity distance measures for a given
N -qubit probe state. We begin with the complete set
of noncommuting operators {I0, I+, I−, Iz}, where I0 =

(1/
√

2)I, Iz = (1/
√

2)σz, and I± = (1/2)(σx ± iσy).
Note that the normalized operators Ik and Il are or-
thogonal to each other respective to the Hilbert-Schmidt

inner product, i.e., one gets that Tr(I†kIl) = δk,l, for all
k, l ∈ {0,±, z}. Hence, for a given general N -qubit probe
state ρ, one readily finds that

ρ =
∑

j1,...,jN

aj1,...,jN Ij1 ⊗ . . .⊗ IjN , (A1)

where

aj1,...,jN = Tr[ρ(Ij1 ⊗ . . .⊗ IjN )] . (A2)

We consider the global dephasing map

E(ρ) =
∑

j1,...,jN

aj1,...,jN E1(Ij1)⊗ . . .⊗ EN (IjN ) , (A3)

for j` = {0,±, z} and ` = {1, 2, . . . , N}, with the op-
eration sum representation El(Ijl) =

∑
s=0,1KsIjlK

†
s ,

and the Kraus operators K0 = |0〉〈0|+
√

1− p|1〉〈1| and
K1 =

√
p|1〉〈1|, where 0 ≤ p ≤ 1. In this case, it can be

proved that

El(Ijl) = δjl,0I0 + δjl,zIz

+
√

1− p (δjl,+I+ + δjl,−I−) . (A4)
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The purity of the quantum state in Eq. (A1) reads as

Tr(ρ2) =
∑

j1,...,jN

∑
k1,...,kN

aj1,...,jNak1,...,kN

N∏
l=1

Tr(IjlIkl) ,

(A5)
with

Tr(IjlIkl) = δjl,0δkl,0 + δjl,zδkl,z

+ δjl,+δkl,− + δjl,−δkl,+ . (A6)

Next, the purity of the dephased state in Eq. (A3) is
given by

Tr(E(ρ)2) =∑
j1,...,jN

∑
k1,...,kN

aj1,...,jNak1,...,kN

N∏
l=1

Tr(E(Ijl)E(Ikl)) ,

(A7)

with

Tr(E(Ijl)E(Ikl)) = δjl,0δkl,0 + δjl,zδkl,z

+ (1− p) (δjl,+δkl,− + δjl,−δkl,+) . (A8)

The relative purity between the probe state ρ and the
dephased state E(ρ) is written as

Tr(ρE(ρ)) =∑
j1,...,jN

∑
k1,...,kN

aj1,...,jNak1,...,kN

N∏
l=1

Tr(IjlE(Ikl)) , (A9)

where

Tr(IjlE(Ikl)) = δjl,0δkl,0 + δjl,zδkl,z

+
√

1− p (δjl,+δkl,− + δjl,−δkl,+) . (A10)

Lastly, we evaluate the quantity

Tr(ρE(ρ)ρE(ρ)) =
∑

j1,...,jN

∑
k1,...,kN

∑
q1,...,qN

∑
r1,...,rN

aj1,...,jN

× ak1,...,kNaq1,...,qNar1,...,rN
N∏
l=1

Tr(IjlE(Ikl)IqlE(Irl)) ,

(A11)

with
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Tr(IjlE(Ikl)IqlE(Irl)) =
1

2
δjl,0

[
δkl,0

(
δql,0δrl,0 +

√
1− p (δql,+δrl,− + δql,−δrl,+) + δql,zδrl,z

)
+
√

1− p δkl,+
(√

1− p (δql,0 − δql,z)δrl,− + δql,−(δrl,0 + δrl,z)
)

+
√

1− p δkl,−
(√

1− p (δql,0 + δql,z)δrl,+ + δql,+(δrl,0 − δrl,z)
)

+δkl,z

(
δql,0δrl,z +

√
1− p (δql,+δrl,− − δql,−δrl,+) + δql,zδrl,0

)]
+

1

2
δjl,+

[
δkl,0

(√
1− p (δql,0 − δql,z)δrl,− + δql,−(δrl,0 + δrl,z)

)
+
√

1− p δkl,−
(

(δql,0 + δql,z)(δrl,0 + δrl,z) + 2
√

1− p δql,+δrl,−
)

−δkl,z
(√

1− p (δql,0 − δql,z)δrl,− + δql,−(δrl,0 + δrl,z)
)]

+
1

2
δjl,−

[
δkl,0

(√
1− p (δql,0 + δql,z)δrl,+ + δql,+(δrl,0 − δrl,z)

)
+
√

1− p δkl,+
(

(δql,0 − δql,z)(δrl,0 − δrl,z) + 2
√

1− p δql,−δrl,+
)

+δkl,z

(√
1− p (δql,0 + δql,z)δrl,+ + δql,+(δrl,0 − δrl,z)

)]
+

1

2
δjl,z

[
δkl,0

(
δql,0δrl,z +

√
1− p (δql,+δrl,− − δql,−δrl,+) + δql,zδrl,0

)
+
√

1− p δkl,+
(√

1− p (δql,0 − δql,z)δrl,− + δql,−(δrl,0 + δrl,z)
)

−
√

1− p δkl,−
(√

1− p (δql,0 + δql,z)δrl,+ + δql,+(δrl,0 − δrl,z)
)

+δkl,z

(
δql,0δrl,0 +

√
1− p (δql,+δrl,− + δql,−δrl,+) + δql,zδrl,z

)]
. (A12)

Finally, by collecting the results in
Eqs. (A5), (A7), (A9), and (A11), one finds analytical
expressions for both the subfidelity and superfidelity
distance measures for a general initial N -qubit probe
state undergoing the action of the dephasing channel.
We emphasize that these results solely depend on
prior knowledge of the set of coefficients aj1,...,jN [see
Eq. (A2)], which in turn can be readily obtained by
writing the state ρ in terms of the basis of operators
{I0, I+, I−, Iz}.

We remind that the superfidelity distance measure
Dsuper(ρ, E(ρ)) =

√
1−G(ρ, E(ρ)), with G(ρ, E(ρ)) =

Tr(ρE(ρ))+
√

[1− Tr(ρ2)][1− Tr(E(ρ)2)], depends on the
purities Tr(ρ2) [see Eqs. (A5) and (A6)] and Tr(E(ρ)2)
[see Eqs. (A7) and (A8)] of the probe state and the de-
phased state, respectively, and also the relative purity
Tr(ρE(ρ)) [see Eqs. (A9) and (A10)] between these two
quantum states. In turn, the subfidelity distance mea-
sure Dsub(ρ, E(ρ)) =

√
1− E(ρ, E(ρ)) stands as a func-

tion of the relative purity, with E(ρ, E(ρ)) = Tr(ρE(ρ))+√
2[Tr(ρE(ρ))]2 − 2Tr(ρE(ρ)ρE(ρ)), but also depends on

the quantity Tr(ρE(ρ)ρE(ρ)) [see Eqs. (A11) and (A12)].

In order to further investigate the quantity
Tr(ρE(ρ)ρE(ρ)), we consider the spectral decompo-
sition of ρ and E(ρ) for a given d-dimensional quantum

system. Let ρ =
∑d
r=1 pr|ψr〉〈ψr| be the spectral

decomposition of the probe state, with the eigenvalues

{pr}r=1,...,d satisfying 0 ≤ pr ≤ 1 and
∑d
r=1 pr = 1,

and {|ψr〉}r=1,...,d is the set of eigenstates of ρ, with

〈ψr|ψs〉 = δr,s, and
∑d
r=1|ψr〉〈ψr| = I. In addition,

let E(ρ) =
∑d
k=1 χk|φk〉〈φk| be the spectral decom-

position of the dephased state, with the eigenvalues

{χk}k=1,...,d satisfying 0 ≤ χk ≤ 1 and
∑d
k=1 χk = 1,

while {|φk〉}k=1,...,d stand for the set of eigenstates of

E(ρ), such that 〈φk|φl〉 = δk,l, and
∑d
k=1|φk〉〈φk| = I.

Thus, one gets the following result:

Tr(ρE(ρ)ρE(ρ)) =

=

d∑
r,s=1

d∑
k,l=1

prpsχkχl 〈ψr|φk〉 〈ψr|φl〉∗ 〈ψs|φl〉 〈ψs|φk〉∗

=

d∑
r,k=1

p2rχ
2
k |〈ψr|φk〉|4

+
∑
r 6=s

∑
k 6=l

prpsχkχl 〈ψr|φk〉 〈ψr|φl〉∗ 〈ψs|φl〉 〈ψs|φk〉∗ .

(A13)

Interestingly, note that the square of the relative purity
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between the states ρ and E(ρ) is written as follows:

[Tr(ρE(ρ))]2 =

d∑
r,s=1

d∑
k,l=1

prpsχkχl |〈ψr|φk〉|2 |〈ψs|φl〉|2

=

d∑
r,k=1

p2rχ
2
k |〈ψr|φk〉|4

+

d∑
r 6=s

d∑
k 6=l

prpsχkχl |〈ψr|φk〉|2 |〈ψs|φl〉|2 . (A14)

We note that the quantity Tr(ρE(ρ)ρE(ρ)) in Eq. (A13)
somewhat resembles the square of the relative purity in
Eq. (A14), but the former exhibits an intricate com-
bination of overlaps between states |ψm〉 and |φn〉, for

all m,n = {1, . . . , d}. In the particular case of or-
thogonal vectors |ψm〉 and |φn〉, i.e., 〈ψm|φn〉 = 0 for
all m,n = {1, . . . , d}, one finds that both Eqs. (A13)
and (A14) vanish. We may understand the quantity
Tr(ρE(ρ)ρE(ρ)) as a distinguishability measure of the
states ρ and E(ρ), somewhat similar to the standard rel-
ative purity Tr(ρE(ρ)).

To conclude, we comment on the particular case in
which ρ = |ψ〉〈ψ| is an N -qubit pure state, while E(ρ) =
E(|ψ〉〈ψ|) stands for the dephased mixed state. In this
setting, one gets that Tr(ρE(ρ)ρE(ρ)) = 〈ψ|E(ρ)|ψ〉2 =
[Tr(ρE(ρ))]2, i.e., one finds that the quantity reduces to
the square of the relative purity between states ρ and
E(ρ). For two maximally distinguishable (orthogonal)
states ρ and E(ρ), both quantities become zero.
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