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The fidelity susceptibility is a general purpose probe of phase transitions. With its origin in quantum
information and in the differential geometry perspective of quantum states, the fidelity susceptibility can
indicate the presence of a phase transition without prior knowledge of the local order parameter, as well as
reveal the universal properties of a critical point. The wide applicability of the fidelity susceptibility to
quantum many-body systems is, however, hindered by the limited computational tools to evaluate it. We
present a generic, efficient, and elegant approach to compute the fidelity susceptibility of correlated
fermions, bosons, and quantum spin systems in a broad range of quantum Monte Carlo methods. It can be
applied to both the ground-state and nonzero-temperature cases. The Monte Carlo estimator has a simple
yet universal form, which can be efficiently evaluated in simulations. We demonstrate the power of this
approach with applications to the Bose-Hubbard model, the spin-1=2 XXZ model, and use it to examine the
hypothetical intermediate spin-liquid phase in the Hubbard model on the honeycomb lattice.
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I. INTRODUCTION

Phase transitions highlight the beauty of universality,
despite the great diversity of nature. For example, one finds
a unified description for systems ranging from ultracold
bosons [1,2] to magnetic insulators [3–5] on the verge of a
phase transition. Phase transitions originate from the
competition between different tendencies when a macro-
scopic system tries to organize itself. Thermal fluctuations
can drive classical phase transitions at nonzero temper-
atures, while quantum phase transitions can occur even at
zero temperature because of the competition between non-
commuting terms in the quantum-mechanical Hamiltonian
[6,7]. At the phase transition point, physical observables
often exhibit singular behavior. In this respect, phase
transitions are the most dramatic manifestation of the laws
of statistical and quantum mechanics.
Traditional descriptions of phase transitions are based on

low-energy effective theories of local order parameters,
which have had enormous success in explaining various
phase transitions of superfluids, superconductors [8], and
quantum magnets [9,10]. However, in recent years, excep-
tions to this Ginzburg-Landau-Wilson paradigm have
emerged [11]. In particular, topological phase transitions
[12–14] do not have a local order parameter on either side of

the phase transition. Therefore, new theoretical tools are
needed to search for and characterize these new quantum
phases and phase transitions. Many concepts in quantum
information science [15], such as quantum fidelity and
quantum entanglement, have proven to be useful [16,17].
Having a point of view that is totally different from the
traditional condensed matter approach, they do not assume
the presence of a local order parameter and thus offer new
perspectives of the phase transitions and their universalities.
Specifically, we consider the following one-parameter

family of Hamiltonians with a driving parameter λ:

ĤðλÞ ¼ Ĥ0 þ λĤ1: ð1Þ
As λ changes, the system may go through one or several
phase transition(s) because of the competition between Ĥ0

and Ĥ1. The quantum fidelity measures the distance on the
manifold of λ, which is defined as the overlap between
the ground-state wave functions at two different values of
the driving parameter,

Fðλ; ϵÞ ¼ jhΨ0ðλÞjΨ0ðλþ ϵÞij; ð2Þ
where ĤðλÞjΨnðλÞi ¼ EnðλÞjΨnðλÞi, and n ¼ 0 corre-
sponds to the ground state. Unless otherwise stated, we
assume the wave functions are normalized and there is no
ground-state degeneracy. It is anticipated that the fidelity
will exhibit a dip when the two wave functions are
qualitatively different, e.g., when they belong to different
phases [18]. This wave function overlap is also related to
the Anderson orthogonality catastrophe [19] and the
Loschmidt echo in quantum dynamics [20].
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Since in general the quantum fidelity vanishes exponen-
tially with the system size for a many-body system, it
is more convenient to study the change of its logarithm
with respect to the driving parameter, called the fidelity
susceptibility [21]:

χFðλÞ ¼ −∂2 lnF
∂ϵ2

����
ϵ¼0

: ð3Þ

The first-order derivative vanishes because F is at its
maximum when ϵ ¼ 0. In general, the fidelity susceptibil-
ity is an extensive quantity away from the critical point, but
it exhibits a maximum or even diverges at the critical point,
thus indicating a quantum phase transition [22,23]. Similar
to conventional thermodynamic quantities, it also follows a
scaling law close to the critical point [22–25], which can be
used to extract universal information about the phase
transition. An important feature of the fidelity susceptibility
is that it can reveal a phase transition without prior
knowledge of the local order parameter. This makes it
suitable for detection of topological phase transitions
[26–29] and Berezinsky-Kosterlitz-Thouless-type transi-
tions [30–32] as well as for tackling challenging cases
where an in-depth understanding of the underlying physics
is still lacking [33,34]. Interestingly, the fidelity suscep-
tibility may also be accessible to experiments [35–37].
Despite its appealing features, the difficulty in calculat-

ing the fidelity susceptibility has hindered its use in
numerical simulations. Many previous studies were thus
limited to the cases where the ground-state wave function
overlap could be calculated from the analytical solution,
exact diagonalization, or density-matrix renormalization-
group (DMRG) methods [16].
There are several equivalent formulations of the fidelity

susceptibility Eq. (3), which reveal different aspects of the
quantity. From a computational point of view, they offer
direct ways to calculate the fidelity susceptibility without
the need to perform numerical derivatives of the fidelity as
in Eq. (2).
(a) Expanding jΨ0ðλþ ϵÞi for small ϵ, one can cast the

definition Eq. (3) into an explicit form [22,38]:

χFðλÞ¼
h∂λΨ0j∂λΨ0i
hΨ0jΨ0i

−hΨ0j∂λΨ0i
hΨ0jΨ0i

h∂λΨ0jΨ0i
hΨ0jΨ0i

: ð4Þ

The above form does not assume properly normalized
wave functions jΨ0i. Equation (4) reveals the geo-
metric content of the fidelity susceptibility [22,38],
since this expression is the real part of the quantum
geometric tensor [39].

(b) Alternatively, one can calculate the first-order pertur-
bation for jΨ0ðλþ ϵÞi and get

χFðλÞ ¼
X
n≠0

jhΨnðλÞjĤ1jΨ0ðλÞij2
½EnðλÞ − E0ðλÞ�2

: ð5Þ

Compared to Eq. (4), Eq. (5) does not contain
derivatives but involves all eigenstates and the full
spectrum. It explicitly shows that χF ≥ 0 and suggests
the divergence of χF when the energy gap of the
system closes.

(c) Reference [21] views Eq. (5) as the zero-frequency
component of a spectral representation; thus, a Fourier
transform is performed to obtain an alternative
expression,

χFðλÞ ¼
Z

∞

0

dτ½hΨ0jĤ1ðτÞĤ1jΨ0i − hΨ0jĤ1jΨ0i2�τ;

ð6Þ

where Ĥ1ðτÞ ¼ eĤτĤ1e−Ĥτ. Equation (6) has the form
of a linear-response formula and is computationally
more friendly than Eq. (4) or Eq. (5). Referen-
ces [24,25] generalize it to nonzero temperature by
replacing the integration limit with β=2:

χFðλÞ ¼
Z

β=2

0

dτ½hĤ1ðτÞĤ1i − hĤ1i2�τ; ð7Þ

where h� � �i denotes the thermal average at inverse
temperature β. Besides reducing to Eq. (6) as β → ∞,
Eq. (7) is nevertheless a well-defined quantity at
nonzero temperatures. It bounds the divergence of
an alternative “mixed state” fidelity susceptibility
[40,41], which is based on the Uhlmann fidelity
[42,43], and both quantities follow the same scaling
law close to a quantum critical point [24,25]. In
general, the evaluation of Eq. (7) is still a formidable
computational task, which requires ad hoc implemen-
tation depending on the details of the Hamiltonian.
For example, the fidelity susceptibility for two-
dimensional quantum spin systems is calculated in
Refs. [24,25] using a quantum Monte Carlo (QMC)
method, while for a one-dimensional quantum spin
system, Ref. [44] computed it using the transfer-
matrix DMRGmethod. The nontrivial implementation
of these specific approaches and the overhead in the
calculation still limits the wide applicability of the
fidelity susceptibility approach to a broad range of
quantum many-body systems.

In this paper, we present a simple yet generic approach to
compute the fidelity susceptibility in a largevariety ofmodern
quantum Monte Carlo methods, including the continuous-
time worldline [45–48] and stochastic series expansion
(SSE) [49] methods for bosons and quantum spins, and
the diagrammatic determinantal methods for quantum
impurity [50–53] and fermion lattice models [54–56].
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In all cases, the Monte Carlo estimator is generic and the
implementations are straightforward. As long as the quan-
tumMonte Carlo simulation is feasible (not hindered by the
sign problem), the fidelity susceptibility can be easily
calculated. Our finding can boost the investigation of
quantum phase transitions from a quantum information
perspective and becomes especially advantageous for the
exploration of exotic phases beyond the Ginzburg-Landau-
Wilson paradigm.
The organization of the paper is as follows. In Sec. II,

we present our estimator for the fidelity susceptibility
and discuss its implementations in various quantum
Monte Carlo methods. Section III presents derivations of
the estimator. In Sec. IV, we demonstrate the power of the
fidelity susceptibility approach with applications to various
models, including correlated bosons, fermions, and
quantum spins, using a variety of quantum Monte Carlo
methods. Section V discusses the relation between the zero-
temperature and nonzero-temperature estimators for the
fidelity susceptibility and compares them to the previous
approaches [24,25]. We conclude with future prospects
in Sec. VI.

II. RESULTS

We first present our results on the estimator of the
fidelity susceptibility in a general setting, then discuss its
implementations in various QMC methods, including
the continuous-time worldline [45–48] and diagrammatic
determinantal approaches [50–56], and the stochastic series
expansion method [49]. In all cases, the fidelity suscep-
tibility can be measured with little effort.

A. Universal covariance estimator

Many modern QMC methods [45–56] share a unified
conceptual framework, namely that the partition function is
calculated as a perturbative series expansion for the λĤ1

term,

Z ¼ Trðe−βĤÞ ¼
X∞
k¼0

λk
X
Ck

wðCkÞ; ð8Þ

where the second summation runs over all the Monte Carlo
configurations of a given expansion order k. The detailed
meaning of the configuration depends on the specific QMC
algorithm and will be explained in the next subsection.
Figure 1(a) depicts a generic configuration, where the k
objects residing on the periodic imaginary-time axis
represent the vertices λĤ1 in the expansion, with a
Monte Carlo weight λkwðCkÞ for this configuration.
QMC simulations [45–56] sample the summation over k
and Ck on an equal footing. Specific algorithms differ by
the detailed form of wðCkÞ and by the sampling schemes.
Nevertheless, these QMC methods share a unified frame-
work provided by Eq. (8), which is the only requirement for

the estimator of the fidelity susceptibility Eq. (7) to possess
an appealing universal form in nonzero-temperature QMC
simulations:

χT≠0F ¼ hkLkRi − hkLihkRi
2λ2

; ð9Þ

where kL and kR are the number of vertices residing in
the range ½β=2; βÞ and ½0; β=2Þ of the imaginary-time
axis, respectively, shown in Fig. 1(a). The Monte Carlo
average of an observable is defined as hOi ¼ 1

Z

P∞
k¼0 λ

k×P
CkwðCkÞOðCkÞ, where OðCkÞ denotes the value measured

for the configuration Ck. In practice, because of the periodic
boundary condition on the imaginary-time axis, the divi-
sion of the time axis to halves may be done at an arbitrary
location. Moreover, it is even possible to perform multiple
measurements on the same configuration by generating
several random divisions.
QMC methods [45–56] can also be utilized at zero

temperature, where the unnormalized ground-state wave
function is obtained from an imaginary-time projection:

jΨ0i ¼ lim
β→∞

e−βĤ=2jΨTi: ð10Þ

Here, β is a projection parameter and the trial wave funciton
jΨTi shall not be orthogonal to the true ground state.
A similar framework as Eq. (8) applies, except that one
now samples from the overlap hΨT je−βĤjΨTi instead of the
partition function. In the projection scheme, the fidelity
susceptibility has the estimator

χT¼0
F ¼ hkLkRi − hkLihkRi

λ2
; ð11Þ

where kL and kR are the number of vertices for the bra and
ket states, which reside in the range ½β=2; βÞ and ½0; β=2Þ of
the imaginary-time axis respectively, shown in Fig. 1(b).

FIG. 1. Measurement of the fidelity susceptibility in the
(a) nonzero-temperature formalism and in the (b) ground-state
projection scheme. Each red object represents a term in the
driving Hamiltonian λĤ1, denoted as a vertex. To measure the
fidelity susceptibility Eqs. (9) and (11), we divide the imaginary-
time axis into two halves and count the number of vertices kL and
kR, respectively. The nonzero-temperature formalism allows an
arbitrary division because of the periodic boundary condition in
the imaginary-time axis, while in the ground-state projection
scheme the division has to be at β=2.
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Since the fidelity susceptibility is non-negative, the covari-
ance formula Eq. (11) reveals positive correlation of kL and
kR in a Monte Carlo simulation.
Equations (9) and (11) are the central results of this

paper. As is obvious from the discussions in this section,
neither the details of the Hamiltonian nor the statistics of
the system need to be specified. These estimators are thus
general and can be readily implemented in a variety
of QMC methods for correlated fermionic, bosonic, or
quantum spin systems [45–56].

B. Implementations

We now discuss implementation of the estimators
Eqs. (9) and (11) in various concrete QMC methods.
See Sec. II B 1 for discussions about continuous-time
worldline [45–48] and diagrammatic determinantal
[50–56] approaches and Sec. II B 2 for discussions about
the stochastic series expansion approach [49].

1. Continuous-time worldline and diagrammatic
determinantal approaches

Continuous-time worldline methods [45–48] are widely
used to simulate boson and quantum spin systems, while
the diagrammatic determinantal approaches are the state-
of-the-art methods for solving quantum impurity [50–53]
and fermion lattice models [54–56]. A common feature of
these methods is to split the Hamiltonian in the form of
Eq. (1) and perform a time-dependent expansion in λĤ1,

Z ¼
X∞
k¼0

λk
Z

β

0

dτ1…
Z

β

τk−1
dτk

× Tr½ð−1Þke−ðβ−τkÞĤ0Ĥ1…Ĥ1e−τ1Ĥ0 �; ð12Þ

which obviously fits in the general framework of Eq. (8).
In the continuous-time worldline approach [45–48], the
Ĥ1 term corresponds to hoppings of bosons or spin flips,
depicted as kinks of the worldlines in Fig. 2(a). In
continuous-time diagrammatic determinantal approaches

[50–56], λĤ1 contains the fermion interactions, drawn as
interaction vertices in Fig. 2(b). Equation (12) has the form
of a grand canonical partition function for a classical gas,
where λ plays the role of fugacity and k is the number of
certain classical objects (kinks or vertices) residing on the
imaginary-time axis. Typical updates of continuous-time
diagrammatic determinantal approaches [50–56] consist of
randomly inserting or removing vertices, which are iden-
tical to the updates of the grand canonical Monte Carlo
method for molecular simulations [57,58]. For bosons and
quantum spins there are more effective nonlocal updates,
such as the worm and directed loop updates [45–49]. In any
case, the Monte Carlo estimators Eqs. (9) and (11) are
independent to the detailed sampling procedures. It suffices
to count kL and kR of Monte Carlo configurations to
calculate the fidelity susceptibility. Examples are presented
in Secs. IVA and IV C.

2. Stochastic series expansion

SSE is based on a Taylor expansion of the partition
function [49],

Z ¼
X∞
n¼0

ð−βÞn
n!

Tr½Ĥn�; ð13Þ

which may seem to be different from the framework of
Eq. (8). However, as is shown in Ref. [59], one can formally
treat the SSE as the time-dependent expansion Eq. (12)
with respect to the full Hamiltonian Ĥ ¼ Ĥ0 þ λĤ1.
In the implementation of SSE, one truncates the sum to a

large number M and pads M − n identity operators in the
square bracket of Eq. (13). SSE then samples operators in
the fixed-length operator string. To map to a Monte Carlo
configuration in the continuous-time formalism, one can
assign an imaginary time to each operator, as shown in the
bottom of Fig. 3. As long as the mapping keeps the relative
order in the original operator string, the Monte Carlo
weight remains unchanged [60]. In particular, the configu-
ration is sampled with a weight proportional to λk if there
are k of λĤ1 operators in the operator string. In this way,
although the sampling of SSE is carried out differently from
Eq. (12), the general framework of Eq. (8) still applies. The
fidelity susceptibility is then measured easily by counting
the numbers kL and kR of operators associated with λĤ1 in
the two halves of the imaginary-time axis after the
mapping.
From Fig. 3 it is clear that even though one performs an

equal bipartition in the imaginary-time axis, the corre-
sponding location of division is not always in the center
of the operator string. In fact, it is easier to directly sample
the location of division in the operator string, as shown in
the upper part of Fig. 3. A division at the lth position
(l ¼ 0; 1;…;M) means that there are l slots being mapped
to one half of the imaginary-time axis and M − l slots to

FIG. 2. (a) Measurement of the fidelity susceptibility in a
continuous-time worldline QMC simulation of bosons and
quantum spins, where one counts the number kinks kL and kR
after division of the imaginary-time axis. (b) In the diagrammatic
determinantal QMC simulation of correlated fermions, the
number of interaction vertices kL and kR are counted.
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the other half. Therefore, the division l itself follows a
binomial distribution pðlÞ ¼ 1

2M
ðMlÞ that can be sampled

directly. In this way, the fidelity susceptibility can be
efficiently calculated in SSE similar to the continuous-time
QMC approaches discussed in Sec. II B 1. As M → ∞, the
binomial distribution approaches a delta function peaked at
the center of the operator string. Only in this limit the
position in the operator string can be directly interpreted as
the imaginary time and a bipartition of the operator string in
the center will yield the correct result for the fidelity
susceptibility.

III. DERIVATIONS

In this section, we derive the estimators for the fidelity
susceptibility at nonzero temperature Eq. (9) and for
ground-state projector formalism Eq. (11). Readers may
skip this section and continue reading with the following
sections.

A. Ground state

Using the diagrammatic expansion for the projection
operator, the unnormalized ground-state wave function
Eq. (10) has the following form:

jΨ0i ¼ lim
β→∞

X∞
k¼0

λk
Z

β=2

0

dτ1…
Z

β=2

τk−1
dτk

× ½ð−1Þke−ðβ=2−τkÞĤ0Ĥ1…Ĥ1e−τ1Ĥ0 �jΨTi: ð14Þ

Substituting it into Eq. (4) and noticing that the partial
derivatives affect only the prefactor λk, one obtains
Eq. (11). The estimator also holds for the continuous-time

auxiliary field expansion methods (CT-AUX [52] and LCT-
AUX [56]), because one can cast the ground-state wave
function to a similar form as Eq. (14), assuming the shift
parameter used in these methods [54] to be proportional
to λ.

B. Nonzero temperature

We present two derivations of the nonzero temperature
estimator Eq. (9).

1. Derivation based on the definition of
nonzero-temperature fidelity

The nonzero-temperature estimator Eq. (9) can be
obtained directly from the definition of the nonzero-
temperature fidelity [61]:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðe−βĤðλÞ=2e−βĤðλþϵÞ=2Þ

½Trðe−βĤðλÞÞTrðe−βĤðλþϵÞÞ�1=2

s
: ð15Þ

This is a nonzero-temperature generalization of Eq. (2)
and leads to Eq. (7) by using the definition of the
fidelity susceptibility Eq. (3) [44]. We expand the traces
of the density matrices around the partition function
Z ¼ Trðe−βĤðλÞÞ to Oðϵ2Þ,

Trðe−βHðλþϵÞÞ ¼ Z þ ϵ∂λZ þ ϵ2

2
∂2
λZ;

Trðe−βĤðλÞ=2e−βHðλþϵÞ=2Þ ¼ Z þ ϵ~∂λZ þ ϵ2

2
~∂2
λZ;

where the notation ~∂λ indicates that the partial derivative
acts only on operators in the imaginary-time interval
0 ≤ τ < β=2. Substituting the above two expansions into
Eq. (15) and keeping terms up to Oðϵ2Þ, one obtains

χT≠0F ¼ ð~∂λZÞ2
2Z2

− ~∂2
λZ
2Z

þ ∂2
λZ
4Z

− ð∂λZÞ2
4Z2

¼ hkRi2
2λ2

− hkRðkR − 1Þi
2λ2

þ hkðk − 1Þi
4λ2

− hki2
4λ2

¼ hkLkRi − hkLihkRi
2λ2

: ð16Þ

To obtain the second line, we use the partition function
expansion Eq. (8) and the fact that the partial derivatives act
only on the prefactor λk ¼ λkLþkR. For the third line, we use
k ¼ kL þ kR and hkLi ¼ hkRi ¼ hki=2. This derivation is
abstract and is independent of the details of a QMC scheme.
Carrying out a similar procedure starting from Eq. (2), one
can also prove the ground-state estimator Eq. (11).

FIG. 3. Division of the operator string in SSE to measure the
fidelity susceptibility. The slots represent the fixed-length oper-
ator string where empty slots hold identity operators, the red
circles (blue squares) correspond to the operators in Ĥ1 (Ĥ0).
These operators can be mapped to a continuous-time configu-
ration indicated by the arrows. A division can then be made on the
imaginary-time axis, for example, at β=2. An equivalent approach
without explicit mapping to continuous time is to divide the
operator string at the location indicated by the vertical dashed
line, where the integer l is drawn from a binomial distribution.
For the estimators Eqs. (9) and (11), one counts the number of red
circles (operators in λĤ1) in both sides for kL and kR. In this
example, M ¼ 12; n ¼ 6;l ¼ 7, and kL ¼ kR ¼ 2.
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2. Derivation based on the
imaginary-time correlator Eq. (7)

This derivation starts from the definition of fidelity
susceptibility based on the imaginary-time correlator
Eq. (7). We utilize its connection to the Monte Carlo
weight that appears in Eq. (12) to derive the nonzero-
temperature estimator Eq. (9). First of all, the second term
in the square bracket of Eq. (7) can be measured directly
from the average expansion order [49,50,53,54]:

hĤ1i ¼ − hki
βλ

: ð17Þ

Integrating over the imaginary-time and using hkLi ¼
hkRi ¼ hki=2, one has

Z
β=2

0

dτ½−hĤ1i2�τ ¼ − hki2
8λ2

¼ − hkLihkRi
2λ2

: ð18Þ

We then consider the QMC estimator for the first term of
Eq. (7),

Gðτ1 − τ2Þ ≜ hT ½Ĥ1ðτ1ÞĤ1ðτ2Þ�i

¼ 1

λ2

�X
i≠j

δðτi − τ1Þδðτj − τ2Þ
�
; ð19Þ

where T is the time-ordering operator and τi and τj are the
imaginary times of two vertices in the Monte Carlo
configuration. Integrating both sides of Eq. (19) and using
the fact that Gðτ1 − τ2Þ depends only on jτ1 − τ2j, one has
Z

Λ

0

dτ1

Z
Λ

0

dτ2Gðτ1 − τ2Þ ¼ 2

Z
Λ

0

dτGðτÞðΛ − τÞ

¼ 1

λ2
hkðΛÞ½kðΛÞ − 1�i; ð20Þ

where kðΛÞ is the number of vertices in the range of
0 ≤ τ < Λ. For example, kðβÞ ¼ k and kðβ=2Þ ¼ kR. When
choosing Λ ¼ β and using GðτÞ ¼ Gðβ − τÞ, Eq. (20)
becomes

β

Z
β

0

dτGðτÞ ¼ 1

λ2
hkðk − 1Þi: ð21Þ

When setting Λ ¼ β=2, Eq. (20) reads

2

Z
β=2

0

dτGðτÞ
�
β

2
− τ

�
¼ 1

λ2
hkRðkR − 1Þi: ð22Þ

Together with Eq. (21), it leads to

Z
β=2

0

dτGðτÞτ ¼ hkðk − 1Þi
4λ2

− hkRðkR − 1Þi
2λ2

¼ hkLkRi
2λ2

: ð23Þ

In combination with Eqs. (7) and (18), we obtain Eq. (9).

IV. APPLICATIONS

We first demonstrate the power of the new approach by
identifying quantum and thermal phase transitions in the
Bose-Hubbard model and in the spin-1=2 XXZ model.
Then, we use the fidelity susceptibility to address the
presence of the intermediate quantum spin-liquid state in
the Hubbard model on the honeycomb lattice. In all cases,
this requires only minimal modifications to existing codes.
We purposely chose a variety of QMC methods in
the following to demonstrate the wide applicability of the
covariance estimators. Because of the flexibility of the
nonzero-temperature estimator, we use Eq. (9). In Sec. VA,
we compare it to the zero-temperature scheme.

A. Quantum phase transition in the
Bose-Hubbard model

First, we use the fidelity susceptibility to probe the
quantum phase transition in the Bose-Hubbard model,

Ĥ ¼
X
i

�
U
2
n̂iðn̂i − 1Þ − μn̂i

�
− λ

X
hi;ji

ðb̂†i b̂j þ b̂†j b̂iÞ;

ð24Þ

where U is the on-site interaction and μ is the chemical
potential. The driving parameter λ has the physical meaning
of a tunneling amplitude. The Bose-Hubbard model has a
well-known quantum phase transition between the Mott
insulating state and the superfluid state as λ=U increases
[1,2]. In particular, for integer fillings, the system has an
emergent Lorentz invariance at the critical point and the
dynamical critical exponent is z ¼ 1 [7].
The fidelity susceptibility has previously been calculated

using DMRG methods for the one-dimensional Bose-
Hubbard model [62–64]. We now calculate the fidelity
susceptibility on a square lattice with N ¼ L2 sites at unit
filling by tuning μ. In accordance with the dynamical
critical exponent z ¼ 1, we scale the inverse temperature
proportionally to the system length βU ¼ 4L. The simu-
lation employs the directed worm algorithm [46,65,66]. We
utilize Eq. (9) to sample the fidelity susceptibility by
counting the number of kinks in the worldline configura-
tion, as illustrated in Fig. 2(a). Figure 4 shows that, as the
system size increases, the peak in the fidelity susceptibility
(as a function of the driving parameter λ) is becoming
more pronounced around the previously determined
critical point ðλ=UÞc ¼ 0.05974ð3Þ [67]. The inset of
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Fig. 4 shows the scaled fidelity susceptibility χFL−2=ν
versus ½ðλ=UÞ − ðλ=UÞc�L1=ν according to the scaling law
of Refs. [22,24,25]. The data collapses well under the
critical exponent ν ¼ 0.6715 of the 3D XY universality
class [67]. The ability to calculate the fidelity susceptibility
using the state-of-the-art directed worm algorithm
[46,65,66] will greatly advance the study of quantum phase
transitions of ultracold bosons. It is worth pointing out that
the fidelity susceptibility is related to the quantity (kinetic-
energy correlator) previously calculated in the study of
Higgs mode in a two-dimensional superfluid [68].

B. Thermal phase transition in the XXZ model

Next, we consider the spin-1=2 antiferromagnetic XXZ
model on a square lattice with N ¼ L2 sites,

Ĥ ¼ Jz
X
hi;ji

Ŝzi Ŝ
z
j þ λ

X
hi;ji

ðŜxi Ŝxj þ Ŝyi Ŝ
y
jÞ; ð25Þ

where the driving parameter λ plays the role of the coupling
strength in the XY plane. When λ dominates, the
Hamiltonian favors Néel order in the XY plane, while if
Jz dominates, the system has an antiferromagnetic Ising
ground state. The Heisenberg point λ ¼ Jz is a quantum
critical point, which separates the XY order and the Ising
order. This quantum critical point can be easily located
from the peak of the fidelity susceptibility (not shown). Our
approach makes it possible to obtain the fidelity suscep-
tibility in much larger systems compared to the previous
exact diagonalization study [69], and thus can enable a
more accurate scaling analysis.
At nonzero temperature, thermal fluctuations will

destroy the antiferromagnetic Ising phase at a second-order
phase transition. Since one can cross the phase boundary by
changing either λ or the temperature T, we see that the

fidelity susceptibility can also indicate thermal phase
transitions. As a demonstration, we fix λ ¼ 1, Jz ¼ 1.5
and scan the temperature T to drive a phase transition from
the low-temperature antiferromagnetic Ising phase to the
high-temperature disordered phase. Figure 5 shows the
fidelity susceptibility calculated using Eq. (9) via the SSE
method [49,71]. The peak in the fidelity susceptibility
correctly singles out the previously determined critical
temperature ðT=λÞc ≈ 0.75 [70].

C. Intermediate phase in the Hubbard model
on the honeycomb lattice

Finally, we apply the fidelity susceptibility estimator to a
more challenging and controversial example—the Hubbard
model on the honeycomb lattice,

Ĥ ¼ − t
X
hi;ji

X
σ¼f↑;↓g

ðĉ†iσ ĉjσ þ ĉ†jσ ĉiσÞ

þ λ
X
i

�
n̂i↑ − 1

2

��
n̂i↓ − 1

2

�
; ð26Þ

where λ has the meaning of on-site Hubbard interaction
strength. The simulation employs the recently developed
efficient continuous-time QMC method for lattice fermions
(LCT-INT) [56,72]. We consider lattices with N ¼ 2L2

sites, with L ¼ 6; 9; 12, and scale the inverse temperature
βt ¼ L.
The ground-state phase diagram of the Hubbard model

on the honeycomb lattice [74] has been controversial.
It was suggested to possess an intermediate nonmagnetic
spin-liquid phase for λ=t ∈ ½3.5; 4.3� [75]. However, more
recent QMC studies on larger systems [76] and with
improved observables [77,78] suggest a single continuous
phase transition at λ=t ≈ 3.8 belonging to the Gross-Neveu
universality class [79]. Other less unbiased methods, such

FIG. 4. Fidelity susceptibility per site of a Bose-Hubbard model
on a square lattice at unit filling. The vertical line indicates the
critical point determined in Ref. [67]. The inset shows the data
collapse of the scaled fidelity susceptibility.

FIG. 5. Fidelity susceptibility per site of a XXZ model on
square lattice versus temperature. The vertical line indicates the
critical temperature determined in Ref. [70].
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as quantum cluster approaches, give conflicting results on
the presence of the intermediate phase [80–85], depending
on implementation details.
The fidelity susceptibility offers a new perspective on the

debate about the phase diagram. In the scenario with an
intermediate phase, there shall be two features in χF when
λ=t approaches the two phase boundaries. This consider-
ation is independent of the presence of a local-order-
parameter description of the possible intermediate phase.
Figure 6 shows the fidelity susceptibility per site for

various system sizes obtained using Eq. (9). The calculation
of the fidelity susceptibility for fermions is more challeng-
ing than that for bosons (Sec. IVA) and quantum spins
(Sec. IV B), because of the unsatisfactory local
Monte Carlo updates and the cubic (instead of linear)
scaling with respect to the system size N. Given the limited
system sizes, in Fig. 6 we can identify only a single broad
peak for small systems (and high temperature). The peak
becomes sharper and shifts towards smaller interaction
strength as the system size increases; however, the
examined system sizes are insufficient for a reliable
determination of the phase diagram. Further algorithmic
improvements (nonlocal updates and better scaling) on the
fermionic QMC methods are needed to access accurate
fidelity susceptibility data for larger systems and lower
temperatures to better locate phase transitions without
knowing the local order parameter. Moreover, by using
the histogram reweighting [86,87] or the quantum Wang-
Landau approach [88], it is possible to obtain the fidelity
susceptibility in a continuous range of λ. Such data may be
used to precisely determine the critical point and even the
critical exponent of the quantum phase transition.

V. DISCUSSION

To help the reader gain a better understanding of the
estimators Eqs. (9) and (11), we first discuss their

relationship then compare them with the previous approach
adopted in SSE calculations [24,25]. Finally, we compare
the fidelity susceptibility approach with other generic
approaches for detecting phase transitions.

A. Relation of the ground-state and nonzero-
temperature estimators

The factor of 2 difference in Eqs. (9) and (11) is due to the
different boundary conditions of the imaginary-time axis in
the ground-state projection and nonzero-temperature QMC
formalisms; see Fig. 1. We use a four-site Hubbard model
[Eq. (26)] as an illustrative example. Consider the integrand
of Eq. (7), the correlatorGðτÞ ¼ hĤ1ðτÞĤ1i is related to the
distribution of the vertices on the imaginary-time axis. For a
given configuration, the probability of finding two vertices
with a time difference τ is proportional to λ2GðτÞ. If we
equally divide the imaginary-time axis into two halves and
impose the additional constraint that the two vertices reside
in different halves (denoted as a separable vertex pair),
the joint probability changes to λ2GðτÞminfτ; β − τg.
Figure 7(a) shows the histogram of separable vertex pairs
accumulated in the imaginary time, which indeed agrees
with the exact curve. Summing up the histogram gives the
total number of separable vertex pairs, which equals the
following integration:

hkLkRi ¼ λ2
Z

β=2

0

dτGðτÞτ þ λ2
Z

β

β=2
dτGðτÞðβ − τÞ:

ð27Þ

FIG. 6. Fidelity susceptibility per site of the Hubbard model on
the honeycomb lattice Eq. (26) with N ¼ 2L2 sites.

(a)

(b)

FIG. 7. (a) Histogram obtained by counting separable vertex
pairs with distance τ compared with the exact result of
hĤ1ðτÞĤ1imaxfτ; β − τg. (b) Histogram obtained by counting
vertices with distance τ compared with the exact results of
hĤ1ðτÞĤ1i. For τ close to β=2, the correlator approaches hĤ1i2,
indicated by the dashed blue line. These simulations are per-
formed for the Hubbard model Eq. (26) on a four-site open chain
with λ=t ¼ −2 and βt ¼ 8.
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Since GðτÞ is symmetric around τ ¼ β=2 in the nonzero-
temperature simulation, the two terms of Eq. (27) are equal.
Thus, Eq. (27) reduces to Eq. (23). Furthermore, Fig. 7(b)
shows the correlator GðτÞ sampled by accumulating the
histograms of distances between vertices [51,53] together
with the exact results (solid black line). The correlation
between vertices decays rapidly with imaginary-time dis-
tance and approaches the uncorrelated value hĤ1i2 (dashed
blue line).
However, in the zero-temperature limit, the correlator

GðτÞ decays monotonically with τ and two vertices will
decorrelate for τ ≥ β=2, where β → ∞ in the projection
scheme. Therefore, the second term of Eq. (27) reduces to
ðλ2β2hĤ1i2Þ=8 ¼ hki2=8 and cancels half of the second
term in the estimator Eq. (11), resolving the apparent
difference by the factor of 2. In practical calculations, it is,
however, crucial to adopt the correct formula to obtain
consistent results, as illustrated in Fig. 8. The fidelity
susceptibility calculated using Eq. (9) in a nonzero-
temperature LCT-INT [56] simulation agrees perfectly with
exact diagonalization results. The blue square shows the
value obtained using Eq. (11) in a projector LCT-INT
calculation [89], which correctly reproduces the exact value
of the ground-state fidelity susceptibility.
Figure 7(b) also reveals the difficulty of computing the

fidelity susceptibility. If the decay of GðτÞ is faster than
1=τ, the integrand of Eq. (7) has vanishing contributions at
large τ. However, as the two terms in Eq. (7) are sampled
independently in the actual QMC simulations, uncorrelated
vertices at large imaginary-time distance will cause noises
in the fidelity susceptibility signal. For the applications in
Sec. IV, we thus perform the calculations at nonzero
temperature as it provides a natural cutoff.

B. Comparison to previous approaches

The present approach to sample the fidelity susceptibility
is more generic and efficient than those developed in
Refs. [24,25] specifically for the SSE method. It is

nevertheless instructive to compare them in detail. The
key difference lies in the sampling of the first term of
Eq. (7). References [24,25] employ the SSE estimator
[90,91]

GðτÞ ¼ M − 1

λ2β2

×
XM−2

n¼0

�
M − 2

n

��
1 − τ

β

�
M−n−2�τ

β

�
n
hGðnÞi;

where GðnÞ is the number of occurrences of two operators
from Ĥ1 that are separated by n positions in the fixed-
length operator string (n ¼ 0 if they are next to each other).
Multiplying both sides with maxfτ; β − τg and integrating
over the imaginary time, one finds

λ2
Z

β

0

dτGðτÞmaxfτ; β − τg ¼
XM−2

n¼0

WðnÞhGðnÞi; ð28Þ

where the weight function WðnÞ is written in terms of the
regularized incomplete beta function Ixða; bÞ [92],

WðnÞ ¼ I1=2ðnþ 2;M − n − 1Þ nþ 1

M

þ I1=2ðM − n; nþ 1ÞM − n − 1

M
: ð29Þ

References [24,25] explicitly go through kðk − 1Þ=2
pairs of vertices to accumulate hGðnÞi and multiply it with
the weight function WðnÞ. In Eq. (27), however, the
multiplication by the imaginary time τ is taken into account
implicitly by the sampling procedure (which requires
separable vertices). Besides being more generic, our
approach reduces the computational cost from Oðk2Þ to
OðkÞ, which is crucial for the simulation of bosonic
and quantum spin systems. In this sense, the specification
of our general result Eq. (9) for the SSE method can be
regarded as an improved estimator of Eq. (28), which by
itself already improves the approach of Refs. [24,25] in
several aspects [93]. The improved estimator Eq. (9) not
only unifies the SSE approach in a broader context of
continuous-time diagrammatic QMC methods, it also gives
better statistics with less computational cost compared
to Eq. (28).
Figure 9 shows the weight function WðnÞ for various

truncation lengths. As M increases, it approaches two
straight lines, and a division in the center of the operator
string would yield increasingly accurate results for the
fidelity susceptibility, consistent with the discussion in
Sec. II B 2 concerning the large M limit.

C. Relationship to other quantities

The fidelity susceptibility is related to the second-order
derivative of the free energy A ¼ −ð1=βÞ lnZ [25,94].

FIG. 8. QMC results for the fidelity susceptibility compared
with exact results (solid line). The nonzero-temperature QMC
data (red dots) are obtained from Eq. (9), while the ground-state
data (blue square at β−1 ¼ 0) are obtained from Eq. (11) in a
projector LCT-INT calculation [89]. The system is the same
as in Fig. 7.
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Because of the Hellmann-Feynman theorem [95,96], hĤ1i
equals to the first-order derivative of the free energy with
respect to λ. A further derivative following the Kubo
formula gives

∂2A
∂λ2 ¼ ∂hĤ1i

∂λ ¼ −
Z

β

0

dτ½hĤ1ðτÞĤ1i − hĤ1i2�

¼ hk2i − hki2 − hki
−βλ2 : ð30Þ

The third equality follows from Eqs. (17) and (21) [97].
The quantity resembles the widely used SSE estimator
for the specific heat [49,98], but can be used to probe
quantum phase transitions [25]. At zero temperature
ð∂hĤ1iÞ=∂λ ¼ −ð1=λÞð∂hĤ0iÞ=∂λ, and the latter quantity
is computed using numerical differentiation of the kinetic
energy, so as to address the quantum phase transition in the
Hubbard model on the honeycomb lattice [75,85]. As is
pointed out in Refs. [25,94], the fidelity susceptibility has a
stronger singularity compared to the second-order deriva-
tive of the free energy and is thus a better indicator of
quantum phase transitions. In particular, notice that the
integrand of Eq. (30) differs from Eq. (7) by a multipli-
cative factor τ. One can show that in the critical region the
singular part of χF diverges faster than Eq. (30) by a factor
of Lz, where z is the dynamical critical exponent [22,25].
There are concrete examples in a class of topological phase
transitions, which do not exhibit singularity in the second-
order derivative of the ground-state energy [99], but can
still be detected using the fidelity susceptibility [100].
The covariance that appears in the estimators Eqs. (9)

and (11) can also be written as

hkLkRi − hkLihkRi ¼
1

2
½VarðkÞ − VarðkLÞ − VarðkRÞ�;

where VarðxÞ ¼ hx2i − hxi2 is the variance of x. This
expression has an appealing meaning, i.e., the distributions
of the vertices residing on the whole and on the halves of
the imaginary-time axis have different widths, and the
difference in these widths gives the estimate. This form
resembles the bipartite fluctuation [101], which was

proposed to be a diagnostic tool for phase transitions
[102] because of its relation to the entanglement entropy.
However, there are important differences. First, the
fidelity susceptibility estimator requires a division in the
imaginary-time axis for vertices, not in the real space for
the physical particles. Second, the total number of vertices
is fluctuating in the QMC simulations as opposed to being
conserved in the case of bipartition fluctuations. Third, it is
easier to locate the critical point using the fidelity suscep-
tibility. As is shown in this paper and in many previous
studies [16], the fidelity susceptibility exhibits an increas-
ingly sharp peak at a phase transition as the system size
enlarges. On the other hand, to utilize bipartite fluctuations
and entanglement entropy for phase transition, one typi-
cally needs to resolve the scaling or subleading behavior
with the system size, which is often difficult in finite size
simulations.

VI. OUTLOOK

We present a general approach to compute the fidelity
susceptibility of correlated fermions, bosons, and quantum
spin systems in a broad class of quantum Monte Carlo
methods [45–56]. The calculation of the fidelity suscep-
tibility is surprisingly simple yet generic. It provides a
general purpose indicator of quantum phase transitions
without the need for a prior knowledge of the local order
parameter.
Conceptually, our work shows it is rewarding to view the

modern QMC methods [45–56] in a unified framework
provided by Eq. (8), which deals with the same type of
classical statistical problem irrespective of microscopic
details of the original quantum system. In the QMC
simulations, a quantum phase transition manifests itself
as a particle condensation transition driven by changing of
the fugacity of the corresponding classical model. This
connection suggests generic ways to detect and characterize
quantum phase transition through studying classical par-
ticle condensations. For example, Eq. (30) actually relates
the second-order derivative of free energy of a quantum
system to the particle compressibility of a virtual classical
system. In this respect, the significance of the covariance
estimators Eqs. (9) and (11) is evident because they capture
the key critical fluctuation upon a particle condensation
transition.
It is straightforward to generalize our Eqs. (9) and (11) to

cases with multiple driving parameters, where one needs to
count the vertices of different types (as is already done
in the SSE calculations in Secs. II B 2 and IV B). It is
interesting to find out whether this can lead to a general
approach to measure the Berry curvature (the imaginary
part of the quantum geometric tensor) in quantum
Monte Carlo simulations. Related to these efforts, the
nonequilibrium QMC method has been developed in recent
years [103,104] to study the nonadiabatic response of
quantum systems in imaginary time. In particular, it also

FIG. 9. The weight function according to Eq. (29) for various
truncation lengths M in a SSE calculation.
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allows the extraction of the fidelity susceptibility and the
Berry curvature [103,105]. It would be interesting to
compare the nonequilibrium QMC approach [103,104]
to the equilibrium one presented in this paper.
Last but not least, the Hamiltonian Eq. (1) has further

implications beyond quantum phase transitions. The effi-
cient estimators Eqs. (9) and (11) may also provide useful
insights in the simulations of adiabatic quantum compu-
tation [106–108] and nonadiabatic quantum dynamics
[109,110].
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