
Fido: A Cache That Learns to Fetch

Mark Palmer
Digital Equipment Corporation
2 Elizabeth Drive CTC2-2/D 10
Chelmsford, MA 01829

Abstract

This paper describes Fido, a predictive cache

[Palmer 19901 that prefetches by employing an
associative memory to recognize access patterns
within a context over time. Repeated training
adapts the associative memory contents to data
and access pattern changes, allowing on-line
access predictions for prefetching. We discuss
two salient elements of Fido - MLP, a replace-
ment policy for managing prefetched objects,
and Estimating Prophet, the component that
recognizes patterns and predicts access. We
then present some early simulation results
which suggest that predictive caching works
well and conclude that it is a promising method.

1 Introduction

The cost of fetching data from secondary storage as
needed is a major performance factor for current OODB
systems. In workstation-server architectures, this cost is
compounded as data crosses several I/O boundaries on
its path from the server’s secondary storage to an appli-
cation’s memory. Caching in workstation-server OODB
architectures improves performance, as described by
[Rubenstien 19871. Chang and Katz [Chang 19891 found
that cache m‘anagement policy has the largest effect on
response time, followed by static clustering, a much-
studied topic [Chan 19821, [Stamos 19841, [Hudson
19901. Current OODB cache designs are derived from
virtual memory demand pagers that prefetch clusters but
assume no explicit knowledge of the future. Demand
pagers exploit the locality of reference inherent in code
execution. The goal of clustering is to force a similar lo-
cality of reference on data for a given access pattern.

However, a major purpose of databases is to allow data
sharing ‘and integration of diverse applications. Cluster
prefetching alone can be inherently ineffective when us-
ers mix conflicting patterns in accessing the same data.
Devising a clustering that is both fair and efficient then
becomes problematic and expertise-intensive; finding an
optimal partitioning can be computationally unfeasible
[Niamir 19781. We are seeking methods of improving
cache performance that accomodate conflict between in-
dividual and communal access requirements.

Proceedings of the 17th International
Conference on Very Large Data Bases

Stanley B. Zdonik
Brown University

Computer Science Dept.
Providence, RI 029 12

We are finding that, because of structure in data and
determinism in programs, access within individual con-
texts can be predicted dynamically - irrespectively of in-
herent or pre‘arranged locality of reference, Fido auto-
matically recognizes and exploits patterns that emerge
over time within each access context to provide accurate
prefetching under mixed access paradigms, for which
the best static clustering may be a compromise.

1.1 Predictive Caching

A predictive cache can supplement existing cache man-
agement strategies, such as demand paging with cluster
prefetch, or can function as a primary cache. Fido’s
predictive cache model augments common demand pag-
ing strategies by adding a component consisting of an
associative memory and several pattern recognition rou-
tines. This “black box” is known as the Estimating
Prophet, The prophet learns access patterns within iso-
lated access contexts over time well enough to predict
access for each context. During a database session, the
prophet monitors client-server communication and gen-
erates access predictions, which Fido then uses to
prefetch data. Each prediction indicates an explicit ex-
pected order and likelihood of access - information that
Fido’s replacement policy exploits.
This solution addresses the difficulties described above

and has several desirable properties: The prophet gains
experience with each access pattern individually, tailor-
ing its predictions within each access context according
to the history of that context, without considering other
usage patterns. Also, the prophet monitors access se-
quences in a non-invasive way and requires no knowl-
edge of data model or schema. Its operation is auto-
matic and invisible to the database administrator,
requiring little in the way of time, intuition, or expertise
to operate. By regularly monitoring access sequences.
the prophet can adjust its predictions to reflect changes
in data usage quickly, incrementally, and in a uniform
way.

1.2 Paper Structure

This paper introduces concepts and terms to provide a
framework for the study of predictive caching. It dis-
cusses design issues identified by constructing simula-
tion experiments, but does not offer a formal analysis
of optimality.

255 Barcelona, September, 1991

Our current research focuses on two topics. The first
topic concerns how to best incorporate predictive
prefetch activity into cache management, given costs of
prediction and prefetching. The second topic involves
assessing various prophet designs by comparing predic-
tive accuracy against efficiency. Accordingly, this paper
presents a) a model for predictive cache management,
and b) a prophet design that uses associative memory to
recognize and predict access sequences on-line.

Section 2 describes how Fido fits into a workstation-
server OODB architecture. Section 3 presents a cache
management model that incorporates prediction, and
Section 4 describes how access panems are recognized
and predicted. Section 5 recounts some experiments in
simulating a predictive cache using actual access traces.
Section 6 discusses related work, and Section 7 offers
some conclusions.

2 Architectural Overview

The purpose of this section is to summarize just those
aspects of the target database architecture required to il-
lustrate how Fido works. This description coven a sub-
set of functions provided by the database system, and
entails some simplifying assumptions. First, methods
for managing a cache of variable-sized objects are or-
thogonal to the issues of accuracy and costs of
prefetching examined in this paper, so we assume that
objects are of uniform size. Second, the distributed sys-
tem architect must consider methods of validating and
synchronizing cached objects against replicas. Since
others (e.g. [Alonso 19901, [Wilkinson 19901, [Garza
19881) have confronted these issues, we dodge them
here. We assume that prefetched objects are locked and
validated in cache as if they had been requested. The
target design applications usually have low contention
for write locks, since these applications often have high
read/write ratios ([Cattell 19871, [Chang 19891). Fido’s
ability to function is independent of the above simplifi-
cations.

Predictive caching wilI be most useful to distributed
applications that:

. are data intensive, with high read/write ratios

0 use navigational access patterns that imply different
data clusterings

0 create and delete medium-granularity objects at a
rate slow enough to permit tracking of changes

l preserve some degree of object identity.

In general, CAD applications have many of these char-
acteristics. OODBs support data sharing between such
applications and maintain object identity. Fido is de-
signed to operate in OODB systems where applications
retrieve objects from secondary storage and cache them
in local memory. This is known a$ a workstation-server,
or interpreter/ storage manager architecture. The typical
system consists of a central server machine that re-
sponds to data requests from applications running inde-
pendently on workstations. Seveml systems, such as

Proceedings of the 17th International
Conference on Very Large Data Bases

Cactis [Hudson 19901, O2 [Velez 1989],ORION-1SX
[Garza 19881, and Mneme [Moss 19901 are similar in
this respect. [Dewitt 19901 compares the performance
of several such variations. We wish to add Fido to Ob-
server/ENCORE [Femandez 19901. The primary com-
ponents of the architecture are the database server and
the client, which includes the predictive cache.

2.1 Database Server

Observer acts as a typeless back end to applications,
managing access to database secondary storage. Ob-
server maintains strong object identity [Khoshafian
19861, which aids predictive caching - the preservation
of identity simplifies recognition of reoccurring parts of
an access pattern over time. Object identity in Observer
is provided via an external unique identifier (UID) that
acts as an immutable handle for an object and is not re-
cycled. OODBs may assign meanings to individual bits
of UIDs; Fido ignores any such semantics and treats ac-
cess sequences simply as strings of symbols.

The Observer read message supplies a list of UIDs to
the servei, which gets the identified objects from disk or
a server-managed buffer and returns them to the re-
quester. Observer facilitates prefetching through exten-
sions of its basic read function. A requester marks reads
for either dentand or prefPtch processing. Observer pre-
vents outstanding prefetch requests from delaying other
requests by providing a pre-emptise read operation for
dem‘and requests and servicing it before other reads.

Users can cluster Observer objects into segments and
can migrate or replicate objects between segments. Ob-
server return? a segment when any object in the segment
is referenced, thus segments are the usual unit of server-
client communication. The client can disable segment
prefetching, which causes Observer to Rtum the set of
objects in a request as the unit of network communicn-
tion.

2.2 Client

A workstation application interfaces to Observer via the
ENCORE client component, which acts as an inter-
preter, mapping the data model used by the application
onto operations understandable by Observer. ENCORE
implements object type semantics, executes methods
and enforces encapsulation, and is typically bound into
the application’s image. ENCORE also validates cache
objects and supports other database functions related to
persistence and distribution, but the operation of these
is unrelated to the prefetch mech‘anism. The salient
function of the client is that it allows the application to
reference objects by UID, without knowledge of how or
where objects are stored. The client ensures that refer-
enced objects are ferried between the server and the ap-
plication’s local memory transparently. Clients take
various approaches to aan?lating object references to
memory addresses. They often use some fnrm of Resi-
dent Object Table (ROT) to obtain a pointer to the ob-
ject’s location in memory, and may “swizzle” the ROT
entry by adding the memory pointer to it.

256
Barcelona, September, 1991

ENCORE maintains a cache of currently used objects,
sending demand requests to the server when the applica-
tion references an object not in cache and “flushing”
modified objects back to the server’s secondary storage
as needed. If the way objects are clustered into seg-
ments does not suit the current access pattern, cache
faults and network demand requests increase, which
slows response time.

2.3 Access Contexts

The client isolates access patterns according to access
contexfs. The prophet provides context identifiers
(CIDs) as a handle to associate patterns generated by the
same source. By default, ENCORE uses CIDs to indi-
cate the combination of user and application that gener-
ates a particular access sequence, but context assign-
ment may be controlled further by the programmer. For
example, an application might provide one function that
graphically displays a circuit design, and another func-
tion that allows ad hoc queries. The access pattern of the
display function might be very predictable, allowing
efficient learning, while sequences generated by ad hoc
queries could be arbitrary and difficult to learn. A pro-
grammer might establish different CIDs corresponding
to these two functions, even when the same user invokes
them. A designer can use CIDs and knowledge of an
application to “focus attention” of the prophet, thus re-
ducing resource requirements for prediction at any given
time.

2.3.1 Fido Predictive Cache

A portion of ENCORE’s client cache is allocated to the
Fido predictive cache, which interfaces to the prophet to
decide what to prefetch and the order in which to re-
place cached objects. The prophet can be configured as
a separate service or as part of the client image. It has
two primary modes of operation: prediction and frain-
ing.

Given a sample of the latest sequence of access to
Fido, the prophet predicts which accesses will occur
next. An individual prediction may indicate that alter-
nate sequences are anticipated by arranging identifiers
according to expected order and likelihood of access.

In training mode, the prophet learns access patterns
over time and becomes increasingly better at prediction,
until it reaches a stable state where learning ceases.
This state may be reached because the prophet is not en-
countering any new information or changes in access
pattern, or because it has exceeded user-specified re-
source limits. The access pattern information for a single
access context is known as a pattern memory. Fido
stores each pattern memory between sessions.

Figure 1 shows how Fido fits in with the client and
server; UIDs are represented as letters and objects as cir-
cles. As an application session begins, Fido loads (0)
the pattern memory for the access context. The applica-
tion generates a sequence of references (1) to the client,
which converts UIDs to object memory address via the
ROT.

Proceedings of the 17th International
Conference on Very Large Data Bases

g.f& e lue e

Cl = semaphor

0
=object

Figure 1: Server and Client with Predictive Cache

References to a and b return pointers (2) to those objects
in the cache. If an accessed object (e.g. c) is not in
cache, the client issues a pre-emptive dem‘and read (3) to
the server, and blocks. During the session, the prophet
samples the current access sequence (4) recognizes the
start of a known pattern, and completes it, predicting
“d e f g”. Since e is already in cache, Fido starts a
prefetch request for (5) d, f, and g, entering “promises”
for these objects into the ROT. Any access to d, f, or g
blocks until the prefetch request arrives and updates the
promises, converting them to regular ROT entries. As
described in the next section, the prophet’s predictions
also govern replacement ordering.

3 Predictive Cache Management Model

As mentioned above, the client ferries objects,
transparently to the application, between the server and
the workstation’s memory. The prophet generates pre-
dictions: this causes objects to be prefetched. This sec-
tion outlines the cache management model that the cli-
ent uses to manage prefetched objects. Simulation has
been helpful in identifying design issues for predictive
caching, such as:

l defining an appropriate model for prediction

l ideal case operation, when many correct prdictim

are being generated

l faulting and cache space utilization behavior in the
worst case, when no predictions are being made

. interactions between cached objects when a prefetch
is accessed or an object eviction is required

. computation and communication overhead for pre-
diction and prefetching.

257 Barcelona, September, 1991

Fido maintains a FIFO sampling window on the current
access sequence. On each access to an object o, if o is
not in cache, Fido starts a demand read and then gives
the current sequence sample to the prophet, which may
return a prediction of the immediate future. If so, Fido
checks whether any predicted objects are already in
cache, and starts a single prefetch request for those
which are not. When the prefetched objects arrive, an
asynchronous completion routine decides which cached
objects to replace. The overall strategy of predictive
cache management involves three goals:

I. quickly flushing erroneous prefetches from cache

2. avoiding wasted cache when no predictions are made

3. controlling the volume and cost of predictions.

The first two goals are addressed by Fido’s replacement
policy, and the last by heuristics - Fido monitors predic-
tion performance and adjusts certain prophet parameters
dynamically to throttle prediction rate, balancing cost
against accuracy. We shall next introduce some terms,
describe the replacement policy, and then portray Fido’s
operation under several conditions.

3.1 Definitions

The following terms define a predictive cache.

3.1.1 Predictive cache

A predictive cache C=(R U P] is a union of two disjoint
sets - a prefetch set P, and a set of referenced objects, R.
C can hold k objects.

3.1.2 Prefetch set

A prefetch set P is the set of prefetch requests present in
cache at any one time. Objects in older prefetch re-
quests are considered less likely to be accessed than ob-
jects in more recent requests.

3.1.3 Prefetch request

A prefetch request x. is the order-maintained subset of
objects in prediction i-l. not in C at the time II. is made.
The “head” of a prefertch request identifies the object
most likely to be accessed first, while the “tail” identi-
fies the object whose access is expected furthest in the
future and is thus least likely: n* = (“i - C]. A
prefetch request is a unit of I/O bet&een cache and sec-
ondary storage. The server returns prefetch requests as
if retrieving a page or segment of objects - except that
the objects are determined dynamically, instead of by
static clustering, and have an explicit ordering.

3.1.4 Prediction

A prediction II = 01 . . . o. is a list of identifiers par-
tially ordered by expected access sequence and fully or-
dered by probability of access. That is, an access to ob-
ject oi is expected before an access to object 0. for i<j.
unless Oi and 0. are alternate possibilities, in which c&ye
XI access to Oi 4 s more likely than an access to 0..

J

Proceedings of the 17th International
Conference on Very Large Data Bases

3.2 MLP Replacement Policy

A cache manager decides which objects to replace with
new objects according to a replacement policy. Fido’s
replacement policy flushes erroneous prefetches from
cache by ensuring that unused prefetches have lower
priority than new prefetches or referenced objects. The
Minimum Likelihood Prefetch (MLP) replacement pol-
icy stipulates:

l Within a prefetch request, evict the Minimum Like-
lihood Prefetch first. That is, prefetch eviction hap-
pens from tail to head of each prefetch request.

l The definition of P implies that old prefetch re-
quests are evicted before new prefetch requests.

l On access to object o, promote o to most-recently-
used status within C. If operating “beneath” a pri-
mary cache, swap a with o’ evicted by the primary
cache.

The MLP policy is an adaptation of the proven optimal
replacement policy for demand paging, OPT [Mattson
19701. OPT always replaces the cache item which is ac-
cessed furthest in the future, but operates off-line. MLP
replaces objects which are expected to be accessed fur-
thest in the foreseen future. One difference between
MLP and OPT is that MLP uses estimated, incrementa/
knowledge of the future, instead of perfect prescience as
assumed by OPT. During periods when the prophet
fails to predict, the third MLP rule causes Fido to oper-
ate as a demand LRU cache.

3.2.1 Replacement Ordering

The replacement ordering for objects in C can be mod-
eled by operations on a fixed size list. Identifiers are in-
serted at the head and deleted from the tail. This behav-
ior governs how objects are brought into and evicted
from C, whether by prefetch requests or by faults. As an
access sequence is processed, the prophet generates pre-
dictions, which result in prefetch requests. As prefetch
requests arrive. they are inserted at the list head in re-
verse of their expected access order. The object whose
expected access is furthest in the future, i.e. - that least
likely to be used, enters into and is evicted from C first.

Time.
!/
2
2
3
4
5
6
7
8

a
b

fkdefxg
d
e
f
9

i+i

Rew State

cbalmk
de fxzc
e d fix g c

Figure 2: Replacement Example

258
Barcelona, September, 1991

The example in Figure 2 illustrates replacement priority
as a prefetch request is handled and faults occur. For
simplicity, the example assumes that Fido is operating
as a primary cache. Successive references descend the
left column, with the list state shown at right. Identifi-
ers are added at the list head (left) and removed from its
tail. By time 2, references to a, b, and c cause reorder-
ing, and the sampling window contents, a, match a
known pattern, triggering the prefetch request for &
&g. This prefetch request arrives before another refer-
ence is made, causing eviction of everything but c. At

6, an access to q (instead of x) faults, replacing c with
q. At 7, g is moved up, leaving x to be evicted by the
fault for h.

3.3 Cache Behavior

Three prototypic cases characterize the intended behav-
ior of the cache during operation.

3.3.1 Sequence Recognition (best case)

Fido makes a prefetch request of size k every k accesses,
which arrives, fills the cache, and is then consumed
from head to tail, moving TC from P to R, and leaving
the replacement list containing x in reversed order,

3.3.2 Prediction Starvation

Within a session, intervals occur during which the cur-
rent sequence is unknown to the prophet, which gener-
ates no predictions. In this situation, the move-to-front
[Tarjan 1985] rule produces the replacement behavior of
a demand LRU cache processing the same sequence.

3.3.3 Error Glut (worst case)

In this situation, the prophet generates some maximum
number of incorrect prediction7 on every reference,
causing the cache to be full of useless objects.

The following heuristic adjusts certain prophet pa-
rameters to control cases 2 and 3 above:

l Guess rate: Let h denote the ratio of objects
prefetched divided by the number of references
made at any given time during the session

l Accuracy: x denotes the ratio of correct predictions
to total predictions during the session.

l Efficiency: If a denotes the sample window size
and o denotes the size of a prediction, the ratio
u=o/a reflects how much sample is used in generat-
ing each prediction.

Guess rate, accuracy, and efficiency interact. Specifi-
cally, increasing the sample size lowers efficiency and
guess rate, but raises accuracy. Fido monitors guess rate
and efficiency by keeping running averages. Prediction
starvation can occur if too much information is supplied
in the samples, and error glut can happen if the sample
size is too small. To control these situations, Fido ad-
justs sample size, CC according to Xh If Xh crosses a
low or high threshold, Fido increments or decrements a
accordingly to try to bring Xh back into range.

Proceedings of the 17th International
Conference on Very Large Data Bases

4 Estimating Prophet

Previous sections of this paper have outlined a model
for managing a cache containing prefetched objects, but
have presupposed an ability to predict references. This
section presents a design intended to illustrate how the
current prophet learns to predict.

The prophet learns access patterns in training mode
and recognizes them in prediction mode. The client re-
cords reference traces from each session for each access
context. Training mode processes each reference trace -
normally (but not necessarily) off-line, between ses-
sions, and incrementally improves pattern memory for
each access context. Prediction mode generates
prefetch requests, as described in sections 2 and 3.

The intuitive explanation of how training and predic-
tion modes work is that the present sequence acts as a
cue - when the prophet recognizes a situation that is
similar to some previously encountered situations, it re-
calls the consequences of those previous situations.
This is analogous to the way organisms determine pre-
sent behavior according to past experience. Thus both
training and prediction rely on an ability to quickly but
inexactly retrieve previous sequences using information
about the present sequence as a key. We shall first dis-
cuss this inexact retrieval capability and then outline its
function in training and prediction.

4.1 Associative Memory

The prophet stores and retrieves access order informa-
tion in an inexact manner by using a nearest-neighbor

associative memory. Much work has been done on asso-
ciative memory architectures (potter 19871, [Kanerva
19881) some of which provide the most biologically
plausible neural net models. Research by Anderson and
others has shown how such memories can be con-
structed from elements that imitate the functioning of
neurons in cortex [Anderson 19901, and evidence sug-
gests that cognition may indeed operate this way.
Nearest-neighbor models m3p data units with k elements
to points in /c-dimensional pattern space, defining simi-
larity metrics in k dimensions. Similar patterm are near
each other in pattern space, and radius values define
equivdence classes. The following terms apply to the
nearest-neighbor based pattern memory model.

4.1.1 Pattern Memory

A pattern memory consists of r unit patterns, co, $,
pairwise at least I’ distant in pattern space. Each umt
pattern defines an eqrthvlence class - all observed se-
quences within the pattern-space sphere having 5 at its
center and radius I’ are considered equivalent to &. This
capacity.for inexactness is important for two reasons.

First, it means that pattern memory is lossy - the
prophet ignores minor variations in patterns over time,
only using resources to represent significant differences.

Second, it allows useful predictions to be made even if
the current access sequence does not exactly match what
has appeared before, as when new identifiers appear af-
ter recent updates to the database.

259 Barcelona, September, 1991

4.1.2 Unit Pattern

A unit pattern {=<o~...o,> is a list of identifiers that
acts as a partial approximation of access pattern. Each
unit pattern divides into a prefk of variable length cc and
sufix of length 6-a c k. The prefix acts as a key for the
suffix during prediction. One can think of the prelix as
an observed antecedent, and of the suffix as its conqe-
quence. Each suffix usually contains the prefix of some
other unit pattern(s), cEating inexactly linked chains of
unit patterns that approximate observed alternate se-
quences (see Figure 4). Also stored with each unit pat-
tern are ratings of its historical frequency of occurrence
and average predictive accuracy. Newly created unit
patterns are of a uniform maximum length, but may be
shortened over time by training.

4.1.3 Distance in Pattern Space

The measure of dissimilarity between two unit patterns
is the count of columnwise unequal identifiers.

4.3 Training Mode

After each session, the client saves a reference tram for
each access context invoked, then runs the prophet in
training mode to process the saved traces. The training
algorithm, TRAIN, adapts a pattern memory over time
so that it retains only the most commonly reoccuring
unit pattern<. Training reinforces unit patterns that ap-
pear frequently and represses sequences that appear spo-
radically, or which consist of obsolete information. Unit
patterns “compete” for space in pattern memory over
time based on their ability to generate prefetch requests
which contribute to overall system speedup. This causes
pattern memory to self-organize, to focus on regularly
reoccurring phenomena, and to evolve a generalization
of each access pattern. The training algorithm employs
an “evolutionary” strategy that consists of two phases:
credit assignment and adaptation.

4.3.1 Credit Assignment

This phase assigns credit to all unit patterns which con-
tribute to predicting the training trace. Some stored unit
patterns reoccur only infrequently, while others become
obsolete as updates to the database cause new identifiers
to appear and others to disappear. Also, the lengths of
unit patterns are initially uniform and reflect arbitrary
sampling boundaries. Infrequent, obsolete, or poorly
chosen samples produce unit patterns that function
poorly as predictors, which congests pattern memory
with useless information.

To perform credit assignment, TRAIN simulates a pre-
diction run along the training trace 1. Each time a pre-
diction II. occurs at a point i in I, TRAIN updates ac-
curacy an & frequency ratings of each unit pattern 5
contributing to prediction ni. It assesses accuracy by
counting the number of identifiers in the suffix of 5
which appear within a lookahead interval, usually k,
ahead of I’ in 1. If the accuracy of 4 falls below a thresh-
old, it may be due to a concentration of prediction er-
rors at the end of k’s suffix. If so, TRAIN decreases the
length of 5 proportionately and re-rates 5. TRAIN also
updates frequency of occurrence for all contributing unit
patterns.

4.3.2 Adaptation

Each time an application runs, it can reveal more of its
total access pattern. To recognize new parts of an ac-
cess pattern, TRAIN again scans the training trace,
shifting it through a sample window of unit pattern size.
matching each s,ample against pattern memory, and
skipping ahead by CJ when an equivalence is found.

Any subsequences of unit pattern length that do not
fall within an existing equivalence class and which de-
fied prediction during credit assignment are added ~5
new unit patterns to pattern memory, timestamped. and
rated. TRAIN then ranks all unit patterns according to
rating and length. It prunes unit patterns with the lowest
ratings and shortest lengths until pattern memory fits
within its allotted space. The pattern memory is then
ready to be saved or to be used for prediction mode.

Figure 3: Unit Patterns in Pattern Space

In Figure 3, one sample S and a set of unit patterns, all
the same length, are arranged according to increasing
distance from S. The nearest neighbors to S are the unit
patterns closest to S in pattern space. The prophet con-
siders all unit patterns closer than I’ equal to S.

4.2 Resource Costs

[Palmer 19901 further describes the current prophet im-
plementation. Two of its properties are:

l A non-repeating sequence of length 1 can be stored
in pattern memory using O(f) space, creating t=l/a
unit patterns.

l All nearest neighbors of a sample of length a can be
found in O(a log(t) + f), where f’ is an expected
number of neighbors.

Pattern memory space requirements of the implementa-
tion are adequate for problem sizes of current interest
(i.e. - infrequently-repeating strings of O(lOs) identifi-

ers). The size of pattern memory can be controlled by
user-set resource limits, and by establishing multiple ac-
cess contexts per application. Neighbor finding is f;tst
enough for predictions involving thousands of unit pat-
terns, since sample size is typically small. We expect to
further reduce prophet resource requirements through
continued research.

Proceedings of the 17th International
Conference on Very Large Data Bases

260 Barcelona, September, 1991

4.4 Prediction Mode

The task of prediction mode is to quickly recognize
similarities between the current access sequence sample
and stored unit pattern prefixes, then combine the asso-
ciated suffixes. During a session, the sampling window
contents are given to the prophet’s PREDICT routine on
each access to Fido. PREDICT finds the nearest neigh-
bors of the sample. One can think of session prediction
as a traversal of pattern space. TRAIN initially overlaps
successive unit patterns, and unless re-training changes
these links, the consumption of one prefetch request
generates a match with the next unit pattern prefix. In
this example, access to efg in the suffix of 5l matches
the prefixes of 52 and 54

a -+ b strong match
a . .._.. :. b weaker match

Figure 4: Unit Patterns Linked by Expected Order

PREDICT constructs an ordered union of suffixes as
the prediction, lYI. As it copies the suffix of each 5 to l-I,
it uses the rating of each unit pattern to place UIDs from
the “best” 5 at the head of I-I, and avoids duplicates.
Thus, PREDICT interleaves UIDs of multiple unit pat-
tern suffixes in the prediction output, with UlDs from
the best matches and predictors appearing first. The fol-
lowing example shows efg matching unit patterns t2
and 4

I!.
above, causing an interleaving of their suffixes

into

SAMPLE: e

$2 efe hi ikl x=.4

54 exghqv x= .3
OUTPUT, I-I: hiqivkl

Note that the prophet finds multiple matches for a sam-
ple. Fido’s model of prediction pemlits parallel possi-
bilities. Since cache memory is cheaper than I/O time
[Gray 19871, Fido spends cache space to save I/O,
prefetching alternate possibilities (limited to a constant
factor) simultaneously into the prefetch set. For exam-
ple, suppose that after sequence e f g h, an access to i
is .4 likely, but an access to q is .3 likely. Fido’s
prefetch request includes both i and q, giving a com-
bined hit probability of .7 - and assumes that one of i or
q will go unused. MLP replacement then quickly re-
claims space wasted by erroneous prefetches by evicting
unused prefetches first.

5 Experiments
We have been experimenting with predictive caching,
using Fido as a bamework for exploration. Our first
simulations examined aspects of prediction, prefetch and
faulting behaviors. We are using the results to fit predic-
tive cache operations to the actual I/O subsystem.

5.1 Resilience to Noise

Other users make unpredictable updates to a database,
changing the set of UIDs to be learned and predicted.
One measure of prediction performanoe is the rate at
which prediction accuracy degrades as updates increas-
ingly disrupt pattern recognition. UID changes appear as
“noise” in the access sequence during prediction. While
the update rate of OODB applications is slower than for
transaction processing, it is reasonable to expect’ that 10
or 20 percent of the UIDs could change between ses-
sions. Experiments with an early (also nearest-neighbor)
pattern memory palmer 19901 revealed a property of
resilience to create/delete noise. One experiment ran as
follows: An access simulator produced a string, 1, of 600
random UlDs, to train the prophet and produce a pattern
memory. The following process was repeated until the
original 1 contained 30% noise:

1. Mutate 2% of I by deleting or inserting new UIDs at
uniformly random points, maintaining I’s length

2. Simulate prediction along I without first re-training,
then plot final guess rate and accuracy against total
percent noise in 1.

We observed that accuracy and guess rate degraded line-
arly as noise increnqed. that guess fate declined more
quickly than accuracy, and that the relative rates could
be varied by adjusting sample size, i.e. - efficiency.
The result appears in Figure 5.

\
41

60 i? ..” :, ~‘. . .:. . .‘. . .
--mm..*.

i i i i : i

@lCP¶ Rate (predictedit+aI)
n .

-4.:
l . 40 . . :. .;. . .;. . .:. 4.. .:. . .

I : : : --., I
I

-, 5 5
., -I

2n-j..,

I I t I , , ,
0 5 1 ‘1 15 :n 25 > I,

Percent Noise During Predictlon

Figure 5: Prediction Accuracy and Guess Rate vs. Noise
I based on conversations with Digital CAD tool developers

Proceedings of the 17th International
Conference on Vety Large Data Bases

261 Barcelona, September, 1991

5.2 Predictive Cache Simulation

We next wished to simulate the functioning of training
and predictive caching using an access trace. At Digi-
tal’s CAD/CAM Technology Center, Engineers ob-
tained data reference traces from a CAD tool that
seemed to perform navigational access, spending most
of its time waiting to fault through a graphics display
structure - especially during invocation, when the whole
design was displayed. The two virtual address traces
each recorded 5 to 10 minutes of tool use: invocation,
zoom in and out, selecting ICs, and setting filters to re-
move certain parts of the board display (runs and junc-
tions). In observing the display, possibilities for estab-
lishing distinct access contexts became obvious, but we

treated the tool as a black box generator, using a single
access context for training and prediction. The circuit
design data contained 100,000 objects, but only 10,000
or so could fit in the graphics “usable window” at once.
The first trace, Tl, had 73,767 identifiers and T2 had
147,345. The first session w;ts kept short, so we could
notice the effect that training after a first short session
had on caching during the next, longer session.

We simulated a Fido cache of 500 elements handling
faults from an ENCORE demand LRU cache. Recall
that Observer allows a segment of objects to be
prefetched in response to a read, or up to k identified
objects to be returned in a single prefetch request, either
way saving k-l network I/OS. However, the server may

complete a segment fetch faster than its equivalent
prefetch request. We wanted to isolate effects due only
to prediction, so we omitted segment prefetching in the
LRU cache and made no assumptions about service
rates for prefetch requests or segment prefetch.

Placing Fido below a primary client cache would en-
sure that prophet computation only occurred during pri-
mary cache faults, incurring no prediction overhead for
hits to the LRU cache. Prophet computation would be-
gin after and complete well before each Fido fault, while
each hit in the Fido cache would save one fault I/O at
the cost of at most one prediction computation.

We questioned whether cache space spent storing a
pattern memory could pay for itself, or would be better
spent simply increasing the demand cache size. To find
out, we trained the prophet on the first session’s fault se-
quence, measuring pattern memory growth, then used
the result to predictively cache the next session’s fault
sequence. First, we simulated a IOOO-element LRU
cache using TI and produced sequence LRU-lOOO(T1).
This fault sequence was about 2 1% shorter than Tl,
evincing some re-use. Then we used LRU-lOOO(T1) to
train Fido. The sampling window size wav CY=~, with
maximum unit pattern size of 250. The equivalence ra-
dius used during training wa$.4 - i.e., 60% of the UtDs
in two unit patterns had to differ before they were con-
sidered distinct.

During training, pattern memory grew in steps, but
the fault total grew linearly. During learning plateaus,
few new patterns were being found - indicating recur-
ring sequences in the fault trace. The result is shown in

Figure 6 (pattern memory size estimated in identifiers).

Proceedings of the 17th International

Conference on Very Large Data Bases

Figure 6: Pattern Memory Growth During Training

Next, we compared the faulting performance of the
LRU-IOOO/Fido-500 combination to that of a strict
LRU-2000 cache for session T2. If object sizes aver-
aged 140 bytes and UlDs had 32 bits, the LRU-2000
cache would occupy about the same space aq the
LRU/Fido cache, including space to store the TI pattern
memory in the Fido cache, as in the following diagram:

vs. /I

Figure 7: Conligurations Requiring Similar Space

We then measured Fido faults accumulating, looking for
the effects of prefetching, and also simulated an LRU-
2000 cache processing T2 to produce fault sequence
LRU-2000(T2). The following graph compares the ac-
cumulation of LRU-2000 and LRU-1000 faults to LRU-
IOOO/Fido-500 faults during session T2.

1~:!-

F 21 @ 64 8s 107 118 150 rho”xMd” Serslon Tlmr In UID Rcfcren~s

Figure 8: Fault Accumulation per Client Configuration

The faulting behavior was as we had hoped. LRU-1000
fault sequences learned from session Tl reappeared in
session T2 and were prefetched, suppressing faults. This
was particularly noticeable during the first part of T2
(Figure 9 provides a closer view). After one training run;
we had reduced total faults by about half. Places where
faults rise ar the same rate as LRU faults indicate se-
quences not yet known to the prophet.

262
Barcelona, September, 1991

6 Related Work
Previous adaptive database work in the mid-1970s
([Niamir 781, [Chan 19761, vammer 19761) explored
methods of automatically adapting the physical and sec-
ondary access structures of databases according to use.
These methods differ from ours in that they require run-
ning statistical analysis procedures periodically to
reconfigure a schema or to choose indices. The struc-
tures did not adapt to changing usage patterns between
reconfiguration.., and data was unavailable during lecon-
figuration. The statistical procedures required customi-
zation to handle each database schema, resulting in
brittleness and lack of generality. These adaptive
mechanisms were not transparent to the database admin-
istrator, and attempted to optimize over all users rather
than for each access context individually.

Although the current prophet is not implemented as a
neural net, we are interested in using appropriate leam-
ing technology to detect and exploit regularities in the
operation of low-level system components. When the
best way of exploiting a context-specific pattern is un-
known, approximate solutions such as those developed
by neural models can have high payback.

Recent research in neural networks has produced self-
organizing systems that are less ad hoc, more robust,
and better understood than previously, enabling their use
for adaptive database work. Computational models of

cognition [Anderson 19901 provide a rich set of tools to
“make sense” out of patterns, forming internal represen-
tations during learning [Rumelhart 19861, [Lapedes
19871. The concept of solving a problem by using a
black box that “programs itself’ to produce a desired be-

havior from examples of the behavior is known as
extensional programming [Cottrell 19881. In Fido’s
case, the desired behavior is sequence prediction, but
we are not yet sure of an optimal algorithm for it, mak-
ing extensional programming attractive. [Moody 19891
discusses other potentially useful models. Hardware for
parallel associative memory [Potter 19871 presents the
possibility of vastly increasing the pattern space that can
be processed on-line. Much more computational power
is now available to learning algorithms. Neural models
are also quite robust, adapting and functioning well in
the presence of noise. Lastly, since these models operate
as black boxes, they are inherently non-invasive in ob-

serving system interactions.
Our use of associative memory for prediction is not

new. [Kanerva 19881 describes a k-fold Memory able to
predict events generated by &h-order stochastic proc-
esses (e.g. a Markov process is a lst-order stochastic
process). A Kanerva memory addresses words by con-
tent, storing a pattern $ at location gel to represent
order- 1 transitions.

In the area of priority-based buffer management,
[Jauhari 19903, [Chou 19851, [Alonso 19901 have used
access pattern information to manage buffers, but use it
chiefly to make replacement decisions for demand pag-
ing schemes, not directly for prefetching. Typically, the
heuristics supply qualitative “hints” about page priority,
not detailed information about expected access order.

Proceedings of the 17th International
Conference on Very Large Data Bases

7 Conclusions

We began by noting a conceptual friction between data
clustering and data sharing, then introduced a
prefetching method that promises to improve response
time performance for conflicting but regular access re-
quirements. We described a pattern memory for predict-
ing sequences that h&s well-defined resource costs and
scaling properties, adapts to changes in access pattern
and data, and improves in prediction accuracy over
time. This should result in client response time perform-
ance that improves over time, depending on how
prefetch request processing actually maps to I/O. Since
no semantics are involved in processing strings of iden-
tifiers, many variations are possible. For example, Fido
might be used in both server and client to prefetch pages
or clusters by using appropriate identifiers during train-
ing and prediction. Although predictive caching operates
independently of clustering, it can complement rather
than replace clustering. In fact, a txained prophet should
be able to provide useful clustering hints.

Fido’s current pattern memory handles noise and inex-
act input, and learns to predict navigational access well.
Navigational access can cause severe problems for a de-
mand cache. For example, the fault trace produced by a
demand cache of size k for a sequence I that is non-
repeating within k references equals 1. Such patterns
may be fairly common in data-intensive applications.
[Chang 19891 observed that the access patterns of CAD
tools they studied were “predictable”. Navigational ac-
cess predominates in design applications, occurring dur-
ing verification scans and during complex object expan-
sion. However, navigation is often performed in a
deterministic manner, resulting in bursts of non-
repeating access. The benchmark in PeWitt 19901 em-
ploys a “scan query” that reads all complex objects in a
set, using breadth-first traversal to expand each complex
object. Presumably this benchmark could produce the
same sequences over time by expanding complex ob-
jects in the same way each time.

Predictive caching is a very promising method. Fido
automatically assimilates and isolates context-specific
access order regularities and exploits this information to
avoid I/O. Our early results suggest that faults saved are
worth the costs of maintaining access pattern informa-
tion and retrieving it on-line. We hope to continue to
study predictive optima&y and efficiency, and to add a
predictive cache to a real system

4

0 ,k.w”“d# I 10 16 20 2.5 30 35 40
SamkJn llmt h R.hr.“c.s

Figure 9: Fault Supprmmion Early in Seasion T2

263
Barcelona, September, 1991

7.0.1 Acknowledgments

The authors are very grateful for the help ‘and patience
of Patrice Tegan, Marian Nodine, Jim Anderson, and
Dave Langworthy in reading paper drafts. Also, thanks
to H.C. Wu of Digital’s Chelmsford CAD/CAM Tech-
nology center, who obtained the CAD tool traces, to
Bob Weir and Barnacle for inspiration, and to Digital’s
Graduate Engineering Education Program for making it
possible. Views expressed herein are the authors’ own,
not those of Digital Equipment Corporation,

7.0.2 References

[Alonso 19901 R. Alamo, D. Barbara, H. Garcia-
Molina, “Data Caching Issues in ‘an Information Re-
trieval System,” ACM Transactions on Database Sys-
tems, Vol. 15, No. 3, September 1990.
[Anderson 19901 J. Anderson, E. Rosenfeld, Neuro-
computing. MIT Press, 1988.
[Chan 19761 A. Ghan, “Index Selection in a Self-
Adaptive Relational Data Base Management System,”
SM Dissertation, MIT, September 1976.
[Chan 19821 A. Ghan, A. Danberg, S. Fox, W. Lin, A.
Nori, and D. Ries, “Storage and Access Structures to
Support a Semantic Data Model,” Proceedings of the
8th Conference on VLDB, September 1982.
[Chang 19891 E. Chang, R. Katz, “Exploiting Inheri-
tance and Structure Semantics for Effective Clustering
and Buffering in an Object-Oriented DBMS,” Proceed-
ings ACM-SIGMOD International Conference on Man-
agement of Data, Portland, OR, June 1989.
[Chou 19851 H. Chou, D. Dewitt, “An Evaluation of
Buffer Management Strategies for Relational Database
Systems,” Proceedings of the 1 Ith VLDB Conference,
Stockholm, Sweden August 1985.
[Cottrell 19881 G. Cottrell, P. Munro, D. Zipser, “Im-
age Compression by Back Propagation: an Example of
Extensional Programming,” Advances in Cognitive Sci-
ence, Vol 3, Norwood, NJ, 1988.
[Dewitt 19901 D. Dewitt, D. Maier, “A Study of Three
Alternative Workstation-Server Architectures for Object
Oriented Database Systems,” Proceedings of the 16th
VLDB Conference, Brisbane, 1990.
[Fernandez 19901 M. Femandez, A. Ewald, S. Zdonik,
“Observer: A Storage System for Object-Oriented Ap-
plications,” Tech Report CS-90-27, Brown University,
November 1990.
[Garza 19881 J. Garza, H. Chou, W. Kim, D. Woelk.
“ORION Object Server - Architecture and Experi-
ences,” MCC TR ACA-ST-423-88, 1988.
[Gray 19871 J. Gray, “The 5 minute Rule for Trading
Memory for Disc Accesses ‘and the 10 Byte Rule for
Trading Memory for CPU Time,” Proceedings ACM-
SIGMOD International Conference on Management of
Data, San Francisco CA, May 1987.
[Hammer 19761 M. Hammer, A. Ghan, “Acquisition
and Utilization of Access Patterns in Relational Data
Base Implementation,” Pattern Recognition and Artifi-
cial Intelligence, Academic Press, 1976.

Proceedings of the 17th International
Conference on Very Large Data Bases

[Hudson 19901 S. Hudson, R. King, “Cactis: A Self-
Adaptive, Concurrent Implementation of an Objec’-
Oriented Database Management System,” ACM Trans-
actions on Database Systems. 1990.
[Jauhari 19901 R. Jauhari, M. Carey, M. Liv: j,
“Priority-Hints: An Algorithm for Priority-Based Buffer
Management,” Proceedings of the 16th VLDB Confer-
ence, Brisbane, 1990.
[Kanerva 19881 P. Kanerva, Sp‘arse Distributed Mem-
ory. MIT Press, 1988.
[Khoshafian 1986) S. Khoshafinn, Cr. Copeland, “Ob-
ject Identity,” ACM Proceedings on the Conference on
Object-Oriented Programming Systems, Languages, and
Applications, Portland, OR, 1986.
[Lapedes 19871 A. Lapedes, R. Farber, “Nonlinear Sig-
nal Processing Using Neural Networks: Prediction and
System Modelling,” Tech Report, Los Alamos National
Lab Theoretical Division, July 1987.
[Mattson 19701 R. Mattson, J. Gecsei, D. Slutz, I.
Traiger, “Evaluation Techniques for Storage Hierar-
chies,” IBM Systems Journal 9, 1970.
[Moss 19901 J.Moss, “Design of the Mneme Persistent
Object Store,” ACM Transactions on Information Sys-
tems, Vol 8 No. 2, April 1990.
[Moody 19891 J. Moody, “Fast Leaming in Multi-
resolution Hierarchies,” Advances in Neural Information
Processing, Morgan-Kautiann, Los Altos, CA, 1989.
[Niamir 19781 B. Niamir, “Attribute Partitioning in a
Self-Adaptive Relational Database System,” MS thesis,
MIT/‘LCS/TR-192, January 1978.
[Palmer 19901 M. Palmer, S. Zdonik, “Predictive Cach-
ing,” Tech Report CS-90-29, Brown University, No-
vem ber 1990.
[Potter 19871 T. Potter, “Storing and Retrieving Data in
a Parallel Distributed Memory System,” PhD Thesis,
State Unjvetsity of New York at Binghamton, 1987.
[Rubenstien 19871 W.Rubenstien, M. Kubicar, R.
Cattell, “Benchmarking Simple Database Operations,”
Proceedings ACM-SIGMOD International Conference
on Management of Data, San Francisco, May 1987.
[Rumelhart 19861 D. Rumelhart, G.. Hinton, R. Wil-
liams, “Learning Internal Representations by Error
Propagation,” P‘arallel Distributed Processing Vol I: Ex-
plorations in the Microstructure of Cognition, MIT
Press, 1986.
[Stamos 19841 J. Stamos, “Static Grouping of Small
Objects to Enhance Performance of a Paged Virtual
Memory,” ACM Transactions on Computer Systems.
Vol 2, No. 2. May 1984.
[Tarjan 198Sl D. Sleatnr. R. Tajan, “Amortized Effi-
ciency of List Update and Paging Rules.” Communica-
tions of the ACM 28, February 1985.
[Velez 19891 F. Velez, G. Bernard, and V. Damis, “The
0 Object Manager: An Overview,” Proceedings of the
I&I International Conference on VLDB, Amsterdam,
1989.
[Wilkinson 19901 K. Wilkinson, M. Neimnt, “Maintain-
ing Consistency of Client-Cached Data,” Proceedings of
the 16th VLDB Conference, Brisbane, 1990.

264 Barcelona, September, 1991

