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Abstract 

This paper describes Fido, a predictive cache 

[Palmer 19901 that prefetches by employing an 
associative memory to recognize access patterns 
within a context over time. Repeated training 
adapts the associative memory contents to data 
and access pattern changes, allowing on-line 
access predictions for prefetching. We discuss 
two salient elements of Fido - MLP, a replace- 
ment policy for managing prefetched objects, 
and Estimating Prophet, the component that 
recognizes patterns and predicts access. We 
then present some early simulation results 
which suggest that predictive caching works 
well and conclude that it is a promising method. 

1 Introduction 

The cost of fetching data from secondary storage as 
needed is a major performance factor for current OODB 
systems. In workstation-server architectures, this cost is 
compounded as data crosses several I/O boundaries on 
its path from the server’s secondary storage to an appli- 
cation’s memory. Caching in workstation-server OODB 
architectures improves performance, as described by 
[Rubenstien 19871. Chang and Katz [Chang 19891 found 
that cache m‘anagement policy has the largest effect on 
response time, followed by static clustering, a much- 
studied topic [Chan 19821, [Stamos 19841, [Hudson 
19901. Current OODB cache designs are derived from 
virtual memory demand pagers that prefetch clusters but 
assume no explicit knowledge of the future. Demand 
pagers exploit the locality of reference inherent in code 
execution. The goal of clustering is to force a similar lo- 
cality of reference on data for a given access pattern. 

However, a major purpose of databases is to allow data 
sharing ‘and integration of diverse applications. Cluster 
prefetching alone can be inherently ineffective when us- 
ers mix conflicting patterns in accessing the same data. 
Devising a clustering that is both fair and efficient then 
becomes problematic and expertise-intensive; finding an 
optimal partitioning can be computationally unfeasible 
[Niamir 19781. We are seeking methods of improving 
cache performance that accomodate conflict between in- 
dividual and communal access requirements. 
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We are finding that, because of structure in data and 
determinism in programs, access within individual con- 
texts can be predicted dynamically - irrespectively of in- 
herent or pre‘arranged locality of reference, Fido auto- 
matically recognizes and exploits patterns that emerge 
over time within each access context to provide accurate 
prefetching under mixed access paradigms, for which 
the best static clustering may be a compromise. 

1.1 Predictive Caching 

A predictive cache can supplement existing cache man- 
agement strategies, such as demand paging with cluster 
prefetch, or can function as a primary cache. Fido’s 
predictive cache model augments common demand pag- 
ing strategies by adding a component consisting of an 
associative memory and several pattern recognition rou- 
tines. This “black box” is known as the Estimating 
Prophet, The prophet learns access patterns within iso- 
lated access contexts over time well enough to predict 
access for each context. During a database session, the 
prophet monitors client-server communication and gen- 
erates access predictions, which Fido then uses to 
prefetch data. Each prediction indicates an explicit ex- 
pected order and likelihood of access - information that 
Fido’s replacement policy exploits. 
This solution addresses the difficulties described above 

and has several desirable properties: The prophet gains 
experience with each access pattern individually, tailor- 
ing its predictions within each access context according 
to the history of that context, without considering other 
usage patterns. Also, the prophet monitors access se- 
quences in a non-invasive way and requires no knowl- 
edge of data model or schema. Its operation is auto- 
matic and invisible to the database administrator, 
requiring little in the way of time, intuition, or expertise 
to operate. By regularly monitoring access sequences. 
the prophet can adjust its predictions to reflect changes 
in data usage quickly, incrementally, and in a uniform 
way. 

1.2 Paper Structure 

This paper introduces concepts and terms to provide a 
framework for the study of predictive caching. It dis- 
cusses design issues identified by constructing simula- 
tion experiments, but does not offer a formal analysis 
of optimality. 
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Our current research focuses on two topics. The first 
topic concerns how to best incorporate predictive 
prefetch activity into cache management, given costs of 
prediction and prefetching. The second topic involves 
assessing various prophet designs by comparing predic- 
tive accuracy against efficiency. Accordingly, this paper 
presents a) a model for predictive cache management, 
and b) a prophet design that uses associative memory to 
recognize and predict access sequences on-line. 

Section 2 describes how Fido fits into a workstation- 
server OODB architecture. Section 3 presents a cache 
management model that incorporates prediction, and 
Section 4 describes how access panems are recognized 
and predicted. Section 5 recounts some experiments in 
simulating a predictive cache using actual access traces. 
Section 6 discusses related work, and Section 7 offers 
some conclusions. 

2 Architectural Overview 

The purpose of this section is to summarize just those 
aspects of the target database architecture required to il- 
lustrate how Fido works. This description coven a sub- 
set of functions provided by the database system, and 
entails some simplifying assumptions. First, methods 
for managing a cache of variable-sized objects are or- 
thogonal to the issues of accuracy and costs of 
prefetching examined in this paper, so we assume that 
objects are of uniform size. Second, the distributed sys- 
tem architect must consider methods of validating and 
synchronizing cached objects against replicas. Since 
others (e.g. [Alonso 19901, [Wilkinson 19901, [Garza 
19881) have confronted these issues, we dodge them 
here. We assume that prefetched objects are locked and 
validated in cache as if they had been requested. The 
target design applications usually have low contention 
for write locks, since these applications often have high 
read/write ratios ([Cattell 19871, [Chang 19891). Fido’s 
ability to function is independent of the above simplifi- 
cations. 

Predictive caching wilI be most useful to distributed 
applications that: 

. are data intensive, with high read/write ratios 

0 use navigational access patterns that imply different 
data clusterings 

0 create and delete medium-granularity objects at a 
rate slow enough to permit tracking of changes 

l preserve some degree of object identity. 

In general, CAD applications have many of these char- 
acteristics. OODBs support data sharing between such 
applications and maintain object identity. Fido is de- 
signed to operate in OODB systems where applications 
retrieve objects from secondary storage and cache them 
in local memory. This is known a$ a workstation-server, 
or interpreter/ storage manager architecture. The typical 
system consists of a central server machine that re- 
sponds to data requests from applications running inde- 
pendently on workstations. Seveml systems, such as 
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Cactis [Hudson 19901, O2 [Velez 1989],ORION-1SX 
[Garza 19881, and Mneme [Moss 19901 are similar in 
this respect. [Dewitt 19901 compares the performance 
of several such variations. We wish to add Fido to Ob- 
server/ENCORE [Femandez 19901. The primary com- 
ponents of the architecture are the database server and 
the client, which includes the predictive cache. 

2.1 Database Server 

Observer acts as a typeless back end to applications, 
managing access to database secondary storage. Ob- 
server maintains strong object identity [Khoshafian 
19861, which aids predictive caching - the preservation 
of identity simplifies recognition of reoccurring parts of 
an access pattern over time. Object identity in Observer 
is provided via an external unique identifier (UID) that 
acts as an immutable handle for an object and is not re- 
cycled. OODBs may assign meanings to individual bits 
of UIDs; Fido ignores any such semantics and treats ac- 
cess sequences simply as strings of symbols. 

The Observer read message supplies a list of UIDs to 
the servei, which gets the identified objects from disk or 
a server-managed buffer and returns them to the re- 
quester. Observer facilitates prefetching through exten- 
sions of its basic read function. A requester marks reads 
for either dentand or prefPtch processing. Observer pre- 
vents outstanding prefetch requests from delaying other 
requests by providing a pre-emptise read operation for 
dem‘and requests and servicing it before other reads. 

Users can cluster Observer objects into segments and 
can migrate or replicate objects between segments. Ob- 
server return? a segment when any object in the segment 
is referenced, thus segments are the usual unit of server- 
client communication. The client can disable segment 
prefetching, which causes Observer to Rtum the set of 
objects in a request as the unit of network communicn- 
tion. 

2.2 Client 

A workstation application interfaces to Observer via the 
ENCORE client component, which acts as an inter- 
preter, mapping the data model used by the application 
onto operations understandable by Observer. ENCORE 
implements object type semantics, executes methods 
and enforces encapsulation, and is typically bound into 
the application’s image. ENCORE also validates cache 
objects and supports other database functions related to 
persistence and distribution, but the operation of these 
is unrelated to the prefetch mech‘anism. The salient 
function of the client is that it allows the application to 
reference objects by UID, without knowledge of how or 
where objects are stored. The client ensures that refer- 
enced objects are ferried between the server and the ap- 
plication’s local memory transparently. Clients take 
various approaches to aan?lating object references to 
memory addresses. They often use some fnrm of Resi- 
dent Object Table (ROT) to obtain a pointer to the ob- 
ject’s location in memory, and may “swizzle” the ROT 
entry by adding the memory pointer to it. 
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ENCORE maintains a cache of currently used objects, 
sending demand requests to the server when the applica- 
tion references an object not in cache and “flushing” 
modified objects back to the server’s secondary storage 
as needed. If the way objects are clustered into seg- 
ments does not suit the current access pattern, cache 
faults and network demand requests increase, which 
slows response time. 

2.3 Access Contexts 

The client isolates access patterns according to access 
contexfs. The prophet provides context identifiers 
(CIDs) as a handle to associate patterns generated by the 
same source. By default, ENCORE uses CIDs to indi- 
cate the combination of user and application that gener- 
ates a particular access sequence, but context assign- 
ment may be controlled further by the programmer. For 
example, an application might provide one function that 
graphically displays a circuit design, and another func- 
tion that allows ad hoc queries. The access pattern of the 
display function might be very predictable, allowing 
efficient learning, while sequences generated by ad hoc 
queries could be arbitrary and difficult to learn. A pro- 
grammer might establish different CIDs corresponding 
to these two functions, even when the same user invokes 
them. A designer can use CIDs and knowledge of an 
application to “focus attention” of the prophet, thus re- 
ducing resource requirements for prediction at any given 
time. 

2.3.1 Fido Predictive Cache 

A portion of ENCORE’s client cache is allocated to the 
Fido predictive cache, which interfaces to the prophet to 
decide what to prefetch and the order in which to re- 
place cached objects. The prophet can be configured as 
a separate service or as part of the client image. It has 
two primary modes of operation: prediction and frain- 
ing. 

Given a sample of the latest sequence of access to 
Fido, the prophet predicts which accesses will occur 
next. An individual prediction may indicate that alter- 
nate sequences are anticipated by arranging identifiers 
according to expected order and likelihood of access. 

In training mode, the prophet learns access patterns 
over time and becomes increasingly better at prediction, 
until it reaches a stable state where learning ceases. 
This state may be reached because the prophet is not en- 
countering any new information or changes in access 
pattern, or because it has exceeded user-specified re- 
source limits. The access pattern information for a single 
access context is known as a pattern memory. Fido 
stores each pattern memory between sessions. 

Figure 1 shows how Fido fits in with the client and 
server; UIDs are represented as letters and objects as cir- 
cles. As an application session begins, Fido loads (0) 
the pattern memory for the access context. The applica- 
tion generates a sequence of references (1) to the client, 
which converts UIDs to object memory address via the 
ROT. 
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Figure 1: Server and Client with Predictive Cache 

References to a and b return pointers (2) to those objects 
in the cache. If an accessed object (e.g. c) is not in 
cache, the client issues a pre-emptive dem‘and read (3) to 
the server, and blocks. During the session, the prophet 
samples the current access sequence (4) recognizes the 
start of a known pattern, and completes it, predicting 
“d e f g”. Since e is already in cache, Fido starts a 
prefetch request for (5) d, f, and g, entering “promises” 
for these objects into the ROT. Any access to d, f, or g 
blocks until the prefetch request arrives and updates the 
promises, converting them to regular ROT entries. As 
described in the next section, the prophet’s predictions 
also govern replacement ordering. 

3 Predictive Cache Management Model 

As mentioned above, the client ferries objects, 
transparently to the application, between the server and 
the workstation’s memory. The prophet generates pre- 
dictions: this causes objects to be prefetched. This sec- 
tion outlines the cache management model that the cli- 
ent uses to manage prefetched objects. Simulation has 
been helpful in identifying design issues for predictive 
caching, such as: 

l defining an appropriate model for prediction 

l ideal case operation, when many correct prdictim 

are being generated 

l faulting and cache space utilization behavior in the 
worst case, when no predictions are being made 

. interactions between cached objects when a prefetch 
is accessed or an object eviction is required 

. computation and communication overhead for pre- 
diction and prefetching. 
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Fido maintains a FIFO sampling window on the current 
access sequence. On each access to an object o, if o is 
not in cache, Fido starts a demand read and then gives 
the current sequence sample to the prophet, which may 
return a prediction of the immediate future. If so, Fido 
checks whether any predicted objects are already in 
cache, and starts a single prefetch request for those 
which are not. When the prefetched objects arrive, an 
asynchronous completion routine decides which cached 
objects to replace. The overall strategy of predictive 
cache management involves three goals: 

I. quickly flushing erroneous prefetches from cache 

2. avoiding wasted cache when no predictions are made 

3. controlling the volume and cost of predictions. 

The first two goals are addressed by Fido’s replacement 
policy, and the last by heuristics - Fido monitors predic- 
tion performance and adjusts certain prophet parameters 
dynamically to throttle prediction rate, balancing cost 
against accuracy. We shall next introduce some terms, 
describe the replacement policy, and then portray Fido’s 
operation under several conditions. 

3.1 Definitions 

The following terms define a predictive cache. 

3.1.1 Predictive cache 

A predictive cache C=( R U P ] is a union of two disjoint 
sets - a prefetch set P, and a set of referenced objects, R. 
C can hold k objects. 

3.1.2 Prefetch set 

A prefetch set P is the set of prefetch requests present in 
cache at any one time. Objects in older prefetch re- 
quests are considered less likely to be accessed than ob- 
jects in more recent requests. 

3.1.3 Prefetch request 

A prefetch request x. is the order-maintained subset of 
objects in prediction i-l. not in C at the time II. is made. 
The “head” of a prefertch request identifies the object 
most likely to be accessed first, while the “tail” identi- 
fies the object whose access is expected furthest in the 
future and is thus least likely: n* = (“i - C]. A 
prefetch request is a unit of I/O bet&een cache and sec- 
ondary storage. The server returns prefetch requests as 
if retrieving a page or segment of objects - except that 
the objects are determined dynamically, instead of by 
static clustering, and have an explicit ordering. 

3.1.4 Prediction 

A prediction II = 01 . . . o. is a list of identifiers par- 
tially ordered by expected access sequence and fully or- 
dered by probability of access. That is, an access to ob- 
ject oi is expected before an access to object 0. for i<j. 
unless Oi and 0. are alternate possibilities, in which c&ye 
XI access to Oi 4 s more likely than an access to 0.. 

J 
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3.2 MLP Replacement Policy 

A cache manager decides which objects to replace with 
new objects according to a replacement policy. Fido’s 
replacement policy flushes erroneous prefetches from 
cache by ensuring that unused prefetches have lower 
priority than new prefetches or referenced objects. The 
Minimum Likelihood Prefetch (MLP) replacement pol- 
icy stipulates: 

l Within a prefetch request, evict the Minimum Like- 
lihood Prefetch first. That is, prefetch eviction hap- 
pens from tail to head of each prefetch request. 

l The definition of P implies that old prefetch re- 
quests are evicted before new prefetch requests. 

l On access to object o, promote o to most-recently- 
used status within C. If operating “beneath” a pri- 
mary cache, swap a with o’ evicted by the primary 
cache. 

The MLP policy is an adaptation of the proven optimal 
replacement policy for demand paging, OPT [Mattson 
19701. OPT always replaces the cache item which is ac- 
cessed furthest in the future, but operates off-line. MLP 
replaces objects which are expected to be accessed fur- 
thest in the foreseen future. One difference between 
MLP and OPT is that MLP uses estimated, incrementa/ 
knowledge of the future, instead of perfect prescience as 
assumed by OPT. During periods when the prophet 
fails to predict, the third MLP rule causes Fido to oper- 
ate as a demand LRU cache. 

3.2.1 Replacement Ordering 

The replacement ordering for objects in C can be mod- 
eled by operations on a fixed size list. Identifiers are in- 
serted at the head and deleted from the tail. This behav- 
ior governs how objects are brought into and evicted 
from C, whether by prefetch requests or by faults. As an 
access sequence is processed, the prophet generates pre- 
dictions, which result in prefetch requests. As prefetch 
requests arrive. they are inserted at the list head in re- 
verse of their expected access order. The object whose 
expected access is furthest in the future, i.e. - that least 
likely to be used, enters into and is evicted from C first. 

Time. 
!/ 
2 
2 
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7 
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a 
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d 
e 
f 
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Rew State 
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e d fix g c 

Figure 2: Replacement Example 
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The example in Figure 2 illustrates replacement priority 
as a prefetch request is handled and faults occur. For 
simplicity, the example assumes that Fido is operating 
as a primary cache. Successive references descend the 
left column, with the list state shown at right. Identifi- 
ers are added at the list head (left) and removed from its 
tail. By time 2, references to a, b, and c cause reorder- 
ing, and the sampling window contents, a, match a 
known pattern, triggering the prefetch request for & 
&g. This prefetch request arrives before another refer- 
ence is made, causing eviction of everything but c. At 

6, an access to q (instead of x) faults, replacing c with 
q. At 7, g is moved up, leaving x to be evicted by the 
fault for h. 

3.3 Cache Behavior 

Three prototypic cases characterize the intended behav- 
ior of the cache during operation. 

3.3.1 Sequence Recognition (best case) 

Fido makes a prefetch request of size k every k accesses, 
which arrives, fills the cache, and is then consumed 
from head to tail, moving TC from P to R, and leaving 
the replacement list containing x in reversed order, 

3.3.2 Prediction Starvation 

Within a session, intervals occur during which the cur- 
rent sequence is unknown to the prophet, which gener- 
ates no predictions. In this situation, the move-to-front 
[Tarjan 1985 ] rule produces the replacement behavior of 
a demand LRU cache processing the same sequence. 

3.3.3 Error Glut (worst case) 

In this situation, the prophet generates some maximum 
number of incorrect prediction7 on every reference, 
causing the cache to be full of useless objects. 

The following heuristic adjusts certain prophet pa- 
rameters to control cases 2 and 3 above: 

l Guess rate: Let h denote the ratio of objects 
prefetched divided by the number of references 
made at any given time during the session 

l Accuracy: x denotes the ratio of correct predictions 
to total predictions during the session. 

l Efficiency: If a denotes the sample window size 
and o denotes the size of a prediction, the ratio 
u=o/a reflects how much sample is used in generat- 
ing each prediction. 

Guess rate, accuracy, and efficiency interact. Specifi- 
cally, increasing the sample size lowers efficiency and 
guess rate, but raises accuracy. Fido monitors guess rate 
and efficiency by keeping running averages. Prediction 
starvation can occur if too much information is supplied 
in the samples, and error glut can happen if the sample 
size is too small. To control these situations, Fido ad- 
justs sample size, CC according to Xh If Xh crosses a 
low or high threshold, Fido increments or decrements a 
accordingly to try to bring Xh back into range. 
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4 Estimating Prophet 

Previous sections of this paper have outlined a model 
for managing a cache containing prefetched objects, but 
have presupposed an ability to predict references. This 
section presents a design intended to illustrate how the 
current prophet learns to predict. 

The prophet learns access patterns in training mode 
and recognizes them in prediction mode. The client re- 
cords reference traces from each session for each access 
context. Training mode processes each reference trace - 
normally (but not necessarily) off-line, between ses- 
sions, and incrementally improves pattern memory for 
each access context. Prediction mode generates 
prefetch requests, as described in sections 2 and 3. 

The intuitive explanation of how training and predic- 
tion modes work is that the present sequence acts as a 
cue - when the prophet recognizes a situation that is 
similar to some previously encountered situations, it re- 
calls the consequences of those previous situations. 
This is analogous to the way organisms determine pre- 
sent behavior according to past experience. Thus both 
training and prediction rely on an ability to quickly but 
inexactly retrieve previous sequences using information 
about the present sequence as a key. We shall first dis- 
cuss this inexact retrieval capability and then outline its 
function in training and prediction. 

4.1 Associative Memory 

The prophet stores and retrieves access order informa- 
tion in an inexact manner by using a nearest-neighbor 

associative memory. Much work has been done on asso- 
ciative memory architectures (potter 19871, [Kanerva 
19881) some of which provide the most biologically 
plausible neural net models. Research by Anderson and 
others has shown how such memories can be con- 
structed from elements that imitate the functioning of 
neurons in cortex [Anderson 19901, and evidence sug- 
gests that cognition may indeed operate this way. 
Nearest-neighbor models m3p data units with k elements 
to points in /c-dimensional pattern space, defining simi- 
larity metrics in k dimensions. Similar patterm are near 
each other in pattern space, and radius values define 
equivdence classes. The following terms apply to the 
nearest-neighbor based pattern memory model. 

4.1.1 Pattern Memory 

A pattern memory consists of r unit patterns, co, . . . . $, 
pairwise at least I’ distant in pattern space. Each umt 
pattern defines an eqrthvlence class - all observed se- 
quences within the pattern-space sphere having 5 at its 
center and radius I’ are considered equivalent to &. This 
capacity.for inexactness is important for two reasons. 

First, it means that pattern memory is lossy - the 
prophet ignores minor variations in patterns over time, 
only using resources to represent significant differences. 

Second, it allows useful predictions to be made even if 
the current access sequence does not exactly match what 
has appeared before, as when new identifiers appear af- 
ter recent updates to the database. 
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4.1.2 Unit Pattern 

A unit pattern {=<o~...o,> is a list of identifiers that 
acts as a partial approximation of access pattern. Each 
unit pattern divides into a prefk of variable length cc and 
sufix of length 6-a c k. The prefix acts as a key for the 
suffix during prediction. One can think of the prelix as 
an observed antecedent, and of the suffix as its conqe- 
quence. Each suffix usually contains the prefix of some 
other unit pattern(s), cEating inexactly linked chains of 
unit patterns that approximate observed alternate se- 
quences (see Figure 4). Also stored with each unit pat- 
tern are ratings of its historical frequency of occurrence 
and average predictive accuracy. Newly created unit 
patterns are of a uniform maximum length, but may be 
shortened over time by training. 

4.1.3 Distance in Pattern Space 

The measure of dissimilarity between two unit patterns 
is the count of columnwise unequal identifiers. 

4.3 Training Mode 

After each session, the client saves a reference tram for 
each access context invoked, then runs the prophet in 
training mode to process the saved traces. The training 
algorithm, TRAIN, adapts a pattern memory over time 
so that it retains only the most commonly reoccuring 
unit pattern<. Training reinforces unit patterns that ap- 
pear frequently and represses sequences that appear spo- 
radically, or which consist of obsolete information. Unit 
patterns “compete” for space in pattern memory over 
time based on their ability to generate prefetch requests 
which contribute to overall system speedup. This causes 
pattern memory to self-organize, to focus on regularly 
reoccurring phenomena, and to evolve a generalization 
of each access pattern. The training algorithm employs 
an “evolutionary” strategy that consists of two phases: 
credit assignment and adaptation. 

4.3.1 Credit Assignment 

This phase assigns credit to all unit patterns which con- 
tribute to predicting the training trace. Some stored unit 
patterns reoccur only infrequently, while others become 
obsolete as updates to the database cause new identifiers 
to appear and others to disappear. Also, the lengths of 
unit patterns are initially uniform and reflect arbitrary 
sampling boundaries. Infrequent, obsolete, or poorly 
chosen samples produce unit patterns that function 
poorly as predictors, which congests pattern memory 
with useless information. 

To perform credit assignment, TRAIN simulates a pre- 
diction run along the training trace 1. Each time a pre- 
diction II. occurs at a point i in I, TRAIN updates ac- 
curacy an & frequency ratings of each unit pattern 5 
contributing to prediction ni. It assesses accuracy by 
counting the number of identifiers in the suffix of 5 
which appear within a lookahead interval, usually k, 
ahead of I’ in 1. If the accuracy of 4 falls below a thresh- 
old, it may be due to a concentration of prediction er- 
rors at the end of k’s suffix. If so, TRAIN decreases the 
length of 5 proportionately and re-rates 5. TRAIN also 
updates frequency of occurrence for all contributing unit 
patterns. 

4.3.2 Adaptation 

Each time an application runs, it can reveal more of its 
total access pattern. To recognize new parts of an ac- 
cess pattern, TRAIN again scans the training trace, 
shifting it through a sample window of unit pattern size. 
matching each s,ample against pattern memory, and 
skipping ahead by CJ when an equivalence is found. 

Any subsequences of unit pattern length that do not 
fall within an existing equivalence class and which de- 
fied prediction during credit assignment are added ~5 
new unit patterns to pattern memory, timestamped. and 
rated. TRAIN then ranks all unit patterns according to 
rating and length. It prunes unit patterns with the lowest 
ratings and shortest lengths until pattern memory fits 
within its allotted space. The pattern memory is then 
ready to be saved or to be used for prediction mode. 

Figure 3: Unit Patterns in Pattern Space 

In Figure 3, one sample S and a set of unit patterns, all 
the same length, are arranged according to increasing 
distance from S. The nearest neighbors to S are the unit 
patterns closest to S in pattern space. The prophet con- 
siders all unit patterns closer than I’ equal to S. 

4.2 Resource Costs 

[Palmer 19901 further describes the current prophet im- 
plementation. Two of its properties are: 

l A non-repeating sequence of length 1 can be stored 
in pattern memory using O(f) space, creating t=l/a 
unit patterns. 

l All nearest neighbors of a sample of length a can be 
found in O(a log(t) + f ), where f’ is an expected 
number of neighbors. 

Pattern memory space requirements of the implementa- 
tion are adequate for problem sizes of current interest 
(i.e. - infrequently-repeating strings of O(lOs) identifi- 

ers). The size of pattern memory can be controlled by 
user-set resource limits, and by establishing multiple ac- 
cess contexts per application. Neighbor finding is f;tst 
enough for predictions involving thousands of unit pat- 
terns, since sample size is typically small. We expect to 
further reduce prophet resource requirements through 
continued research. 
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4.4 Prediction Mode 

The task of prediction mode is to quickly recognize 
similarities between the current access sequence sample 
and stored unit pattern prefixes, then combine the asso- 
ciated suffixes. During a session, the sampling window 
contents are given to the prophet’s PREDICT routine on 
each access to Fido. PREDICT finds the nearest neigh- 
bors of the sample. One can think of session prediction 
as a traversal of pattern space. TRAIN initially overlaps 
successive unit patterns, and unless re-training changes 
these links, the consumption of one prefetch request 
generates a match with the next unit pattern prefix. In 
this example, access to efg in the suffix of 5l matches 
the prefixes of 52 and 54 

a -+ b strong match 
a . .._.. :. b weaker match 

Figure 4: Unit Patterns Linked by Expected Order 

PREDICT constructs an ordered union of suffixes as 
the prediction, lYI. As it copies the suffix of each 5 to l-I, 
it uses the rating of each unit pattern to place UIDs from 
the “best” 5 at the head of I-I, and avoids duplicates. 
Thus, PREDICT interleaves UIDs of multiple unit pat- 
tern suffixes in the prediction output, with UlDs from 
the best matches and predictors appearing first. The fol- 
lowing example shows efg matching unit patterns t2 
and 4 

I!. 
above, causing an interleaving of their suffixes 

into 

SAMPLE: e 

$2 efe hi ikl x=.4 

54 exghqv x= .3 
OUTPUT, I-I: hiqivkl 

Note that the prophet finds multiple matches for a sam- 
ple. Fido’s model of prediction pemlits parallel possi- 
bilities. Since cache memory is cheaper than I/O time 
[Gray 19871, Fido spends cache space to save I/O, 
prefetching alternate possibilities (limited to a constant 
factor) simultaneously into the prefetch set. For exam- 
ple, suppose that after sequence e f g h, an access to i 
is .4 likely, but an access to q is .3 likely. Fido’s 
prefetch request includes both i and q, giving a com- 
bined hit probability of .7 - and assumes that one of i or 
q will go unused. MLP replacement then quickly re- 
claims space wasted by erroneous prefetches by evicting 
unused prefetches first. 

5 Experiments 
We have been experimenting with predictive caching, 
using Fido as a bamework for exploration. Our first 
simulations examined aspects of prediction, prefetch and 
faulting behaviors. We are using the results to fit predic- 
tive cache operations to the actual I/O subsystem. 

5.1 Resilience to Noise 

Other users make unpredictable updates to a database, 
changing the set of UIDs to be learned and predicted. 
One measure of prediction performanoe is the rate at 
which prediction accuracy degrades as updates increas- 
ingly disrupt pattern recognition. UID changes appear as 
“noise” in the access sequence during prediction. While 
the update rate of OODB applications is slower than for 
transaction processing, it is reasonable to expect’ that 10 
or 20 percent of the UIDs could change between ses- 
sions. Experiments with an early (also nearest-neighbor) 
pattern memory palmer 19901 revealed a property of 
resilience to create/delete noise. One experiment ran as 
follows: An access simulator produced a string, 1, of 600 
random UlDs, to train the prophet and produce a pattern 
memory. The following process was repeated until the 
original 1 contained 30% noise: 

1. Mutate 2% of I by deleting or inserting new UIDs at 
uniformly random points, maintaining I’s length 

2. Simulate prediction along I without first re-training, 
then plot final guess rate and accuracy against total 
percent noise in 1. 

We observed that accuracy and guess rate degraded line- 
arly as noise increnqed. that guess fate declined more 
quickly than accuracy, and that the relative rates could 
be varied by adjusting sample size, i.e. - efficiency. 
The result appears in Figure 5. 

\ 
41 

60 . . . . i? ..” :, . . . . . ~‘. . .:. . .‘. . . 
--mm..*. 
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Figure 5: Prediction Accuracy and Guess Rate vs. Noise 
I based on conversations with Digital CAD tool developers 
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5.2 Predictive Cache Simulation 

We next wished to simulate the functioning of training 
and predictive caching using an access trace. At Digi- 
tal’s CAD/CAM Technology Center, Engineers ob- 
tained data reference traces from a CAD tool that 
seemed to perform navigational access, spending most 
of its time waiting to fault through a graphics display 
structure - especially during invocation, when the whole 
design was displayed. The two virtual address traces 
each recorded 5 to 10 minutes of tool use: invocation, 
zoom in and out, selecting ICs, and setting filters to re- 
move certain parts of the board display (runs and junc- 
tions). In observing the display, possibilities for estab- 
lishing distinct access contexts became obvious, but we 

treated the tool as a black box generator, using a single 
access context for training and prediction. The circuit 
design data contained 100,000 objects, but only 10,000 
or so could fit in the graphics “usable window” at once. 
The first trace, Tl, had 73,767 identifiers and T2 had 
147,345. The first session w;ts kept short, so we could 
notice the effect that training after a first short session 
had on caching during the next, longer session. 

We simulated a Fido cache of 500 elements handling 
faults from an ENCORE demand LRU cache. Recall 
that Observer allows a segment of objects to be 
prefetched in response to a read, or up to k identified 
objects to be returned in a single prefetch request, either 
way saving k-l network I/OS. However, the server may 

complete a segment fetch faster than its equivalent 
prefetch request. We wanted to isolate effects due only 
to prediction, so we omitted segment prefetching in the 
LRU cache and made no assumptions about service 
rates for prefetch requests or segment prefetch. 

Placing Fido below a primary client cache would en- 
sure that prophet computation only occurred during pri- 
mary cache faults, incurring no prediction overhead for 
hits to the LRU cache. Prophet computation would be- 
gin after and complete well before each Fido fault, while 
each hit in the Fido cache would save one fault I/O at 
the cost of at most one prediction computation. 

We questioned whether cache space spent storing a 
pattern memory could pay for itself, or would be better 
spent simply increasing the demand cache size. To find 
out, we trained the prophet on the first session’s fault se- 
quence, measuring pattern memory growth, then used 
the result to predictively cache the next session’s fault 
sequence. First, we simulated a IOOO-element LRU 
cache using TI and produced sequence LRU-lOOO(T1). 
This fault sequence was about 2 1% shorter than Tl, 
evincing some re-use. Then we used LRU-lOOO(T1) to 
train Fido. The sampling window size wav CY=~, with 
maximum unit pattern size of 250. The equivalence ra- 
dius used during training wa$ .4 - i.e., 60% of the UtDs 
in two unit patterns had to differ before they were con- 
sidered distinct. 

During training, pattern memory grew in steps, but 
the fault total grew linearly. During learning plateaus, 
few new patterns were being found - indicating recur- 
ring sequences in the fault trace. The result is shown in 

Figure 6 (pattern memory size estimated in identifiers). 
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Figure 6: Pattern Memory Growth During Training 

Next, we compared the faulting performance of the 
LRU-IOOO/Fido-500 combination to that of a strict 
LRU-2000 cache for session T2. If object sizes aver- 
aged 140 bytes and UlDs had 32 bits, the LRU-2000 
cache would occupy about the same space aq the 
LRU/Fido cache, including space to store the TI pattern 
memory in the Fido cache, as in the following diagram: 

vs. /I 

Figure 7: Conligurations Requiring Similar Space 

We then measured Fido faults accumulating, looking for 
the effects of prefetching, and also simulated an LRU- 
2000 cache processing T2 to produce fault sequence 
LRU-2000(T2). The following graph compares the ac- 
cumulation of LRU-2000 and LRU-1000 faults to LRU- 
IOOO/Fido-500 faults during session T2. 

1~:!- 

F 21 @ 64 8s 107 118 150 rho”xMd” Serslon Tlmr In UID Rcfcren~s 

Figure 8: Fault Accumulation per Client Configuration 

The faulting behavior was as we had hoped. LRU-1000 
fault sequences learned from session Tl reappeared in 
session T2 and were prefetched, suppressing faults. This 
was particularly noticeable during the first part of T2 
(Figure 9 provides a closer view). After one training run; 
we had reduced total faults by about half. Places where 
faults rise ar the same rate as LRU faults indicate se- 
quences not yet known to the prophet. 
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6 Related Work 
Previous adaptive database work in the mid-1970s 
([Niamir 781, [Chan 19761, vammer 19761) explored 
methods of automatically adapting the physical and sec- 
ondary access structures of databases according to use. 
These methods differ from ours in that they require run- 
ning statistical analysis procedures periodically to 
reconfigure a schema or to choose indices. The struc- 
tures did not adapt to changing usage patterns between 
reconfiguration.., and data was unavailable during lecon- 
figuration. The statistical procedures required customi- 
zation to handle each database schema, resulting in 
brittleness and lack of generality. These adaptive 
mechanisms were not transparent to the database admin- 
istrator, and attempted to optimize over all users rather 
than for each access context individually. 

Although the current prophet is not implemented as a 
neural net, we are interested in using appropriate leam- 
ing technology to detect and exploit regularities in the 
operation of low-level system components. When the 
best way of exploiting a context-specific pattern is un- 
known, approximate solutions such as those developed 
by neural models can have high payback. 

Recent research in neural networks has produced self- 
organizing systems that are less ad hoc, more robust, 
and better understood than previously, enabling their use 
for adaptive database work. Computational models of 

cognition [Anderson 19901 provide a rich set of tools to 
“make sense” out of patterns, forming internal represen- 
tations during learning [Rumelhart 19861, [Lapedes 
19871. The concept of solving a problem by using a 
black box that “programs itself’ to produce a desired be- 

havior from examples of the behavior is known as 
extensional programming [Cottrell 19881. In Fido’s 
case, the desired behavior is sequence prediction, but 
we are not yet sure of an optimal algorithm for it, mak- 
ing extensional programming attractive. [Moody 19891 
discusses other potentially useful models. Hardware for 
parallel associative memory [Potter 19871 presents the 
possibility of vastly increasing the pattern space that can 
be processed on-line. Much more computational power 
is now available to learning algorithms. Neural models 
are also quite robust, adapting and functioning well in 
the presence of noise. Lastly, since these models operate 
as black boxes, they are inherently non-invasive in ob- 

serving system interactions. 
Our use of associative memory for prediction is not 

new. [Kanerva 19881 describes a k-fold Memory able to 
predict events generated by &h-order stochastic proc- 
esses (e.g. a Markov process is a lst-order stochastic 
process). A Kanerva memory addresses words by con- 
tent, storing a pattern $ at location gel to represent 
order- 1 transitions. 

In the area of priority-based buffer management, 
[Jauhari 19903, [Chou 19851, [Alonso 19901 have used 
access pattern information to manage buffers, but use it 
chiefly to make replacement decisions for demand pag- 
ing schemes, not directly for prefetching. Typically, the 
heuristics supply qualitative “hints” about page priority, 
not detailed information about expected access order. 
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7 Conclusions 

We began by noting a conceptual friction between data 
clustering and data sharing, then introduced a 
prefetching method that promises to improve response 
time performance for conflicting but regular access re- 
quirements. We described a pattern memory for predict- 
ing sequences that h&s well-defined resource costs and 
scaling properties, adapts to changes in access pattern 
and data, and improves in prediction accuracy over 
time. This should result in client response time perform- 
ance that improves over time, depending on how 
prefetch request processing actually maps to I/O. Since 
no semantics are involved in processing strings of iden- 
tifiers, many variations are possible. For example, Fido 
might be used in both server and client to prefetch pages 
or clusters by using appropriate identifiers during train- 
ing and prediction. Although predictive caching operates 
independently of clustering, it can complement rather 
than replace clustering. In fact, a txained prophet should 
be able to provide useful clustering hints. 

Fido’s current pattern memory handles noise and inex- 
act input, and learns to predict navigational access well. 
Navigational access can cause severe problems for a de- 
mand cache. For example, the fault trace produced by a 
demand cache of size k for a sequence I that is non- 
repeating within k references equals 1. Such patterns 
may be fairly common in data-intensive applications. 
[Chang 19891 observed that the access patterns of CAD 
tools they studied were “predictable”. Navigational ac- 
cess predominates in design applications, occurring dur- 
ing verification scans and during complex object expan- 
sion. However, navigation is often performed in a 
deterministic manner, resulting in bursts of non- 
repeating access. The benchmark in PeWitt 19901 em- 
ploys a “scan query” that reads all complex objects in a 
set, using breadth-first traversal to expand each complex 
object. Presumably this benchmark could produce the 
same sequences over time by expanding complex ob- 
jects in the same way each time. 

Predictive caching is a very promising method. Fido 
automatically assimilates and isolates context-specific 
access order regularities and exploits this information to 
avoid I/O. Our early results suggest that faults saved are 
worth the costs of maintaining access pattern informa- 
tion and retrieving it on-line. We hope to continue to 
study predictive optima&y and efficiency, and to add a 
predictive cache to a real system 
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Figure 9: Fault Supprmmion Early in Seasion T2 
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