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Abstract: The perturbative description of certain differential distributions across a wide kinematic

range requires the matching of fixed-order perturbation theory with resummation of large logarith-

mic corrections to all orders. We present precise matched predictions for transverse-momentum

distributions in Higgs boson (H) and Drell-Yan pair (DY) production as well as for the closely

related φ∗
η distribution at the LHC. The calculation is exclusive in the Born kinematics, and allows

for arbitrary fiducial selection cuts on the decay products of the colour singlets, which is of primary

relevance for experimental analyses. Our predictions feature very small residual scale uncertainties

and display a good convergence of the perturbative series. A comparison of the predictions for DY

observables to experimental data at 8 TeV shows a very good agreement within the quoted errors.
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1 Introduction

The accurate prediction and measurement of differential distributions is of primary importance for

the LHC precision programme, especially in view of the absence of clear signals of new physics in

the data collected so far. In this context, a special role is played by the kinematic distributions of a

colour singlet produced in association with QCD radiation. These observables are often measured

by reconstructing the decay products of the colour singlet (whenever possible), which are sensitive to

the accompanying hadronic activity only through kinematic recoil. As a consequence, measurements

of transverse and angular observables often lead to small experimental systematic uncertainties [1–

8].

The implication of these precise measurements is twofold. On one hand, they can be used to

fit the parameters of the SM Lagrangian (e.g. strong coupling constant, or masses) or to calibrate

the models that typically enter the calculation of hadron-collider observables (like for instance

collinear parton distribution functions (PDFs) [9], or non-perturbative corrections and transverse-

momentum-dependent PDFs [10–12]). An example is given by the differential distributions in Z-

and W -boson production, that recently were exploited to perform very precise extractions of the

W -boson mass [13] and to constrain the behaviour of some PDFs [14]. On the other hand, an

excellent control over kinematic distributions is a way to set compelling constraints on new-physics

models that would lead to mild shape distortions. An example is given by the sensitivity of the

Higgs transverse-momentum (pt) distribution to modification of the Yukawa couplings of the Higgs

to quarks [15, 16].
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In this article we present state-of-the-art predictions for a class of differential distributions

both in Higgs boson (H) and Drell-Yan pair (DY) production. Specifically, we combine fixed-order

calculations at next-to-next-to-leading order (NNLO) with the recently-obtained resummation of

Sudakov logarithms to next-to-next-to-next-to-leading-logarithmic order (N3LL), for the transverse-

momentum spectrum of the colour singlet, as well as for the angular variable φ∗
η [17]. In the

following, for simplicity, we will collectively denote pt/M or φ∗
η by v, with M representing the

invariant mass of the colour singlet.

Inclusive and differential distributions for Higgs-boson production in gluon fusion are nowadays

known with very high precision. The inclusive cross section has been computed to next-to-next-to-

next-to-leading-order (N3LO) accuracy in QCD [18–24] in the heavy-top-quark limit. The impact

of all-order effects due to a combined resummation of threshold and high-energy logarithms has

been studied in detail, and at the current collider energies the corrections amount to a few-percent

of the total cross section [25], indicating that the missing higher-order contributions are under

good theoretical control. The state-of-the-art results for the Higgs transverse-momentum spectrum

in fixed-order perturbation theory are the next-to-next-to-leading-order (NNLO) computations of

Refs. [26–29], which have been obtained in the heavy-top-quark limit. The effect of finite quark

masses on differential distributions at next-to-leading order has been recently computed in Refs. [30–

35].

The state-of-the-art for the QCD corrections to differential distributions in DY production is

at a similar level of accuracy. The total cross section is known fully differentially in the Born

phase space up to NNLO [36–44], while differential distributions in transverse momentum were

recently computed up to NNLO both for Z- [45–50] and W -boson [51–53] production. In the DY

distributions, electroweak corrections become important especially at large transverse momenta,

and they have been computed to NLO in [54–57].

Although fixed-order results are crucial to obtain reliable theoretical predictions away from the

soft and collinear regions of the phase space (v ∼ 1), it is well known that regions dominated by soft

and collinear QCD radiation—which give rise to the bulk of the total cross section—are affected by

large logarithmic terms of the form αn
s lnk(1/v)/v, with k ≤ 2n − 1, which spoil the convergence

of the perturbative series at small v. In order to have a finite and well-behaved calculation in this

limit, the subtraction of the infrared and collinear divergences requires an all-order resummation of

the logarithmically divergent terms. The logarithmic accuracy is commonly defined in terms of the

perturbative series of the logarithm of the cumulative cross section Σ as

lnΣ(v) ≡ ln

∫ v

0

dv′
dΣ(v′)

dv′

=
∑

n

{

O
(

αn
s lnn+1(1/v)

)

+O (αn
s lnn(1/v)) +O

(

αn
s lnn−1(1/v)

)

+ . . .
}

. (1.1)

One refers to the dominant terms αn
s lnn+1(1/v) as leading logarithmic (LL), to terms αn

s lnn(1/v) as

next-to-leading logarithmic (NLL), to αn
s lnn−1(1/v) as next-to-next-to-leading logarithmic (NNLL),

and so on.

The resummation of the pt spectrum of a heavy colour singlet is commonly performed in

impact-parameter (b) space [58, 59], where the observable completely factorises and the resummed

cross section takes an exponential form. Using the b-space formulation the Higgs pt spectrum

was resummed at NNLL accuracy in Refs. [60–62], following either the conventional approach of

Ref. [59], or a soft-collinear-effective-theory [63–66] (SCET) formulation of Refs. [67, 68]. A study

of the related theory uncertainties in the SCET formulation was presented in Ref. [69]. In DY

production, NNLL predictions for the transverse momentum of the color singlet as well as for φ∗
η

were obtained in Refs. [67, 70, 71]. The impact of both threshold and high-energy resummation on
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the small-transverse-momentum region was also studied in detail in Refs. [72–80] and the effects

were found to be quite moderate at LHC energies.

The problem of the resummation of the transverse-momentum distribution in direct (pt) space

received substantial attention throughout the years [81–83], but remained unsolved until recently.

Due to the vectorial nature of pt (analogous considerations apply to φ∗
η), it is indeed not possible to

define a resummed cross section at a given logarithmic accuracy in direct space that is simultaneously

free of both subleading-logarithmic contributions and spurious singularities at finite, non-zero values

of pt. A possible solution to the problem was recently proposed in Refs. [84, 85], in whose formalism

the resummation is performed by generating the relevant QCD radiation by means of a Monte Carlo

(MC) algorithm. The resummation of the pt spectrum in momentum space has been also studied

in Ref. [86] within a SCET framework, where the renormalisation-group evolution is performed

directly in pt space. An alternative technique to analytically transform the impact-parameter-space

result into momentum space was recently proposed in Ref. [87].

All the necessary ingredients for the N3LL resummation of pt (and φ∗
η) spectra in color-singlet

production have been computed in [88–93], and the four-loop cusp anomalous dimension has been

recently obtained numerically in refs. [94, 95]. This has paved the way to more accurate theoret-

ical results for transverse observables in the infrared region, like for instance the computation of

the Higgs-transverse-momentum spectrum at N3LL matched to NNLO in Refs. [85, 96]. In this

manuscript, employing the direct-space resummation at N3LL accuracy of Ref. [85] matched to

NNLO, we present results for Higgs pt both at the inclusive level and with fiducial cuts on the

decay products in the H → γγ channel. We also consider Drell-Yan pair production and compute

N3LL+NNLO predictions for the transverse momentum of the lepton pair and for the φ∗
η observable,

comparing these results to ATLAS measurements at 8 TeV.

The article is organised as follows. In section 2 we discuss the computation of the NNLO differ-

ential distributions in DY and H production with the fixed-order parton-level code NNLOjet.

Section 3 contains a brief review of the resummation for the pt and φ∗
η distributions using a

momentum-space approach as implemented in the computer code RadISH, and in section 4 we

discuss in detail the matching to fixed order together with the validation of our calculation. Sec-

tion 5 reports the results for H production, while the analogous results for DY production are

reported in Section 6. Section 7 contains our conclusions. We report the relevant formulae used

for the matching in Appendix A, while Appendix B contains various quantities necessary for the

resummation up to N3LL.

2 Fixed order

In this article we consider the production of either a Higgs boson or a leptonic Drell-Yan pair.

In particular, the main focus lies in the description of the transverse-momentum spectrum and, in

the case of DY production, of the closely related φ∗
η observable. These observables are studied in

the context of matching the fixed-order calculation to a resummed prediction, and consequently the

low- to intermediate-pt regimes are of particular interest.

For the Higgs production process, we therefore restrict ourselves to the region with pHt . mt

where the HEFT description is appropriate. In this effective-field-theory framework, the top quark

is integrated out in the large-top-mass limit (mt → ∞), giving rise to an effective operator that

directly couples the Higgs field to the gluon field-strength tensor via [97–99]

LHEFT = −λ

4
GµνGµνH. (2.1)

The Wilson coefficient λ is known to three-loop accuracy [100] and its renormalisation-scale de-

pendence was studied in [29]. We consider the pHt spectrum for both the inclusive production of
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an on-shell Higgs boson as well as including its decay into two photons. For the latter, the pro-

duction and decay are treated in the narrow-width approximation and fiducial cuts, summarised in

Section 5, are applied on the photons in the final state.

For the DY process, we consider the full off-shell production of a charged lepton pair, including

both the Z-boson and photon exchange contributions. Fiducial cuts are applied to the leptons in

the final state and match the corresponding measurement performed by ATLAS at 8 TeV [101],

which are summarised in Section 6. We consider both the pZt spectrum as well as the φ∗
η distribution,

which are further studied multi-differentially for different invariant-mass (Mℓℓ) or rapidity (Yℓℓ) bins.

The differential distributions in v = pt/M, φ∗
η for the production of a colour singlet at hadron

colliders are indirectly generated through the recoil of the colour singlet against QCD radiation.

The observables v are therefore closely related to the X+ jet process with X = H, Z, where the jet

requirement is replaced by a restriction on v to be non-vanishing: v ≥ vcut > 0. The state-of-the-art

fixed-order QCD predictions for this class of processes is at NNLO [26–29, 45–50]. Starting from the

LO distributions, in which the colour singlet recoils against a single parton, the NNLO predictions

receive contributions from configurations (with respect to LO) with two extra partons (RR: double-

real corrections for H [102–104] and DY [105–109]), with one extra parton and one extra loop (RV:

real-virtual corrections for H [110–112] and DY [105, 106, 113–116]) and with no extra parton but

two extra loops (VV: double-virtual corrections for H [117] and DY [118–121]). Each of the three

contributions is separately infrared divergent either in an implicit manner from phase-space regions

where parton radiations become unresolved (soft and/or collinear) or in a explicit manner from

divergent poles in virtual loop corrections. Only the sum of the three contributions is finite.

Our calculation is performed using the parton-level event generator NNLOjet, which imple-

ments the antenna subtraction method [122–124] to isolate infrared singularities and to enable their

cancellation between different contributions prior to the numerical phase-space integration. The

NNLO corrections for Higgs and DY production at finite v are calculated using established imple-

mentations for pp → H+ jet [29, 125] and pp → Z+ jet [45–48] at NNLO, and it takes the schematic

form:

σNNLO
X+jet =

∫

ΦX+3

(

dσRR
NNLO − dσS

NNLO

)

+

∫

ΦX+2

(

dσRV
NNLO − dσT

NNLO

)

+

∫

ΦX+1

(

dσV V
NNLO − dσU

NNLO

)

. (2.2)

The antenna subtraction terms, dσS,T,U
NNLO, for both Higgs and Drell-Yan related processes are con-

structed from antenna functions [126–131] to cancel infrared singularities between the contributions

of different parton multiplicities. The integrals are performed over the phase space ΦX+1,2,3 cor-

responding to the production of the colour singlet in association with one, two or three partons

in the final state. The integration of the final-state phase space is fully differential such that any

infrared-safe observable O can be studied through differential distributions as dσNNLO
X+jet/dO.

For large values of v (v ∼ 1), the phase-space integral in each line of Eq. (2.2) is well defined

and was calculated with high numerical precision in previous studies. Extending these predictions

to smaller, but finite v (∼ 0.01) becomes extremely challenging due to the wider dynamical range

that is probed in the integration. Both the matrix elements and the subtraction terms grow rapidly

in magnitude towards smaller values of v, thereby resulting in large numerical cancellations between

them and rendering both the numerical precision and the stability of the results challenging. The

finite remainder of such cancellations needs to be numerically stable in order to be consistently
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combined with resummed logarithmic corrections and extrapolated to the limit v → 0. For this

reason, the integration is performed separately for each individual initial-state partonic channel.

We further split the integration region for each channel into multiple intervals in v, which are

partially overlapping with each other. By carefully checking the consistency of the distributions in

the overlapping region and using dedicated reweighting factors in each interval, we use NNLOjet to

produce fixed-order predictions up to NNLO for values in v down to pt = 2 GeV and φ∗
η = 0.004 [47].

The accuracy of the results obtained with the NNLOjet code for small v has been system-

atically validated in Ref. [96] by comparing fixed-order predictions of the Higgs boson transverse

momentum distribution dσNNLO/dp
H
t against the expansion of the N3LL resummation (obtained

in the framework of soft-collinear effective field theory, SCET) to the respective order in the small

pHt region. This validation was performed for individual initial-state partonic channels down to

pHt = 0.7 GeV.

As v → 0, the final-state phase space ΦX+1,2,3 is reduced to the phase space of colour sin-

glet production ΦX . The RR, RV, and VV contributions contain infrared divergences with one

extra unresolved parton that cannot be cancelled by the subtraction terms dσS,T,U
NNLO. These extra

logarithmic divergences are cancelled by combining the fixed-order computation to a resummed

calculation, where the logarithms in the fixed-order prediction are subtracted and replaced by a

summation of the corresponding enhanced terms to all orders in perturbation theory. This oper-

ation is discussed in the next section, and more details on the combination of the two results are

reported in Appendix A.

3 Resummation

The approach developed in Refs. [84, 85] uses the factorisation properties of the QCD squared

amplitudes to devise a Monte Carlo formulation of the all-order calculation. In this framework,

large logarithms are resummed directly in momentum space by effectively generating soft and/or

collinear emissions in a fashion similar in spirit to an event generator.

To summarise the final result, we consider the cumulative distribution

Σ(v) ≡
∫ v

0

dv′
dΣ(v′)

dv′
(3.1)

for an observable v(′) = V (ΦB , k1, . . . , kn), being either pt/M or φ∗
η, in the presence of n real

emissions with momenta k1, ..., kn. Using the notation of Ref. [85], Σ(v) can be expressed as

Σ(v) =

∫

dΦBV(ΦB)

∞
∑

n=0

∫ n
∏

i=1

[dki]|M(ΦB , k1, . . . , kn)|2 Θ(v − V (ΦB , k1, . . . , kn)) , (3.2)

where M is the matrix element for n real emissions and V(ΦB) denotes the resummed form factor

that encodes the purely virtual corrections [132]. The phase spaces of the i-th emission ki and that

of the Born configuration1 are denoted by [dki] and dΦB , respectively.

The recursive infrared and collinear (rIRC) safety [133] of the observable allows one to establish a

well defined logarithmic counting in the squared amplitude [133, 134], and to systematically identify

the contributions that enter at a given logarithmic order. In particular, the squared amplitude can

be decomposed in terms of n-particle-correlated blocks, such that blocks with n particles start

contributing one logarithmic order higher than blocks with n− 1 particles.

1In the context of resummation, the Born configuration denotes the production of the colour-singlet state without

any extra radiation. This should not be confused with the fixed-order counting of orders, where LO denotes the

production of the colour-singlet state recoiling against a parton at finite transverse momentum.
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Eq. (3.2) contains exponentiated divergences of virtual origin in the V(ΦB) factor, as well as

singularities in the real matrix elements, which appear at all perturbative orders. In order to han-

dle such divergences, one can introduce a resolution scale Q0 on the transverse momentum of the

radiation: thanks to rIRC safety, unresolved real radiation (i.e. softer than Q0) does not contribute

to the observable’s value, namely it can be neglected when computing V (ΦB , k1, . . . , kn), thus it

exponentiates and cancels the divergences contained in V(ΦB) at all orders. The precise definition

of the unresolved radiation requires a careful clustering of momenta belonging to a given correlated

block in order to be collinear safe. On the other hand, the real radiation harder than the resolution

scale (referred to as resolved) must be generated exclusively since it is constrained by the Θ function

in Eq. (3.2). rIRC safety also ensures that the dependence of the results upon Q0 is power-like,

hence the limit Q0 → 0 can be taken safely.

For observables which depend on the total transverse momentum of QCD radiation, such as

pt or φ∗
η, it is particularly convenient to set the resolution scale to a small fraction δ > 0 of

the transverse momentum of the block with largest kt, hereby denoted by δkt1, which allows for

an efficient Monte Carlo implementation of the resulting resummed formula that can be used to

simultaneously compute both pt and φ∗
η.

Including terms up to N3LL, the cumulative cross section in momentum space can be recast in the

following form [85]2

dΣ(v)

dΦB
=

∫ ∞

0

dkt1
kt1

J (kt1)
dφ1

2π
∂L̃

(

−e−R̃(kt1)L̃N3LL(kt1)
)

∫

dZ[{R̃′, ki}]Θ (v − V (ΦB , k1, . . . , kn+1))

+

∫ ∞

0

dkt1
kt1

J (kt1)
dφ1

2π
e−R̃(kt1)

∫

dZ[{R̃′, ki}]
∫ 1

0

dζs
ζs

dφs

2π

{

(

R̃′(kt1)L̃NNLL(kt1)− ∂L̃L̃NNLL(kt1)

)

×
(

R̃′′(kt1) ln
1

ζs
+

1

2
R̃′′′(kt1) ln

2 1

ζs

)

− R̃′(kt1)

(

∂L̃L̃NNLL(kt1)− 2
β0

π
α2
s (kt1)P̂

(0) ⊗ L̃NLL(kt1) ln
1

ζs

)

+
α2
s (kt1)

π2
P̂ (0) ⊗ P̂ (0) ⊗ L̃NLL(kt1)

}

{

Θ(v − V (ΦB , k1, . . . , kn+1, ks))−Θ(v − V (ΦB , k1, . . . , kn+1))

}

+
1

2

∫ ∞

0

dkt1
kt1

J (kt1)
dφ1

2π
e−R̃(kt1)

∫

dZ[{R̃′, ki}]
∫ 1

0

dζs1
ζs1

dφs1

2π

∫ 1

0

dζs2
ζs2

dφs2

2π
R̃′(kt1)

×
{

L̃NLL(kt1)
(

R̃′′(kt1)
)2

ln
1

ζs1
ln

1

ζs2
− ∂L̃L̃NLL(kt1)R̃

′′(kt1)

(

ln
1

ζs1
+ ln

1

ζs2

)

+
α2
s (kt1)

π2
P̂ (0) ⊗ P̂ (0) ⊗ L̃NLL(kt1)

}

×
{

Θ(v − V (ΦB , k1, . . . , kn+1, ks1, ks2))−Θ(v − V (ΦB , k1, . . . , kn+1, ks1))−

Θ(v − V (ΦB , k1, . . . , kn+1, ks2)) + Θ (v − V (ΦB , k1, . . . , kn+1))

}

+O
(

αn
s ln2n−6 1

v

)

, (3.3)

where ζsi ≡ ktsi/kt1 and we introduced the notation dZ[{R̃′, ki}] to denote an ensemble that

describes the emission of n identical independent blocks [85]. The average of a function G({p̃}, {ki})
2We have split the result into a sum of three terms. The first term contains the full NLL corrections. The second

term of Eq. (3.3) (first set of curly brackets) starts contributing at NNLL accuracy, while the third term (second set

of curly brackets) is purely N3LL.
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over the measure dZ is defined as (ζi ≡ kti/kt1)

∫

dZ[{R̃′, ki}]G({p̃}, {ki}) = e−R̃′(kt1) ln
1
δ

∞
∑

n=0

1

n!

n+1
∏

i=2

∫ 1

δ

dζi
ζi

∫ 2π

0

dφi

2π
R̃′(kt1)G({p̃}, k1, . . . , kn+1) .

(3.4)

The ln 1/δ divergence in the exponential prefactor of Eq. (3.4) cancels exactly against that contained

in the resolved real radiation, encoded in the nested sums of products on the right-hand side of the

same equation. This ensures that the final result is therefore δ-independent.

To obtain Eq. (3.3) we used the fact that, for resolved radiation, ζi is a quantity of O(1), which

allows us to expand all ingredients in Eq. (3.3) about kt1, retaining only terms necessary for the

desired logarithmic accuracy. We stress that this is allowed because of rIRC safety, which ensures

that blocks with kti ≪ kt1 do not contribute to the value of the observable and are therefore fully

cancelled by the term exp{−R̃′(kt1) ln(1/δ)} of Eq. (3.4). Although not strictly necessary, this

expansion allows for a more efficient numerical implementation. The expansion gives rise to the

terms R̃(n) which denote the derivatives of the radiator as

R̃′ = dR̃/dL̃, R̃′′ = dR̃′/dL̃, R̃′′′ = dR̃′′/dL̃, (3.5)

where R̃ takes the form

R̃(kt1) = −L̃g1(αsβ0L̃)− g2(αsβ0L̃)−
αs

π
g3(αsβ0L̃)−

α2
s

π2
g4(αsβ0L̃), (3.6)

and αs = αs(µR). We report the functions gi in Appendix B, and we refer to Ref. [85] for further

details. The function g4 involves a contribution from the recently determined [95] four-loop cusp

anomalous dimension Γ
(4)
cusp that we report in Eq. (B.12).

In previous N3LL resummation studies, Γ
(4)
cusp was either neglected [85, 96] or extrapolated from

its lower order contributions through a Padé approximation [135]. With the new result of [95] at

hand, we could now explicitly verify that the numerical impact of Γ
(4)
cusp is indeed very small (not

visibly noticeable in the distributions), and well below other sources of parametric uncertainties

that are discussed in the following.

The expression in Eq. (3.3) would originally contain resummed logarithms of the form ln(Q/kt1),

where Q is the resummation scale, whose variation is used to probe the size of subleading logarithmic

corrections not included in our result. In order to ensure that the resummation does not affect the

hard region of the spectrum when matched to fixed order (see Section 4), the resummed logarithms

are supplemented with power-suppressed terms, negligible at small kt1, that ensure resummation

effects to vanish for kt1 ≫ Q. Such modified logarithms L̃ are defined by constraining the rapidity

integration of the real radiation to vanish at large transverse momenta. This is done by mapping

the limit kt1 → Q onto kt1 → ∞ in all terms of Eq. (3.3), with the exception of the observable’s

measurement function. A convenient choice of such a mapping is

ln
Q

kt1
→ L̃ =

1

p
ln

((

Q

kt1

)p

+ 1

)

, (3.7)

where p is a positive real parameter chosen in such a way that the resummed differential distribution

vanishes faster than the fixed-order one at large v, with slope (1/v)p+1. The above prescription

comes with the prefactor J , defined as

J (kt1) =

(

Q

kt1

)p(

1 +

(

Q

kt1

)p)−1

. (3.8)

This corresponds to the Jacobian for the transformation (3.7), and ensures the absence of fractional

(although power suppressed) αs powers in the final distribution [85]. This factor, once again,
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leaves the small kt1 region untouched, and only modifies the large pt region by power-suppressed

effects. Although this procedure seems a simple change of variables, we stress that the observable’s

measurement function (i.e. the Θ function in Eq. (3.3)) is not affected by this prescription. As a

consequence, the final result will depend on the parameter p through power-suppressed terms.

The factors L̃ contain the parton luminosities up to N3LL, multiplied by the Born-level squared,

and virtual amplitudes. They are defined as (we adopt the notation of Ref. [85])

L̃NLL(kt1) =
∑

c,c′

d|MB |2cc′
dΦB

fc

(

µF e
−L̃, x1

)

fc′
(

µF e
−L̃, x2

)

, (3.9)

L̃NNLL(kt1) =
∑

c,c′

d|MB |2cc′
dΦB

∑

i,j

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fi

(

µF e
−L̃,

x1

z1

)

fj

(

µF e
−L̃,

x2

z2

)

×
{

δciδc′jδ(1− z1)δ(1− z2)

(

1 +
αs(µR)

2π
H̃(1)(µR, xQ)

)

+
αs(µR)

2π

1

1− 2αs(µR)β0L̃

(

C̃
(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i ↔ c′j}

)

}

, (3.10)

L̃N3LL(kt1) =
∑

c,c′

d|MB |2cc′
dΦB

∑

i,j

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fi

(

µF e
−L̃,

x1

z1

)

fj

(

µF e
−L̃,

x2

z2

)

×
{

δciδc′jδ(1− z1)δ(1− z2)

(

1 +
αs(µR)

2π
H̃(1)(µR, xQ) +

α2
s (µR)

(2π)2
H̃(2)(µR, xQ)

)

+
αs(µR)

2π

1

1− 2αs(µR)β0L̃



1− αs(µR)
β1

β0

ln
(

1− 2αs(µR)β0L̃
)

1− 2αs(µR)β0L̃





×
(

C̃
(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i ↔ c′, j}

)

+
α2
s (µR)

(2π)2
1

(1− 2αs(µR)β0L̃)2

(

C̃
(2)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i ↔ c′, j}

)

+
α2
s (µR)

(2π)2
1

(1− 2αs(µR)β0L̃)2

(

C̃
(1)
ci (z1, µF , xQ)C̃

(1)
c′j (z2, µF , xQ) +G

(1)
ci (z1)G

(1)
c′j(z2)

)

+
α2
s (µR)

(2π)2
H̃(1)(µR, xQ)

1

1− 2αs(µR)β0L̃

(

C̃
(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i ↔ c′, j}

)

}

.

(3.11)

where

x1 =
M√
s
eY , x2 =

M√
s
e−Y , (3.12)

Y is the rapidity of the colour singlet in the centre-of-mass frame of the collision at the Born-level,

|MB |2cc′ is the Born-level squared matrix element, and xQ = Q/M . The above luminosities contain

the NLO and NNLO coefficient functions C̃
(n)
ci for Higgs and Drell-Yan production [88–91], as well

as the hard virtual corrections H̃(n). A precise definition is given is Section 4 of Ref. [85], and the

relevant formulae are also reported in Appendix B.

Finally, we define the convolution of a regularised splitting function P̂ [136, 137] with the

coefficient L̃NLL as

P̂ (0) ⊗ L̃NLL(kt1) ≡
∑

c,c′

d|MB |2cc′
dΦB

{

(

P̂ (0) ⊗ f
)

c

(

µF e
−L̃, x1

)

fc′
(

µF e
−L̃, x2

)
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+ fc

(

µF e
−L̃, x1

)(

P̂ (0) ⊗ f
)

c′

(

µF e
−L̃, x2

)

}

. (3.13)

The term P̂ (0) ⊗ P̂ (0) ⊗ L̃NLL(kt1) is to be interpreted similarly as

P̂ (0) ⊗ P̂ (0) ⊗ L̃NLL(kt1) ≡
∑

c,c′

d|MB |2cc′
dΦB

{

(

P̂ (0) ⊗ P̂ (0) ⊗ f
)

c

(

µF e
−L̃, x1

)

fc′
(

µF e
−L̃, x2

)

+ fc

(

µF e
−L̃, x1

)(

P̂ (0) ⊗ P̂ (0) ⊗ f
)

c′

(

µF e
−L̃, x2

)

+ 2
(

P̂ (0) ⊗ f
)

c

(

µF e
−L̃, x1

)(

P̂ (0) ⊗ f
)

c′

(

µF e
−L̃, x2

)

}

. (3.14)

Moreover, the explicit factors of the strong coupling evaluated at kt1 in Eq. (3.3) are defined as

αs(kt1) ≡
αs(µR)

1− 2αs(µR)β0L̃
. (3.15)

4 Matching to fixed order

In this section we discuss the matching of the resummed and the fixed-order results. Since we work

at the level of the cumulative distribution Σ, we define the analogue of Eq. (3.1) for the fixed-order

prediction as

ΣN3LO(v) = σN3LO
tot −

∫ ∞

v

dv′
dΣNNLO(v′)

dv′
, (4.1)

where σN3LO
tot is the total cross section for the considered processes and dΣNNLO/dv′ denotes the

NNLO differential distribution.

For inclusive Higgs production, the transverse-momentum distribution at NNLO was obtained

in Refs. [26–29], while the N3LO total cross section has been computed in Refs. [23, 24]. On

the other hand, the N3LO cross section within fiducial cuts on the Born kinematics is currently

unknown. Since in this article we address differential distributions for H → γγ with fiducial cuts,

we approximate the N3LO correction to σN3LO
tot by rescaling the NNLO fiducial cross section by

the inclusive (i.e. without fiducial cuts) N3LO/NNLO K factor. We stress that, at the level of the

differential distributions we are interested in, this approximation is formally a N4LL effect, and it

lies beyond the accuracy considered in this study.

For DY production, the differential distributions to NNLO were obtained in Refs. [47, 49]. We

set to zero the unknown N3LO correction to the total cross section, observing once again that its

contribution to the distributions derived here is subleading.

In order to assess the uncertainty associated with the matching procedure, we consider here two

different matching schemes. The first scheme we introduce is the common additive scheme defined

as

ΣMAT
add (v) = ΣN3LL(v) + ΣN3LO(v)− ΣEXP(v), (4.2)

where ΣEXP denotes the expansion of the resummation formula ΣN3LL to N3LO.

The second scheme we consider belongs to the class of multiplicative schemes similar to those

defined in Refs. [138–140], and it is schematically defined as

ΣMAT
mult (v) = ΣN3LL(v)

[

ΣN3LO(v)

ΣEXP(v)

]

EXPANDED TO N3LO

, (4.3)

where the quantity in square brackets is expanded to N3LO. The two schemes (4.2), (4.3) are

equivalent at the perturbative order we are working at, and differ by N4LO and N4LL terms. The
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main difference between the two schemes is that in the multiplicative approach, unlike in the additive

one, higher-order corrections are damped by the resummation factor ΣN3LL at low v. Moreover, this

damping occurs in the region where the fixed-order result may be occasionally affected by numerical

instabilities, hence allowing for a stable matched distribution even with limited statistics for the

NNLO component.

One advantage of the multiplicative solution is that the N3LO constant terms, of formal N4LL

accuracy, are automatically extracted from the fixed order in the matching procedure, whenever

the N3LO total cross section is known. We recall that Eq. (3.3) resums all towers of ln(1/v) up

to N3LL, defined at the level of the logarithm of Σ (1.1). At this order, one predicts correctly all

logarithmic terms up to, and including, αn
s ln2n−5(1/v) in the expanded formula for Σ, while terms

of order αn
s ln2n−6(1/v) would be modified by including N4LL corrections.

The inclusion of constant terms of order O(α3
s ) relative to Born level in the resummed formula, of

formal N4LL accuracy, extends the prediction to all terms of order αn
s ln2n−6(1/v) in the expanded

formula for Σ. Indeed these terms, which contain the N3LO collinear coefficient functions and

three-loop virtual corrections, would multiply the Sudakov e−R̃(kt1) in the resummed formula (3.3)

starting at N4LL. Since they are currently unknown analytically, in an additive matching these

terms are simply added to the resummed cumulative result, and disappear at the level of the

differential distribution. On the other hand, in a multiplicative scheme, they multiply the resummed

cross section and hence correctly include a whole new tower of N4LL terms αn
s ln2n−6(1/v) in the

expanded formula for the matched cumulative cross section ΣMAT.3 We stress that this, as pointed

out above, requires the knowledge of the N3LO cross section in the considered fiducial volume. This

is currently only known in the case of fully inclusive Higgs production, whose results are presented

in Section 5.1. In the remaining studies of fiducial distributions, both for Higgs in Section 5.2, and

for DY in Section 6, the N3LO cross sections are approximated, as described at the beginning of

this section, and hence the tower of N4LL terms αn
s ln2n−6(1/v) in Σ is not fully included.

However, there is a drawback in using Eq. (4.3) as is. Indeed, in the limit L̃ → 0, ΣN3LL tends

to the integral of L̃N3LL(µF ) (defined in Eq. (3.11)) over ΦB , evaluated at L̃ = 0. Therefore, the

fixed-order result ΣN3LO at large v receives a spurious correction of relative order α4
s

ΣMAT
mult (v) ∼ ΣN3LO(v)

(

1 +O(α4
s )
)

. (4.4)

Despite being formally of higher order, this effect can be moderately sizeable in processes with

large K factors, such as Higgs production. There are different possible solutions to this problem. In

Ref. [85] the resummed component (as well as the relative expansion) was modified by introducing

a damping factor as

ΣN3LL →
(

ΣN3LL
)Z

, (4.5)

where Z is a v-dependent exponent that effectively acts as a smoothened Θ function that tends

to zero at large v. This solution, however, introduces new parameters that control the scaling of

the damping factor Z (see Section 4.2 of Ref. [85] for details). In this article we adopt a simpler

solution, which avoids the introduction of extra parameters in the matching scheme. To this end, we

define the multiplicative matching scheme by normalising the resummed prefactor to its asymptotic

L̃ → 0 value. This is simply given by the integral over the Born phase space ΦB of the L̃ → 0 limit

of L̃N3LL (that we report in Eq. (A.5))

ΣN3LL
asym. =

∫

with cuts

dΦB

(

lim
L̃→0

L̃N3LL

)

, (4.6)

3Notice that this does not imply that the whole class of N4LL terms is included. This would instead require

all terms of the form αn
s lnn−3(1/v) in lnΣ, Eq. (1.1), which would predict correctly all terms αn

s ln2n−6(1/v) and

αn
s ln2n−7(1/v) in the expanded Σ.
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where the integration over ΦB is performed by taking into account the phase-space cuts of the

experimental analysis.

We thus obtain

ΣMAT
mult (v) =

ΣN3LL(v)

ΣN3LL
asym.

[

ΣN3LL
asym.

ΣN3LO(v)

ΣEXP(v)

]

EXPANDED TO N3LO

, (4.7)

where

ΣN3LL(v) −−−−−→
v≫Q/M

ΣN3LL
asym., (4.8)

and the whole squared bracket in Eq. (4.7) is expanded to N3LO. This ensures that, in the v ≫ Q/M

limit, Eq. (4.7) reproduces by construction the fixed-order result, and no large spurious higher-order

corrections arise in this region. The detailed matching formulae for the two schemes considered in

our analysis are reported in Appendix A.

In order to estimate the systematic uncertainty associated with the choice of the matching

scheme, a consistent comparison between the two will be performed in the next section considering

inclusive Higgs production as a case study.

Before we proceed with the results, we stress that in the remainder of this article we will only

focus on differential distributions rather than on cumulative ones. Therefore, at the level of the

spectrum, in our notation we will drop one order in the fixed-order counting, so that the derivative

of ΣN3LO will be referred to as a NNLO distribution, and analogously for the lower-order cases.

In the next two subsections we perform some validation studies both for Higgs (Section 4.1)

and DY (Section 4.2) production, where we compare the fixed-order calculation in the deep infrared

regime to the expansion of the resummed result. Moreover, we discuss the uncertainty associated

with the choice of the matching scheme, and estimate it through a comparison of the two prescrip-

tions defined above for a case study.

4.1 Validation of the expansion and matching uncertainty for Higgs production

To perform the matching to fixed order, the resummation formula (3.3) is expanded up to the third

order in the strong coupling. To obtain the expanded results, one can directly set the resolution

scale δ to zero, since the cancellation of IRC divergences is manifest. In Figure 1 we show the

comparison between the expansion of the N3LL resummed cross section and the fixed order for the

differential distribution of pHt both at NLO (left plot) and at NNLO (right plot). We remind the

reader that at the level of the differential distribution NNLO denotes the derivative of the N3LO

cumulant, and similarly for lower orders.

In Figure 1 we see that below pHt ∼ 10 GeV the fixed-order and the expansion of the resum-

mation are in excellent agreement, and that the size of non-logarithmic terms in the perturbative

series remains moderate up to pHt ∼ 50 GeV.

It is instructive to further investigate the difference between the fixed order and the expansion

of the resummation formula in the region of very small pHt . In particular, we consider the differential

distribution
dΣ(pHt )

d ln(pHt /GeV)
, (4.9)

in order to highlight potential logarithmic differences in the pHt → 0 region. A similar validation

of the NNLO pHt distribution has been performed in Ref. [96]. The result of our comparison is

displayed in the left panel of Figure 2. The dashed green line shows the difference between the

NNLO distribution and the O(α3
s ) expansion of the NNLL resummation. As one expects, at small

pHt the two predictions for the cumulative distribution differ by a double-logarithmic term (due

to the absence of the NNLO coefficient functions and of the two-loop virtual corrections in the
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Figure 1. Comparison between the fixed-order transverse momentum distribution for Higgs boson produc-

tion at
√
s = 13 TeV at NLO (left) and NNLO (right) and the expansion of the N3LL resummation formula

given in Eq. (3.3) to the corresponding order, i.e. O(α4
s ) and O(α5

s ) (namely O(α2
s ) and O(α3

s ) relative to

Born), respectively.
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Figure 2. Left: difference between the full NLO and NNLO pHt distribution and the expansion of the NNLL

and N3LL resummation formulae (3.3) to the respective perturbative order. Right: difference between the

fixed-order NNLO coefficient, i.e. the O
(

α5
s

)

term alone, and the corresponding coefficient obtained from

the expansion of the N3LL resummation.

NNLL result), which induces a linear slope at the level of the differential distribution (4.9). When

we include the N3LL corrections (solid red line), the difference between the two curves tends to

zero, hence proving the consistency between the two predictions. For comparison, the difference

between the NLO and NNLL (cyan dot-dashed line) is also reported. The right panel of Figure 2

shows the difference between the NNLO coefficient and the corresponding expansion of the N3LL

resummation at the same order. The lower inset of the same figure shows the ratio of the above

difference to the NNLO coefficient, which helps quantify the relative difference.

As a check on the theoretical setup that will be used in the next sections, it is interesting to

compare the predictions for the pHt spectrum obtained with the two matching schemes defined in

Eqs. (4.2) and (4.7). In order to compare the multiplicative and additive schemes on an equal foot-

ing, hence including the same ingredients for both schemes, in this section we consider a matching

to NNLO at the level of the cumulative cross section that will allow us to estimate the systematic

uncertainty associated with the choice of the matching scheme. In this case the resummed cross
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Figure 4. Left: difference between the full NLO and NNLO pZt distribution and the expansion of the NNLL

and N3LL resummation formulae (3.3) to the respective perturbative order. Right: difference between the

fixed-order NNLO coefficient, i.e. the O
(

α3
s

)

term alone, and the corresponding coefficient obtained from

the expansion of the N3LL resummation.

section is defined as in Eqs. (4.2) and (4.7) with the obvious replacement of N3LO by NNLO. The

result of the comparison is reported in Figure 3. We observe a very good agreement between the

two matching schemes, which is a sign of robustness of the predictions shown below. The lower

panel of Figure 3 shows the relative uncertainty bands obtained within the two schemes, where each

prediction is divided by its own central value. The theory uncertainties have a very similar pattern.

Given that the difference between the two schemes is always quite moderate with respect to the

scale uncertainty, in the following we decide to proceed with the multiplicative prescription (4.7)

as our default. We find analogous conclusions for DY production, and therefore we choose not to

report this further comparison here.
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Figure 5. Validation between the fixed-oder coefficients (at NLO and NNLO) and the corresponding

expansion of the resummed prediction (at NNLL and N3LL) for the individual partonic channels, with

L = ln(pZt /GeV). Note that in contrast to Fig. 4, the curves labelled as “NNLL” only comprises term of

O
(

α2
s

)

and does not include higher-order O
(

α3
s

)

terms.

4.2 Validation of the expansion for Drell-Yan pair production

Similarly to the validation performed for inclusive Higgs production, in this section we consider

the difference between the NNLO differential distribution and the corresponding expansion of the
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N3LL resummed calculation. In particular, we focus on the differential distribution

dΣ(pZt )

d ln(pZt /GeV)
, (4.10)

in order to highlight potential logarithmic differences in the pZt → 0 region.

To perform the validation we consider 8 TeV pp collisions with NNPDF3.0 parton densities [141],

and we work within an inclusive setup requiring

80 GeV < Mℓℓ < 100 GeV, (4.11)

and setting the scales to µR = µF = MZ with xQ = Q/Mℓℓ = 1. This inclusive setup is chosen as to

avoid any potential complications due to the use of fiducial cuts, as well as dynamical scales, that

act differently on the fixed-order and resummed calculations. Indeed, at variance with the case of

the fixed-order calculation, in the resummation both fiducial cuts and dynamical scales are always

defined at level of the Born (i.e. Z+0 jet) phase space, which differs from the definition used in the

fixed-order calculation unless the extra QCD radiation is extremely soft or collinear to the beam.

As a consequence, employing fiducial cuts and/or dynamical scales may necessitate going to smaller

values of pZt in order to see a convergence of the fixed-order to the expansion of the resummation.

The results of the comparison are shown in Figure 4. The left panel displays the difference

between the NLO distribution and the expansion of the NNLL resummation to second order (cyan

dot-dashed line), and between the NNLO distribution and the expansion of the N3LL resummation

to third order (solid red line). In both cases one expects the differences to approach zero at small

pZt , which is well confirmed by the plot. In addition, we report on the difference between the NNLO

distribution and the expansion of the NNLL resummation to third order given by the dashed green

line. Due to missing double-logarithmic terms in the NNLL expansion, a non-vanishing slope is

expected in the low-pZt region, which is suggested by the green curve within statical uncertainties.

In order to single out the contribution of the NNLO correction, in the right panel of Figure 4 we

show the difference between the NNLO coefficient alone, and the corresponding coefficient in the

expansion of the N3LL resummation. As expected, such a difference asymptotically tends to zero

for small pZt values.

In addition to the validation of the full pZt spectrum shown in Fig. 4, we have further performed

the analogous checks for the individual partonic channels which are summarised in Fig. 5. To

this end, we have computed the fixed-order NNLO contribution to the pZt distribution down to

pZt ∼ 0.5 GeV with uncertainties at the 10% level. We can clearly observe that the fixed-order

prediction is in excellent agreement with the prediction from the resummed calculation for all

partonic configurations. The respective bottom panels in each figure show the difference between the

two predictions, which for all channels approach zero in the limit pZt → 0. This is an excellent cross-

check of the two calculations, which proves the good numerical stability of the NNLO distributions

down to the deep infrared regime.

5 Results for Higgs production in HEFT

In this section we present our predictions for the pHt spectrum both in inclusive pp → H production,

and in the pp → H → γγ channel with fiducial cuts. The computational setup is the same for both

analyses, and all results presented below are obtained in the heavy-top-quark limit. We consider

collisions at 13 TeV, and use parton densities from the PDF4LHC15_nnlo_mc set [141–146]. The value

of the parameter p appearing in the definition of the modified logarithms L̃ is chosen considering

the scaling of the spectrum in the hard region, so as to make the matching to the fixed order smooth

there. We set p = 4 as our reference value, but nevertheless have checked that a variation of p by

one unit does not induce any significant differences.
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Figure 6. Comparison between different combinations of fixed-order (NLO and NNLO) and resummation

(NNLL and N3LL) for the transverse momentum distribution for Higgs boson production at
√
s = 13 TeV.

Left: NLO and Right: NNLO. The lower panel shows the ratio of predictions to that obtained with N3LL

resummation.

We set the central renormalisation and factorisation scales as µR = µF = mH/2, with mH =

125 GeV, while the resummation scale is chosen to be xQ = Q/mH = 1/2. We estimate the

perturbative uncertainty by performing a seven-scale variation of µR, µF by a factor of two in

either direction, while keeping 1/2 < µR/µF < 2 and xQ = 1/2; Moreover, for central µR and µF

scales, xQ is varied around its central value by a factor of two. The quoted theoretical error is

defined as the envelope of all the above variations. We discuss the results for inclusive production

in Section 5.1, and then present the predictions for the fiducial distributions in Section 5.2.

5.1 Matched predictions for inclusive Higgs

We start by quantifying the size of the N3LL effects compared to NNLL resummation. In the left

plot of Figure 6 we compare the differential distributions at N3LL+NLO and NNLL+NLO in the

small-pHt region. The lower panel of the plot shows the ratio of both predictions to the central line

of the N3LL+NLO band, which corresponds to central scales in our setup. We observe that N3LL

corrections are very moderate in size, with effects of order 2% on the central prediction in most of

the displayed range, growing up to at most 5% only in the region of extremely low pHt . The central

N3LL+NLO result is entirely contained in the NNLL+NLO uncertainty band. On the other hand,

the inclusion of the N3LL corrections reduces the perturbative uncertainty for pHt . 5 GeV.

The right plot of Figure 6 shows the same comparison for the matching to NNLO. The effect

of the N3LL corrections is consistent with the previous order, with a percent-level correction in

most of the range, growing up to 5% at very small pHt . Similarly, the perturbative uncertainty is

significantly reduced below 10 GeV with respect to the NNLL+NNLO case. It is important to stress

that in the NNLL+NNLO matching the fixed order and the expansion of the resummation differ by

a divergent term ∼ 1/pHt at small pHt . The fact that the divergence is not visible in the distribution

reported in the upper panel of Figure 6 is entirely due to the nature of the multiplicative scheme,

which ensures that the distribution follows the resummation scaling at small pHt , therefore damping

the divergence. A multiplicative matching of N3LL resummation to NNLO was already shown in

Ref. [85], where however no significant reduction in the uncertainty band at small pHt was observed in

that case. This feature was due to the limited statistics of the fixed-order distributions used in that

analysis at small pHt , whose fluctuations dominated the uncertainty band at very small transverse

momentum. An additive matching of N3LL to NNLO was recently performed in Ref. [96].
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Figure 7. Comparison of the transverse momentum distribution for Higgs boson production at NNLO and

N3LL+NNLO for a central scale choice of µR = µF = mH/2 (left) and µR = µF = mH (right). In both

cases, Q = mH/2. The lower panel shows the ratio to the N3LL+NNLO prediction.

Next, we consider the comparison between the matched prediction and the fixed-order one.

Figure 7 shows this comparison for two different central scales. The left plot is obtained with

central µF = µR = mH/2, while the right plot is obtained with µF = µR = mH . The rest of

the setup is kept as described above. We observe that at µF = µR = mH/2 the uncertainty band

is affected by cancellations in the scale variation, which accidentally lead to a small perturbative

uncertainty. Choosing mH as a central scale (right plot of Figure 7) leads to a broader uncertainty

band resulting in a more robust estimate of the perturbative error. This is particularly the case

for predictions above 50 GeV, where resummation effects are progressively less important. We

notice indeed that in both cases the effect of resummation starts to be increasingly relevant for

pHt . 40 GeV.

In the following we choose mH/2 as a central scale. Nevertheless, we stress that a comparison to

data (not performed here for Higgs boson production) will require a study of different central-scale

choices.

To conclude, Figure 8 reports the comparison between our best prediction (N3LL+NNLO),

the NNLL+NLO, and the NNLO distributions. The plot shows a very good convergence of the

predictions at different perturbative orders, with a significant reduction of the scale uncertainty in

the whole kinematic range considered here.

5.2 Matched predictions for fiducial H → γγ

Experimental measurements are performed within a fiducial phase-space volume, defined in order

to comply with the detector geometry and to enhance signal sensitivity. On the theoretical side it

is therefore highly desirable to provide predictions that exactly match the experimental setup. The

availability of matched predictions that are fully differential in the Born phase space also allows for

a direct comparison to data without relying on Monte Carlo modeling of acceptances. In this section

we consider the process pp → H → γγ and, in particular, we focus on the transverse momentum of

the γγ system in the presence of fiducial cuts.

The fiducial volume is defined by the set of cuts detailed below [7]

min(pγ1

t , pγ2

t ) > 31.25 GeV, max(pγ1

t , pγ2

t ) > 43.75 GeV,

0 < |ηγ1,2 | < 1.37 or 1.52 < |ηγ1,2 | < 2.37, |Yγγ | < 2.37 , (5.1)
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Figure 8. Comparison of the transverse momentum distribution for Higgs boson production between

N3LL+NNLO, NNLL+NLO, and NNLO at central scale choice of µR = µF = mH/2. The lower panel

shows the ratio to the N3LL+NNLO prediction.
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Figure 9. Comparison of the transverse momentum distribution for Higgs boson production at
√
s =

13 TeV in the fiducial volume defined by Eq. (5.1) at N3LL+NLO and NLO (left) and N3LL+NNLO and

NNLO (right). The lower panel shows the ratio to the N3LL+NNLO prediction.

where pγ1

t , pγ2

t are the transverse momenta of the two photons, ηγi are their pseudo-rapidities in the

hadronic centre-of-mass frame, and Yγγ is the photon-pair rapidity. In the definition of the fiducial

volume we do not include the photon-isolation requirement, since this would introduce additional

logarithmic corrections of non-global nature in the problem, spoiling the formal N3LL+NNLO

accuracy of the differential distributions.4 We consider on-shell Higgs boson production followed

by a decay into two photons under the narrow-width approximation with a branching ratio of

2.35× 10−3.

In Figure 9 we show the comparison of the matched and the fixed-order predictions for the

transverse momentum of the photon pair in the fiducial volume, at different perturbative accuracies:

N3LL+NLO vs. NLO in the left panel, and N3LL+NNLO vs. NNLO in the right one.

By comparing the two panels of Figure 9 we notice a substantial reduction in the theoretical

4However, we point out that photon-isolation criteria in this case are not aggressive, and therefore they could be

safely included at fixed order.
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uncertainty in the medium-high-pγγt region, driven by the increase in perturbative accuracy of

the fixed-order computation; at very low pγγt , the prediction is dominated by resummation, which

is common to both panels. The pattern observed in the right panel is very similar to what we

obtained in the inclusive case in the left panel of Figure 7. We stress again that the particularly

small uncertainty of the matched prediction is to a certain extent due to the choice of central scales

we adopt, namely µR = µF = mH/2, which suffers from large accidental cancellations.

6 Results for Drell-Yan production

We now turn to the study of Drell-Yan pair production at the LHC. In this section we present the

results for the differential distributions of the transverse momentum of the DY pair, as well as for

the angular observable φ∗
η.

We consider 8 TeV proton-proton collisions, and compare the resulting calculation for the

differential spectra with ATLAS data from Ref. [101]. The fiducial phase-space volume is defined

as follows:

pℓ
±

t > 20 GeV, |ηℓ± | < 2.4, |Yℓℓ| < 2.4, 46 GeV < Mℓℓ < 150 GeV, (6.1)

where pℓ
±

t are the transverse momenta of the two leptons, ηℓ
±

are their pseudo-rapidities, while Yℓℓ

and Mℓℓ are the rapidity and invariant mass of the di-lepton system, respectively. All rapidities

and pseudo-rapidities are evaluated in the hadronic centre-of-mass frame.

For our results, we use parton densities as obtained from the NNPDF3.0 set. The reference value

we set for the parameter p appearing in the modified logarithms is p = 4, but we have checked that

a variation of p by one unit does not induce any significant differences.

We set the central scales as µR = µF = MT =
√

M2
ℓℓ + (pZt )

2, while the central resummation

scale is chosen to be xQ = Q/Mℓℓ = 1/2. The theoretical uncertainty is estimated through the

same set of variations as for Higgs boson production.

The results for pZt and φ∗
η are shown in the following two subsections. All plots have the same

pattern: the main panels display the comparison of normalised differential distributions at NNLO

(green), NNLL+NLO (blue), and N3LL+NNLO (red), respectively, overlaid on ATLAS data points

(black). Correspondingly, the lower insets of each panel show the ratio of the theoretical curves to

data, with the same colour code as in the main panels.

6.1 Matched predictions for fiducial pZt distributions

In Figure 10 we display the normalised pZt distributions in which, in addition to the fiducial cuts

reported above, we consider three different lepton-pair invariant-mass windows:

low invariant mass : 46 GeV < Mℓℓ < 66 GeV,

medium invariant mass : 66 GeV < Mℓℓ < 116 GeV,

high invariant mass : 116 GeV < Mℓℓ < 150 GeV. (6.2)

A comparison of the most accurate matched prediction with the fixed-order one shows that

the N3LL+NNLO prediction starts differing significantly from the NNLO for pZt . 15 GeV, while

for pZt > 20 GeV the NNLO is sufficient to provide a reliable description. Comparing matched

predictions with different formal accuracy, we note that the N3LL+NNLO curve has a significantly

reduced theoretical systematics with respect to that for NNLL+NLO, in the whole pZt range and for

all considered invariant-mass windows. The perturbative error is reduced by more than a factor of

two at very low pZt , where the prediction is dominated by resummation, and the leftover uncertainty

in that region is as small as 3–5%, and almost comparable with the excellent experimental precision.
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Figure 10. Comparison of the normalised transverse momentum distribution for Drell-Yan pair production

at NNLO (green), NNLL+NLO (blue) and N3LL+NNLO (red) at
√
s = 8 TeV integrated over the full

lepton-pair rapidity range (0 < |Yℓℓ| < 2.4), in three different lepton-pair invariant-mass windows. For

reference, the ATLAS data is also shown, and the lower panel shows the ratio of each prediction to data.

The shape of the pZt distributions is also significantly distorted by the inclusion of higher orders:

the spectrum is harder than the NNLL+NLO result for pZt & 10 GeV, and the peak is lower, with

the N3LL+NNLO curves in much better agreement with data with respect to NNLL+NLO in the

whole kinematic range. Among the three considered windows, the most accurately described at

N3LL+NNLO are the ones at intermediate and high invariant mass; the accuracy very slightly

degrades for smaller invariant masses, however the theory uncertainty never gets larger than 5–7%

over the whole displayed pZt range.

In Figure 11 we focus our analysis on the central lepton-pair invariant-mass window defined in

Eq. (6.2) and show predictions for the normalised pZt distribution in six different lepton-pair rapidity

slices:

(a) 0.0 < |Yℓℓ| < 0.4, (b) 0.4 < |Yℓℓ| < 0.8, (c) 0.8 < |Yℓℓ| < 1.2,

(d) 1.2 < |Yℓℓ| < 1.6, (e) 1.6 < |Yℓℓ| < 2.0, (f) 2.0 < |Yℓℓ| < 2.4. (6.3)

The comments relevant to Figure 10 by far and large apply in this case as well, with our

best prediction at N3LL+NNLO affected by an uncertainty that is of order 3–5% in the whole pZt
range, regardless of the considered rapidity slice. It is moreover in very good agreement with the
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Figure 11. Comparison of the normalised transverse momentum distribution for Drell-Yan pair production

at NNLO (green), NNLL+NLO (blue) and N3LL+NNLO (red) at
√
s = 8 TeV in the central lepton-pair

invariant-mass window (66 GeV < Mℓℓ < 116 GeV) for six different lepton-pair rapidity slices. For reference,

the ATLAS data is also shown, and the lower panel shows the ratio of each prediction to data.

experimental data, hence significantly improving on both the NNLL+NLO, in the whole pZt range,

and the pure NNLO, in the pZt . 20 GeV region.

– 21 –



6.2 Matched predictions for fiducial φ∗
η distributions

Figure 12 shows the φ∗
η distribution for three different lepton-pair invariant-mass windows as defined

in Eq. (6.2).

The pattern of comparisons among theoretical predictions is qualitatively similar to what dis-

cussed for the pZt distribution. Resummation effects at N3LL+NNLO start being important with

respect to the pure NNLO in the region φ∗
η . 0.2; the shape of the N3LL+NNLO distribution

is significantly distorted with respect to the NNLL+NLO one in a similar fashion as for the pZt
case, and the uncertainty band is reduced by a factor of two or more over the whole range and for

all invariant-mass windows, down to the level of 3–5% (except at low invariant mass, where the

uncertainty is 5–7%).

At variance with the pZt case, however, for φ∗
η we note that the N3LL+NNLO prediction de-

scribes data appropriately only in the central- and high- invariant-mass windows. In the low-

invariant-mass one, the prediction undershoots data in the medium-hard region, by up to 5–7%.

This tension was already observed in the fixed-order NNLO comparison [47]. However, given the

large statistical uncertainty of the data in this invariant-mass range, the theory still provides a

reasonable description of the measurement, and the N3LL+NNLO prediction is in much better

agreement with data than the NNLL+NLO in the whole range of φ∗
η, especially at low φ∗

η.

In Figure 13 we show the results for the φ∗
η distributions in the central invariant-mass window,

see Eq. (6.2), split into the six lepton-pair rapidity slices described in Eq. (6.3). Moreover, given the

availability of experimental measurements, in Figures 14 and 15 we also provide predictions sliced

in Yℓℓ for the low- and high- di-lepton invariant-mass windows, respectively. The three rapidity

slices we focus on correspond to regions (a+b), (c+d), and (e+f) of Eq. (6.3).

The prediction subdivided in rapidity slices largely shares the same features as that integrated

over rapidity, which has been detailed in Figure 12. In the central invariant-mass window, data is

accurately reproduced by the N3LL+NNLO prediction, regardless of the considered rapidity slice,

with a theoretical systematics in the 5% range or smaller. The quality of the description slightly

degrades at low invariant mass, and to a lesser extent also at high invariant mass, mainly in the

hard region, with a pattern similar to that displayed by the rapidity-integrated spectrum. Overall,

the uncertainty associated with the N3LL+NNLO is of order of 5% or better, with a significant

improvement both in the shape and in the systematics with respect to NNLL+NLO.
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Figure 12. Comparison of the normalised φ∗
η distribution for Drell-Yan pair production at NNLO (green),

NNLL+NLO (blue) and N3LL+NNLO (red) at
√
s = 8 TeV integrated over the full lepton-pair rapidity

range (0 < |Yℓℓ| < 2.4), in three different lepton-pair invariant-mass windows. For reference, the ATLAS

data is also shown, and the lower panel shows the ratio of each prediction to data.
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Figure 13. Comparison of the normalised φ∗
η distribution for Drell-Yan pair production at NNLO (green),

NNLL+NLO (blue) and N3LL+NNLO (red) at
√
s = 8 TeV in the central lepton-pair invariant-mass

window (66 GeV < Mℓℓ < 116 GeV) for three different lepton-pair rapidity slices. For reference, the

ATLAS data is also shown, and the lower panel shows the ratio of each prediction to data.
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Figure 14. Comparison of the normalised φ∗
η distribution for Drell-Yan pair production at NNLO (green),

NNLL+NLO (blue) and N3LL+NNLO (red) at
√
s = 8 TeV in the low lepton-pair invariant-mass window

(46 GeV < Mℓℓ < 66 GeV) for three different lepton-pair rapidity slices. For reference, the ATLAS data is

also shown, and the lower panel shows the ratio of each prediction to data.
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Figure 15. Comparison of the normalised φ∗
η distribution for Drell-Yan pair production at NNLO (green),

NNLL+NLO (blue) and N3LL+NNLO (red) at
√
s = 8 TeV in the high lepton-pair invariant-mass window

(116 GeV < Mℓℓ < 150 GeV) for three different lepton-pair rapidity slices. For reference, the ATLAS data

is also shown, and the lower panel shows the ratio of each prediction to data.
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7 Conclusions

In this work we have presented precise predictions for differential distributions in Higgs boson and

Drell-Yan pair production at the LHC at N3LL+NNLO.

The resummation is performed in momentum space and is fully exclusive in the Born phase

space. For the matching to NNLO we adopted a multiplicative scheme, which allows for the in-

clusion of the N3LO constant terms to the cumulative cross section. These are currently unknown

analytically, but can be included numerically once the total N3LO cross section has been obtained.

The uncertainty associated with the choice of the matching scheme was estimated at NLO accuracy,

for which an additive matching with the same ingredients can be also performed. At this order the

predictions obtained with the two prescriptions are in very good agreement with each other, and

the matching-scheme uncertainty is under control within the perturbative error.

For Higgs boson production in gluon fusion, we have considered the transverse-momentum

spectrum both at the inclusive level and in the H → γγ channel within ATLAS fiducial cuts. In

both cases, we observe that the resummation reduces the theoretical uncertainties and stabilises

the fixed-order result below pHt ∼ 40 GeV. The effects of the N3LL corrections with respect to

NNLL+NNLO distributions are moderate in size, with a percent-level correction in most of the

range, growing up to 5% at very small pHt . However, the perturbative uncertainty is reduced

significantly below 10 GeV with respect to the NNLL+NNLO case.

For Drell-Yan pair production, we have presented resummed predictions within ATLAS fiducial

cuts [101] both for the normalised pZt distributions and for the normalised φ∗
η distributions, and we

have compared them to experimental data. In the case of transverse-momentum distributions, the

difference between the fixed-order and the N3LL+NNLO result becomes significant for pZt < 10–

15 GeV, while for pZt > 20 GeV the NNLO prediction is sufficient to provide a reliable description

of the experimental data. Comparing matched results with different formal accuracy, we note that

the N3LL+NNLO prediction has a significantly reduced theoretical uncertainty with respect to that

for NNLL+NLO, in the whole pZt range and for all invariant-mass windows considered in our study.

For the φ∗
η distribution, resummation effects start being important with respect to pure NNLO

in the region φ∗
η . 0.2. At N3LL+NNLO the shape of the distribution is significantly distorted

with respect to that for NNLL+NLO (the spectrum is hardened in the tail, and the height of the

peak is lowered), and the uncertainty band is reduced by a factor of two or more over the whole

range of φ∗
η and for most invariant-mass windows, down to the level of 3–5%. An exception is at

low invariant mass, where the uncertainty remains in the 5–7% range. Unlike the pZt case, for φ∗
η

we note that the N3LL+NNLO prediction describes data appropriately only in the central- and

high-invariant-mass windows, while at low invariant mass the prediction undershoots the data in

the medium-hard region. The difference between the central values of the data and theory here

can be of the order of 10%, however no significant tension with the data is observed, due to the

sizeable statistical uncertainty in the measurement. The agreement in these invariant-mass bins is

much improved by the inclusion of the N3LL+NNLO corrections with respect to the NNLL+NLO

distribution.

Our results are an important step in the LHC precision programme, where accurate predictions

have become necessary for an appropriate interpretation and exploitation of data. In order to

improve on the predictions presented here, several effects must be considered.

For Higgs boson production via gluon fusion, the impact of other heavy quarks, notably the

bottom quark, becomes relevant at this level of accuracy and therefore must be taken into account.

Recent studies show that the effect of the top-bottom interference at NNLL+NLO [31, 34] could

lead to distortions of the transverse-momentum spectrum that are as large as ∼ 5% with respect

to the HEFT approximation, and the theory uncertainties associated with this contribution are of

O(20%). These effects are therefore of the same order as the perturbative uncertainties presented
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here, and must be included for a consistent prediction of the spectrum with 5–10% perturbative

accuracy in the region pHt . mH .

In the DY case, the situation is more involved given the smaller perturbative uncertainty. At

this level of precision, it is necessary to supplement the predictions obtained in this work at small

pZt and φ∗
η with QED corrections and with an estimate of various sources of non-perturbative effects

that could be as large as a few % in this region. Similarly, the inclusion of quark masses may have

a few-percent effect on the spectrum [147, 148], and more precise studies are necessary in order

to assess their impact precisely. Recent analyses [148] suggest that the inclusion of these effects

may have a non-negligible impact on observables of current phenomenological interest, such as the

determination of the W -boson mass [13]. Given that the size of these effects is of the order of the

perturbative uncertainty of the N3LL+NNLO prediction, a careful assessment will be necessary to

improve further on the results presented in this work.
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A Formulae for the matching schemes

In this appendix we report the necessary formulae to implement the matching schemes defined in

Eqs. (4.2) and (4.7) and used in our study. We start by introducing a convenient notation for the

perturbative expansion of the various ingredients. We define

σN3LO
tot =

3
∑

i=0

σ(i), ΣN3LO(v) = σ(0) +
3
∑

i=1

Σ(i)(v), (A.1)

where

Σ(i)(v) = σ(i) + Σ̄(i)(v), Σ̄(i)(v) ≡ −
∫ ∞

v

dv′
dΣ(i)(v′)

dv′
. (A.2)

Moreover, we denote the perturbative expansion of the resummed cross section ΣNkLL as

ΣEXP(v) = σ(0) +
3
∑

i=1

Σ
(i)

NkLL
(v). (A.3)

With this notation, the additive scheme of Eq. (4.2) becomes (for simplicity we drop the explicit

dependence on v in the following)

ΣMAT
add =ΣNkLL +

{

σ(1) + Σ̄(1) − Σ
(1)

NkLL

}

+
{

σ(2) + Σ̄(2) − Σ
(2)

NkLL

}

+
{

σ(3) + Σ̄(3) − Σ
(3)

NkLL

}

,

(A.4)

where the three terms in curly brackets denote the NLO, NNLO and N3LO contributions to the

matching, respectively.

For the multiplicative scheme we need to introduce the asymptotic expansion ΣNkLL
asym., defined

in Eq. (4.6) (the definition for k 6= 3 is analogous with obvious replacements) in terms of the L̃ → 0

limit of the coefficients L̃NkLL of Eqs. (3.9), (3.10), (3.11), which read

L̃L̃→0
NLL =

∑

c,c′

d|MB |2cc′
dΦB

fc(µF , x1) fc′(µF , x2) ,

L̃L̃→0
NNLL =

∑

c,c′

d|MB |2cc′
dΦB

∑

i,j

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fi

(

µF ,
x1

z1

)

fj

(

µF ,
x2

z2

)

×
{

δciδc′jδ(1− z1)δ(1− z2)

(

1 +
αs(µR)

2π
H̃(1)(µR, xQ)

)

+
αs(µR)

2π

(

C̃
(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i ↔ c′j}

)

}

,

L̃L̃→0
N3LL =

∑

c,c′

d|MB |2cc′
dΦB

∑

i,j

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fi

(

µF ,
x1

z1

)

fj

(

µF ,
x2

z2

)

×
{

δciδc′jδ(1− z1)δ(1− z2)

(

1 +
αs(µR)

2π
H̃(1)(µR, xQ) +

α2
s (µR)

(2π)2
H̃(2)(µR, xQ)

)

+
αs(µR)

2π

(

C̃
(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i ↔ c′, j}

)

+
α2
s (µR)

(2π)2

(

C̃
(2)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i ↔ c′, j}

)

+
α2
s (µR)

(2π)2

(

C̃
(1)
ci (z1, µF , xQ)C̃

(1)
c′j (z2, µF , xQ) +G

(1)
ci (z1)G

(1)
c′j(z2)

)
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+
α2
s (µR)

(2π)2
H̃(1)(µR, xQ)

(

C̃
(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i ↔ c′, j}

)

}

. (A.5)

In the following formula the perturbative expansion of ΣNkLL
asym. is denoted as follows

ΣNkLL
asym. = σ(0) +

k−1
∑

i=1

Σ(i)
asym.. (A.6)

With this notation the matching formula (4.7) reads

ΣMAT
mult (v) =

ΣNkLL

ΣNkLL
asym.

[

σ(0) +
{

σ(1) + Σ̄(1) +Σ(1)
asym. − Σ

(1)

NkLL

}

+

{

σ(2) + Σ̄(2) +Σ(2)
asym. − Σ

(2)

NkLL
+

Σ
(1)
asym.

σ(0)

(

σ(1) + Σ̄(1)
)

+
(Σ

(1)

NkLL
)2

σ(0)
−

Σ
(1)

NkLL

σ(0)

(

σ(1) + Σ̄(1) +Σ(1)
asym.

)

}

+

{

σ(3) + Σ̄(3) − Σ
(3)

NkLL
−

(Σ
(1)

NkLL
)3

(σ(0))2
+

(Σ
(1)

NkLL
)2

(σ(0))2

(

σ(1) + Σ̄(1) +Σ(1)
asym.

)

+
1

σ0

(

(σ(1) + Σ̄(1))(Σ(2)
asym. − Σ

(2)

NkLL
) + Σ(1)

asym.(σ
(2) + Σ̄(2) − Σ

(2)

NkLL
)
)

− 1

(σ(0))2
Σ

(1)

NkLL

(

Σ(1)
asym.(σ

(1) + Σ̄(1)) + σ(0)(σ(2) + Σ̄(2) +Σ(2)
asym. − 2Σ

(2)

NkLL
)
)

}]

, (A.7)

where, as above, we grouped the terms entering at NLO, NNLO, and N3LO within curly brackets.

B Formulae for N3LL resummation

In this section we report the expressions for quantities needed for N3LL resummation of transverse

observables, that we have used throughout this article.

First of all we report our convention for the RG equation of the strong coupling which reads

dαs(µ)

d lnµ2
= β(αs) ≡ −αs

(

β0αs + β1α
2
s + β2α

3
s + β3α

4
s + . . .

)

, (B.1)

where the coefficients of the β-function are

β0 =
11CA − 2nf

12π
, β1 =

17C2
A − 5CAnf − 3CFnf

24π2
, (B.2)

β2 =
2857C3

A + (54C2
F − 615CFCA − 1415C2

A)nf + (66CF + 79CA)n
2
f

3456π3
, (B.3)

β3 =
1

(4π)4

{

CACFn
2
f

1

4

(

17152

243
+

448

9
ζ3

)

+ CAC
2
Fnf

1

2

(

−4204

27
+

352

9
ζ3

)

+
53

243
CAn

3
f + C2

ACFnf
1

2

(

7073

243
− 656

9
ζ3

)

+ C2
An

2
f

1

4

(

7930

81
+

224

9
ζ3

)

+
154

243
CFn

3
f + C3

Anf
1

2

(

−39143

81
+

136

3
ζ3

)

+ C4
A

(

150653

486
− 44

9
ζ3

)

+C2
Fn

2
f

1

4

(

1352

27
− 704

9
ζ3

)

+ 23C3
Fnf + nf

dabcdF dabcdA

NA

(

512

9
− 1664

3
ζ3

)

– 30 –



+n2
f

dabcdF dabcdF

NA

(

−704

9
+

512

3
ζ3

)

+
dabcdA dabcdA

NA

(

−80

9
+

704

3
ζ3

)

}

, (B.4)

with

dabcdF dabcdF

NA
=

N4
c − 6N2

c + 18

96N2
c

,
dabcdF dabcdA

NA
=

Nc(N
2
c + 6)

48
,

dabcdA dabcdA

NA
=

N2
c (N

2
c + 36)

24
,

and CA = Nc, CF =
N2

c−1
2Nc

, and Nc = 3.

We also provide expressions for the functions gi(λ) entering in the N3LL Sudakov radiator

Eq. (3.6) and its derivative. We define

λ = αs(µR)β0L̃ . (B.5)

We have:

g1(λ) =
A(1)

πβ0

2λ+ ln(1− 2λ)

2λ
, (B.6)

g2(λ) =
1

2πβ0
ln(1− 2λ)

(

A(1) ln
1

x2
Q

+B(1)

)

− A(2)

4π2β2
0

2λ+ (1− 2λ) ln(1− 2λ)

1− 2λ

+A(1)

(

− β1

4πβ3
0

ln(1− 2λ)((2λ− 1) ln(1− 2λ)− 2)− 4λ

1− 2λ

− 1

2πβ0

(2λ(1− ln(1− 2λ)) + ln(1− 2λ))

1− 2λ
ln

µ2
R

x2
QM

2

)

, (B.7)

g3(λ) =

(

A(1) ln
1

x2
Q

+B(1)

)

(

− λ

1− 2λ
ln

µ2
R

x2
QM

2
+

β1

2β2
0

2λ+ ln(1− 2λ)

1− 2λ

)

− 1

2πβ0

λ

1− 2λ

(

A(2) ln
1

x2
Q

+B(2)

)

− A(3)

4π2β2
0

λ2

(1− 2λ)2

+A(2)

(

β1

4πβ3
0

2λ(3λ− 1) + (4λ− 1) ln(1− 2λ)

(1− 2λ)2
− 1

πβ0

λ2

(1− 2λ)2
ln

µ2
R

x2
QM

2

)

+A(1)

(

λ
(

β0β2(1− 3λ) + β2
1λ
)

β4
0(1− 2λ)2

+
(1− 2λ) ln(1− 2λ)

(

β0β2(1− 2λ) + 2β2
1λ
)

2β4
0(1− 2λ)2

+
β2
1

4β4
0

(1− 4λ) ln2(1− 2λ)

(1− 2λ)2
− λ2

(1− 2λ)2
ln2

µ2
R

x2
QM

2

− β1

2β2
0

(2λ(1− 2λ) + (1− 4λ) ln(1− 2λ))

(1− 2λ)2
ln

µ2
R

x2
QM

2

)

, (B.8)

g4(λ) =
A(4)(3− 2λ)λ2

24π2β2
0(2λ− 1)3

+
A(3)

48πβ3
0(2λ− 1)3

{

3β1(1− 6λ) ln(1− 2λ) + 2λ

(

β1(5λ(2λ− 3) + 3)

+ 6β2
0(3− 2λ)λ ln

µ2
R

x2
QM

2

)

+ 12β2
0(λ− 1)λ(2λ− 1) ln

1

x2
Q

}

+
A(2)

24β4
0(2λ− 1)3

{

32β0β2λ
3 − 2β2

1λ(λ(22λ− 9) + 3)

+ 12β4
0(3− 2λ)λ2 ln2

µ2
R

x2
QM

2
+ 6β2

0 ln
µ2
R

x2
QM

2
×
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(

β1(1− 6λ) ln(1− 2λ) + 2(λ− 1)λ(2λ− 1)

(

β1 + 2β2
0 ln

1

x2
Q

))

+ 3β1

(

β1 ln(1− 2λ)(2λ+ (6λ− 1) ln(1− 2λ)− 1)

− 2β2
0(2λ− 1)(2(λ− 1)λ− ln(1− 2λ)) ln

1

x2
Q

)}

+
πA(1)

12β5
0(2λ− 1)3

{

β3
1(1− 6λ) ln3(1− 2λ) + 3 ln(1− 2λ)

(

β2
0β3(2λ− 1)3

+ β0β1β2

(

1− 2λ
(

8λ2 − 4λ+ 3
))

+ 4β3
1λ

2(2λ+ 1)

+ β2
0β1 ln

µ2
R

x2
QM

2

(

β2
0(1− 6λ) ln

µ2
R

x2
QM

2
− 4β1λ

))

+ 3β2
1 ln

2(1− 2λ)

(

2β1λ+ β2
0(6λ− 1) ln

µ2
R

x2
QM

2

)

+ 3β2
0(2λ− 1) ln

1

x2
Q

(

− β2
1 ln

2(1− 2λ) + 2β2
0β1 ln(1− 2λ) ln

µ2
R

x2
QM

2

+ 4λ

(

λ
(

β2
1 − β0β2

)

+ β4
0(λ− 1) ln2

µ2
R

x2
QM

2

))

+ 2λ

(

β2
0β3((15− 14λ)λ− 3) + β0β1β2(5λ(2λ− 3) + 3)

+ 4β3
1λ

2 + 2β6
0(3− 2λ)λ ln3

µ2
R

x2
QM

2
+ 3β4

0β1 ln
2 µ2

R

x2
QM

2

+ 6β2
0λ(2λ+ 1)

(

β0β2 − β2
1

)

ln
µ2
R

x2
QM

2
− 8β6

0

(

4λ2 − 6λ+ 3
)

ζ3

)}

+
B(3)(λ− 1)λ

4πβ0(1− 2λ)2
+

B(2)
(

β1 ln(1− 2λ)− 2(λ− 1)λ
(

β1 − 2β2
0 ln

µ2
R

x2
Q
M2

))

4β2
0(1− 2λ)2

+
πB(1)

4β3
0(1− 2λ)2

{

4λ

(

λ
(

β2
1 − β0β2

)

+ β4
0(λ− 1) ln2

µ2
R

x2
QM

2

)

− β2
1 ln

2(1− 2λ) + 2β2
0β1 ln(1− 2λ) ln

µ2
R

x2
QM

2

}

. (B.9)

For Higgs boson production in gluon fusion, the coefficients A(i) and B(i) which enter the formulae

above are (in units of αs/(2π))

A
(1)
ggH =2CA,

A
(2)
ggH =

(

67

9
− π2

3

)

C2
A − 10

9
CAnf ,

A
(3)
ggH =

(

−22ζ3 −
67π2

27
+

11π4

90
+

15503

324

)

C3
A +

(

10π2

27
− 2051

162

)

C2
Anf

+

(

4ζ3 −
55

12

)

CACFnf +
50

81
CAn

2
f ,
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A
(4)
ggH =

(

121

3
ζ3ζ2 −

8789ζ2
162

− 19093ζ3
54

− 847ζ4
24

+ 132ζ5 +
3761815

11664

)

C4
A +

(

−4ζ3
9

− 232

729

)

CAn
3
f

+

(

−22

3
ζ3ζ2 +

2731ζ2
162

+
4955ζ3
54

+
11ζ4
6

− 24ζ5 −
31186

243

)

C3
Anf

+

(

−38ζ3
9

− 2ζ4 +
215

24

)

CACFn
2
f +

(

272ζ3
9

+ 11ζ4 −
7351

144

)

C2
ACFnf

+

(

−103ζ2
81

− 47ζ3
27

+
5ζ4
6

+
13819

972

)

C2
An

2
f + Γ

(4)
cusp,ggH + CA∆A(4),

B
(1)
ggH =− 11

3
CA +

2

3
nf ,

B
(2)
ggH =

(

11ζ2
6

− 6ζ3 −
16

3

)

C2
A +

(

4

3
− ζ2

3

)

CAnf + nfCF ,

B
(3)
ggH =

(

22ζ3ζ2
3

− 799ζ2
81

− 5π2ζ3
9

− 2533ζ3
54

− 77ζ4
12

+ 20ζ5 −
319π4

1080
+

6109π2

1944
+

34219

1944

)

C3
A

+

(

103ζ2
81

+
202ζ3
27

− 5ζ4
6

+
41π4

540
− 599π2

972
− 10637

1944

)

C2
Anf

+

(

−2ζ3
27

+
5π2

162
+

529

1944

)

CAn
2
f +

(

2ζ4 −
π4

45
− π2

12
+

241

72

)

CACFnf

− 1

4
C2

Fnf − 11

36
CAn

2
f + CA∆B(3). (B.10)

For Drell-Yan production, the coefficients read

A
(1)
DY =2CF ,

A
(2)
DY =

(

67

9
− π2

3

)

CACF − 10

9
CFnf ,

A
(3)
DY =

(

15503

324
− 67π2

27
+

11π4

90
− 22ζ3

)

C2
ACF +

(

−2051

162
+

10π2

27

)

CACFnf

+

(

−55

12
+ 4ζ3

)

C2
Fnf +

50

81
CFn

2
f ,

A
(4)
DY =

(

3761815

11664
− 8789ζ2

162
− 19093ζ3

54
+

121ζ2ζ3
3

− 847ζ4
24

+ 132ζ5

)

C3
ACF

+

(

−232

729
− 4ζ3

9

)

CFn
3
f +

(

215

24
− 38ζ3

9
− 2ζ4

)

C2
Fn

2
f

+

(

−31186

243
+

2731ζ2
162

+
4955ζ3
54

− 22ζ2ζ3
3

+
11ζ4
6

− 24ζ5

)

C2
ACFnf

+

(

−7351

144
+

272ζ3
9

+ 11ζ4

)

CAC
2
Fnf +

(

13819

972
− 103ζ2

81
− 47ζ3

27
+

5ζ4
4

)

CACFn
2
f

+ Γ
(4)
cusp,DY + CF∆A(4),

B
(1)
DY =− 3CF ,

B
(2)
DY =

(

−17

12
− 11π2

12
+ 6ζ3

)

CACF +

(

−3

4
+ π2 − 12ζ3

)

C2
F +

(

1

6
+

π2

6

)

CFnf ,

B
(3)
DY =

(

22ζ3ζ2
3

− 799ζ2
81

− 11π2ζ3
9

+
2207ζ3
54

− 77ζ4
12

− 10ζ5 −
83π4

360
− 7163π2

1944
+

151571

3888

)

C2
ACF

+

(

4π2 − 51

3
ζ3 + 60ζ5 −

2π4

5
− 3π2

4
− 29

8

)

C3
F +

(

34ζ3
3

+ 2ζ4 −
7π4

54
− 13π2

36
+

23

4

)

C2
Fnf
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+

(

−2

3
π2ζ3 −

211ζ3
3

− 30ζ5 +
247π4

540
+

205π2

36
− 151

16

)

CAC
2
F

+

(

103ζ2
81

− 128ζ3
27

− 5ζ4
6

+
11π4

180
+

1297π2

972
− 3331

243

)

CACFnf

+

(

10ζ3
27

− 5π2

54
+

1115

972

)

CFn
2
f + CF∆B(3). (B.11)

The expressions for the coefficients A(i) and B(i) are extracted from Refs. [62, 92, 93, 149] for Higgs

boson production and Refs. [67, 92, 93, 150] for DY production. The N3LL anomalous dimension

A(4) receives a contribution from the four-loop cusp anomalous dimension Γ
(4)
cusp, that has recently

been computed numerically in ref. [95], and is given by

Γ
(4)
cusp,ggH ≃ 2555− 732.125nf + 27.5031n2

f + 0.460173n3
f ,

Γ
(4)
cusp,DY ≃ 1293.88− 323.244nf + 12.2236n2

f + 0.204522n3
f . (B.12)

The extra terms

∆A(4) = −64π3β3
0ζ3, ∆B(3) = −32π2β2

0ζ3, ∆H(2) =
16

3
πβ0ζ3, (B.13)

are a feature of performing the resummation in momentum space, and do not appear in the anoma-

lous dimensions in b space (see Ref. [85] for details). The term ∆H(2) will appear in the H̃ functions

defined below.

We also present the expansion of hard-virtual coefficient function H in powers of the strong

coupling

H(M) = 1 +

2
∑

n=1

(

αs(M)

2π

)n

H(n)(M), (B.14)

with

H
(1)
ggH(M) =CA

(

5 +
7

6
π2

)

− 3CF ,

H
(2)
ggH(M) =

5359

54
+

137

6
ln

m2
H

m2
t

+
1679

24
π2 +

37

8
π4 − 499

6
ζ3 + CA∆H(2) , nf = 5, (B.15)

and

H
(1)
DY(M) =CF

(

5 +
7

6
π2

)

,

H
(2)
DY(M) =− 57433

972
+

281

162
π2 +

22

27
π4 +

1178

27
ζ3 + CF∆H(2) , nf = 5. (B.16)

Their renormalisation-scale dependence is given by

H(1)(µR) = H(1)(M) + 2dBπβ0 ln
µ2
R

M2
, (B.17)

H(2)(µR) = H(2)(M) + 4dB

(

1 + dB
2

π2β2
0 ln

2 µ2
R

M2
+ π2β1 ln

µ2
R

M2

)

+ 2 (1 + dB)πβ0 ln
µ2
R

M2
H(1)(M), (B.18)

where dB is the strong-coupling order of the Born squared amplitude (e.g. dB = 2 for Higgs

production). The factors H̃ that appear in the luminosity prefactors (Eqs. (3.9), (3.10), (3.11)) are

defined as

H̃(1)(µR,xQ) = H(1)(µR) +

(

−1

2
A(1) lnx2

Q +B(1)

)

lnx2
Q,
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H̃(2)(µR,xQ) = H(2)(µR) +
(A(1))2

8
ln4 x2

Q −
(

A(1)B(1)

2
+

A(1)

3
πβ0

)

ln3 x2
Q

+

(

−A(2) + (B(1))2

2
+ πβ0

(

B(1) +A(1) ln
x2
QM

2

µ2
R

))

ln2 x2
Q

−
(

−B(2) +B(1)2πβ0 ln
x2
QM

2

µ2
R

)

lnx2
Q +H(1)(µR) lnx

2
Q

(

−1

2
A(1) lnx2

Q +B(1)

)

.

(B.19)

Finally we report the expansion of the collinear coefficient functions Cab

Cab(z) =δ(1− z)δab +

2
∑

n=1

(

αs(µ)

2π

)n

C
(n)
ab (z), (B.20)

where µ is the same scale that enters parton densities. The first-order expansion has been known

for a long time and reads

C
(1)
ab (z) = −P̂

(0),ǫ
ab (z)− δabδ(1− z)

π2

12
C, (B.21)

with C = CA, CF for the gg and qq case, respectively. P̂
(0),ǫ
ab (z) is the O(ǫ) part of the leading-order

regularised splitting functions P̂
(0)
ab (z)

P̂ (0)
qq (z) = CF

[

1 + z2

(1− z)+
+

3

2
δ(1− z)

]

, P̂ (0),ǫ
qq (z) = −CF (1− z),

P̂ (0)
qg (z) =

1

2

[

z2 + (1− z)2
]

, P̂ (0),ǫ
qg (z) = −z(1− z),

P̂ (0)
gq (z) = CF

1 + (1− z)2

z
, P̂ (0),ǫ

gq (z) = −CF z,

P̂ (0)
gg (z) = 2CA

[

z

(1− z)+
+

1− z

z
+ z(1− z)

]

+ 2πβ0δ(1− z), P̂ (0),ǫ
gg (z) = 0. (B.22)

The second-order collinear coefficient functions C
(2)
ab (z), as well as the G coefficients (see Eqs. (3.9),

(3.10), (3.11)) for gluon-fusion processes are obtained in Refs. [88, 90, 91], while for quark-induced

processes they are derived in Ref. [89]. In the present work we extract their expressions using the

results of Refs. [88, 89]. For gluon-fusion processes, the C
(2)
gq and C

(2)
gg coefficients normalised as in

Eq. (B.21) are extracted from Eqs. (30) and (32) of Ref. [88], respectively, where we use the hard

coefficients of Eqs. (B.15) without the new term ∆H(2) in the H
(2)
g (M) coefficient.5 The coefficient

G(1) is taken from Eq. (13) of Ref. [88]. Similarly, for quark-initiated processes, we extract C
(2)
qg

and C
(2)
qq from Eqs. (32) and (34) of Ref. [89], respectively, where we use the hard coefficients from

Eqs. (B.16) without the new term ∆H(2) in the H
(2)
q (M) coefficient. The remaining quark coefficient

function C
(2)
qq̄ , C

(2)
qq̄′ and C

(2)
qq′ are extracted from Eq. (35) of the same article.

The coefficients C̃ in Eqs. (3.9), (3.10), (3.11) are defined as

C̃
(1)
ab (z,µF , xQ) = C

(1)
ab (z) + P̂

(0)
ab (z) ln

x2
QM

2

µ2
F

,

C̃
(2)
ab (z,µF , xQ) = C

(2)
ab (z) + πβ0P̂

(0)
ab (z)

(

ln2
x2
QM

2

µ2
F

− 2 ln
x2
QM

2

µ2
F

ln
x2
QM

2

µ2
R

)

+ P̂
(1)
ab (z) ln

x2
QM

2

µ2
F

+
1

2
(P̂ (0) ⊗ P̂ (0))ab(z) ln

2
x2
QM

2

µ2
F

+ (C(1) ⊗ P̂ (0))ab(z) ln
x2
QM

2

µ2
F

− 2πβ0C
(1)
ab (z) ln

x2
QM

2

µ2
R

.

(B.23)
5These must be replaced by H(1)

→ H(1)/2 and H(2)
→ H(2)/4 to match the convention of Refs. [88, 89].
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