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Abstract 

Turbulence in tokamaks is characterized by long parallel wavelengths and short perpendicular 

wavelengths. We describe a coordinate system for nonlinear fluid, gyrokinetic “Vlasov”, or particle 

simulations that exploits the elongated nature of the turbulence by resolving the minimum necessary 

simulation volume: a long thin twisting flux tube. It is very similar to the ballooning representation, 

although periodicity constraints can be incorporated in a manner that allows E x B nonlinearities 

to be evaluated efficiently with FFTs. If the parallel correlation length is very long, however, 

enforcing periodicity can introduce artificial correlations, so periodicity should not necessarily be 

enforced in poloidal angle at 8 = fn. We discuss the advantages and limitations of this approach, 

with application to 3D simulations of toroidal Ion Temperature Gradient (ITG) driven turbulence. 
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I. Introduction 

The turbulence that evolves from he-scale instabilities (e.g. vi, trapped electron, or resistive 

ballooning modes) is thought to be responsible for the anomalously large particle, momentum, 

and heat transport levels in tokamaks. It is therefore of great interest to simulate numerically 

the nonlinear evolution of these instabilities to determine the resulting fluctuation and transport 

levels. These instabilities are characterized by long wavelengths parallel t o  the magnetic field 

and short perpendicular wavelengths, on the order of the ion gyroradius, pi. This is, of course, 

a consequence of the rapid communication along field lines (at the sound speed for electrostatic 

instabilities) and slow communication across the field lines (typically velocities across the field do 

not exceed the diamagnetic speed). In addition, fluctuation measurements1T2 in tokamaks indicate 

a relatively short perpendicular correlation length (- l o p i ) ,  but a long parallel correlation length.3 

Simulation of a full tokamak with adequate resolution of these fine perpendicular scales is somewhat 

beyond the presently available computational resources, since pi /a  - for present day large 

tokamaks, where a is the minor radius. (The latest full torus gyrokinetic particle simulations can 

now be run down to p i /a  = 1/128.4) However, it may be unnecessary t o  simulate a whole torus 

t o  reproduce small-scale, locally-driven turbulence. This paper describes a coordinate system for 

nonlinear simulations that resolves a much smaller volume and is therefore computationally more 

efficient, while still resolving the relevant small scales. The smallest possible simulation volume is a 

long thin flux tube that is several correlation lengths wide in both perpendicular directions (radial 

and poloidal), and extended along the field line, exploiting the elongated nature of the turbulence 

(kL >> k,,). This approach is advantageous for fluid, gyrokinetic “Vlasov”, and particle simulations, 

and could eventually be compared with full torus simulations. 

The fundamental idea is to use coordinates that follow field lines. With such coordinates a 

flux tube (a tube with a surface parallel to B) which is bent by magnetic curvature and twisted 

by magnetic shear, is mapped into a rectangular domain. Such twisting coordinates were origi- 

nally proposed by Roberts and T a y l ~ r , ~  and Cowley et aL6 emphasized their utility for nonlinear 

calculations. In Ref. 7, we described the essential features of this approach, with an emphasis on 

slab geometry. Here we focus more on the toroidal aspects and actual details of implementation. 
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The major problem of these field line coordinates is enforcing the periodicity constraint since the 

coordinates are multivalued in a torus (except at low order rational surfaces). In Ref. 6 it  was 

emphasized that it is unlikely that the correlated volume wraps around the torus and overlaps 

itself. When this is true, the physical periodicity of the full torus is irrelevant, and the simplest 

approach is to simulate a flux tube subdomain that is several parallel correlation lengths long (just 

as it should be several perpendicular correlation lengths wide). As will be described in Sec. 111, 

this can be different from imposing periodicity at 8 = fn as is usually suggested for the ballooning 

representation (and which could lead to artificial correlations which modify the results). 

Another advantage of the field-line coordinates, in addition to the efficiency of a minimum sim- 

ulation volume, is that it can easily implement radial periodicity (which in regular coordinates is 

complicated by the shear of the magnetic field), thus avoiding the problems of “quasilinear flatten- 

ing” and allowing self-consistent turbulence-generated “zonal” flows (flows which cause flux surfaces 

to rotate). The field-line coordinates are also particularly convenient for gyrofluid simulations where 

partially Fourier transformed quantities (in 2 of the 3 dimensions) need to be evaluated, such as 

Iwd(S)I oc lke cos(@) + k,sin(8)1. 

We have carried out simulations with various sizes for the flux-tube “box”, and verified that 

the results are independent of the box size (once it is larger that the correlation lengths in each 

direction), thus justifying some of the assumptions implicit in simulating a flux tube subdomain 

rather than the full torus. This leads to interesting questions regarding B o b  vs. gyro-Bohm 

scaling for the turbulence, which we will will consider in the conclusions. 

In section II we describe the general formulation of the basic geometry. The issues of periodicity 

and parallel boundary conditions are discussed in detail in section III. Parallel boundary conditions 

for particle simulations are presented in section W.  Section V discusses the relation of these flux 

tube coordinates to the standard ballooning transformation. In section VI we specialize to an 

axisymmetric low$ tokamak equilibrium. We present some simulation results for ITG turbulence 

using this coordinate system in section VII,  and investigate the effect of the parallel boundary 

conditions. In section VI11 we discuss these results, the computational efficiency of flux tube 

simulation, and possible limitations of this approach. For completeness the equations used in the 
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simulations are included in the Appendix. 

11. Flux tube simulations in general 

If one wants to describe turbulence which is highly elongated along field lines and narrowly 

localized across field lines it is natural to introduce coordinates which are constant on field lines. 

A natural way to do this for any general magnetic field is to  use the Clebsch representation of the 

magnetic field8 (since V - B = 0): 

B = V a  x V$. 

Clearly B - V a  = B - V$ = 0 so that a and $ are constant on field lines. Thus a and $ are natural 

coordinates for the flux tube. A third coordinate, z ,  must be defined that represents distance along 

the flux tube. One obvious choice of the third coordinate is the physical length along the field 

line, though this is not always the most convenient choice. A complication of using a and $ as 

coordinates is that they are not unique, for instance if a' = a + g($) then B = Va' x V$. In 

many applications toroidal flux surfaces are defined and it is natural to take $ to be the poloidal 

flux. The choice of a is less obvious and may be optimized for a particular calculation. A further 

complication is that a and are typically not naturally single valued and a cut must be introduced 

t o  enforce single values.8 This issue will be discussed extensively below. Let us imagine that a choice 

of a, $, and z has been made and that a = a(r), $ = $(r), and z = z(r) are known functions. 

This information can be obtained for instance from the output of an equilibrium code. Thus the 

metric coefficients for the transformation t o  the a,$,z coordinates are taken to be known. The 

Jacobian of this transformation is J = (Va x V$ - Vz)-l. 

Three spatial operators appear many times in the equations for the perturbations, they are: 

B V, V t ,  and B x V@ - V. In the a, $, z coordinates we have: 

1 d A  
B . V A = ( V C V X V $ * V Z )  - 

d A  

w + J - v ~ .  V$ + 
dA 

w + J-IV$l2 + 

(3) 
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1 a aA dA aA 

J a z  act a$ a2 
+ -- [J-Va V z  + J-V$ - V z  + J-]Vz12] , 

where A and @ are any scalars. Eqs. (2)-(4) are completely general. 

We shall assume that the turbulence we wish to simulate has perpendicular correlation lengths 

that are short compared to equilibrium scale lengths but a parallel correlation length of the same 

order as the equilibrium scale lengths. Let us consider a simulation domain that is a flux tube 

volume defined by a0 - Aa < a < a0 + Aa, $0 - A$ < $ < $0 + A$, and -20 < z < ZO. This 

volume is chosen to  be several correlation lengths in all three directions. Of course one wants to 

make this volume as small as possible to save computer time. Once the box volume is larger than 

several correlation lengths the turbulence should be insensitive to the size of the box. One tests 

whether the box size is adequate (in the usual way) by increasing the box size and comparing the 

turbulence in the different size boxes, or by measuring the correlation functions in a given box 

and verifying that they go to zero at the edges of the box. In this way we arrive at a minimum 

simulation volume. 

Since the simulation volume is narrow in a and $ (compared to  equilibrium variations) all 

equilibrium quantities (or gradients of equilibrium quantities when they appear in the equations) 

are to lowest order functions of z alone. In other words, the perpendicular scale of the equilibrium 

is much greater than the perpendicular scale of the perturbations, and the box is chosen to be only 

slightly larger than the largest scale perturbations, so across the box (Le. in a and $) one can ignore 

the variation of these equilibrium quantities. For example, the Jacobian J = (Va x V$ - Vz)-l is 

to a good approximation constant across the box but not along the box, thus J = J(a0 ,  $0, z ) .  

When A is a perturbed scalar (e.g. n, T, etc.), and @ is the potential, we can neglect the d/az 

terms in Eqs. (3) and (4) since they are smaller by kll/kL. The coefficients in Eqs. (2), (3), and 

(4) (various elements of the metric tensor) are again roughly constant across the box and therefore 
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may be taken as functions of z alone with CY = CYO and $ = $0. Then Eqs. (3) and (4) reduce to: 

Therefore, the equations to be solved in this (minimum simulation) volume have no explicit 

dependence on CY or $, which leads to great computational simplification. The E x B nonlinearity 

takes the simple form Eq. (6)) and all other coefficients in the equations are only functions of z. 

The perpendicular boundary conditions on the perturbations at CY = CYO f Acr and = $0 f 

A$ are taken to be periodic. If the box is more than a correlation length wide the turbulence 

should be insensitive t o  the boundary conditions, although one set of boundary conditions that 

is not advisable is fixed boundary conditions which prohibit energy and particle fluxes through 

the boundary. If fixed radial boundary conditions without sources or sinks are used, then the 

m = O,n = 0 component of the perturbations (where m is the poloidal mode number and n is the 

toroidal mode number) will grow to eventually cancel the driving equilibrium gradients ( “quasilinear 

flattening”), thus turning off the turbulence. In principle, this problem can be overcome with a 

sufficiently large box so that the time scale to  flatten the driving gradients becomes much longer 

than the simulation time. But periodic radial boundary conditions avoid flattening altogether 

and allow the use of a more efficient, smaller box. Past simulations have sometimes zeroed out the 

m = 0, n = 0 components of perturbations t o  avoid this flattening, but that prevents the turbulence 

from being able to generate sheared zonal flows (resulting from the m = O,n = 0 component of 

the electrostatic potential, a($), which varies only with minor radius), which can be an important 

nonlinear saturation pro~ess .~*’-~~ Periodic radial boundary conditions allow the self-consistent 

evolution of m = 0, n = 0 perturbations such as the zonal flows. 

The assumption of radial periodicity in the small flux-tube is not based on actual physical 

constraints (that would require simulating the full tokamak to include losses t o  the limiter, auxiliary 

heating of the tokamak core, and including a vacuum region and a conducting shell). Instead, we 

are assuming that the statistical properties of the fluctuations at $+2A$ are the same as at $, and 

that if the simulation box width 2A?) is larger than the radial correlation length we can assume that 
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they are actually identical at every instant. This statistical radial periodicity also serves as a model 

of the effect of turbulence in neighboring regions on the simulated subdomain. This is illustrated 

by the contours in Fig. 9, which show eddies that stick out of one side of the box and reenter on 

the other side of the box. Periodic boundary conditions are often used in 2-D plasma simulations 

(such as Hasegawa-Mima) or in simulations of homogeneous Navier-Stokes Turbulence, but it is 

complicated somewhat in 3-D plasma simulations by the shear in the magnetic field. Because the 

parallel dynamics are so much faster than the perpendicular dynamics (so k,, << kL), the fluctuations 

tend to be elongated along the direction of the magnetic field, which points in different directions 

at different radii. In regular coordinates this requires the use of something like the “twist-and- 

shift” radial boundary conditions suggested by Kotschenreuther and Wong.9.14.15 The field-line 

coordinates, however, are already aligned with the magnetic field, so radial periodicity becomes 

simply A(+ + 2A+, a, z, t )  = A(+, a, z, t) .  Some of the issues involved in radial periodicity are 

discussed in more detail in Refs. (9,16,10). 

For the same reasons, we can also assume statistical periodicity in the a direction, A(+,  a + 
2Aa, z, t )  = A(+, a, z, t). There is no explicit dependence of the operators in Eqs. (5,6) on a or +, 

so it is useful to expand in a Fourier series in + and a (which also provides periodicity in those 

directions): 

j=-m k = - w  

The boundary conditions in the z direction will be discussed in the next section. Note that while 

each term in the Fourier series is a plane wave in a, $ coordinates, the wavefronts in real space 

can be very distorted. Perhaps the most pronounced distortion arises from magnetic shear. To 

understand this we &st define the angle, A, between constant a and + surfaces: 

Va . v+ 
lV4l  V+l - 

cosx = 

Magnetic shear makes X change as z changes-in real space the flux tube is then sheared and its 

cross-section goes from being rectangular where A = 7r/2 to being a parallelogram where X # ~ / 2 ,  

as shown in Fig. 1. The wavefronts of each term in the Fourier series, Eq. (7), also get sheared. 

For example the j = 0, k # 0 term has wavefronts corresponding to the constant a lines. The 
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individual terms in the series Eq. (7) are therefore “twisted e d d i e ~ ” ~ ? ~  whose wavefronts twist as 

one moves along z. 

X=n/2 X # / 2  

Figure 1: Shearing of flux tube cross section at different positions along the tube. Lines represent 

constant $J (dashed) and constant CY (solid) lines. 

Now let us discuss the choice of the coordinates CY and $J. A useful discussion of this procedure 

can be found in Ref. 17. As shown in Ref. 18, it is possible t o  choose a, $J) and generalized “toroidal” 

and “poloidal” angle variables c and 8 such that the field lines are straight in the (<,e) plane and 

physical quantities are periodic over 2n in both variables. This choice of coordinates will simplify 

our discussion of periodicity in section 111. For the general magnetic field Eq. (1)) we have? 

where $ = ( 2 ~ ) - ~  JV d.rB V8 is the poloidal flux, q($) = d$JT/d$J ,  $JT = ( 2 ~ ) - ~  Jv d 7 B  - V4 is the 

toroidal flux, d 7  is the volume element, and 4 and 8 are the physical toroidal and poloidal angles, 

so physical quantities are periodic over 2n in 4 and 8. The function Y is also periodic in 4 and 8. 

We now introduce a new toroidal coordinate, 
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With this choice 

and the magnetic f ie  

= c - Q($P, 
lines are straight in the (<,e) plane. Furt-er, periodicity is preserved in 

5 and 8. Often, 8 is also redefined to choose a specific form of the Jacobian. An alternative to 

Eq. (10) would be to use = 4 and introduce a new poloidal coordinate 8‘ = 8 + v/q. In any 

case, we will make use of the fact that a coordinate system can be chosen such that magnetic fields 

lines are straight in the (e,() plane, and are given by a = - q($)8 = constant. For our parallel 

coordinate z we will use z = 8, since this makes our description very close to the usual ballooning 

mode formalism. Note that z is not restricted to -T < z < T ,  as we may choose to simulate a flux 

tube which follows a field line wrapping around the torus several times in the poloidal direction, 

not just once. This will be discussed further in the next section. 

In summary, our field-line following coordinate system is given by ($, a, z), where field lines 

are labeled by constant ?,b and a. One can think of ?,b as a radial coordinate, a = < - q(?,b)e as a 

perpendicular-to-the-field coordinate, and z = 8 as a parallel-to-the-field coordinate. Our notation 

simplifies if we introduce the following new variables: 

= e, TO 
y = --(a - ao), 

!lo 
5 = -($ - $01, 

BOT0 QO 

where QO = ~(qo), Bo is the field at the magnetic axis, and TO is the distance from the magnetic 

axis to the center of the box. Then Eq. (7) becomes: 

kz=-= k Y- w-0 

with IC, = j r / A z ,  IC, = - h / A y ,  A z  = qoA$/Boro, and Ay = roAa/qo. The rectangular 

computational box of “radial” width 2Az, and “poloidal” width 2Ay, and extended along the field 

line, 8, is mapped onto a flux tube, as shown in Fig. 2, for example. 

These coordinates are similar to those used in Ref. 19. Our a, 4, and z are analogous to -q8’, 

p‘, and $’ in Ref. 19, respectively, since they have chosen to measure the distance along the field line 

with $‘, a “toroidal” angle, while we use 8. A more significant difference between our representation 

and Ref. 19 is the treatment of periodicity, though their more recent work20 has adopted a similar 

treatment to ours, described in the next section. 
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Figure 2: The rectangular computational domain mapped onto a flux tube in a torus, with qo = 2.4 

and shear, d = 1.5. The ends of this flux tube are cut off at poloidal angle -T and T ,  and the 
sheared cross-sections of the flux tube in the poloidal plane are indicated. 

10 



111. Periodicity and parallel boundary conditions 

The choice of parallel boundary conditions involves a number of subtle, yet important issues. 

The main concept is that of a statistically-motivated periodicity, as described in Sec. I1 for the 

$ and a boundary conditions. For moderately “ballooning” turbulence we might expect parallel 

correlation lengths 0, N (1 - 2)7r (though it might be longer than this). The simulation box should 

have a length 220 = 27rN in the parallel direction which is several times the parallel correlation 

length. In some cases a box length of 27r might be sdcient .  But an even longer box may be 

necessary in many cases to ensure that one end of the box is sdciently decorrelated from the 

other end of the box to avoid artificially constraining correlation effects, just as the box must be at 

least a few correlation lengths wide in the $ and a directions. For the cases simulated in Sec. VII, 

parallel box lengths of at least 47r were needed for good convergence. 

One must be careful about which other coordinates are held fixed while applying parallel pe- 

riodicity, just as one must be careful t o  impose radial periodicity in field-line coordinates ($, a, z )  

(i.e., impose periodicity in $ while holding a and z fixed). As discussed in Sec. 11, trying to impose 

radial periodicity in the usual (+,e, <) coordinates would miss the fact that fluctuations tend to be 

extended along the magnetic field, which changes direction in the the (e,<) plane as 3 is varied. 

Similarly, though the flux-tube is rectangular in ($, a)  coordinates, it twists into a parallelogram 

in physical space as one follows the flux-tube along z (Figs. 1 and 2). The fluctuations in the 

physical plane perpendicular to a magnetic field line should be statistically identical at all places 

along that field-line with the same poloidal angle (z  = 0,27r, 4n,. . .), irrespective of the twisting 

of the flux-tube which increases without bound as z + co. Because of this, we will assume that 

the fluctuations are periodic in z while holding ($,<) fixed, rather than holding the field-line co- 

ordinates ($, a) k e d .  The reader may find it easier to visualize this in sheared slab geometry, as 

carried out in Ref. 7. 

A related problem is that if we were to impose parallel periodicity as A($, a, +ZO) = A($, a, -zo), 

then every field line would effectively be a rational field line that connected to itself. Field lines are 

labeled by constant (3, a) ,  and such a boundary condition causes any particles flowing out one end 

of the field line to flow back in the other end of the box on the same field line. This is unlike a real 
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sheared magnetic field where the set of irrational field-lines is dense, i.e., most of the field-lines are 

irrational and never connect to themselves. 

So, we will impose periodicity in z while holding $ and C fixed (rather than holding $ and Q 

fixed). Specifically, 

Rather than the form of a boundary condition in z, this can be stated as a more general periodicity 

relation with period 2nN: 

Physically, this is equivalent to considering two ($ ,C)  planes cutting through the flux tube, at 

z = 0 and at z = 8 + 2nN,  and assuming that the turbulence is (statistically) identical in those two 

planes. To evaluate this periodicity constraint, first substitute Q = < - q($)e, z = 8 into Eq. (7), 

and take 00 = 0 for simplicity (it drops out), to get 

0 3 0 3  

For a thin flux-tube, we can approximate q($) = qo + ($ - $o)q', where q' (aq/6'$)+,jo, to get 
M M  
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We can make the coefficients of (.11, - $0) identical by shifting the j index with the substitution 

j = j' + Sj into the left-hand side, where 

Sj = 27rNkq'A$/Aa = 27rNkAq/Aa, ( 1 9 )  

and where 2Aq = 2q'A$ is the change in q from one edge of the box to the other. Note that Sj 

must be an integer, which quantizes the ratio Aq/Aa, as discussed below. We now have 

co aj,+6j,k(e + 2 7 r ~ ,  t ) e ~ * ( ~ - ~ o O ) ( i ' / A ~ - k ~ ' e / A ~ ) - i k * ~ o ( ~ + 2 * N ) l A a  

j'=-w 

For convenience, we can take the width of the simulation volume 2Aa to be l/no of the circumfer- 

ence in the toroidal direction, 

Aa = 7r/no, 

where no is a positive integer. Dropping the primes on j in Eq. (20) ,  the parallel periodicity 

Sj = kJ, J = 2noNAq, ( 2 3 )  

where the phase-factor c k  = exp(-i27rNkqono). Note that the requirement that j be an integer 

quantizes the range of q spanned by the flux tube 2Aq to be J/noN, where J is an integer. For 

q' # 0, this then quantizes the radial box size since Aq = q'A.11,. One can treat shearless q' = 0 

cases as well, then Sj = J = 0, and the radial box size 2A.11, is no longer quantized and just needs to 

be at least a few radial correlation lengths wide. In the usual q' # 0 case, the radial position of the 

simulation box can always be adjusted slightly (less than one radial box width) so that qo = q($o) 

is rational such that the phase-factor c k  = 1. 

Eq. (22) thus expresses a modified periodicity condition on the mode amplitudes: the value of 

a coefficient at one end of the box is specified by the value of another coefficient (with the same 

k but a different j, Le., a different Bo, as we will describe below) at the other end of a box. This 

is represented graphically in Fig. 3 (which uses notation introduced below). Of course computer 
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simulations can not retain an infinite set of j ’ s  and k’s. Instead, enough j and k modes are kept to 

be able to resolve up t o  a desired value of kLpi ,  above which the coefficients A j , k  are assumed to 

vanish. Note that Sj = 0 for k = 0 modes, so the periodicity condition for k = 0 modes simplifies 

to A j , o ( 8  + 2rN,t)  = Aj,o(O,t) .  

This completes the formal specification of the boundary conditions, but we go on t o  express it 

in terms of notation often used in the ballooning transformation. It is common to introduce the 

“ballooning angle” &( j ,  k), such that the radial derivative of an individual (j, k) mode of Eq. (16)) 

vanishes at 8 = 80. Note that this definition of 80 employs a derivative with respect t o  + while 

holding 8 and < fixed, not Q and 8. Clearly at 8 = Bo(j ,k)  the wavefronts of the j,k’th term in 

Eq. (7) are perpendicular to the + surfaces. Eqs. (21-24) yield 

80 is discrete with spacing 680 = jr/knoAq that is dependent on k. Only the combination IC80 ever 

appears and the limit k = 0 must be interpreted in terms of the discrete j sum. In particular, the 

turbulence can generate k = 0 (80 = co) modes corresponding to zonal flows which can be important 

in the nonlinear dynamics, so the k = 0 modes must be allowed to  evolve self-consistently. (Likewise, 

one must be careful about the shearless limit q’ = 0, where 80 ---f co. The field-line coordinates 

are still useful, but it is then better to  think about the j (or kz) label of the mode, which remains 

finite, rather than the 80 label.) Using the definition of 80 in Eq. (25)) we can express the shift Sj 

in Eq. (19) as a shift in 80 instead: 

S j r  

knoAq 
A80 = - - - 2nN. 

Using the definition of 80 to denote J j , k  by a corresponding &,,k, and absorbing a phase factor 

which is independent of the coordinates (+, 8, C )  by using A j , k  = A j , k  exp[-ikno(qo8o(j, k)+ao) ] ,  the 

parallel periodicity condition of Eq.(22) can be written in a form related to the familiar ballooning 

represent ation, 

& o + 2 7 ~ N , k ( 8 , t )  = &,,k(8 - 2nN)t).  (27) 
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This form of the periodicity relation is illustrated graphically in Fig. 3. 

-7TN 7TN 

8 

Figure 3: Boundary condition for A along the field line coordinate, Eq. (27). Different k, modes 

(i.e. 80's) with the same k, are connected at fnN,  i.e. &,,k(-nN) is connected to Aeo+2TN,k (nN) .  

Using Eqs. (21) and (25) and g($) M go + ($ - $o)g' (or going back to Eq. (7) and using g itself 

for the radial-like coordinate $), we can rewrite Eq. (16) as 

M M  

It should be emphasized that Eqs. (16) and (28) are merely the same equations in different notation. 

Eq. (28) bears a strong resemblance to the standard ballooning representation. There are however 

important differences that we will discuss more fully in section V. 

Eq. (28), when used with the periodicity relation in Eq. (27), is periodic in 8 with period 2nN. 

By setting N = 1, this can satisfy physical periodicity in 8,  achieving the same result as the "sum 

over p" in the standard ballooning representation (see Eq. (32)). Thus, we are able to recover 

physical periodicity as does the quasiballooning appr0a~h.l~ However, one should not necessarily 

use N = 1. Rather, one should use a large enough N so that the parallel box length 220 = 27rN 

is at least several times the parallel correlation length, as argued in the beginning of this section. 

This point may be confusing to those who think that N = 1 regular periodicity in 8 should always 
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be enforced because 8 is a physical variable. This would be true if we were simulating the full 

torus with no = 1. Indeed, Eq. (28 )  or (16) provides an expansion in a complete basis set if 

no = 1 and N = 1. However, we are not trying to simulate the full torus, but a thin flux-tube 

whose width is only l/no of the full toroidal circumference (motivated by the short wavelengths 

and short perpendicular correlation lengths of the turbulence, as discussed in the introduction). 

Then Eq. ( 2 8 )  represents no identical copies of the simulation volume if one considers the full range 

of C, 0 t 27r. The distance along the field line in this simulation volume is parameterized by 

z = 8. Following the flux tube along the field lines (at fixed Q = C - q(+)O) from 8 = 0 to 8 = 27r 

will not lead to the same physical location (unless q is very close to an integer) but t o  one of the 

no - 1 identical copies of itself. Forcing periodicity at this point is undesirable (unless the parallel 

correlation length is indeed significantly shorter than 27r) because it is a fiction of simulating only 

l/no of the toroidal direction with no identical copies. 

This is illustrated by Fig. 4, which shows a correlated volume with a parallel correlation length 

8, z 37r, and a perpendicular correlation length equal t o  half the simulation box width, a, = 

ACY = n/6. If the simulation flux tube has a parallel length of only 27r, then this correlated 

volume would be forced to overlap with one of the no images of itself, causing artificial interference 

effects. By extending the simulated flux tube to a length of 47r, we allow the whole region t o  evolve 

self-consistently. 

Of course, at an integer q flux surface, a simulation volume really does overlap itself within a 

distance 8 = 27r and experience these interference effects. More generally, a correlated volume will 

overlap itself when 8 increases by 27rN if q27rN modulo 27r is less than the perpendicular correlation 

length ac. This can be used to  define a maximum parallel length Omax which the flux-tube can 

be without physically overlapping itself. Omax is also the maximum correlation length a correlated 

perturbation can have without “biting it’s tail” and experiencing coherent interference effects. Omax 

is plotted vs. q($) in Fig. 5. Note that if one simulates only l/no of the toroidal direction, then 

a correlated perturbation is no times as likely to run into itself or one of its images. In this 

case we may need to extend the parallel length of the simulated flux-tube to avoid these artificial 

correlations. For most of the plasma, there is no difficulty in extending the simulated flux-tube t o  
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Figure 4: Illustration on a flux surface of a possible correlated volume of the point 3 (enclosed by 

the solid line, with parallel correlation length 8, M 37r), and a minimum simulation volume enclosed 

by the dashed line. The diagonal lines are parallel to the field lines (here q = 2.4). h this case 
the simulation volume has a toroidal width of one sixth the total toroidal circumference, i.e. no in 

Eq. (21) is 6. If the potential is represented by Eq. (28) and Qj is made periodic in 8, there are six 
identical copies of the correlated volume centered at the points 1-6. The correlated volume of point 
5 (dotted line) partially overlaps the correlated volume of point 3, at the point marked A. This is 

unphysical and can be avoided in this case by making the system periodic over 4n, -2n < 8 < 2n. 
The minimum simulation volume illustrated is for -2n < 8 < 2n. 
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be 2-3 times longer than 2n, without having the flux-tube physically run in to  itself. Even for a 

simulation flux tube which spans a range of q values, for example 2Aq - 1/2, at worst the flux tube 

might overlap itself briefly near an integer or half-integer q surface. As pointed out in Ref. (6)) 

these low-order rational surfaces occupy a small fraction of a minor radius of a tokamak and so it 

is very infrequent that a correlated perturbation will “bite it’s tail”. Furthermore, experimental 

evidence2I on tokamaks indicates that there are no unusual features near low-order rational surfaces 

(except when there are macroscopic MHD instabilities). 

0 
1 2 3 4 

9 

0 
1 2 3 4 

9 

Figure 5: Distance along the field line, e,,,, at which a correlated volume (with perpendicular 
width 2 A a  = n/25) overlaps itself, for varying q. a) For no = 1, e,,, is small only near low order 

q surfaces. b) For no = 6, the maximum correlation length is reduced, since the correlated volume 

can hit copies of itself. In this case, if the physical correlation length is longer than e,,,, the box 

must be extended and the periodicity condition relaxed. 

In practice we find that the flux-tube length 2nN doesn’t need to be extremely large, and 

N = 2 may usually be sufficient. For the particular cases used in Sec. VII, (Figs. 12 and 13), we 

fmd that N = 1 simulations produce a xi which is about 30% low, while N = 2 - 4 are virtually 

indistinguishable. However, there may be other cases where an even larger N is required. In 
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each case, one should justify the value of N a posteriori, by verifying that the parallel correlation 

functions from the simulations indeed fall off significantly in a distance 2 n N ,  and/or by carrying 

out convergence studies with different values of N (just as convergence with the size of the box in 

the other 2 directions should also be studied). Again, the fundamental assumption in all of this 

is that it is probably suflicient (and most efficient) t o  use a simulation volume which is just a few 

correlation lengths in all 3 directions. 

IV. Boundary conditions for particle simulations 

Particle simulations can also take advantage of an optimum flux-tube simulation volume using 

the field-line coordinates (3, a, z)  described in Sec. II. Field quantities such as the electrostatic 

potential can be represented by the Fourier series Eq. ( 7 ) ,  with the parallel boundary conditions 

given by Eq. (22), or equivalently, Eq. (27) .  

For the particles, we must specify the location where a particle will reenter the box after passing 

through an edge of the box. The particle’s velocity should not be changed. In the perpendicular 

directions $J and a, standard periodicity is used. In the parallel direction, z, periodicity is applied 

while holding $J and C fixed (rather than holding the field-line coordinates $ and a fixed), for 

the reasons described at the beginning of Sec. 111. To quantify this, first recall the definitions 

a = C - q(+)O,  and z = 8. If a particle exits the box at the position ($l,al,z = +nN), where 

a1 = C1- q($1)7rN7 then it will reenter the opposite side of the box at ($2, 0 2 ,  z = -nN), where 

$2 = $1, and a2 = C1+ q($l)nN. Thus the particle will be shifted in a by the amount 

(29) 6a = a2 - a1 = q(31)2nN modulo 2 A a  

Where the modulo operation accounts for the fact that if this shift in a causes a2 to fall outside the 

range of the box, -Aa < a < A a ,  then the particle has fallen into a periodic copy of the original 

box, and is simply shifted by a multiple of 2Aa back into the simulation domain. Expanding 

q($) = qo + (3 - $o)$, using Eqs.(2l) and (23) ,  and introducing an integer K to reproduce the 

2 K A a  shift of the modulo function, we find that 
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As discussed after Eq. (23), qoNno can usually be assumed to be an integer. At the outer edge of 

the box, $ = $0 + A$, the box has twisted by J/2 box lengths in the cy direction, and by -J/2 

box lengths at the inner edge of the box, $ = $0 - A$. Thus J represents the integer number of 

box widths in a that the box has twisted from one end in z t o  the other end. This is illustrated 

for J = 2 in Fig. 6. In this figure, qoNno is assumed to be an integer for simplicity, so the center 

of the box is at the same physical point at 8 = fnN.  In general, the ends of the box will overlap 

with periodic copies of the original box. (It may be easier t o  visualize this in a box which spans 

$0 < $ < $0 + 2A$, rather then being centered around $0. Then the inner edge of the box at $0 

is stationary, and the outer edge at $0 + 2A$ will be twisted by J box widths.) 

Figure 6: Boundary conditions in the parallel direction. At 8 = 0, the simulation box is rectangular 
in C and $. The twisted ends of the box at 8 = nN (solid) and 8 = -nN (dashed) are shown. If a 
particle leaves the 8 = nN end of the box at a('), it reenters the 8 = -nN end of the box at a(2),  

given by Eq. (29). 

To summarize, if a particle: 
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The equivalent particle boundary conditions can also be stated for the (2, y, z )  coordinates of 

Eq. (12). If a particle leaves the end of the box at (z1, y1,z = +wN), it reenters at (21, y2, z = 

-nN), where 

by = y2 - y1= -(qoNno2Ay + JAyz/Az) modulo 2Ay) (31) 

the analogue of Eq. (29). The integer J = 2~NbAz/Ay, (with b = (ro/qo)(aq/~r),,,,) measures 

the number of twists of the box in the y direction from one end in z to the other. Thus, if a particle: 

(5, AY, 2) (5, AY, z> 

Of course all of the above boundary conditions are reversible, i.e., if a particle leaves at 

(-As, y,z), it will reenter at (Az, y,z), etc. 

V. The Ballooning Transformation and its relation to flux tube simulation 

The linear theory of short perpendicular wavelength instabilities in tokamaks has been developed 

largely in terms of the so called “Ballooning Transformation.”22 In this section we will discuss the 

relationship of the “Ballooning Transformation” to our flux tube simulation scheme. In Ballooning 

theory a single eigenmode is represented as: 

p = - w  

where 80 = &($) and &n,eo (8, $) depend on $. The toroidal mode number n is any large integer. 

The variation in 8 and $ of the exponential is large whereas the variation of 80 and 8 is finite. In 

lowest order in an expansion in l/nq one obtains a differential equation in 8 for &n,eo(8,$). This 

equation is solved with 80 a parameter and with the boundary conditions 6 + 0 as 101 ---f 03, so the 

sum over p can converge. Periodicity in 8 is recovered by the p summation in Eq. (32). A lowest 

order approximation to the eigenvalue wn(80,+) is obtained on each surface. In higher order the 

eigenvalue is quantized by solving radial differential equations. Much has been written about this 

higher order procedure to find the radial behavior and we cannot do justice to the subtleties here.23 

Let us consider instead a narrow radial annulus $0 - A$ < $ < $0 + A$. Let @ be periodic in 
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$ over 2A$ at constant Q = C - q($)9 and 9; then we can represent the radial variation of in a 

Fourier series in $, with n9o = Zn/Aq, i.e. the $ variation of eo($) and &,e0(8,$) are combined 

into a discrete series in 90. Thus one could write for an arbitrary perturbation in this annulus: 

where we have rescaled eizqOr/q'A$&n,~ = Sn,z. The p summation makes this expression manifestly 

periodic in 9. Expanding q($), so exp[-inq27rp + ih($ - $o)/A$] = exp[-inqo27rp + in(1 - 

2pnAq)($ - $o)/A$], it is clear that in this summation we need only take 111 5 lo = nAq since 

otherwise the p and I sums duplicate terms. This restricts the bandwidth in $ of the perturbations 

in ballooning space, and makes the ballooning transformation unique.24 

I€ we set no = 1 in Eq. (28) and N = 1 in Eqs. (22) and (23) we obtain an exactly equivalent 

representation to  Eq. (33). To see this we note that the j in Eq. (28) and p and 1 in Eq. (33) are 

related by j = 1 - 2pZo and S j  = 210, and we set k = n. Thus the -7r < 9 < 7r range of the s n , i  

modes with 111 < 10 correspond t o  the A j , k  modes with ljl < 6 j / 2  (defined only from -7r < 9 < 7r 

for N = 1). The A j , k  modes with ljl > 6j/2 correspond t o  the -7r - 27rp < 9 < 7r - 27rp range 

of the gn, l  modes with p = ( j  - Z ) / S j .  The boundary condition Eq. (22) makes this series of A j , k  

modes (for all j )  identical t o  G)n,l (for 111 < l o )  defined on the extended domain -03 < 9 < 03 (when 

no = N = 1). 

The boundary condition Eq. (22) simplifies the evaluation of the E x B nonlinearities com- 

pared to the usual ballooning representation. The simple form Eq. (6) is easy to evaluate using 

a pseudospectral method. A fully spectral method remains in k space at all times, so the non- 

linear terms become convolutions in k space and require of order NZN:N, - N5 operations. 

By using Fast Fourier Transforms (FFTs), the pseudospectral method reduces the operations t o  

N,N,N , (~o~~N,  + 10g2~, )  - N~ resulting in a very significant savings for large N .  

Zn the ballooning representation (i.e. using Eq. (33) to represent the perturbations) the nonlinear 

terms involve sums over p:25 
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where I“ = Z-Z’+2Aq(n’p’+n”p’’) and &(n, I )  = Zn/nAq. Again II’I 2 In’lAq and lZ”1 5 ln’’lAq, and 

and a are defined on an infinitely extended 0 domain, without the boundary condition Eq. ( 2 2 ) .  

This expression differs slightly from earlier literature since we are using a discrete representation 

in $, and have implicitly used the inverse ballooning tran~formation.~~ If the mode width in 0 is 

less than n, the sums over p appear to be a small effect, and are usually neglected in nonlinear 

calculations using the ballooning representation. This conclusion may be misleading. Noting that in 

Eq. (33)  k,  = jn/Ax = ( I  - 2pZo)n/Ax and k, = -nn/Ay = -nqo/ro, we see that in the standard 

ballooning representation, only a wedge of sn,l’s in (k,,ky) space are evolved, -nAq < I < nAq 

(for n # 0), and the rest of k space is filled by the s u m  over p .  For small n the range of k2’s evolved 

is small, so it may take many terms in the p s u m  to reach moderate k,’s. The wedge of modes 

evolved in the ballooning representation are the open circles in Fig. 7, while our approach evolves 

a rectangle of modes in k, and k,, up to k,pi x 1 and at least k,p; x 1 (both the circles and the 

dots in Fig. 7). This figure corresponds t o  the mode arrangement of the runs in Fig. 13, where the 

shear is very weak (i = O . l ) ,  Ax M 1.4Ay, kfaxpi M 1, and kFaxpi x 1.2, so J = N. The nonlinear 

interaction between a mode (k2,ky) within the p = 0 wedge and a mode outside the wedge (the 

square box in Fig. 7, for example) could be strong, even if its linearly most unstable mode structure 

(of many eigenmodes in 0) is centered a long distance down the field line. For low k, and large k, 

one would have to include many p’s to capture this interaction (in this case, nine). In our nonlinear 

simulations, we do see modes outside the p = 0 wedge excited to significant amplitudes. 

While the usual k,’ x k,” - 6 nonlinearity can be efficiently evaluated pseudospectrally, it is 

not obvious that the ballooning nonlinearity, with its sums over p ,  can be. However, since our 

representation is equivalent to the ballooning representation (if no = N = l), it automatically 

includes the sums over p in the nonlinearity. Thus the most efficient way t o  numerically evaluate 

the nonlinear terms using the ballooning representation, if one were forced to, is probably to break 

the 9 domain into segments of 2 n ,  fill a rectangle in (k,, k,) space with the sum over p ,  and apply 

the pseudospectral method to Eq. (6). Our representation automatically accomplishes all of this. 

Our representation should also be more convenient for analytic calculations, since the nonlinearity 
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Figure 7: The wedge of L,, k, modes evolved in the ballooning representation (open circles), and the 

rectangle of modes evolved in our approach (circles and dots). To recover the nonlinear interaction 

between the p = 0 modes and the mode marked by the square box, nine terms in the p sum of 
Eq. (34) are needed, even though k,pi M 0.8 for this mode. 

takes a simple form, and the choice of Bo's, or k,%, is well defined. 

VI. Axisymmetric low+ equilibrium 

We now specialize t o  the case of a low-p, large aspect ratio, axisymmetric torus with circular 

concentric flux surfaces. In the usual T ,  B,q5, coordinates (minor radius, poloidal angle, and toroidal 

angle), v = - (qr/&) sin 8 in Eq. (lo), and 

T 
B = B(64 + -&e), 

4Ro 
(35) 

where B = BoRo/R, R is the distance from the axis of symmetry, and Ro is the major radius. The 

< defined in Eq. (10) is the usual toroidal angle, 4, t o  lowest order in r/Ro; we will only keep terms 

to  lowest order in T / &  here. Near $0, we can expand $ - $0 = JT' drBor/q ~tl (T - ro)Boro/qo. 
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Then Eq. (12) becomes, choosing a0 = 0: 

x = r - r o ,  Y = r" [4(r)O - 41 > = e. 
40 

In these variables, the parallel derivative becomes, using Eq. (2) with J-' N qo&/Bo, 

and the perpendicular gradient is: 

The linear w* terms, arising from E x B convection of the equilibrium, using Eq. (6), are: 

The nonlinear E x B terms are: 

d2A d2A d2A 
V;A = -+I + i2e2) + 2 a -  + -. 

dY axay ax2 

Using the definition of 80 in Eq. (25), k, = -k&o, 

V;A = - k , 2 ~ [ i  + i2(e - eo)2]. 

That this takes the usual ballooning form should come as no surprise, given the discussion in section 

V. The combined V B  and curvature drifts can be written: 

v i  + v:/2 4 7 4  - 
B x V B +  -b x Vp, 

QB2 QB2 
Vd = (43) 

where the Vp term is negligible in this low$ equilibrium. For an axisymmetric B, dB/& = 

0; for our low$ equilibrium we also have aB/a$ N -(qo/roRo)cosO, dB/dz N (Boro/Ro)sinO, 

B Vcr x Vz N -(Boqo/r&%, and B - V$ x Vz N Bi/qo. Thus using Eq. (4), 

aA d X  1 dA 

aY 
-COS 0 + --88sin 8 + -sin 0 , Vd-VA = - 

vp + v:/2 
= -ik,A [COS 0 + j.(O - &,)sin e] , 

Q O R O  
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for k, # 0 and Vd. VA = (-ik,A/RoRo)(vi + vz/2)sin 8, for k, = 0. Other terms in the equations, 

such as V V E  and (6 - V6) + V E  can also be written in the form Eq. (44). 

VII. Simulation results 

We have implemented this coordinate system in nonlinear gyrofluid simulations of toroidal 

ITG turbulence. The simulation results are presented here to describe practical computational 

issues and to test some of our assumptions. It is not meant to be a complete description of our 

gyrofluid equations or our nonlinear results, which will be discussed more fully in later publications. 

Therefore, we have relegated the actual equations t o  the Appendix. 

There are two ways to implement the boundary condition Eq. (22). Because our equations 

involve Iklll Landau damping terms (equivalent to a non-local integral operator in real space26), it  

is easiest to Fourier transform from 8 to k,, t o  evaluate the parallel terms. However, over the B 

domain, each mode is not periodic with itself, but with a different mode. This mode will in turn 

be connected to another mode, etc. The most accurate way to implement the boundary condition 

is then to line up all the j modes connected by the boundary condition onto an extended 8 domain 

and Fourier transform in kll over this domain. Because the computational grid is rectangular in k, 

and k,, the length in 8 of this extended domain will be longer at lower k,. Then we evaluate the k,, 

terms, transform back to 8, and extract each j mode from its position on the extended 8 domain. 

An alternative method is to add equal length extensions in 8 t o  each (kz,ky) mode, as shown in 

Fig. 3, and copy the part of aj+&j,k(O) within -nN < 8 < n N  onto the extension (181 > n N )  of 

a j , k  before transforming to kll. Since we have a finite number of k,?, not all modes will have a 

mode to connect to  at j+6j.  In this case Aj , k  is zeroed in the extension, preserving periodicity. We 

have arranged the box so the mode amplitudes are small where this is necessary (at large k,). The 

second approach (“the equal-length extension method”) is easier to implement and t o  parallelize 

on computers, since all the FFTs in 8 have the same length. But it may be linearly less accurate 

than the first method (“the multiply-connected method”) if there are low k, modes which extend 

much further along the field line than even the extension region. (This is related to the fact that 

the minimum non-zero lkll I which can resolved for the Landau-damping operator is given by 2n/LII , 

26 



where LII is the parallel box length including the extension region.) This difference is probably less 

important in nonlinear runs where the relevant parameter for determining the parallel box length 

is the parallel correlation length and not a linear mode width. In practice, we have observed no 

significant differences between these two methods in the nonlinear simulations done t o  date. The 

issues of an extension region (or the filtering described next) are ignorable for a particle or Vlasov 

simulation, since they do not require evaluation of LI I  and can directly use the boundary conditions 

in Sec. IV. 

There is another implementation detail involving the parallel FFTs. Note that the 80 = 27rN 

mode in Fig. 3 has a large amplitude at the right-hand side of the extended domain, and is not 

naturally periodic with itself at the left-hand end of the figure where it is zero. Fourier transforms 

assume periodicity, so there is effectively a sharp discontinuity for this mode across the endpoints in 

0 which introduces high-Lll components into the solution. These high kll components are Landau- 

damped, but a small amount of high kll oscillations can propagate from the ends of the extended 

domain into the physical region -Nn  < 8 < Nn. This high LII  noise is reduced as the extension 

region is made longer, but convergence can be greatly accelerated by smoothly filtering the modes 

to zero near end points of the extended box. We use a filtering window which is 1 in most of the 

domain, and goes to zero smoothly near ends of the full (extended) domain as 2e2/(1 + e4), where 

e = (8 - &nd)/8width is a normalized distance from the end points. A filtering width 8width of 1/2 

to 1/4 of the width of the extension regions appears sufEcient. Thus a typical run with a physical 8 

domain from -27r to 27r might use a fully extended domain of -37r < 8 < 37r, and the filter begins 

to turn on within n/2 of the endpoints at Bend = f37r. In practice, though the filtering is useful for 

reducing the small amount of high lcll errors sometimes seen linearly (particularly for low k, modes 

at low shear which are extended along the field line), no statistically significant differences have 

been observed in the nonlinear runs with or without this filtering. 

To test the small-scale assumption, we present two simulations, one with perpendicular dimen- 

sions (L ,  = 85pi, L, = loopi), and one with double the box size (L,  = 170pi, L, = 200pi). 

That these simulations give similar results indicates that the small flux tube may be capturing the 

essence of the turbulence. It is a necessary but not sufficient test, as discussed in section VIII. The 

27 



physical parameters are taken from TFTR L-mode shot #41309: = 4, L,/R = 0.4, B = 1.5, 

q = 2.4, Ti = T,, p; = .14cm, L, = 103cm, and the computational box is centered at TO = 53cm. 

The box sizes then correspond to no = 10 for the small box and no = 5 for the large box. Both 

simulations use 64 grid points along the field line coordinate 8. Using 128 grid points along 8 gives 

essentially the same results. For these runs, N = 2, so the physical 8 domain extends from -2n to 

2n. The equal length (n) extension method (for a total extended 8 domain from -3n t o  3n) was 

used to implement the parallel boundary condition. 
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Figure 8: Distribution of Bo’s for the small run. The solid lines denote the ends of the computational 

domain in 8. 

We use a spectral representation in z and y, with f 42 k, modes and f 15 k, modes for 

the small simulation and f 63 k, modes and f 21 k, modes for the large simulation, not counting 

additional modes added at high k for dealiasing. The modes are evenly spaced such that kFaxpi sz 1 

and kFin sz kmin , , making the computational domain roughly square in z and y. For N > 1, it is 

necessary to include more k,’s to include unstable modes localized near 8 = f2n, f4n, etc., in the 

bad curvature regions (i.e. modes with 80’s near f 2 r 7  f 4 n ,  etc.). The modes tend to be localized 

along the field line near 80, so ideally one would like to include enough k,’s to cover the range 

-nN < 80 < nN for all ky’s. This is very expensive at high k,, where the spacing in 80 gets small, 
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since 80 = -kz/iky. We arrange our modes in k space so that the Bo’s cover the 8 domain for low 

ky’s, but not high ky’s, as shown in Fig. 8 for the smaller simulation. This implies kpax >> k:” 

for N > 1 and j. M 1. Since most of the energy is at kyp; < 1/2, the missing Bo’s at high k, have 

very little effect. 
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Figure 9: Contours of potential for a) small run, and b) large run. Doubling the perpendicular 

simulation domain did not change the dominant scale of the fluctuations. 

Figure 9 shows contours of electrostatic potential in the (s,y) plane at B = 0 (the outer midplane 

of the torus), for both runs at saturation. It is apparent that although the box was doubled, the 

dominant scale didn’t change. This is also evident from the spectra in Fig. 10, also at 8 = 0, 

where [@[2(kz) = &, @kzlk,@zzlky, l@l2(ky) = &, @ ~ z l ~ y @ ~ z l k y ,  and the low resolution spectra are 

reduced by a factor of two to account for mode density. Although the resolution has increased, 

the shape and the location of the peak in the spectrum is roughly the same. These spectra are 

similar to BES measurements on TFTR.l The large k, = 0 component is evidence of poloidal 
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Figure 10: Potential spectra for both runs. 

E x B rotation, as discussed in Ref. 7. Though there are some small differences in the spectra, 

the two runs agree within statistical fluctuations on global quantities such as the volume averaged 

RMS fluctuation levels and transport levels: e@/T, = 15p;/L, N 0.020 and x; = 7 . 4 p 3 . ~ ~ ; / L ~ ,  

averaged from tvt;/L, = 150 - 300. The evolution of x; for the two runs is shown in Fig. 11, 

where the statistical fluctuations are approximately 10%. This level of ion heat transport is near 

the experimentally measured x; = 8.8p:vti/Ln, but these simulations ignore impurities and beams 

(usually a stabilizing effect), trapped electrons (destabilizing), and use our four moment model 

which gives lower transport than our more accurate six moment model. Nevertheless, this level of 

agreement is encouraging, and suggests that toroidal ITG turbulence is responsible for anomalous 

ion heat transport in tokamaks. The transport from these toroidal simulations is about a factor 

of 25 larger than sheared slab simulations for the same parameters, demonstrating the importance 

of toroidicity. Our toroidal simulations can be run in the sheared slab limit by taking L,/R 0 

and q / i  + 0 so that Ln/L, = L,i/qR remains finite. We should point out that our preliminary 

results, Fig. 4a of Ref. 7, were high by a factor of 16/3 due to a numerical error in calculating xi. 

The remaining change is due to increased resolution. 

30 



100 200 

time (WvJ 
300 

Figure 11: Evolution of xi for the large and small runs. 

We have also performed tests varying the box length in the parallel direction. For these tests we 

have used the fully connected method to implement the parallel boundary conditions, for greatest 

accuracy, as described earlier in this section. Fig. 12a shows the time evolution of the volume 

averaged xi for two runs with box length N = 1 and 2, i.e. A8 = 27r and 47r, with no = 10, and 

other parameters as above. Fig. 12b shows the correlation function along the field line, 

for the two runs. The averaging ( ) is over 5,  y, and time once the simulation has reached a quasi- 

steady state. If this correlation function were not averaged in z and y (only taken along the field 

line passing through z = y = 0), it would return to one at 8 = f27r for the N = 1 run, because of 

periodicity. The Fourier transform of C(0,O) is the ICl, spectrum. As discussed in section 111, since 

no > 1, using a box with -7r < 0 < T ,  ( N  = 1), can artificially constrain the parallel correlation 

length. There are significant correlations at 8 f 7r for these parameters, indicating that this is the 

case, and that the box should be extended. These additional correlations in the 27r box are in some 

way constraining the nonlinear dynamics and reducing the flux. 

It is easier to test the scaling with box length at low shear, since the turbulence at f 2 x ,  f47r, 
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Figure 12: a) Evolution of xi for two runs with varying box length and 2 = 1.5, q = 2.4 b) 

Correlation functions along the field line for the same two runs. 

etc., is not at such high k,, since k, = -k,D80. This allows us to increase the box length and resolve 

the turbulence all along the box with fewer k, modes than at high shear. Also, at low shear the linear 

mode structure is broader in 8, leading to  slightly broader parallel correlation functions. Figure 13a 

shows the time evolution of xi in four runs with box lengths N = 1,2,3,4 or A8 = 27r,47r, 67r,87r. 

The physical parameters are the same as above, except D = 0.1 and q = 1.2, and the perpendicular 

box size is L, = 160pi, L, = 1OOpi. Again, the A8 = 27r box gives slightly lower flux, while 

the larger boxes all give the same flux, so the minimum box length is A8 = 47r. The correlation 

functions of electron density for these runs are shown in Fig. 13b, and are noticeably broader than 

in the higher shear cases. Using ne in the correlation functions removes the ICll = 0 component 

present in the C j  correlation functions in Fig. 12b, since ne = C j  - (a) (see Appendix). For these 

low shear runs, the poloidal spectrum peaks at k,pi = 0.35, so the perpendicular correlation length 

is smaller than in the high shear cases. This may contribute to the slightly smaller change in flux 

in going from A0 = 27r t o  A0 = 47r, even though the parallel correlation functions are broader. 

The low shear runs in Fig. 13 are better resolved and are easier t o  run longer than the high shear 

runs, so we expect that a 30% change in flux is typical for ITG turbulence, where Oc - 27r, when 
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the artificial correlations are removed by using a longer box. We have also run with d = 0.1 and 

q = 2.4, where xi = 7.5p?vti/Ln for A8 = 4n and xi = 6.5p?vti/Ln for A8 = 2n. For b = 0.25 

and Q = 1.2, both A8 = 2n and A8 = 47r give xi = 5p;~tj/Ln, any change is within the statistical 

fluctuations. 
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Figure 13: a) Evolution of xi for four runs with varying box length and d = 0.1, Q = 1.2. b) 
Correlation functions along the field line for A0 = 2n and 47r. 

VIII. Discussion and Conclusions 

To summarize, we are simulating a rectangular domain in (2, y, z),  and using the transformation 

Eq. (12), this domain becomes a long, thin, twisting flux tube in a torus. The differential opera- 

tors take the particularly useful forms Eq. (37-44) in the traditional tokamak model of concentric 

circular flux surfaces. Our flux tube approach is also applicable to general magnetic geometry, 

using Eqs. (2,5-6) for the differential operators. (In this case the metric coefficients Va, V+, and 

Vz need to be specified.) The boundary condition Eq. (22) can make the perturbations periodic 

in 8, if N = 1, which makes this representation equivalent to the ballooning representation for a 

coarse grid in n, with spacing no. However, when no > 1, the box must be extended in 0 to avoid 

non-physical correlations if the parallel correlation length is longer than 27rqR, i.e. 0, > 2n. The 
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fundamental assumptions are that the correlation lengths (both parallel and perpendicular) are 

smaller than the box size, that the equilibrium gradients vary slowly across the small perpendicular 

extent of the box, and that the turbulence is local, i.e. driven only by the equilibrium gradients 

within the box. 

The assumptions implicit in simulating a thin flux-tube subdomain should always be checked 

a posteriori by verifying that the simulation box is indeed at least a few correlation lengths long 

in each direction, so that the box is large enough for the type of turbulence under consideration. 

One should also verify that the results are independent of the size of the simulated flux tube (and 

independent of the particular choice of boundary conditions), as the flux tube is made larger than 

the correlation lengths. This paper has demonstrated that both conditions are met, at least for 

the particular cases considered in section VII. Thus our results show the existence of a gyro-Bohm 

scaling regime, at least for sufficiently small p* = pi/L,. (Our gyrofluid equations have been scaled 

t o  the gyroradius pi ,  and the limit pi/& ---f 0 taken, using the usual small-scale turbulence ordering 

assumptions.) 

While the turbulent heat conduction from our simulations is of the right order-of-magnitude to 

explain experimental results from the main core region of many tokamak experiments, they have 

have a gyro-Bohm scaling while the actual experiments have a B o h m - ~ c a l i n g . ~ ~ , ~ ~  (The experiments 

have a Bohm-like scaling with magnetic field, though the magnitude of the experimental x; is 

about two orders of magnitude smaller than Bohm's original formula D = (1/16)cT/eB.) Several 

possibilities for this discrepancy exist. One is that the experimental p*, while small (- 10-3-10-2), 

may be large enough that the radial variation of equilibrium gradients, i.e. w,($), vi($), etc., or 

equilibrium flows, may be affecting the turbulence. For very small p* there is a scale separation 

between the turbulence, with scales of order pi, and the equilibrium, with scale L,, but if p* is not 

small enough, the turbulence may begin to feel radial variations in the equilibrium. It is interesting 

to note that the BES measured' correlation length A, - 2 cm is of order the geometric mean between 

pi - 0.15 cm and the minor radius a - 90 cm. Another possible explanation is that the instabilities 

driving the turbulence may be near marginal stability, which can mask gyro-Bohm scaling trends 

and, in some limits, tie the core transport scaling to edge  parameter^.^'-^^ The experiments have 
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gone to great pains to keep other parameters and profiles as fixed as possible while studying the p* 

scaling, but a very sensitive dependence on some parameters (some of which are hard to measure) 

could also mask, at least partially, a gyro-Bohm scaling. Another possible explanation might involve 

non-local turbulence, where fluctuations radially propagate a significant distance from where they 

were generated by an instability, an effect which is currently under debate.32i33 

Numerical studies of some of these effects do not necessarily require simulating the whole toka- 

mak. Rather, one could consider a somewhat thicker flux-tube than usual, and include the radial 

variations of w*($ ) ,  qi($), and other plasma parameters over the simulated region in the governing 

gyrofluid (or gyrokinetic) equations. Even if simulating the full torus radially, field-line coordinates 

are useful to allow a coarser grid in the parallel direction, and a coarser grid in the toroidal mode 

number n. When the equilibrium profiles are assumed to be constant, so L,, LT, etc. do not vary 

radially (as assumed in our simulations), the linear eigenmodes are unbounded radially. In balloon- 

ing terminology, the solutions of the zeroth order eigenmode equation in l/nq are independent of 

$J. In a real tokamak, however, the radial profile variation determines the radial extent of the linear 

modes, and this radial structure is determined from a higher order equation in l/nq. Recently, 

there has been renewed interest in the solution for this radial envelope, and the modifications to 

the zeroth order eigenfreq~encies.~~ For longer wavelength global modes, the linear radial mode 

structure is also determined by the radial variation of equilibrium  gradient^?^ An alternative way 

to include these effects is to still use Eq. (7) to represent the perturbations, but to include the 

radial variation of equilibrium profiles. This $J dependence will linearly couple different j modes in 

Eq. (7), which are uncoupled when the proses have constant gradients. Then the superposition of 

different j (i.e. IC, )  modes will determine the radial envelope of the true linear mode. However, since 

the nonlinear E x B coupling of the various modes is usually much stronger than this linear 

coupling, it is likely that the precise radial linear mode shape is subdominant, and that the radial 

scale length of the turbulence is set by nonlinear processes, as suggested by Cowley, et aZ.,6 and 

M a t t ~ r . ~ ~  Comparing the order of magnitude of these effects in, for example, the density equation, 

we have: 
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The nonlinear term is of the same order as the s independent linear term (i.e. the w*(+o) term) 

in the standard gyrokinetic ordering, where n/no - p i / L n  and klp i  - 1. While the linear mode 

widths are broad, the typical turbulent eddy size is not much larger than - lopi, so it would seem 

that the s-dependent term (K aw,/a+ ) can usually be ignored. 

Equilibrium sheared zonal flows (ky = O,kz = O,k, # 0 flows which cause flux surfaces to 

rotate) can be included in our representation in several ways (one of which is presented in Ref. 20), 

though we have not yet implemented them in our simulations. Such sheared flows can be important, 

particularly near the plasma edge where they appear to  be responsible for the H-mode t r a n ~ i t i o n . ~ ~  

Though we are presently neglecting equilibrium-scale zonal flows, we do include the higher kT 

components of the zonal flows which are generated by the turbulence itself. 

For typical tokamak parameters, our reduced simulation volume can represent large computa- 

tional savings. We compare rough scalings with some other methods; the results are only order 

of magnitude estimates. Perhaps the most straightforward way t o  simulate a tokamak is with the 

“m, n, r” representation: 

Since we are interested in simulating fine-scale turbulence, we need t o  resolve perpendicular scales 

of order pi. If we are simulating a full torus, the range of m’s must be m E ( O , * l , .  . . , &a/pi) .  To 

resolve the long parallel structure, the range of 72% must be n E (0, fl, . . . , &a/qpi), where q is a 

representative value, around 2. The radial grid for &m,n(+) must resolve pi and span the minor 

radius, so r = ZA,, where AT - pi and I E (0,1,. . . , a/pi) .  This gives the total number of grid 

points, for a - 1 0 ~ ~ ~ ~  

This is the same as expected from a computational grid in the physical T ,  8, C space, where the C 

grid can be l / q  coarser than the r or e directions. 

By simulating a thin toroidal annulus in T ,  but still going all the way around in 8 and C ,  

the number of radial grid points is reduced by Ar/a ,  which for our simulations is typically 1/10. 
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Further, aligning the grid points with the field lines (or nearly aligning with the field, as proposed 

by Dimits15) reduces the necessary resolution in this direction. We have found that 64 grid points 

along the field line is adequate, so the number of grid points for a thin annulus with a field-aligned 

coordinate is: 

The next level of reduction is to also exploit the small perpendicular correlation length in the 

poloidal direction, which brings us to our twisting flux tube: 

so for the simulation in Fig. 9a, counting modes included for dealiasing, we used: 

N N 64 x 128 x 48 - 4 x lo5. 

Kotschenreuther and Wong14 have proposed using the representation: 

which has many similarities to our representation. It is periodic in with period 2n/no and in 

0 over 27r, and is therefore simulating a wedge of a toroidal annulus when the T domain is small. 

Thus Eq. (47) is numerically as efficient as the one described in this paper, however, if Oc > 2n 

false correlations along the parallel direction will be introduced, as discussed in section III. It is 

not obvious how to remedy this problem with Eq. (47), but with our approach one simply uses a 

longer box, i.e. N > 1. 

The "quasiballooning" approach of Dimits15 shares similar computational advantages to our 

method. Indeed, the quasiballooning (almost-field-line coordinates) method has many similarities 

to the field-line coordinates approach of Roberts and Taylor: and Cowley, et aZ.,6 upon which 

our paper is based, though the quasiballooning method emphasizes the perspective of a real-space 

radial grid while we use discrete Fourier transforms for the radial direction which illustrate its 

relation to the usual ballooning transformation. We have shown that physical periodicity in B can 

be also be implemented with our approach, but that there are cases where one should forgo physical 

periodicity in favor of a longer box (i.e., N > 1) t o  avoid false parallel correlations. As described in 

37 



Sec. 111, simulating only l/no of the toroidal direction is often justified by the short perpendicular 

correlation lengths of the turbulence, but that makes a perturbation extended along a field-line 

no times as likely to “bite it’s tail”, which should be compensated for by making the box longer 

than a parallel correlation length. In principle, N = 1 simulations should eventually converge as 

the box is made large enough in the perpendicular directions (so that no +. l), but from the runs 

we have done it appears that faster convergence is obtained by allowing the box to be longer than 

a parallel correlation length as well, thus consistently following the principle that the simulation 

domain should be longer than the correlation lengths in all three directions. 
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Appendix. Toroidal gyrofluid equations 

The equations used in the simulations are briefly summarized here, they are discussed in more 

detail in Refs. 7, 37-40. In these simulations, we evolve four moments of the gyrokinetic equa- 

tion, the perturbed guiding center density, parallel flow, parallel temperature, and perpendicular 

temperature, with closure approximations to  model the effects of parallel resonances, toroidal res- 

onances, and FLR. Here we ignore collisions and particle trapping (i.e. 6 - VB = 0)) although we 

have developed models of these effects, and have extended this model to up to  six mornent~.~ Using 
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the normalizations in Ref. 37, the dynamical equations are: 

The total time derivative includes the E x B nonlinearities, d / d t  = ~ / % + v Q  -V. The gyroaveraged 

potential and E x B drift are Q = I?:/2@ and V Q  = 6 x VQ, respectively. The toroidal drift terms 

have been written using i w d  = (v;/RB2)B x V B  - V .  

The closure coefficients for this set of moments are chosen to provide an accurate approximation 

to the linear kinetic response. The parallel closure coefficients are xll = 2 / f i  and x, = 1/&. 

The toroidal closure coefficients have both dissipative and reactive pieces, and written in the form 

u = (vT,vi) = U, + ivilwdl/wd, they are vi = (1.93,-.39), u2 = (.24,1.29), u3 = (-1.40,.47), 

~4 = (-.14,-1.75), and US = (.76,-.98). 

We assume adiabatic electron response, ne = T (a - (a)), where (a)($) = (JdcudzJIV$l@)/ 

(JdadzJIV$]) is a flux surface average. In circular concentric geometry, this becomes (@) = 

(44312o)- 'Sdydz(R/Ro)~ , (s ,y , z ) ,  and is only nonzero for the = 0 components. This form of 

the adiabatic electron response prevents radial electron flow which would short out the electric field 

responsible for the nonlinearly generated sheared poloidal flows which are essential for ~aturat ion.~ 

The gyrokinetic quasineutrality constraint is, with T = Ti/T,: 

where Ai is the ion density, which is related to the ion guiding center density and perpendicular 

temperature by the FLR closure relation in Ref. 37, yielding: 

ry2 
+-(a))=- 

D(b) 
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The functions N ( b ) ,  D(b),  where b = k:p:, and the operators VL and VL model FLR effects, 

and explicit forms are given in Ref. 37. Since this equation involves both and (a), we use the 

following procedure to determine a, given n and TL. In general, the coefficients in this equation 

can be functions of the field line coordinate, so writing 9 = (a) + Sa, and solving for Sa gives: 

Averaging both sides, since (Sa) = 0, and solving for (9) gives: 

Now that (a) is determined, we use this expression in the quasineutrality constraint to  obtain GJ. 
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