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Abstract—This paper describes in detail different formulations of the
inverse-source problem, whereby equivalent sources and/or fields are
to be computed on an arbitrary 3-D closed surface from the knowledge
of complex vector electric field data at a specified (exterior) surface.
The starting point is the analysis of the formulation in terms of the
Equivalence Principle, of the possible choices for the internal fields,
and of their practical impact. Love’s (zero interior field) equivalence is
the only equivalence form that yields currents directly related to the
fields on the reconstruction surface; its enforcement results in a pair of
coupled integral equations. Formulations resulting in a single integral
equation are also analyzed. The first is the single-equation, two-current
formulation which is most common in current literature, in which no
interior field condition is enforced. The single-current (electric or
magnetic) formulation deriving from continuity enforcement of one
field is also introduced and analyzed. Single-equation formulations
result in a simpler implementation and a lower computational load
than the dual-equation formulation, but numerical tests with synthetic
data support the benefits of the latter. The spectrum of the involved
(discretized) operators clearly shows a relation with the theoretical
Degrees of Freedom (DoF) of the measured field for the dual-equation
formulation that guarantees extraction of these DoF; this is absent
in the single-equation formulation. Examples confirm that single-
equation formulations do not yield Love’s currents, as observed both
with comparison with reference data and via energetic considerations.
The presentation is concluded with a test on measured data which
shows the stability and usefulness of the dual-equation formulation in
a situation of practical relevance.
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1. INTRODUCTION

Source reconstruction techniques have various applications in antenna
engineering: antenna diagnostics from field measurements, compact
antenna representation, and near field to far field (NF-FF)
transformation. The source reconstruction problem is a linear
inverse problem where the aim is obtaining currents with known
location that radiate a given complex vector field (usually resulting
from measurements), and/or information on the fields via the
computed currents. The problem is naturally formulated in terms
of integral equations, and has been addressed by several works,
some of which are rather recent, showing an ongoing interest in
the subject. Proceeding in chronological order, [36] presented the
application of equivalent magnetic currents on an infinitely extended
plane in near-to-far field transformation, discussing the possibility of
obtaining a globally valid pattern representation; [8, 37] present a
similar application, and the method is compared to wave expansion
techniques; [38] addressed global field extrapolation from its knowledge
on a limited region using equivalent magnetic currents lying on an
infinite Perfect Electric Conductor (PEC) plane, and [39] did the dual
(electric currents/Perfect Magnetic Conductor (PMC)). In [34], the
computation of far field from near-field measurements on a limited
range is demonstrated. In [24], the use of equivalent magnetic
currents is reported for small antennas diagnostics; [35] presents
a (2-D) scalar treatment of the source reconstruction problem for
axisymmetric structures with explicit enforcement of the so-called
extinction theorem. In [23], the source reconstruction technique is used
to characterize commercial antennas from measurements over a limited
canonical range using a model based on equivalent magnetic currents
on planar surfaces; [22] presents the use of source reconstruction for
antenna diagnostics obtaining indications of primary radiators on a
3-D surface enclosing the actual radiator; [3] discusses the use of
the Rao-Wilton-Glisson (RWG) basis for current expansion and an
Singular Value Decomposition (SVD)-based regularization technique,
while [1] presents an approach to source reconstruction based on the
integral equation for arbitrary 3-D geometries and the use of electric
and magnetic currents; [25] uses Hertzian electric dipoles as equivalent
sources for the determination of complex array excitations from near
field measurements. The work in [26] compares planar magnetic
source reconstruction to spherical-wave-to-plane-wave transformation
in diagnostic tasks showing comparable performances. In [4], a
novel diagnostic application is presented of the source reconstruction
technique, whereby disturbances present in measurements due to
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unwanted interaction with neighboring objects are removed in a post-
processing step; finally, [5] introduced the dual-equation formulation
for the general vector problem on 3-D surfaces and showed its
advantages over the widespread single-equation formulation.

A different, more theoretically-oriented line of research exists,
e.g., [28–30], but apparently these works have not been considered
in most of the previously cited literature (some of these results will be
employed here).

On the algorithmic side, it can be noted that fast factorizations
methods for integral equations have a very natural application in
source reconstruction and have been exploited recently: [2] presents
the acceleration of planar magnetic source reconstruction via the Fast
Multipole Method (FMM), while [14] presents the Multi-Level Fast
Multipole Method (ML-FMM) implementation of the conventional
formulation [1] of source reconstruction using the Rao-Wilton-Glisson
(RWG) basis and both electric and magnetic currents.

The main objective of this work is a unified framework of the
various possible formulations of the source reconstruction problem,
and the discussion of their most relevant features, applications and
limitations — as supported by analytical considerations and numerical
results. To the best of our knowledge such a treatment has not
been published elsewhere; yet, we will show that it is necessary for
understanding and proper utilization of the technique.

With the exception of [5, 35], the works found in literature deal
with the source reconstruction problem in terms of a single integral
equation even when both electric and magnetic equivalent currents are
being sought for; uniqueness issues are not addressed: we will show
here that they impact on the quality of the results, and — perhaps
more importantly — on their meaning and interpretation in diagnostics
applications.

It is important to observe that the desired output of a source
reconstruction may be of two, rather different types. In some cases,
the reconstructed sources are not important per se, being only required
to well reproduce the given (e.g., measured) field upon radiation; this
is the case for NF-FF applications. Other times, one would like to
know the fields on a specified reconstruction surface, and typically so
in diagnostics applications; in this case, we will show that this directly
impacts on the formulation, requiring to formulate the problem in
terms of two coupled integral equations.

The source reconstruction problem is considered an ill-posed one,
and therefore its singular-value spectrum plays an important role in
assessing the stability to real-life noisy and otherwise non-ideal data,
and the related ability to obtain a given spatial resolution. We will
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address also this issue.
The various formulations of the problem are tested on synthetic

field data that allow assessing the accuracy of field reconstruction
inwards of the measurement surface; the results show that only Dual-
Equation Formulation (DEqF) is guaranteed to provide equivalent
currents directly related to electric and magnetic fields on general 3-D
reconstruction surfaces. Finally, tests on measured data confirm the
higher accuracy and stability of the Dual-Equation Formulation.

2. FORMULATION

The input data for the problem are the values of the electric field
tangent to a specified measurement surface denoted by ΣM , or the
outcome of a linear operator applied to it; the latter instance accounts
for the interference of the measuring system with the field. ΣM is
typically a sphere or a cylinder, and may be open (like a finite cylinder,
or a finite planar domain).

The aim is finding sources on a closed “reconstruction surface”,
denoted by ΣR, that radiate the input field on ΣM ; in certain instances,
one may also be interested in the actual field values on ΣR. The
reconstruction surface ΣR encloses a volume Ω−, ΣR = ∂Ω− which
contains all material that differs from free space, and the original
sources of the problem. The region Ω− need not be connected (i.e.,
it may also consist of a set of disjoint regions, so that ΣR becomes a
set of closed surfaces). We stress that the two objectives of finding
equivalent sources or tangent fields on ΣR may be identical, but only
if this is required and enforced, as discussed in the next sections.

The measured (or anyway given) field is known in amplitude
and phase; since the reconstruction surface is assigned, the source
reconstruction problem is linear. It will be formulated in terms of
integral equations upon application of the Equivalence Principle† for
the general (and practically relevant) case of a fully 3-D reconstruction
surface ΣR. The integral equations are subsequently discretized and
solved by the Method of Moments.

2.1. Equivalent Sources and Fields

The first step is the application of the Equivalence Principle [6, 20].
Consider the original radiation problem, depicted in Fig. 1(left);
the volume Ω− contains all the original sources, and all material
bodies (like antenna conductors, other obstacles, etc.), while the
† Because of its nature, we prefer the term Equivalence Theorem, but we conform here to
the more common terminology.
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Figure 1. Illustration of the Equivalence Principle: Original (left)
and general equivalent problem (right).

external region is in free space. In the external equivalent problem in
Fig. 1(right), original sources and material bodies have been removed
and equivalent electric and magnetic currents, Jeq and Meq are placed
on the enclosing surface such that external fields E+, H+ remain
unchanged, while the original inner fields E−, H− are substituted by
other fields, denoted by E−′,H−′. In order to achieve this, i.e., field
equivalence in Ω+, these equivalent currents must obey:

n̂× [H+(r)−H−′(r)] = Jeq

−n̂× [E+(r)−E−′(r)] = Meq

}
r ∈ ΣR (1)

Irrespective of the choice of the internal fields E−′,H−′, due to
the removal of all internal material bodies, the equivalent currents Jeq,
Meq radiate in unbounded homogeneous space and thus, fields due to
these can be computed everywhere by using the conventional free-space
radiation operator:

E(r) = −η0L(Jeq; r) +K(Meq; r) (2)
where

L(Jeq; r) = jk0

∫

ΣR

[
Jeq(r′) +

1
k2

0

∇∇′s · Jeq(r′)
]

g(r, r′)ds′

K(Meq; r) =
∫

ΣR

Meq(r′)×∇g(r, r′)ds′

g(r, r′) =
e−jk0|r−r′|

4π|r− r′|

(3)

where η0 =
√

µ0/ε0, k0 = ω
√

µ0ε0, and ∇′s is the surface divergence
operator (r 6∈ ΣR).
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Indeed, as discussed in [6, P. 654] (we have translated the original
terms to make the statement clear under our notation; brackets []
indicate those translated versions):

“The current densities of [(1)] are said to be equivalent only within
[Ω+], because they produce the original fields [E+,H+] only outside
[ΣR]. Fields [E′−,H′−] different from the originals [E−,H−], result
within Ω−. Since the currents of [(1)] radiate in an unbounded space,
the fields can be determined using [(2)] . . . ”

When using equivalence as stated above, the internal fields
E−,H− constitute a degree of freedom, but of course not just any
internal field can be used for this purpose: internal fields determine
equivalent currents, but the internal fields must be effectively radiated
by these as given by (2), otherwise the jump conditions in (1) are simply
violated. This shows that the internal field must be one that can be
radiated by sources outside Ω−, or equivalently, a field that satisfies
homogeneous Maxwell’s equations in Ω−, i.e., no sources therein.

While infinitely many currents and internal fields are possible (see
e.g., [20, P. 107]), because of the above-mentioned self-consistency
requirement only some of the choices are practically useful in setting
up direct problems, as recalled below. In this sense, before proceeding
it is important to stress that the use of field equivalence in this inverse
problem is — or may be — rather different from its application in
direct problems. In particular, in direct problems the boundary of
ΣR = ∂Ω− will represent a material discontinuity boundary, where one
must enforce boundary conditions. On the other hand, all the present
problem requires, as stated at the start of this section, is to radiate
fields from the reconstruction surface ΣR up to the measurement
surface ΣM , where we enforce the field to a boundary value; we are
not interested in the field radiated inside the reconstruction surface
because in general we do not have to enforce boundary conditions on
ΣR; this is, e.g., the conventional approach followed in [1].

Instead, the choice of the modified internal fields (E−′,H−′)
determines the physical meaning of the equivalent currents, i.e.,
the relationship between these currents and the actual fields at the
reconstruction surface ΣR.

In the following, we analyze those choices for the internal fields
that lead to a well-defined meaning of the equivalent currents; this also
corresponds to those choices that are viable for the setup of integral
equations for the direct problem.
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2.1.1. Zero Interior Field

If one sets the interior fields equal to zero, the result is Love’s form of
the Equivalence Principle:

n̂×H+(r) = JLove
eq

−n̂×E+(r) = MLove
eq

}
r ∈ Σn (4)

With Love’s equivalence, fields on the boundary are obtained
directly from the equivalent currents, which is very important in
antenna diagnostic applications.

Filling the interior with a PEC or PMC can suppress one of the
two equivalent currents and yet let them remain consistent with the
actual fields on the surface ΣR via (4); however, to do so one must
obviously use of the Green’s function for the considered surface and
the specified impedance boundary condition on such a surface. When
an infinite plane can be of interest as the support for the sought-for
equivalent currents, (e.g., as in [23, 24, 34, 36, 38, 39]) this is obviously
easy.

2.1.2. Single-current Formulation

The possibility of employing a single equivalent current without
requiring the Green’s function of a body occupying ΣR has received
attention in direct methods because of the obvious economy in
the number of unknowns. From (1), it can be seen that an
equivalent problem involving only electric (or magnetic) currents in a
homogeneous medium is obtained by requiring the interior E(H) fields
to have tangential components equal to the actual fields [17, 31, 32].
In [31], the problem is solved explicitly for the case of a spherical
surface. As apparent from (1) and recalled in the cited literature, the
equivalent current in this case is not related to the field as simply as
in Love’s form of equivalence; i.e., if one uses the electric current, this
is not simply n̂×H on the reconstruction surface. With the exception
of the very recent [33] for the special case of a spherical surface, we
are not aware of published work on this formulation in connection
with inverse-source problems; however, we will show that it it carries
significant illustrative value, and perspectives of practical applicability.

2.2. Integral Equation Setup and Uniqueness

According to the discussion above, irrespective of the choice of the
internal fields, fields radiated by the currents on ΣR in the region
external to ΣR — and in particular on the measurement surface ΣM

— are obtained by using the Green’s function of the free space (see
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Fig. 1(right)). The component of E tangential to ΣM is linked to
equivalent sources as follows

n̂×E(r) = n̂× [−η0L(Jeq; r) +K(Meq; r)] r ∈ ΣM (5)

where operators were defined in (3).
Enforcing the radiated field to be equal to the measured field, one

sets up an integral equation for the two unknown currents on ΣR.
Note that unless one enforces some other condition explicitly,

currents obtained by solving (5) in general will radiate a non-zero field
in Ω−, which is not in disagreement with theory, just the manifestation
of an unspecified boundary condition on ΣR = ∂Ω−. Also, we repeat
that the equivalent currents are not unique, and so is the solution
to (5). This is hopefully clarified by the examples in the following
discussion. One may consider setting Meq to zero; as discussed in
Section 2.1, this corresponds to the choice of the equivalence in which
the tangential E field is continuous across ΣR; likewise by setting
Jeq = 0. Considering also the case in which no additional condition is
imposed, we have three different current sets that radiate the same field
at ΣM and thus rigorously solve (5); furthermore, at least two of these
(J-only, M-only) are guaranteed to radiate non-zero fields inside ΣR

due to the continuity imposed by the absence of one of the currents.
Indeed, field equivalence prescribes only that fields radiated by the
equivalent currents be identical outside ΣR; these differ inside as the
result of the arbitrary choice of the interior field.

The non-uniqueness of solution to (5) can be seen also from the
perspectives of the properties of the integral equation itself. When
equivalent currents are reconstructed resorting to (5) alone, it has
been shown in the literature (e.g., see [28]) that there is a null space
associated with the radiation operator involved, that corresponds to
the non-radiating sources, i.e., sources radiating exactly zero field —
as opposed to reactive fields that are non-zero away from the actual
source of radiation, but often negligible in practice.

A throughout characterization of such non-radiating sources set
is beyond our scope (the interested reader can consult e.g., [28]), but
it is enlightening to construct a linear sub-space thereof as follows. It
is shown in the classic reference [40, Eq. (17)] that Love’s equivalent
sources corresponding to sources completely on one side of ΣR (either
inside or outside) are mapped through the radiation operator in (5) to
a field that is discontinuous in traversing ΣR, being identically zero in
the volume where original sources were located and equal to the original
one elsewhere. We note further that this result holds irrespective of
whether the volume containing the actual sources is the interior or
exterior one. We can therefore set up an interior equivalent problem
corresponding to an arbitrary arrangement of sources outside ΣR by



Progress In Electromagnetics Research, PIER 103, 2010 75

computing Love’s equivalent currents Jeq = n̂×H and Meq = −n̂×E
on ΣR that radiate the same fields inside ΣR as the original ones (note
that n̂ points inside ΣR this time). According to the cited reference,
these sources radiate zero field outside ΣR (in particular on ΣM ), and
therefore belong to the aforementioned null space.

It should be noted that this lack of uniqueness is overlooked
in the literature on source reconstruction; this is not surprising,
though: as explained next, it does not prevent convergence of iterative
solvers. In fact, the (almost always) rectangular linear system
arising upon discretization of (5) is solved resorting to the method of
normal equations [18], which is equivalent to using the Moore-Penrose
pseudo-inverse, and thus leads to the minimum-norm solution‡ of the
associated least-squares problem [13, Eq. (5), 28]; i.e., the null-space is
removed from the solution. Otherwise said, the actually solved problem
corresponds to the explicit equation in (5), plus the minimum-norm
condition on the reconstructed currents. The solution to this modified
problem is unique [13, 28]: whether this is the sought-after solution or
not remains to be ascertained. We will investigate on this by relating
the solution of this inverse problem to the choice of the interior fields
in the initial equivalence setting.

We begin by observing that there is no warranty that the
minimum-norm equivalent sources obtained via (5) radiate zero
internal field, and — while this cannot be excluded a priori — it
appears unlikely because this would imply a large reactive component
in the currents, that conflicts with the minimum norm condition. The
non-zero field arising in this case will be indeed apparent from the
numerical tests presented in Section 3.

If the minimum-norm solution does not radiate zero fields inside
ΣR, the associated currents are not Love’s equivalent currents. If one
wants to reconstruct Love’s equivalent currents, a source distribution
has to be added to the minimum-norm solution in order to cancel out
fields inside ΣR, but subject to the constraint that those outside remain
unchanged. This means adding a source distribution that radiates a
zero field outside ΣR (and in particular at the measurement surface),
and a (specified) non-zero field inside the reconstruction surface. This
source distribution is therefore an element of the of the null (sub-)space
constructed above.

Phrased now again in terms of the field equivalence principle,
equivalent currents that radiate a given field in the volume outside
ΣR (and in particular on ΣM ) are not unique; fields radiated by all
possible equivalent currents are identical outside ΣR but differ inside:
the normal equation solution of (5) chooses those internal fields leading
‡ In the sense of the `2 norm, i.e., the coefficient norm
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to equivalent currents with minimum norm.
From the above it can be concluded that if one wants to obtain the

actual fields on the reconstruction surface directly from the currents
in (5), the zero field condition of Love’s equivalence has to be explicitly
enforced, which is obtained by demanding that tangential fields just
inside ΣR (hence the notation Σ−R) are zero:

n̂×E−(r) = lim
r→Σ−R

n̂× [−η0L(JLove
eq ; r) +K(MLove

eq ; r)
]

= 0 (6a)

n̂×H−(r) = lim
r→Σ−R

n̂×
[
− 1

η0
L(MLove

eq ; r)−K(JLove
eq ; r)

]
= 0(6b)

We recall that in our equivalent problems we have no sources inside
Ω− (the fields are solution to the homogeneous Maxwell equations), so
that by uniqueness [20, P. 101–102] specifying n̂×E = 0 on ΣR = ∂Ω−,
E is zero everywhere in Ω− and hence so is H. The converse holds for
specifying n̂×H, so that it is enough to enforce any one of (6a), (6b).

The arbitrariness of the limiting enforcement surface Σ−R can be
removed with a more general formulation [5]; it can be shown [5, 21,
Eqs. (6), (29)] that the equations above are equivalent to the following
boundary integral identities:

n̂× [−η0L(JLove
eq ; r) +K(MLove

eq ; r)
]

= −1
2
MLove

eq (r) r ∈ ΣR(7a)

n̂×
[
− 1

η0
L(MLove

eq ; r)−K(JLove
eq ; r)

]
=

1
2
JLove

eq (r) r ∈ ΣR (7b)

Again, the same reasoning on uniqueness applies to enforcing any
one of (7a), (7b).

We observe that in the form (6) this additional constraint is similar
to that used in direct problems to remove spurious resonances [41, 42],
and essentially as in [35]; in its form (7) it is similar to the approach
to re-condition the equation for scattering by dielectric bodies [15, 43].

It is worth mentioning that addition of Love’s condition to the
conventional integral Equation (5) yields a system of two equations
for two unknowns, as opposed to the more common formulation in
which two unknown currents are computed from a single equation.
When the reconstruction surface tends to the measurement surface,
ΣR → ΣM , (5) together with (6) allows the determination of electric
and magnetic currents as in (4) via specification of the (measured) E
field. We further note that the case where zero-field enforcement is not
effected (conventional formulation), or one of the currents is absent is
derived from the former in a trivial manner. Therefore, formulations
used in [1–3, 14, 22–25, 34, 36, 38, 39] are all particular cases of the
general one presented here.
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The on-surface conditions enforced in the integral Equation (7)
or (6) imply spectral properties of the involved operators opposite to
those of the measured-field enforcement (5), and this is expected to
significantly alter the spectrum of the resulting linear system, with a
lessening of the ill-posedness of the inverse-source problem; this will
be verified in the results of Section 3.

For ease of reference in comparing the various formulations, they
will be labeled as follows: Single-Equation Formulations (SEqFs) refer
to the sole use of (5), and encompass Two-current Single-Equation
Formulation (JM-SEqF), which includes both J and M currents,
and the two one-current formulations: J-current Single-Equation
Formulation (J-SEqF), where only J current is present and M-current
Single-Equation Formulation (M-SEqF), that considers only M current.
Finally, the term Dual-Equation Formulation (DEqF) refers to the
addition of Love’s condition with both J and M currents, i.e., based on
the solution of the system (5), (6a) or variations thereof as discussed
above. According to this scheme, every formulation considered can be
trivially obtained from Dual-Equation Formulation (DEqF), the most
general one.

At this point one may assert some metric properties of the solution
to the source reconstruction problem that depend on the equivalence
formulation employed. It has been stated that the inverse source
problem in principle consists in solving (5), and that the solution to
that equation is not unique, i.e., it is more precise to talk of a solution
set rather than the solution. Adoption of a specific form of equivalence
entails a constraint on the solution set above, i.e., only a subset of
the original solution set remains valid. Concerning the solution sets
generated by all formulations (those that obey the related integral
equations), we can state the following membership relations:

(Jeq,Meq)DEqF ∈ (Jeq,Meq)JM -SEqF

(Jeq,Meq)J-SEqF ∈ (Jeq,Meq)JM -SEqF

(Jeq,Meq)M -SEqF ∈ (Jeq,Meq)JM -SEqF

(8)

Given that the normal equation solution of the arising linear
system selects the minimum-norm element among these sets, the above
membership relations can be used to obtain the following relationships
between the `2 norm of the various solutions (MN refers to selection
of the set element with minimum norm):

||(Jeq,Meq)
DEqF
MN ||`2 ≥ ||(Jeq,Meq)

JM−SEqF
MN ||l2

||(Jeq,Meq)MN )J−SEqF ||`2 ≥ ||(Jeq,Meq)
JM−SEqF
MN ||l2

||(Jeq,Meq)
M−SEqF
MN ||`2 ≥ ||(Jeq,Meq)

JM−SEqF
MN ||l2

(9)
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The above is intuitive by thinking that having a larger set to
choose from can never lead to a worst choice (i.e., higher `2 norm). The
interesting result is that the solution of (5) alone will in principle yield
the lowest coefficient norm among all possible equivalence formulations;
this will be confirmed by results on synthetic and measured data to be
presented in Section 5.

We observe that all formulations (single- and dual-equation) are
in principle not free of the problems due to the resonances of the
cavity corresponding to the closed surface ΣR, although based on
least-squares solution of the associated problem. However, in our
experience and in the cited literature this has never emerged as a
practical occurrence.

Finally, we observe that — if desired — the actual fields and Love’s
currents could be recovered in a trivial way from the single-equation
solution; to do so, it is enough to apply the radiation operators and/or
field boundary integral identities (e.g., [21]). However, as we will see,
the properties of the Dual-Equation formulation afford a more stable
solution and a higher accuracy.

2.3. Discretization

The system (5), (6) of coupled integral equations is discretized via
standard Method of Moments (MoM). Initially ΣR is discretized by a
mesh composed of triangular facets whose average edge size is denoted
by hR, and the unknown currents are approximated in terms of the
RWG basis with NT = 2N elements in total:

Jeq =
N∑

n=1

CJ
n fn Meq = η0

N∑

n=1

CM
n fn (10)

(as usual, unknowns have been normalized to get uniform physical
dimensions, and the same basis is used for Jeq and Meq).

In a second stage, (5) is tested by projection onto vector Dirac-
delta functions coincident with the position and direction of the
available field samples on ΣM . The number of such measurements
is denoted by Nm, and in standard measurement ranges it is
twice the number of measurement points considering both tangential
components, i.e., Nm = 2Ms.

As to the interior-field constraint, we note that (7) requires the
evaluation of singular terms; the integrals required in the exact testing
of the system (5), (7) are all standard terms of MoM (for dielectric
bodies and/or EFIE and MFIE), but for simplicity of implementation
we have pursued a different route.
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While proper handling of the singularities plays an important role
preserving the spectral properties of the discretized operators, it has
been shown in [16] that the source and testing points may be displaced
(in situations like this), provided the displacement is controlled by
the mesh size. Therefore, we employed an approximate testing on a
surface Σ=

R lying at a distance ∆ ≈ hR underneath ΣR. Within this
approximation, (6) and (7) are equivalent. The testing of the inner field
constraint is implemented by first building an inward-offset version of
the triangular discretization of ΣR (denoted by Σ=

R) and then using
a fairly uniform grid of vector tangential Dirac-delta functions on it
as testing elements. The testing procedure thus leads to the following
linear system:

Ax = b (11a)

η0

[ −LMR KMR

−LRR KRR

] [
CJ

CM

]
=

[
E
0

]
(11b)

where the matrix counterparts of operators L and K have been
subscripted by two letters indicating respectively the testing domain
and the source domain, M for ΣM , R for ΣR.

Matrix components are obtained by projection on the testing basis
(superscript on the testing functions w indicates the testing surface as
above):

X†R[m,n] =
〈
w†

m|X (fn)
〉

(12a)

Em =
〈
w†

m|E
〉

(12b)

X = L or K X = L or K† = M or R

The overall system matrix has dimension (Nm + NR) × NT ;
in the following we will denote the total number of equations by
MT = Nm + NR. Note that if one does not want to enforce the zero
field condition (6) or (7), one simply deletes the second (block) row
of (11b).

The rectangular linear system (11) is solved by applying the
Conjugate Gradient (CG) iterative solver to the normal equation. Use
of an iterative solver is mandatory for large-scale problems, allowing
the application of fast algorithms as in [2, 14]. It has the additional
advantage of being inherently regularizing, which is important in this
inverse problem. Of particular appeal is the possibility of setting a
goal residual in agreement with the tolerance of the acquisition system
for improved robustness against noise, which unavoidably corrupts
measurements.



80 Araque Quijano and Vecchi

3. NUMERICAL TESTS

In this section, we apply the various formulations of source
reconstruction to data both generated synthetically and from
measurements. In the tests with synthetic data, the field samples
at ΣM are computed via (MoM) simulation of the CAD model of a
given structure, as well as the fields at the reconstruction surface ΣR;
this allows evaluating the accuracy with which fields are reconstructed
thereon.

The tests with measurement data obviously allow to test the
robustness of the algorithms in real-life situations. On the other hand,
while the reconstructed fields on ΣR can be assessed qualitatively
(checking symmetries, relative values, etc.) this does not allow to assess
the accuracy of the reconstruction; therefore, to add a quantitative
assessment, we have used measured data for a structure which we could
also simulate: this is discussed in Section 5.

Finally, for the smaller problem where it was feasible, we have also
conducted a study of the SV spectrum, which yields key information
on the ability to reconstruct sources with a given signal-to-noise ratio
in the measured field.

In agreement with the most widespread measurement setups, the
general formulation presented above is restricted to the particular case
of uniform spherical ranges providing for each measurement point theta
and phi components of the electric field. The choice of the number
of measurement points is related to the number of the DoF of the
field [10–12], i.e., the minimum number of measurement samples that
are necessary to reconstruct the field (at the measurement surface or
farther) with negligible information loss. When the field DoF can be
determined, they are useful in the reconstruction process by providing
a lower bound to the resolution required in measurement setups. We
employ a conservative modification of the expression found in the
references above which is in agreement with the “empirical expression”
found in [19, Eqs. (2.1) and (4.137)]); it allows accounting for i) small
radiators and ii) near field measurements, to estimate the maximum
angular interval (in radians) allowed in spherical-range measurements
when the radiating structure may be enclosed by a sphere with radius
a:

∆α =
1

2a/λ + 10/π
(13)

In evaluating the performance of reconstruction we use two
indicators: data misfit and reconstruction error. Data misfit, which
is the difference between the reconstructed (ER) and measured (E)
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field data, is always available, and is computed as follows:

εM =

√√√√√√

∫∫
ΣM

|ER −E|2ds

∫∫
ΣM

|E|2ds
(14)

The obvious parameter to judge the quality of the reconstruction
is deviation from the exact value of the currents, i.e.,

εR =
M(Jex−JR,Mex−MR)

M (Jex,Mex)
M (J,M)=

√√√√
∫∫

ΣR

|J|2+|(M)/η0|2ds

(15)
where Jex, Mex are the exact currents and JR, MR result from the
solution of the problem in (11). The function M has Ampere (A)
units and plays the role of “total magnitude”. The exact currents are
not available in real life, and as discussed above we will assess the
reconstruction error in test cases where we can compute a reference
solution for the currents.

It should be noted that minimizing the data misfit εM in (14) does
not in any way imply minimization of the current reconstruction error
εR in (15); due to the ill-conditioning of the problem two very different
solutions may radiate very similar fields at the measurement surface.

3.1. Dipole on Box

The first test structure is shown in Fig. 2. It is a resonant strip
dipole placed above a rectangular metallic box, and fed by a coaxial
cable via a twin-lead transition. It is contained in a sphere of radius
0.43λ; therefore, according to (13), the maximum angular interval for
measurements is 14.2 degrees, meaning that in a spherical range at
least 314 measurements are required per field component.

3.1.1. Singular Value Analysis

We begin by analyzing the Singular Value (SV) distribution for
this reconstruction problem, reported in Fig. 3 for near- and far-
field measurements; all choices for the formulation are shown. In
the reference reconstruction problem ΣR is the minimum sphere
(0.43λ radius) discretized by N = 774 RWG basis functions (hR =
0.1λ was used), yielding NT = 774 for one-current formulations
(J-current Single-Equation Formulation (J-SEqF). M-current Single-
Equation Formulation (M-SEqF)) and twice as many for two-current
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Figure 2. Dipole-on-box reference structure.

forms (Two-current Single-Equation Formulation (JM-SEqF), Dual-
Equation Formulation (DEqF)); ΣM is a sphere concentric to ΣR, with
Ms = 2048 sample points, so that one has a total of M = 2048 × 2
measurements considering both transverse components. We note that
both a fine discretization on ΣR and strong oversampling on ΣM with
respect to the degrees of freedom in (13) has been effected in order
to completely outrule possible effects of the lack of information in the
results of this test. Fig. 3-top and -bottom refer to radii RM = 0.9λ and
RM = 9λ respectively. For the single-current cases, the figures show
both the case in which the mesh is the same as for the two-current cases,
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Figure 3. SV spectrum for various equivalence forms in a
reconstruction problem from near- (top) and far-field (bottom) data.
The shorter sequences for J-only and M-only refer to same mesh
density as for J&M. Note that for the far-field case J-only and M-only
sequences are identical in view of the equivalent asymptotic behavior
for the associated Green’s functions, while these are slightly different
for the near-field case.

i.e., with half the number of unknowns, and with (approximately) the
same number of unknowns as with the two currents, i.e., with a system
of the same size as in Two-current Single-Equation Formulation (JM-
SEqF).
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We note that all Single-Equation Formulations (SEqFs) result in
similar types of SV sequences, and when the number of unknowns
is the same, the similarity is more pronounced; the single-current
cases show a smaller condition number than the Two-current Single-
Equation Formulation (JM-SEqF) case when using the same mesh as
a consequence of the halved number of unknowns. It is apparent
that Dual-Equation Formulation (DEqF) drastically improves the
SV distribution and condition number in virtue of the availability
of additional physical information on the solution, which, unlike
conventional regularization such as low-pass filtering, does not reduce
accuracy in the final solution. The similarity between the SV spectra
of the Single-Equation Formulations (SEqFs), and the difference with
Dual-Equation Formulation (DEqF) points at the on-surface integral
equation as the key ingredient in the regularization; that was pointed
out first in [5], and is similar to the treatment in [43] for a different
(direct) problem.

It is important to assess the reconstruction capability expressed by
the SV spectrum with respect to degrees of freedom of the measured
field. With the minimum-sphere angular step indicated in (13) one
arrives at 314 samples per component; considering that here we have
two vector components for each of the two (independent) fields, the
total number of DoF for this reconstruction problem yields 4× 314 =
1256. These results hold for the “far” field (about one wavelength away
from the minimum surface), but theoretical predictions [9] show that
at that for both considered measurement surfaces, RM = 0.9λ (at a
distance of about 0.5λ from ΣR) and RM = 9λ the DoF are already
those of the “far” field.

A remarkable result of Dual-Equation Formulation (DEqF) is
the evident change in the SV slope around the spectral index 1200
(dashed vertical line in Fig. 3) that very well agrees with the DoF
prediction above; within that limit, the condition number is very
benign; beyond that knee point, a progressive loss of information is
apparent in the increased slope, and the slope depends on the distance
from the minimum sphere. No trace of the number of DoF of the
measured field is apparent in the SV spectrum of Single-Equation
Formulations (SEqFs). One can note that for these formulations the
loss of obtainable information is dramatically worse for the far-field,
while the Dual-Equation Formulation (DEqF)’s spectrum does not
show such a worsening.

Finally, it is apparent that the difficulty in trying to reconstruct
sources at a density beyond the one inherent to the DoF of the
measured field is dramatically greater when using Single-Equation
Formulations (SEqFs). Indeed, for this formulation the task is
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challenging even trying to regain the number of DoF of the measured
field.

3.1.2. Source Reconstruction

In this test, the reconstruction surface ΣR is a sphere with radius
rR = 0.5λ, i.e., only slightly larger than the minimum sphere.§
The measurement surface ΣM is concentric with ΣR and has radius
RM = 8λ.

A comprehensive comparison between the two two-current (Two-
current Single-Equation Formulation (JM-SEqF), Dual-Equation For-
mulation (DEqF)) and the two single-current (J-current Single-
Equation Formulation (J-SEqF), M-current Single-Equation Formula-
tion (M-SEqF)) formulations has been performed; results are reported
in Fig. 4 in a visual format, while Table 1 summarizes the quanti-
tative indicators defined previously. Before discussing these results,
it is important to discuss the meaning of the comparison, especially
with respect to the reference (or “exact”) solution. Our reference are
the Love’s currents J = n̂ ×H and M = −n̂ × E in which the fields
on the reconstruction surface ΣR have been computed from the exact
(MoM) current on the structure. On the other hand, the interpretation
of the reconstructed currents depends on the form of the Equivalence
Principle used as discussed in Section 2. Therefore, the current recon-
struction error εR is meaningful in a strict sense only for Dual-Equation
Formulation (DEqF); in all other cases, it is instead primarily a mea-
sure of the distance between Love’s currents and the equivalent sources
for that formulation. For example, with any of the single-current for-
mulations one knows a priori that the reconstructed equivalent sources
are not Love’s, and hence one should not expect in any case εR to be
small. Similar considerations apply for Two-current Single-Equation
Formulation (JM-SEqF), but in this case it is not known a priori what
the computed equivalent sources actually are; our analysis will also try
to assess this from the available results.

With Two-current Single-Equation Formulation (JM-SEqF) we
simply demand that the equivalent sources radiate the goal field;
besides this, no relationship is enforced between electric and magnetic
sources: the associated freedom is used (by the pseudo-inverse solution)
to minimize the field residual and the 2-norm of the solution. Indeed,
one observes that the field residual is very low as seen in Table 1,
and the total current magnitude M is lower than with any of the
§ The slight displacement is chosen in order to have good accuracy in the computation of
reference currents from the solution; with our implementation the computation of the near
field of the current radiation requires observation points to be located at a distance greater
than about the cell size for each cell in the original radiator.
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other forms (this is consistent with the fact that the solution of the
Least-Squares (LS) normal equations leads to the minimum-energy
solution [28]).

Only for Dual-Equation Formulation (DEqF) reconstructed
currents resemble very well the reference, reproducing all relevant
features as seen in Fig. 4. Otherwise said, Dual-Equation Formulation
(DEqF) gives directly the fields required in diagnostic applications.

Figure 4. Reference (Love’s) and reconstructed currents using various
formulations for the dipole-on-box structure; test data are reported in
Table 1. Black and white arrows represent direction and amplitude
(relative to the total current amplitude as given by the color scale) of
the real and imaginary parts of the vector currents.
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Table 1. Comparison between the various equivalence formulations,
dipole-on-box.

Formulation

Parameter DEqF JM-SEqF
J-SEqF M-SEqF

Lo-res Hi-res Lo-res Hi-res

ΣM

∆α 10◦

Nm 1368

RM 8.5λ

ΣR

rR 0.5λ

hR 0.1λ 0.1λ 0.07λ 0.1λ 0.07λ

NT 2208 1104 2280 1104 2280

Σ=
R

NR 7360
N/A

∆ 0.15λ

Solution

εM 1.3e−4 3.3e−7 9.9e−6 2.5e−6 1.3e−5 2.9e−6

εR 0.14 0.70 1.4 1.4 1.6 1.5

`2 norm 0.85 0.61 1.22 1.73 1.36 1.90

P/P0 0.999 −9e− 3 0

The single-current formulations, as expected, provide a different
source distribution from Love’s; we have also compared two different
mesh densities: the finer mesh yields approximately the same number
of unknowns as the two-currents on the other mesh. Note that
amplitudes are significantly higher in this case than in the two-
current approaches; for these latter, both Dual-Equation Formulation
(DEqF) and Two-current Single-Equation Formulation (JM-SEqF)
yield sources of the same order of magnitude. As alluded above, this
should not be taken as a performance indicator in any case; in fact,
we are comparing different quantities. The higher amplitude of the
single-current case is likely to be due to the need for this single current
(e.g., J) to radiate the same power as two currents jointly.

The above characteristics are reflected in the value of the
reconstruction error in Table 1; again, the large values of εR for Single-
Equation Formulations (SEqFs) do not mean that the reconstruction
process is faulty: they simply indicate that the reconstructed sources
are not the fields on the reconstruction surface.

As a further illustration of the actual physical meaning of the
reconstructed currents, we have computed the following integral:

P =
1
2

∫∫

ΣR

Re(J∗R ×MR) · n̂ds (16)

When reconstructed currents satisfy Love’s equivalence (4) (Dual-
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Equation Formulation (DEqF)), P in (16) is simply the total power
flowing across ΣR. For Two-current Single-Equation Formulation
(JM-SEqF) it is difficult to tell since the currents are not related to
actual fields in a simple way, while it is evidently zero for J-current
Single-Equation Formulation (J-SEqF) and M-current Single-Equation
Formulation (M-SEqF). The real part of the quantity P is reported
at the bottom in Table 1 normalized to the actual radiated power
P0 = |V |2Re (Y ) /2 (power delivered to the lossless antenna port in
our full-wave simulation); for Dual-Equation Formulation (DEqF) the
energetic matching is very good, while Two-current Single-Equation
Formulation (JM-SEqF) presents a negative P, further illustrating the
important differences between the very nature of the these equivalent
currents.

A final observation is necessary to put the numeric values of
reconstruction accuracy in proper perspective, also for Dual-Equation
Formulation (DEqF). In this case one reconstructs Love’s currents, and
the comparison with reference Love’s current is meaningful; however,
a perfect match cannot be expected because of the unrecoverable loss
of information on reactive fields when the measurement surface is
displaced — as in real life — from the reconstruction sphere. The
accuracy achieved (17% deviation) in Table 1 may not appear entirely
satisfactory, but that loss of information is intrinsic: this can be verified
looking at the significantly better accuracy obtained in the example in
Section 3.2.

3.2. Mono-cone Antenna on a Circular Ground Plane

The structure considered is depicted in Fig. 5 along with the
reconstruction surface ΣR. It consists of a mono-cone antenna at

Figure 5. Mono-cone reference structure on a circular ground plane
with radius 3λ showing full-wave currents for computation of reference
field data and discretization of the reconstruction surface ΣR.
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Table 2. Summary of results for the mono-cone structure.
Formulation

Parameter JM-SEqF DEqF

ΣM

∆α 7.5◦

Nm 2212

RM 16.5λ

ΣR

hR 0.25λ

rR 2.0λ

NT 5400

Σ−R
N ′ 3276× 2

N/A
∆ 0.5λ

Solution

εM 1.95e− 6 7.24e− 5

εR 0.71 0.08

`2 norm 0.3236 0.4583

the center of a circular ground plane with radius 1.7λ; this structure
is rotationally symmetric, which allows an additional test on the
quality of the reconstruction, since no symmetry is enforced on the
latter. According to (13), about 1600 measurements per component
are required in the far field. Details on the tests performed along
with a summary of the results using Two-current Single-Equation
Formulation (JM-SEqF), Dual-Equation Formulation (DEqF) are
given in Table 2.

The equivalent currents computed are shown in Fig. 6;
as expected, those resulting from Two-current Single-Equation
Formulation (JM-SEqF) do not reflect well Love’s equivalent currents;
in particular, it can be seen that the shadow region clearly visible
in the exact currents does not appear in the reconstructed currents.
This points at the scarce information for diagnostics that can be
extracted from these equivalent currents, and the risks associated
to the interpretation of the results under the assumption that the
reconstructed currents are actually proportional to the fields. On the
other hand, Dual-Equation Formulation (DEqF) reproduces well all
the relevant features, matching the reference data both in visual and
quantitative terms. In addition, we see a better match of the reference
currents in comparison to the previous test (dipole on box) as a result
of having a reconstruction surface ΣR relatively farther from the actual
radiator (less reactive-field information is present, which in all cases is
progressively masked by noise as we move away from sources to reach
the measurement range). It is worth noting that reconstruction of
co- and cross-polar components of the goal field is very good for both
formulations, as seen in Fig. 7.
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Figure 6. Reference and reconstructed equivalent currents JM-SEqF
and DEqF. Black and white arrows represent direction and amplitude
(relative to the total current amplitude as given by the color scale) of
the real and immaginary parts of the vector currents.

4. INTERIOR AND EXTERIOR FIELDS

Given the ability shared by all formulations of reconstructing the
measured fields, the distinctive aspect among those is the behavior of
fields radiated inside ΣR (in addition to the already detailed difference
in the meaning of the equivalent currents). We have thus studied
in more detail the field radiated by the equivalent currents in the
interior region Ω−. This will allow to check the effectiveness of the
zero field enforcement for Dual-Equation Formulation (DEqF), and the
nature of the solution associated to the Two-current Single-Equation
Formulation (JM-SEqF); in fact, the latter has been claimed to provide
Love’s currents in [3, P. 3461, 27, P. 3857], which is in contrast with
the theory exposed above and the numerical results, notably those in
Table 1; inspection of interior fields will add visual evidence on the
incorrectness of the above claims.
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Figure 7. Reference (exact) and reconstructed field cuts for JM-SEqF
(top) and DEqF (bottom).

Near fields due to currents obtained with both formulations have
been computed on a vertical slice through ΣR as seen in Figs. 8(left)
and (center). The interior field for Two-current Single-Equation
Formulation (JM-SEqF) is clearly not zero, thus ruling out once again
its being related to a Love-type equivalence. As expected, Dual-
Equation Formulation (DEqF) leads to negligible field inside ΣR, while
Two-current Single-Equation Formulation (JM-SEqF) generates fields
that seem smooth when traversing ΣR.

The correspondence between both formulations outside ΣR is
confirmed by the difference field, i.e., Two-current Single-Equation
Formulation (JM-SEqF) minus Dual-Equation Formulation (DEqF)
fields (which are in turn generated by the difference between the
corresponding sources), shown in Fig. 8(right). The fact that the
difference between Dual-Equation Formulation (DEqF) and Two-
current Single-Equation Formulation (JM-SEqF) sources radiates non-
negligible fields only inside ΣR confirms that it results from the
application of the Equivalence Principle to sources located outside ΣR

as discussed in Section 2.2 on the basis of the integral identities in [40].
Furthermore, it constitutes a check on the numerical implementation,
since the the uniqueness theorem implies that any choice of the
equivalent currents can be used in obtaining fields outside ΣR.
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Figure 8. H-field radiated by JM-SEqF (left) and DEqF currents
(right) and the difference between these (right) which is due to the
element in the null-space of the radiation operator required to go from
JM-SEqF into DEqF. Figure refers to a surface cutting ΣR and the
currents shown in Fig. 6).

5. TESTS WITH MEASURED DATA

In this section, we present results pertaining to measurements on
a physical prototype of the structure introduced in Section 3.2. A
photograph of the prototype along with the acquisition system is
shown in Fig. 9. As an initial check, fields from full wave simulation
(see Fig. 7) are compared to those actually measured, obtaining a
good agreement in the co-polar component as seen in Fig. 10. The
cross-polar component is below the noise floor (Signal to Noise Ratio
(SNR) is approximately 40 dB) but has been used anyway in the
reconstruction, which provides a stringent test for the technique with
real data. Moreover, due to the support structure, measured data is
restricted to observation coordinates for which θ ≤ 164◦, which implies
a further (typical in practice) loss of information and worsening of the
Signal to Noise Ratio (SNR).

Currents were reconstructed with both Dual-Equation Formu-
lation (DEqF) and Two-current Single-Equation Formulation (JM-
SEqF); a summary of the main parameters and results is shown in
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Figure 9. Prototype of mono-cone structure and the measurement
range.

Figure 10. Comparison between measured and synthetic co-polar
field for the mono-cone structure.

Table 3, while reconstructed currents are shown in Fig. 11. Even
though a low data misfit εM is observed for both formulations (it is
compatible with the Signal to Noise Ratio (SNR)), only Dual-Equation
Formulation (DEqF) provides a stable solution, which agrees with the
discussion in Section 3.1.1. In fact, currents from Two-current Single-
Equation Formulation (JM-SEqF) are noisy, departing considerably
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Table 3. Summary of results for reconstruction from measured data,
mono-cone structure.

Formulation
Parameter JM-SEqF DEqF

ΣM

∆α 5.3◦

Nm 4352
RM 16.5λ

ΣR

hR 0.25λ
rR 2.0λ
NT 5400

Σ−R
NR N/A

900× 2
∆ 0.5λ

Solution
εM 2.60e− 2 2.80e− 2
ε∗R 0.90 0.20

`2 norm 0.404 0.454
*Relative to simulation

from the ones obtained from synthetic data in Section 3.2 (the noise in
the solution is especially evident in the current directions indicated by
arrows). The poor spectral properties of the single-equation formula-
tion are the cause of the solution instability mentioned above, and the
necessary remedy would be regularization. This is a standard topic in
inverse problems, and will be discussed here only briefly. The most em-
ployed regularizations are Tikhonov and the Truncated Singular Value
Decomposition (TSVD) (e.g., [7]), but only the former is applicable in
(even moderately) large problems. All regularizations imply a low-pass
effect that reduces spatial resolution (much like noisy signal filtering),
but especially the necessity to find the appropriate value of the reg-
ularization parameter (like the cut-off frequency of a low-pass filter)
appears a major threat to generality and “blind” applicability.

In contrast, Dual-Equation Formulation (DEqF) affords a stable
solution, thanks to the intrinsic regularization due to the addition of a
physical information. Furthermore, the deviation with respect to the
reference full-wave currents εR is very good considering the composite
effect of noise and truncation, and the uncertainty due to comparing
sources reconstructed from measured data to reference sources deriving
from simulation. This indicates that, besides providing currents more
useful in diagnostics tasks, Dual-Equation Formulation (DEqF) is more
robust to noise, a key aspect when dealing with measured data.
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Figure 11. Equivalent currents reconstructed from measurements
on the mono-cone structure; reference currents are obtained from
simulation of the measured antenna. Black and white arrows represent
direction and amplitude (relative to the total current amplitude as
given by the color scale) of the real and imaginary parts of the vector
currents.

6. CONCLUSION AND PERSPECTIVES

Various formulations of the Equivalence Principle have been analyzed
in the context of the source reconstruction problem. It has been
shown that if Love’s equivalent sources are desired, the associated
zero-field constraint needs to be enforced, resulting in a dual-equation
formulation; this is opposed to the usual approaches in the literature,
that employ two equivalent currents and a single integral equation.

It has been demonstrated that in its initial form, the Two-current
Single-Equation Formulation (JM-SEqF) of the source reconstruction
problem suffers from indeterminacy as a consequence of the existence
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of a non-trivial null-space in the associated radiation operator. In
practical implementation uniqueness is obtained via the implicit
stipulation of a minimum-norm solution that underlies the typical
pseudo-inverse solution of the discretized equations. This removes
the null-space from the solution: this is shown not to yield Love’s
equivalent currents.

When solved together, the dual equations lead to correct
reconstruction of Love’s currents, as well as to an overall stabilization
on the solution. These benefits are confirmed by tests with synthetic
and measured data. As seen in the latter, the single-equation (usual)
approach yields an unstable solution even for a minimal density
of current unknowns, suggesting that a regularization procedure is
necessary for large problems and measured data. The Dual-Equation
Formulation (DEqF) solution remains stable and accurate. These
benefits come to a price: a more complex operator has to be
discretized, resulting in a larger matrix. However, the ability to avoid
a regularization and the associated loss of resolution and difficulty in
choosing the regularization parameters seems a good counterbalance
to these difficulties.

This work has not addressed the computational complexity for
large problems; it has however addressed the conditioning issue that is
crucial for the iterative solutions necessary for large-scale computation,
which is the logical step following this work.
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