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Field-dependent roughness of moving domain walls in a Pt/Co/Pt magnetic thin film
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The creep motion of domain walls driven by external fields in magnetic thin films is described by universal
features related to the underlying depinning transition. One key parameter in this description is the roughness
exponent characterizing the growth of fluctuations of the domain wall position with its longitudinal length scale.
The roughness amplitude, which gives information about the scale of fluctuations, however, has received less
attention. Albeit their relevance, experimental reports of the roughness parameters, both exponent and amplitude,
are scarce. We report here experimental values of the roughness parameters for different magnetic field intensities
in the creep regime at room temperature for a Pt/Co/Pt thin film. The mean value of the roughness exponent is
ζ = 0.74, and we show that it can be rationalized as an effective value in terms of the known universal values
corresponding to the depinning and thermal cases. In addition, it is shown that the roughness amplitude presents
a significant increase with decreasing field. These results contribute to the description of domain wall motion in
disordered magnetic thin systems.

DOI: 10.1103/PhysRevB.104.144202

I. INTRODUCTION

Domain wall motion in thin magnetic films has long been
studied. It comprises the action of external drives as magnetic
fields or electrical currents; it also involves thermal effects and
a key role of disorder. Since the seminal work of Lemerle et al.

[1] relating domain wall motion to universal characteristics of
disordered systems, there have been a lot of studies tackling
this problem both from theoretical [2–20] and experimental
[21–34] perspectives.

Intrinsic disorder induces a zero-temperature depinning
transition [35]. Consider a magnetic thin film with perpen-
dicular anisotropy such that domains with the magnetization
pointing in opposite out-of-plane directions are separated by
a domain wall. The motion of the domain wall can be induced
by an external out-of-plane magnetic field H favoring one
of the magnetization domains. Ideally, at zero temperature,
the domain wall does not move when the external field is
small because it is pinned by the disorder. A critical field
value, the depinning field Hd , must be reached in order to
force the domain wall to acquire a finite velocity v. For
H ≫ Hd velocity increases linearly with the field, in the so-
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called fast-flow regime. Approaching the critical field from
above, the velocity vanishes following a power-law behav-
ior v ∼ (H − Hd )β with β the velocity critical exponent.
Finite temperature values break down the abrupt transition
allowing for finite velocities even below Hd . On one hand,
a finite temperature value rounds the abrupt depinning tran-
sition exactly at Hd , with the velocity vanishing as v ∼ T ψ ,
with ψ the thermal rounding critical exponent [14]. On the
other hand, thermal activation well below Hd gives rise to
creep motion characterized by a nonlinear increase of the
velocity as v ∼ exp(−H−μ), with μ the universal creep ex-
ponent [2,36]. This is the complex velocity-field response
scenario for domain wall motion in a disordered magnetic
thin film.

The information carried by the set of universal critical
exponents (β, ψ , and μ) associated to dynamic aspects of the
depinning transition is complemented by the set of roughness
exponents characterizing fluctuations in the position of the
domain wall. In general, the roughness exponent ζ character-
izes the growth of transverse fluctuations of the domain-wall
position as a function of the longitudinal length scale r.
These fluctuations can be defined in terms of a displacement-
displacement correlation function as the roughness function
B(r) or the structure factor S(q), both defined below, such
that B(r) ∼ r2ζ or S(q) ∼ q−(1+2ζ ). In terms of such geo-
metrical fluctuations, three reference states can be defined
associated to the equilibrium (H = 0), depinning (H = Hd )
and fast-flow (H ≫ Hd ) states, each of them characterized
by different values of the roughness exponent: ζeq, ζdep, and
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ζth, respectively [8]. In principle, at any finite field value H ,
fluctuations of the domain-wall position at a given length
scale r can be described in terms of these different roughness
exponents.

The paper by Lemerle et al. [1] reported the first exper-
imental value for the roughness exponent associated to the
creep regime of domain wall motion. They reported ζ =

0.69 ± 0.07, which was at first interpreted as the equilibrium
roughness exponent ζeq = 2/3. However, this is not compat-
ible with more recent predictions [8] since the scale of the
experiment is well above the length scale where the equilib-
rium roughness exponent should be observed. Following the
work by Lemerle et al. [1], experimental reports of roughness
exponents show a wide range of reported values [23,31,37–
43]. For field-induced motion of one-dimensional domain
walls, reported values can be found in the range 0.60 < ζ <

0.83 for Pt/Co/Pt, around ζ = 0.6 for (Ga,Mn)(As,P) and
0.72 < ζ < 0.82 in GdFeCo [43]. Although the values of ζ

were initially interpreted as equilibrium values, how to ratio-
nalize the wide range of observed values remains as an open
question.

In addition to these exponent values, the amplitude of the
roughness function B(r) is a direct measure of the typical scale
of the fluctuations and has received much less attention, most
likely because it is not a universal quantity. The roughness
amplitude, in principle, depends on the temperature of the sys-
tem and on the elasticity of the domain wall [4,44]. However,
recent experimental observations of the roughness amplitude
indicate that it depends also on the applied magnetic field
[42,43]. Therefore, a more detailed study of the dependence
of the roughness amplitude on external parameters is indeed
needed.

In a recent paper, the interpretation of roughness param-
eters in terms of length-scale crossovers has been presented
[43]. Ferrimagnetic GdFeCo samples were studied focusing
on different temperature and field conditions, but a system-
atic field-dependent study is lacking. Here, we report on
the field dependence of the roughness parameters, both the
roughness exponent and the roughness amplitude, well in the
creep regime of motion of domain walls in a Pt/Co/Pt mag-
netic thin film. We pay special attention to the experimental
protocol so as to perform all the measurements in exactly
the same conditions. We obtain that the roughness exponent
is almost constant when varying the magnetic field, with a
mean value ζ = 0.74. We explain this result as an effective
value which results from a finite crossover length scale be-
tween depinning roughness and thermal roughness reference
states—characterized by ζdep and ζth, respectively. In addition,
the roughness amplitude is shown to increase with decreasing
magnetic field, which suggests that transverse fluctuations
at the Larkin scale (above which disorder dominates over
elasticity) are field-dependent. The rest of the manuscript is
organized as follows. Section II presents experimental details
about the sample, the image acquisition of domain walls and
a preliminary characterization of the velocity-field behavior.
Then, the main experimental results and their analysis are
presented in Sec. III. Section IV presents an interpretation
of the experimental data in terms of a crossover between
roughness regimes at different scales. The findings are then
analyzed using scaling relations in Sec. V, with details de-

FIG. 1. Creep plot of the velocity, ln v vs H−1/4. The linear
behavior indicates that, for the studied field range, the system is in the
creep regime. Two domain wall profiles are shown, corresponding to
the maximum and minimum velocities.

ferred to the Appendix. Finally, Secs. VI and VII are devoted
to a discussion of the results and the conclusion of the work,
respectively.

II. EXPERIMENTAL DETAILS

We studied the roughness of domain walls in a
Pt(8 nm)/Co(0.4 nm)/Pt(4 nm) magnetic thin film with per-
pendicular magnetization. The sample was deposited on a
silicon substrate by dc magnetron sputtering at room tempera-
ture in a (2.8 ± 0.1) × 10−3 Torr Ar atmosphere (see Ref. [45]
for further details).

A home-made polar magneto optical Kerr effect (PMOKE)
microscope was used to image magnetic domains. Relevant
components of the microscope are a 5× objective (Olympus

LMPLFLN series), a 637-nm dominant wavelength high-
brightness LED, two Glan-Thompson polarizers, and an EXi
Blue (1392 × 1040 pixels, 14 bit) CCD from QImaging Corp.
The illumination of the PMOKE microscope was set in a
Köhler configuration and we used a 2 × 2 binning that gives
an effective pixel size of δ = 0.936 μm.

The magnetization was first saturated in an out-of plane
direction and then a magnetic domain was nucleated by ap-
plying a magnetic field pulse in the opposite direction. Once a
domain wall was nucleated, a magnetic field pulse of intensity
H and duration �t was applied to move the domain wall.
Differential images were used to measure domain-wall ve-
locities, which were computed as v = �x/�t , where �x was
the average advance of the domain wall. We used magnetic
fields in the range 0.6 mT < H < 3.5 mT and pulse durations
0.001 s < �t < 1 s to measure velocities well in the creep
regime. Figure 1 shows the velocity against field in a creep
plot, ln(v) vs H−1/4. The linear behavior observed for veloc-
ities in the range 23 μm/s < v < 31 mm/s indicates a good
agreement with the creep regime [27],

ln v = ln vd +
Td

T
−

Td H
1/4
d

T
H−1/4, (1)
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FIG. 2. Domain wall profiles used to evaluate the roughness
properties. For each field the longitudinal length L is fixed but the
number of individual profiles N varies as indicated in each panel
[(a)–(h)].

where vd , Td , and Hd are the depinning velocity, depinning
temperature, and depinning field, respectively (see Ref. [28]
and references therein). Using the linear fit (dashed line in
Fig. 1) and considering the depinning velocity vd for Pt/Co/Pt
thin films to be in the range 1 m/s − 20 m/s [28], the depin-
ning temperature and depinning field can be estimated using
Eq. (1) as Td = (2400 ± 400) K and Hd = (25 ± 15) mT,
respectively. These rough estimates will serve to assess im-
portant length scales below.

The characterization of domain wall roughness was per-
formed with fixed and controlled experimental conditions.
The range of explored velocities was set by the use of a
single coil to produce the magnetic field. Larger velocities
could be produced by a different (smaller) coil which we did
not use to avoid possible changes in the homogeneity of the
field. The temperature of the sample was stabilized at 295 K.
Furthermore, the same physical region of the sample was
used to acquire images, with the obtained domain wall pro-
files corresponding to different positions in the field of view.
The two insets in Fig. 1 show domain wall profiles obtained
after applying magnetic field pulses of different intensities,
corresponding to the maximum and minimum velocities. The
different gray levels correspond to out-of-plane magnetization
in opposite directions.

In order to evaluate the roughness of domain walls, it is
necessary to obtain good statistics for each set of parameters
[42]. A sequence of magnetic field pulses with the same in-
tensity and pulse duration was used, assuring the domain wall
stays within the field of view. A set of N images, all under
the same experimental conditions, were taken after each pulse
(as indicated in Fig. 2, where the average position was sub-
tracted to every domain wall profile). In addition, all imaged
domain walls were cropped using the same longitudinal size

L = Mδ with M = 330, resulting in L ≈ 309 μm. Since finite
size effects are important when computing the roughness [42],
having the same size L for all profiles allows us to average
properly.

III. EXPERIMENTAL ROUGHNESS PARAMETERS

From PMOKE images we obtained domain wall positions,
which we represent as ui(x j ) with x j = δ j and j = 1, ..., M.
The index i runs over the N profiles obtained for each field
value. All profiles used in this paper with the same longitu-
dinal length L are shown in Fig. 2. The number of profiles
for each field N is indicated in the figure. These profiles were
taken in different positions within the same field of view of the
PMOKE microscope, thus x j is referred to the initial point of
the domain wall and the variable ui(x j ) is shifted such that
its mean value is zero. In order to exploit the relationship
between different correlation functions (as described below)
we consider a flat-domain-wall approximation with null mean
domain-wall slope. This approximation does not take into
account the slight curvature observed for some domain walls
in Fig. 2, but permits to define domain walls of the same
longitudinal size, crucial for proper averaging, and to use the
analysis protocol described below.

Fluctuations of domain-wall position can be accounted
for by the roughness function, a displacement-displacement
correlation function. For a given profile u(x j ) the roughness
function B(r) is defined as

B(r) =
1

M − k

M−k∑

j=1

[u(x j + r) − u(x j )]
2, (2)

where k = r/δ < M is an integer value. Notice that, by con-
struction, the statistics of B(r) decreases for large r values.
However, good statistics is obtained for small r, which is in
the range where the roughness parameters are extracted (see
below). For self-affine profiles a power-law growth of B(r) is
expected,

B(r) = B0

( r

ℓ0

)2ζ

, (3)

where ζ is the roughness exponent and B0 is the rough-
ness amplitude. We measure r in μm and set ℓ0 = 1 μm
so that B0 has the same units as B(r). Therefore, using the
fitting procedure described in Ref. [42] we can extract the
roughness parameters for each individual domain wall profile,
obtaining both ζi and B0i. In order to illustrate how the rough-
ness parameters of individual domain-wall profiles fluctuate,
Fig. 3(a) shows two Bi(r) functions corresponding to two
different profiles obtained with the same field H = 0.62 mT.
The roughness parameters and the boundaries of the fitting
range obtained as part of the fitting procedure for each case
are indicated. The boundaries r0 and r1 are obtained as those
guaranteeing that the goodness of the fit, measured using
the coefficient of determination, is above R2 = 0.9995 when
fitting using a finite range inside (r0, r1). The same value for
the lower bound of R2 was used to analyze all experimental
profiles. The reported values for the roughness parameters
represent the best values taking into account possible varia-
tions in the limits of a linear fit inside (r0, r1) [42]. Finite-size
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FIG. 3. (a) Individual roughness functions Bi(r) for two different
profiles obtained using H = 0.62 mT. The individual roughness pa-
rameters ζi and B0 i for each case are indicated. r0 and r1 correspond
to the boundaries obtained from the fitting procedure. (b) Aver-
age roughness function 〈B(r)〉 corresponding to H = 0.62 mT. The
roughness parameters ζ and B0 are indicated. Thin light continuous
lines correspond to the N = 12 different individual roughness func-
tions Bi(r), obtained using the profiles in Fig. 2(a), used to obtain the
average value.

effects, evidenced by the drop of the roughness function at
large scales, are taken into account in the value of r1. From the
individual values of roughness parameters ζi and B0i, the mean
values 〈ζ 〉 and 〈B0〉 can be obtained for each set of profiles in
Fig. 2. These are shown in Fig. 4 (solid dots) as functions of
the applied field.

FIG. 4. Field dependence of the roughness parameters.
(a) Roughness exponent ζ . The three reference values, ζth, ζeq, and
ζ = 1, are indicated as horizontal dashed lines. The continuous
horizontal line corresponds to ζ = 0.74, the mean of the obtained
experimental values. (b) Roughness amplitude B0. Reported values
obtained as the mean of the individual roughness parameters and as
the roughness parameters of the average roughness function 〈B(r)〉
as indicated in the key. The dashed line indicated the B0 ∼ H−θ

behavior with θ = 7/8.

In addition, the average roughness function 〈B(r)〉 can be
computed from the roughness functions Bi(r) obtained from
the individual roughness profiles. This is possible because the
same system size L is used for all profiles. Otherwise, Bi(r)
for large r values would not have the same statistical weight
and finite-size effects would not be under control. The average
roughness function is also expected to recreate self-affine
behavior, with 〈B(r)〉 ∼ r2ζ . We show in Fig. 3(b) the average
roughness function corresponding to H = 0.62 mT together
with all the N = 12 individual Bi(r) roughness functions. A
linear fit of 〈B(r)〉 was performed using the same protocol as
for the individual Bi(r). The obtained values for the roughness
parameters, ζ and B0, are shown in Figs. 4 (empty dots).

We have then two sets of roughness parameters, obtained as
the mean values of individual fitting parameters, 〈ζ 〉 and 〈B0〉,
or as the fitting parameters of the average roughness functions
〈B(r)〉, ζ , and B0. These values are expected to converge to the
same value for large N . Figure 4 shows the field dependence of
the two sets of roughness parameters, where a good agreement
is observed between the two sets of values. As shown in
Fig. 4(a) the roughness exponent does not change noticeably
with the field. The mean value ζ = 0.74 is indicated, which
is obtained using all values in Fig. 4(a). Quite differently, the
roughness amplitude B0 is decreasing with increasing field H

as observed in Fig. 4(b). This quantitative change accounts for
the qualitative change in the roughness observed in the profiles
shown in Fig. 2 as discussed in Ref. [42].

We also include in Fig. 4(a) the exponent values expected
for the reference states in the quenched Edwards-Wilkinson
universality class: ζeq = 2/3, ζ = 1, and ζth = 1/2, cor-
responding to the equilibrium, depinning and thermal (or
fast-flow) regimes, respectively [8]. Strictly speaking, in
the depinning reference case the structure factor is S(q) ∼

q−(1+ζdep ), with ζdep = 1.25; but in such a super-rough case
(i.e., an exponent larger than 1) the roughness function B(r)
exhibits an effective exponent ζ = 1 [46], hence the value
shown in Fig. 4(a). The discrepancy between these reference
states and the measured exponent is the main point discussed
in the next section.

IV. CROSSOVERS BETWEEN ROUGHNESS REGIMES

The values for the roughness exponents reported in
Fig. 4(a) do not comply with the expected reference values
for a domain wall moving in a disordered medium, within the
quenched Edwards-Wilkinson universality class (short-range
elasticity, random-bond quenched disorder, and external field
[18]). As shown in Fig. 4(a) the mean value for the rough-
ness exponent is ζ = 0.74, which is different from ζth, ζeq

and ζ = 1. This situation is common to other experimental
results [23,31,37–43]. In order to reconcile the experimentally
obtained value for the roughness exponent with the theoretical
expected values, the crossover length scales between different
roughness regimes should be considered [8,43].

Domain-wall position fluctuations can also be described
in Fourier space using the structure factor, which is usu-
ally preferred in theoretical developments. Given a generic
domain-wall profile u(x j ), the structure factor can be
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written as

S(qn) =

∣∣∣∣∣
1

M

M∑

j=1

u(x j )e
−iqnx j

∣∣∣∣∣

2

, (4)

where x j = jδ, the system size is L = Mδ, and qn = 2πn/L

for n = 1, . . . , M. In the following, keeping in mind that qn

takes discrete values, we drop the subindex n for simplicity
and refer just to S(q). If u(x j ) represents a generic profile
containing the key roughness features, then S(q) should con-
tain the three roughness regimes at different scales [8]. At
length scales above the Larkin length Lc (i.e., q < qc ∼ 1/Lc),
disorder dominates over elasticity and a self-affine behavior of
the roughness function is expected. For a finite magnetic field,
we expect the three roughness regimes to be separated by
two crossover length scales: ℓopt, corresponding to the typical
size of a domain-wall segment that should be moved in order
to overcome the optimal energy barrier in the creep regime
[2,8,27,36], and ℓav, the typical size of depinning avalanches
[8]. For length scales r < ℓopt equilibrium roughness fluctua-
tions, given by ζeq, are expected. In the range ℓopt < r < ℓav

we expect depinning fluctuations, described by ζdep. Finally,
for r > ℓav roughness is given by ζth, characteristic of thermal
fluctuations in the fast-flow regime. This can be expressed
in terms of the structure factor in a useful way: We expect
S(q) ∼ q−(1+2ζeq ) for q > qopt, S(q) ∼ q−(1+2ζdep ) for qopt >

q > qav, and S(q) ∼ q−(1+2ζth ) for qav > q [8]. The two length
scales, ℓopt ≡ 2π/qopt and ℓav ≡ 2π/qav, should be taken into
account to rationalize the experimentally observed value of
the roughness exponent [43].

In the present case, the length scale associated to the opti-
mal energy barrier, ℓopt, is below the minimum experimental
length scale, δ. Using Lc = 50 nm [28] as an estimate for
the Larkin length, and the estimated value for the depinning
field Hd = (25 ± 15) mT, the field dependence of ℓopt can be
obtained using [2,8]

ℓopt = Lc

( H

Hd

)−νeq

, (5)

where νeq is a critical exponent characterizing the divergence
of ℓopt, and νeq = 1/(2 − ζeq ) = 3/4 in our case [47]. For
the field range of the experiment we obtain 0.2 μm < ℓopt <

0.8 μm, and then ℓopt(H ) � δ = 0.936 μm. We consider then
that ℓopt is smaller than the typical length scales in the experi-
ment and thus equilibrium fluctuations given by ζeq can safely
be neglected. We shall then describe roughness properties in
terms of the depinning and thermal reference states, charac-
terized by ζdep at small length scales and ζth at large length
scales, respectively.

The structure factor containing a crossover between depin-
ning and thermal fluctuations can be defined as

S(q) =
1

1
Sdep(q) + 1

Sth (q)

, (6)

with

Sdep(q) = S̃

(
q

qav

)−(1+2ζdep )

, (7)

Sth(q) = S̃

(
q

qav

)−(1+2ζth )

, (8)

FIG. 5. (a) Crossover wave vector scale qav and (b) structure
factor amplitude S̃ as a function of the magnetic field H . The dashed
lines indicate power-law behavior qav ∼ H−η and S̃ ∼ H−γ [see
Eq. (13)] with η = γ = 1/4.

where S̃ is a characteristic amplitude, and qav = 2π/ℓav is
the crossover wave vector. The structure factor then has two
limiting cases, S(q) = Sdep(q) for q > qav and S(q) = Sth(q)
for q < qav.

Given a proposed structure factor, with given S̃ and qav, the
associated roughness function can be written as [43]

B(r) = 4
(M−2)/2∑

n=1

S(qn)[1 − cos (qnr)], (9)

with M a large and even number. Then, considering the associ-
ated roughness function B(r), effective roughness parameters
can be obtained, which depend on the arbitrarily chosen values
for qav and S̃. Therefore, we can search for field-dependent
values of qav and S̃ to recover effective roughness parameters
equal to the experimental values shown in Fig. 4, in the same
fitting range. Since the effective value of ζ does not depend
on S̃, we first search for the value of qav that reproduces the
experimental value of ζ in the fixed range of q at our disposal,
at a given system size. Then, using the obtained value of qav,
we search for S̃ to recover B0. Figure 5 shows the obtained
values of qav and S̃ as a function of the applied magnetic field
H . Error bars for qav and S̃ are obtained considering possible
variations of ζ and B0 (Fig. 4) within their own error bars. We
found that both qav and S̃ slightly increase with decreasing
field, which as we show below is closely related to the field-
dependence of the roughness amplitude B0 [Fig. 4(b)].

Finally, Fig. 6 shows the different scales involved in the
experiment. δ and L correspond to the minimum and maxi-
mum of the domain wall observation scale. ℓopt is the optimal
length scale, computed using Eq. (5) and estimated values for
the Larkin length Lc and the depinning field Hd , and is such
that ℓopt ∼ H−νeq . The ℓav = 2π/qav values were obtained as
the crossover length scales between depinning and thermal
regimes, necessary to account for the effective roughness
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FIG. 6. Length scales as functions of the scaled field H/Hd .
ℓav = 2π/qav is indicated. The observation scales in the PMOKE
experiment, δ and L, are displayed as dotted horizontal lines. ℓopt

was evaluated using Eq. (5) with Lc = 50 nm, Hd = (25 ± 15) mT,
and νeq = 3/4 (for ζeq = 2/3).

exponent obtained in the experiment. Phenomenologically, we
found that the field dependence of ℓav can be approximately
described by ℓav ∼ H1/4 (see the discussion in Sec. VI). As
shown in Fig. 6, ℓav is within the experimental range between
δ and L (ℓopt < δ < ℓav < L). Although ℓav is of the order of
10 μm, a clear crossover at ℓav is not observed in the rough-
ness function (Fig. 3). As discussed in Ref. [43], this is due
to finite size effects that make the fitting range rather small,
and to the fact that a clear crossover in the structure factor
transforms to a wide crossover in the roughness function,
spanning almost all the fitting range.

V. SCALING OF THE ROUGHNESS AMPLITUDE

So far, we have proposed a structure factor comprising the
depinning and thermal regimes and we have obtained the pa-
rameters qav and S̃ that allow us to properly reproduce the
experimental roughness exponent ζ . In what follows, we at-
tempt to account for the magnetic field dependence of the
other roughness parameter, the roughness amplitude B0. This
prompts us to connect the roughness at different scales using
scaling relations. In particular we have to connect fluctuations
above ℓopt with roughness properties below ℓopt, characterized
by ζeq.

Since ℓopt < δ, we have interpreted the observed roughness
parameters as effective values obtained using the crossover
structure factor between the depinning roughness regime (be-
low ℓav) and the thermal roughness regime (above ℓav). Below
ℓopt, the expected roughness regime is the equilibrium rough-
ness regime characterized by ζeq. Therefore, the roughness
regime at length scales Lc < r < ℓopt, corresponding to qopt <

q < qc, can be described by the structure factor

Seq(q) = Sc

(
q

qc

)−(1+2ζeq )

, (10)

with qc = 2π/Lc and Sc the corresponding amplitude. Since
disorder is expected to dominate for length scales above Lc,
according to Eq. (10) Sc is the amplitude of the structure factor
precisely at qc and thus serves as a reference amplitude at the
lowest scale where disorder is relevant. Concomitantly, in the
real space the roughness function, just above Lc and far away
from finite size effects and the crossover at ℓopt (r ≪ L, ℓopt),

is expected to behave as

B(r) = w
2
( r

Lc

)2ζeq

, (11)

with the roughness amplitude at the Larkin length, w
2 =

JeqSc, proportional to Sc (see Appendix). The constant Jeq

depends on Lc and L, and therefore contains information about
finite-size effects.

The roughness amplitude w is a measure of transverse
fluctuations at the Larkin length scale and is typically associ-
ated to the correlation length of the disorder [2]. Considering
a system at low temperatures, in the sense that no thermal
roughness contribution is present at length scales below Lc

[44,48], all fluctuation scales are determined by w. Since
according to Fig. 4(b) the roughness increases with decreasing
field, we can assume a field dependence w ∼ H−σ with a
positive exponent σ and link this behavior, using Sc ∼ w

2 ∼

H−2σ , to the field-dependence of S̃ and B0 shown in Figs. 4(b)
and 5(b).

We thus have to consider three roughness regimes, corre-
sponding to the three reference states, given by Seq(q), Sdep(q),
and Sth(q), with now two characteristic amplitudes Sc and S̃.
These two amplitude factors can be connected by matching
the structure factor at the crossover scales. The equilibrium
roughness regime is valid down to the scale qopt and should be
matched with the depinning roughness regime, which is valid
for q < qopt, resulting in Seq(qopt ) = Sdep(qopt ). From this, one
finds that S̃ and Sc are connected through

S̃ = Sc

(
qopt

qc

)−(1+2ζeq )(
qav

qopt

)−(1+2ζdep )

. (12)

Therefore, recalling that qc ∼ 1/Lc is assumed to be field-
independent, for the field-dependence of S̃ one has

S̃ ∼ Scq
2(ζdep−ζeq )
opt q

−(1+2ζdep )
av ∼ H−γ (13)

with

γ = 2σ −
2(ζdep − ζeq )

2 − ζeq
− η(1 + 2ζdep), (14)

where we have used Eq. (5) with νeq = 1/(2 − ζeq ) for the
field dependence of qopt, and qav ∼ H−η with η > 0, as sug-
gested in Figs. 5(a) and 6.

The crossover between depinning and thermal roughness
regimes is given by Eq. (6), with the corresponding limiting
cases given by Eqs. (7) and (8), and helps to pinpoint the field-
dependence of the roughness amplitude B0. Using Eq. (6) and
an integral approximation to Eq. (9), we get

B(r) = 4S̃
qav

qmin
(qavr)2ζth Ix(r), (15)

where qmin = 2π/L. Ix(r), in turn, is an r-dependent integral
such that Ix(r) ∼ (qavr)2(ζ−ζth ) at small scales (see Ap-
pendix), with ζ = 0.74 the mean experimental value shown
in Fig. 4(a). Inserting this scaling behavior into Eq. (15), the
B(r) ∼ r2ζ behavior is recovered with the roughness ampli-
tude scaling as

B0(H ) ∼ S̃q1+2ζ
av ∼ H−γ H−η(1+2ζ ) ∼ H−θ , (16)
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with Eqs. (13) and (14) leading to

θ = 2σ −
2(ζdep − ζeq )

2 − ζeq
− 2η(ζdep − ζ ). (17)

The values of the exponents γ and θ give the field-
dependent behavior of S̃ and B0, respectively. In addition
to the roughness exponents (ζdep = 5/4, ζeq = 2/3, and ζ ≈

3/4), these values depend on η and σ . We use for instance
the value of η = 1/4, which is compatible with the results in
Figs. 5(a) and 6. If we assume that the roughness at the Larkin
scale w is independent of the field, σ = 0 results in negative
values for both γ and θ , which are not consistent with our
observations. Instead, assuming that w ∼ 1/H , i.e. σ = 1, the
values γ = 1/4 and θ = 7/8 are obtained, which are in good
agreement with the results shown in Figs. 4(b) and 5(b).

VI. DISCUSSION

We have studied the behavior of the roughness parameters
of magnetic domain walls as functions of the applied magnetic
field H . The roughness exponent ζ was interpreted as an effec-
tive value due to different roughness regimes compatible with
the length scales defined by the experiment. First of all, we
estimated that ℓopt ≪ δ. We then considered only two regimes
contributing to the structure factor, namely, the depinning and
the thermal (or fast-flow) regimes with exponents ζdep and
ζth, respectively. This description allowed us to account for
the experimentally observed roughness exponent. We report a
finite value of ℓav below Hd and for finite temperature, which
increases with the magnetic field as ℓav ∼ H1/4. This does not
comply with the expected behavior of ℓav above Hd when
T → 0, ℓav ∼ (H − Hd )−νdep , although in principle we can
only conjecture how ℓav behaves at finite temperature below
the depinning field. However, although the assumption of a
crossover from a depinning roughness regime to a thermal
roughness regime might be incorrect, using a regime with
a different roughness exponent at large length scales does
not qualitatively change our main results. Indeed, what is
really needed in order to describe effective values for the
experimentally obtained roughness parameters, ζ and B0, is a
structure factor with a crossover from the depinning roughness
regime at intermediate length scales to a roughness regime
with ζ < 1 at large length scales. This large scale roughness
regime can be thermal, as we assumed, or it can be a differ-
ent regime as, for instance, an anharmonic roughness regime
with ζan ≈ 0.63. The main results we present here do not
change qualitatively if an anharmonic roughness regime is
used. In principle, we could not distinguish among the two
interpretations. It is worth mentioning that we have checked
that including a second crossover at qopt = 2π/ℓopt, such that
S(q) ∼ q−(1+2ζeq ) for q ≫ qopt, does not qualitatively change
the results giving just a slightly larger value for ℓav (not
shown).

From our analysis, the dependence of the roughness am-
plitude B0 on the applied field suggest that the roughness
amplitude at the Larkin length w effectively depends on the
field. Typically, one has that w = r f = max(�, ξ ) with � the
domain wall width and ξ a characteristic correlation length
of the disorder [2]. Originally, these quantities are thought
of as constant values corresponding to the zero-field case.

Our results suggest that a field dependence should be con-
sidered in order to describe the dependence of the roughness
amplitude on the field. This field dependence could be as-
sociated for instance to variations of the domain wall width
originated in the competition between the intrinsic disorder
and the external field. In fact, small but noticeable changes
have been recently reported using numerical simulations of
disordered systems [49]. Possible variations of the domain
wall width is an ingredient currently missing in theoretical
modeling. For instance, numerical simulations of such one-
dimensional interface usually rely on the so-called quenched
Edwards-Wilkinson dynamics [18], an effective description
which depends on a few effective parameters: an elastic en-
ergy per unit of length c, the amplitude of the disordered
potential D and its correlation length ξ , as well as the in-
terface width �. Those parameters are typically assumed to
be constants, but a proper microscopic justification to this
ad hoc assumption is still lacking. Nothing prevents us from
assuming that they might in fact display a temperature or field
dependence. In that sense, recent studies on how to relate this
effective one-dimensional description to a two-dimensional
Ginzburg-Landau description [50] and further to the micro-
magnetic Landau-Lifshitz-Gilbert model [49] pave the way to
exploring such additional dependence on a firmer basis.

Finally, it is worth to mention that in our current analysis
we have considered that the Larkin length Lc does not depend
on the field. However, once we question the possible field-
dependence of w, the roughness amplitude at the scale Lc,
one might wonder whether Lc could also depend on the field.
If both w and Lc depend on H , the behavior B0 ∼ H−θ is
recovered considering that (w2Lc) ∼ H−2σ . A much more de-
tailed study of the field dependence of the disorder-dependent
parameters is thus needed.

VII. CONCLUSIONS

In summary, we reported measured roughness parameters
and their field dependence in the creep regime for a Pt/Co/Pt
magnetic thin film. We found agreement between mean values
obtained from individual profiles and values from the average
roughness function. This is the first experimental report of
roughness parameters obtained using an average roughness
function 〈B(r)〉; previous results (see data in Ref. [43]) were
obtained fitting the roughness parameters to individual B(r).

The roughness amplitude B0 increases with decreasing
field, pointing to rougher domain walls for lower field
values, while the roughness exponent ζ is approximately
field-independent. This confirms that the roughness variation
observed by naked eye when changing the applied magnetic
field is fully due to the roughness amplitude (as previously
observed [22]). In addition, we found that a finite ℓav signaling
the crossover between small scale behavior with ζ = ζdep and
large scale behavior with ζ = ζth can account for experimen-
tally obtained roughness exponents close to ζ = 0.74. These
effective exponents would then also depend—to a certain
extent—on the typical scales used in the experiments, δ and L.

In order to account for the experimentally observed rough-
ness exponent, a crossover between a depinning roughness
regime and a roughness regime with ζ < 1 at larger scales is
needed. In addition, a dependence with the field of the rough-
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ness amplitude at the Larkin length is required to describe the
field-dependence of the roughness amplitude B0, a commonly
observed behavior.
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APPENDIX: RELATION BETWEEN B(r) AND S(q)

AMPLITUDES

In order to relate the amplitudes accompanying structure
factor and roughness function to important theoretical quan-
tities at small scales, we first have to compute the roughness
function at the Larkin scale. First, a relationship between B(r)
and S(q) amplitudes should be established. We shall rely on
the continuous approximation to Eq. (9) obtained by trans-
forming the sum into an integral using �n → �q/(2π/L):

B(r) =
4

qmin

∫ qmax

qmin

dq[1 − cos(qr)]S(q), (A1)

with the integral running between qmin = 2π/L and qmax =

π/δ. Notice that both S(q) and B(r) have dimensions of length
squared. Notice also that the 1/qmin appears due to the defini-
tion of the structure factor we are using and guaranties proper
dimensions for B(r) and S(q).

The connection between the roughness and structure fac-
tor amplitudes can then be illustrated by first considering a
finite system with a very large ℓopt such that Lc < δ < L <

ℓopt, whose position fluctuations are described by equilibrium
roughness only. Using Eqs. (10) and (A1) and an adimensional
parameter v = qr, we can write

B(r) = 4Sc

qc

qmin
Ieq(r) (qcr)2ζeq (A2)

with qc = 2π/Lc and

Ieq(r) =

∫
vmax (r)

vmin (r)
dv(1 − cos v)v−(1+2ζeq ), (A3)

where vmin(r) = qminr, vmax(r) = qmaxr. Notice that the inte-
gral Ieq(r) contains a r-dependence through its limits. This
results in a small finite size correction to the roughness ex-
ponent. Figure 7(a) shows a numerical calculation of the
integral Ieq(r). In addition, Fig. 7(b) presents the product
Ieq(r)r2ζeq , which determines the r-dependence of B(r). Since
Ieq(r) displays an almost constant behavior at small scales, it is
expected that B(r) ∼ r2ζeq . For an infinite system the integral
tends to the constant value I∞

eq = Ŵ(−4/3)/2 ≈ 1.52, shown
as a dotted horizontal line in Fig. 7(a), and the roughness
exponent is exactly ζeq. Then, in this case, the roughness
function can be expressed as

B(r) = w
2
( r

Lc

)2ζeq

, (A4)

FIG. 7. (a) Dependence with r of the integrals Ieq(r) and Ix(r)
given by Eqs. (A3) and (A7), respectively. (b) By multiplying these
integrals by r2ζ , with the corresponding ζ value, we can appreciate
how the integrals correct the B(r) behavior. To numerically compute
Ix(r) the value qav = 0.4 μm−2 was used.

with

w
2 = 4Sc(2π )2ζeq I∞

eq

qc

qmin
= JeqSc. (A5)

Therefore, at the scale Lc, the roughness amplitude w
2 is pro-

portional to Sc and if w ∼ H−σ then Sc ∼ H−2σ . The constant
Jeq depends on Lc and L, and therefore contains information
about finite size effects. Using Lc = 50 nm and L = 309 μm,
we obtain Jeq ∼ 2 × 105 as an order of magnitude.

Lets us now consider the crossover between thermal and
depinning roughness regimes given by Eq. (6), with the cor-
responding limiting cases given by Eqs. (7) and (8). Using
Eqs. (6) and (A1), we get

B(r) = 4S̃
qav

qmin
(qavr)2ζth Ix(r), (A6)

where

Ix(r) =

∫
vmax (r)

vmin (r)
dv(1 − cos v)G(v, r) (A7)

with

G(v, r) =
v

−(1+2ζth )

1 + (qavr)−2(ζdep−ζth )
v

2(ζdep−ζth )
. (A8)

The integral Ix(r) depends on r through its limits, resulting in
finite size effects, and through the factor qavr in the function
G(v, r) in the integrand. These dependencies and the r2ζth fac-
tor give rise to the effective value of the roughness exponent.
A numerical calculation of Ix(r) is shown in Fig. 7(a). At small
scales it presents a r-dependence which, when multiplied by
r2ζth , should result in B(r) ∼ r2ζ , as shown in Fig. 7(b). Ac-
cordingly, as shown in Fig. 7(a), Ix(r) behaves approximately
as r2(ζ−ζth ) at small scales.

144202-8



FIELD-DEPENDENT ROUGHNESS OF MOVING DOMAIN … PHYSICAL REVIEW B 104, 144202 (2021)

[1] S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi, and
P. Le Doussal, Phys. Rev. Lett. 80, 849 (1998).

[2] P. Chauve, T. Giamarchi, and P. Le Doussal, Phys. Rev. B 62,
6241 (2000).

[3] P. Chauve, T. Giamarchi, and P. Le Doussal, Europhys. Lett. 44,
110 (1998).

[4] E. Agoritsas, V. Lecomte, and T. Giamarchi, Physica B 407,
1725 (2012).

[5] E. Martinez, L. Lopez-Diaz, O. Alejos, and L. Torres, Phys.
Rev. B 77, 144417 (2008).

[6] E. Martinez, J. Phys.: Condens. Matter 24, 024206 (2012).
[7] A. B. Kolton, A. Rosso, and T. Giamarchi, Phys. Rev. Lett. 94,

047002 (2005).
[8] A. B. Kolton, A. Rosso, T. Giamarchi, and W. Krauth, Phys.

Rev. B 79, 184207 (2009).
[9] A. B. Kolton, A. Rosso, T. Giamarchi, and W. Krauth, Phys.

Rev. Lett. 97, 057001 (2006).
[10] A. B. Kolton, A. Rosso, E. V. Albano, and T. Giamarchi, Phys.

Rev. B 74, 140201(R) (2006).
[11] A. Rosso and W. Krauth, Phys. Rev. Lett. 87, 187002 (2001).
[12] A. Rosso and W. Krauth, Phys. Rev. E 65, 025101(R) (2002).
[13] O. Duemmer and W. Krauth, Phys. Rev. E 71, 061601 (2005).
[14] S. Bustingorry, A. B. Kolton, and T. Giamarchi, Europhys. Lett.

81, 26005 (2008).
[15] S. Bustingorry, A. B. Kolton, A. Rosso, W. Krauth, and T.

Giamarchi, Physica B 404, 444 (2009).
[16] S. Bustingorry, A. B. Kolton, and T. Giamarchi, Phys. Rev. E

85, 021144 (2012).
[17] E. E. Ferrero, S. Bustingorry, and A. B. Kolton, Phys. Rev. E

87, 032122 (2013).
[18] E. E. Ferrero, S. Bustingorry, A. B. Kolton, and A. Rosso, C. R.

Physique 14, 641 (2013).
[19] N. B. Caballero, I. Fernández Aguirre, L. J. Albornoz, A. B.

Kolton, J. C. Rojas-Sánchez, S. Collin, J. M. George, R. Diaz
Pardo, V. Jeudy, S. Bustingorry, and J. Curiale, Phys. Rev. B 96,
224422 (2017).

[20] N. B. Caballero, E. E. Ferrero, A. B. Kolton, J. Curiale, V.
Jeudy, and S. Bustingorry, Phys. Rev. E 97, 062122 (2018).

[21] M. Bauer, A. Mougin, J. P. Jamet, V. Repain, J. Ferré, R. L.
Stamps, H. Bernas, and C. Chappert, Phys. Rev. Lett. 94,
207211 (2005).

[22] P. J. Metaxas, J. P. Jamet, A. Mougin, M. Cormier, J. Ferré,
V. Baltz, B. Rodmacq, B. Dieny, and R. L. Stamps, Phys. Rev.
Lett. 99, 217208 (2007).

[23] K.-W. Moon, D.-H. Kim, S.-C. Yoo, C.-G. Cho, S. Hwang, B.
Kahng, B.-C. Min, K.-H. Shin, and S.-B. Choe, Phys. Rev. Lett.
110, 107203 (2013).

[24] J.-C. Lee, K.-J. Kim, J. Ryu, K.-W. Moon, S.-J. Yun, G.-H. Gim,
K.-S. Lee, K.-H. Shin, H.-W. Lee, and S.-B. Choe, Phys. Rev.
Lett. 107, 067201 (2011).

[25] J. Ryu, S.-B. Choe, and H.-W. Lee, Phys. Rev. B 84, 075469
(2011).

[26] J. Gorchon, S. Bustingorry, J. Ferré, V. Jeudy, A. B. Kolton, and
T. Giamarchi, Phys. Rev. Lett. 113, 027205 (2014).

[27] V. Jeudy, A. Mougin, S. Bustingorry, W. Savero Torres, J.
Gorchon, A. B. Kolton, A. Lemaître, and J.-P. Jamet, Phys. Rev.
Lett 117, 057201 (2016).

[28] V. Jeudy, R. Díaz Pardo, W. Savero Torres, S. Bustingorry, and
A. B. Kolton, Phys. Rev. B 98, 054406 (2018).

[29] J. Ferré, P. J. Metaxas, A. Mougin, J.-P. Jamet, J. Gorchon, and
V. Jeudy, C. R. Physique 14, 651 (2013).

[30] A. W. J. Wells, P. M. Shepley, C. H. Marrows, and T. A. Moore,
Phys. Rev. B 95, 054428 (2017).

[31] W. Savero Torres, R. Díaz Pardo, S. Bustingorry, A. B. Kolton,
A. Lemaître, and V. Jeudy, Phys. Rev. B 99, 201201(R) (2019).

[32] C. P. Quinteros, S. Bustingorry, J. Curiale, and M. Granada,
Appl. Phys. Lett. 112, 262402 (2018).

[33] K. Shahbazi, A. Hrabec, S. Moretti, M. B. Ward, T. A. Moore,
V. Jeudy, E. Martinez, and C. H. Marrows, Phys. Rev. B 98,
214413 (2018).

[34] R. Diaz Pardo, W. Savero Torres, A. B. Kolton, S. Bustingorry,
and V. Jeudy, Phys. Rev. B 95, 184434 (2017).

[35] D. S. Fisher, Phys. Rev. B 31, 1396 (1985).
[36] T. Nattermann, Phys. Rev. Lett. 64, 2454 (1990).
[37] T. Shibauchi, L. Krusin-Elbaum, V. M. Vinokur, B. Argyle, D.

Weller, and B. D. Terris, Phys. Rev. Lett. 87, 267201 (2001).
[38] M. Huth, P. Haiback, and H. Adrian, J. Mag. Mag. Mat. 240,

311 (2002).
[39] K.-S. Lee, C.-W. Lee, Y.-J. Cho, S. Seo, D.-H. Kim, and S.-B.

Choe, IEEE Trans. Magn. 45, 2548 (2009).
[40] R. Díaz Pardo, N. Moisan, L. J. Albornoz, A. Lemaître, J.

Curiale, and V. Jeudy, Phys. Rev. B 100, 184420 (2019).
[41] P. Domenichini, C. P. Quinteros, M. Granada, S. Collin, J.-M.

George, J. Curiale, S. Bustingorry, M. G. Capeluto, and G.
Pasquini, Phys. Rev. B 99, 214401 (2019).

[42] D. Jordán, L. J. Albornoz, J. Gorchon, C. H. Lambert, S.
Salahuddin, J. Bokor, J. Curiale, and S. Bustingorry, Phys. Rev.
B 101, 184431 (2020).

[43] L. J. Albornoz, P. C. Guruciaga, V. Jeudy, J. Curiale, and S.
Bustingorry, Phys. Rev. B 104, 024203 (2021).

[44] E. Agoritsas, V. Lecomte, and T. Giamarchi, Phys. Rev. B 82,
184207 (2010).

[45] C. P. Quinteros, M. J. Cortés Burgos, L. J. Albornoz, J. E.
Gómez, P. Granell, F. Golmar, M. L. Ibarra, S. Bustingorry, J.
Curiale, and M. Granada, J. Phys. D 54, 015002 (2020).

[46] J. M. López, M. A. Rodríguez, and R. Cuerno, Phys. Rev. E 56,
3993 (1997).

[47] M. Kardar, Phys. Rep. 301, 85 (1998).
[48] E. Agoritsas, V. Lecomte, and T. Giamarchi, Phys. Rev. E 87,

042406 (2013).
[49] P. C. Guruciaga, N. Caballero, V. Jeudy, J. Curiale, and S.

Bustingorry, J. Stat. Mech. (2021) 033211.
[50] N. Caballero, E. Agoritsas, V. Lecomte, and T. Giamarchi, Phys.

Rev. B 102, 104204 (2020).

144202-9

https://doi.org/10.1103/PhysRevLett.80.849
https://doi.org/10.1103/PhysRevB.62.6241
https://doi.org/10.1209/epl/i1998-00443-7
https://doi.org/10.1016/j.physb.2012.01.017
https://doi.org/10.1103/PhysRevB.77.144417
https://doi.org/10.1088/0953-8984/24/2/024206
https://doi.org/10.1103/PhysRevLett.94.047002
https://doi.org/10.1103/PhysRevB.79.184207
https://doi.org/10.1103/PhysRevLett.97.057001
https://doi.org/10.1103/PhysRevB.74.140201
https://doi.org/10.1103/PhysRevLett.87.187002
https://doi.org/10.1103/PhysRevE.65.025101
https://doi.org/10.1103/PhysRevE.71.061601
https://doi.org/10.1209/0295-5075/81/26005
https://doi.org/10.1016/j.physb.2008.11.064
https://doi.org/10.1103/PhysRevE.85.021144
https://doi.org/10.1103/PhysRevE.87.032122
https://doi.org/10.1016/j.crhy.2013.08.002
https://doi.org/10.1103/PhysRevB.96.224422
https://doi.org/10.1103/PhysRevE.97.062122
https://doi.org/10.1103/PhysRevLett.94.207211
https://doi.org/10.1103/PhysRevLett.99.217208
https://doi.org/10.1103/PhysRevLett.110.107203
https://doi.org/10.1103/PhysRevLett.107.067201
https://doi.org/10.1103/PhysRevB.84.075469
https://doi.org/10.1103/PhysRevLett.113.027205
https://doi.org/10.1103/PhysRevLett.117.057201
https://doi.org/10.1103/PhysRevB.98.054406
https://doi.org/10.1016/j.crhy.2013.08.001
https://doi.org/10.1103/PhysRevB.95.054428
https://doi.org/10.1103/PhysRevB.99.201201
https://doi.org/10.1063/1.5026702
https://doi.org/10.1103/PhysRevB.98.214413
https://doi.org/10.1103/PhysRevB.95.184434
https://doi.org/10.1103/PhysRevB.31.1396
https://doi.org/10.1103/PhysRevLett.64.2454
https://doi.org/10.1103/PhysRevLett.87.267201
https://doi.org/10.1016/S0304-8853(01)00788-0
https://doi.org/10.1109/TMAG.2009.2018877
https://doi.org/10.1103/PhysRevB.100.184420
https://doi.org/10.1103/PhysRevB.99.214401
https://doi.org/10.1103/PhysRevB.101.184431
https://doi.org/10.1103/PhysRevB.104.024203
https://doi.org/10.1103/PhysRevB.82.184207
https://doi.org/10.1088/1361-6463/abb849
https://doi.org/10.1103/PhysRevE.56.3993
https://doi.org/10.1016/S0370-1573(98)00007-6
https://doi.org/10.1103/PhysRevE.87.042406
https://doi.org/10.1088/1742-5468/abe40a
https://doi.org/10.1103/PhysRevB.102.104204

