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ABSTRACT 
 
We apply a numerical method for calculating the field 
distribution in the region immediately behind the input 
facet of a dielectric step-index single-mode slab 
waveguide. The input waves considered are focused 
plane waves and Gaussian beams of various diameters, 
with and without misalignment. The figures obtained 
show the formation of radiation modes and the 
development of the fundamental guided mode and thus 
give hints on how to design pieces of single-mode 
fibers that are to be used as modal filters, e.g., in 
astronomical interferometers with excessive nulling 
requirements. 
 

1. INTRODUCTION 
 
Optical single-mode waveguides constitute a key 
device in instruments for astronomical interferometry 
aiming at the investigation of extra-solar planets. To 
give an example: In ESA's DARWIN mission, the 
optical fields collected by telescopes will be 
propagated through a piece of single-mode fiber. Only 
then they will exhibit the highly identical amplitude 
distribution and phase distribution required for 
destructive interference of the (unwanted) radiation 
originating from the star whose planet is under 
investigation. Propagating the light through an ideal 
single-mode waveguide achieves just this. One attempt 
to analytically estimate the minimum length (as 
required to achieve proper background suppression by 
modal filtering) of an otherwise ideal fiber waveguide 
is found in [1]. This approach, however, could not take 
into account many of the real-world aspects occurring 
in fibers. 
 
Here we demonstrate the usefulness of a numerical 
method in calculating – and visualizing – the distribu-
tion of the optical field in the input coupling region of 
a single-mode waveguide. Examining a 2-dimensional 
single-mode waveguide in a first step already gives an 
excellent insight into the power flow immediately after 
the input facet, shows how a steady state intensity 
distribution in the vicinity of the core is eventually 

reached, and also yields the coupling efficiency into 
the waveguides’ fundamental mode. Eventually this 
method will allow taking into account a non-perfect 
core-cladding geometry, a finite cladding thickness, an 
absorbing coating, an input taper, etc. After explaining 
the system model in Sect. 2 we shortly describe the 
numerical method applied (Sect. 3) before presenting 
results for cases where the input radiation is either a 
focused plane wave (Sect. 4) or a focused Gaussian 
beam (Sect. 5). We visualize the power flow, show 
how the fundamental mode develops, and obtain the 
coupling efficiency as a by-product. Section 6 summa-
rizes the findings. 
 

2. SYSTEM MODEL 
 
Fig. 1 shows the system model used. The step-index 
slab waveguide consists of a core of thickness 2d 
(index of refraction n1) and a cladding with index n2. A 
slit of width A may be positioned just before the input 
facet. The incident radiation is focused by a lens, the 
angle ε and the transverse displacement Δx cover the 
major misalignments. With z and x we denote the 
coordinate along which the guided wave is propagating 
and the transverse direction. For all numerical 
calculation we took 2d = 4.5 λ (λ...wavelength), 
n1 = 1.50375 and n2 = 1.5000. The relative index 
difference is thus Δ = 0.25%, and the normalized 
frequency is V = 1.5004, just below the single-mode 
 
 

 
 

Fig. 1. Input radiation and geometry of slab waveguide  
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cut-off frequency of V = π/2. The waveguide facet is 
assumed to carry an anti-reflection coating. 
 
For the incident radiation we consider two cases: In the 
first (Sect. 4), a plane wave is focused onto the wave-
guide facet. In the focal plane it thus produces a field 
distribution proportional to  
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i.e. a sinc function with the first zeros at x’ = ± xN. The 
transverse coordinate axes x’ and x include the angle ε 
(see Fig. 1). The second case (Sect. 5), covers an 
incident Gaussian beam where the field distribution in 
the focal plane is proportional to   
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with w being the beam radius. For both cases we will 
present here results for a field linearly polarized 
orthogonal to the plane of incidence, i.e. what is 
commonly known as TE polarization (transverse 
electric). 

 

3. NUMERICAL METHOD 
 
To analyze the field distribution in the waveguide we 
employ a rigorous electromagnetic numerical tool that 
is based on the Fourier modal method (FMM) [2]. 
FMM was originally developed in the field of grating 
theory. In recent years, however, a number of 
extensions added to the original code have made FMM 
a versatile and popular tool dealing effectively with a 
much wider variety of micro-optical elements. A 
characteristic of FMM is that it requires the structure 
under investigation to be divided into layers with 
respect to the propagation direction, e.g., the z-
direction. The thickness of each layer is chosen such 
that the material parameters (e.g. the refractive index n) 
depend only on the transverse coordinates, i.e. x in the 
present case. Apart from the focusing optics, the 
structure shown in Fig. 1 can thus be modeled of three 
layers: A semi-infinite input layer represented by the 
uniform  index distribution n = 1, a thin medium layer 
represented by the x-dependent index distribution of 
the slit, and a semi-infinite output layer represented by 
the x-dependent index distribution of the waveguide. 
The field distribution in each layer is described by a set 
of modes where each mode is represented 
mathematically by a Fourier series. The x-dependent 
material parameters are described by Fourier series as 
well. By adjusting the modes such that the field 
distributions fulfill Maxwell’s boundary conditions at 

each layer interface, we obtain a system of linear 
equations that is solved numerically by matrix 
computation. The input field distribution behind the 
focusing optics of Fig. 1 is described by a set of plane 
waves which represent the modes of a uniform layer, 
and the output distribution is given by a set of guided 
and radiated modes which are specific to the 
waveguide structure. Finally, we note that the use of 
Fourier series makes the system periodic in x-direction. 
Despite this inherent periodicity, we are still able to 
analyze single elements such as waveguides by 
introducing thin absorbing perfectly matched layers 
along both sides of the calculation area parallel to the z 
direction [3]. These layers eliminate any significant 
field crosstalk between neighboring areas. 
 
 

4. FOCUSED PLANE WAVE INPUT 
 
4.1 Intensity Distribution 
 
Fig. 2 to Fig. 6 present examples for the transition from 
the incident free-space radiation to the guided single-
mode regime in the form of color coded intensity 
distributions for the case of a focused plane wave. The 
waveguide parameters are those specified in Sect. 2. 
The diagrams cover an area of 500 λ x 4000 λ of the 
waveguide (with unequal scale in the x- and z-
direction) plus an area of 500 λ x 100 λ in front of the 
facet, thus showing also the converging input 
wavefront. The waveguide input facet (at z = 0) is to 
the left (vertical yellow line). The vertical color scale 
on the right indicates that the dynamic range of the 
visualization is some 40 dB. The core region with 
width 2d = 4.5 λ appears as the horizontal bar with 
high intensity, i.e. colored in red. The parameters 
chosen for Fig. 2 (distance between the first zeros of 
the field distribution 2xN = 10.97 λ, perfect alignment) 
yield the highest possible coupling efficiency into the 
waveguide's fundamental mode, it may thus serve as a 
reference. The power not guided by the waveguide is 
radiated off in a number of “beams”, the most intense 
one under an angle of approximately α = ±4.0°. Fig. 3 
reveals that a mismatch of the input diameter 2xN (by 
64% in this specific case) increases the power fraction 
radiated off and reduces the angle α. Fig. 4 and Fig. 5 
show that angular and transverse misalignment lead to 
drastically enlarged power radiation. While the 
asymmetric radiation of the unguided power for ε ≠ 0° 
in Fig. 4 was to be expected, the close-to-symmetric 
behavior for a transverse displacement (Δx ≠ 0) in Fig. 
5 is quite surprising. Here the “main lobes” spread out 
more or less under the same angle as in the reference 
case of Fig. 2. Fig. 6 demonstrates the influence of a 
slit of width A arranged at the input facet. We chose a 
slit width equal to the distance between the first zeros 

 



of the sinc function (A = 2xN) and achieve an optical 
field with a remarkably low fraction of unguided 
power. However, with this arrangement about 10% of 
the incident power Pin are lost by the obscuration. 
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Fig. 2. Intensity distribution for focused plane wave 
(sinc function) for 2xN = 10.97 λ, ε = 0°, Δx = 0, 

A = ∞. 
 
 

 
 

Fig. 3. As Fig. 2, but 2xN = 18 λ. 
 
 

 
Fig. 4. As Fig. 2, but ε = 5°. 

 
 

 
 

Fig. 5. As Fig. 2, but  Δx = 2.25 λ. 
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Fig. 6. As Fig. 2, but  A = 11 λ. 
 
 
4.2 Near-Core Power 
 
For the application of a single-mode waveguide as a 
modal filter it is paramount to know the formation of 
the – only – steady-state (i.e. guided) mode along the z-
direction. To this end we calculate the fraction p(z) of 
power P contained within a width D (see Fig. 1) large 
enough to contain essentially all the fundamental 
mode’s power. Our choice was D = 18 λ. For the 
waveguide parameters chosen, this width contains 
99.986% of the mode’s power for z → ∞. The quantity 
p(z) is normalized to the entire power illuminating the 
waveguide structure, Pin,  
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The function p(z) hence reveals how the intensity 
distribution close to the core approaches the steady 
state of the fundamental mode. This allows estimating 
not only the required length of a modal filter. Also, for 
large z, p(z) approaches the value of the coupling 
efficiency into the fundamental mode (see next 

 



section). Fig. 7 gives the function p(z) for the five 
examples presented in the previous section. The line 
corresponding to Fig. 6 shows a remarkable result: Not 
only does the near-core power reach a steady state 
within a comparably short distance from the input 
facet, but also does p(z) maintain a high level.  
 

width xN at the facet of the aveguide in the 

. FOCUSED GAUSSIAN BEAM INPUT 

.1 Intensity Distribution 

aussian beams maintain their profile when focused 

Fig. 8. Intensity distribution for focused Gaussian 

 

Fig. 9. As Fig. 8, but 2w =15 . 

 
 

Fig. 7. Sinc input: Power f ion p(z) within a central 

 
.3 Coupling Efficiency 

e define the coupling efficiency η as the ratio of the 

ract
area of width D = 18 λ (see Fig. 1). Labels (2) to (6) 

give the correspondence to the cases defined in Fig. 2 
to Fig. 6, respectively. 
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W
power carried by the waveguide’s single guided mode 
to the input power Pin. However, as the mode extends 
to infinity in x-direction, the numerical determination 
of η requires a slightly modified definition. We 
maintain sufficient accuracy when taking the power 
propagating within a width of, e.g., D = 18 λ in its 
limit for z → ∞, designated PD=18λ,z → ∞ , 
 

in

z ,18D

P
P ∞→λ==η . (4) 

 
able 1 summarizes η for the five cases addressed in 

able 1. Examples of coupling efficiency η for focused 

 
η 2xN [λ] ε [°] Δx [λ] A [λ] 

T
Sect. 4.1. For the top four cases the numerically 
obtained values can easily be checked analytically. Full 
agreement was found. Note that positioning a slit of  
 
 
T

plane wave input (sinc function), assuming a perfect 
anti-reflection coating on the waveguide facet. 

0.865 10.97 0 0 ∞ 
0.764 18 0 0 ∞ 
0.376 

 A = 2 w
otherwise optimal reference case entails a slightly 
higher value of coupling efficiency (η = 0.885) than 
that obtained for the reference case (η = 0.865). 
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(see Eq. (2)) and match the fundamental mode of most 
waveguides in general quite well. One could thus 
expect less power going into radiation modes, a more 
rapid development of the fundamental mode, and a 
higher coupling efficiency than for the case of a 
focused plane wave covered above. Fig. 8 to Fig. 11 
present examples for such field transitions, as before in 
the form of color coded intensity distributions just 
before and after the waveguide facet. The waveguide 
parameters are those already given in Sect. 1. Fig. 8 
covers the reference case (highest possible coupling 
efficiency) where the e-2-beam diameter 2w has to be 
 
 

1  0.97 5 0 ∞ 
0.566 10.97 0 2.25 ∞ 
0.885 10.97 0 0 11 
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beam for 2w = 6.75 λ, ε = 0°, Δx = 0, A = ∞. 

 

 
 

λ

100 + 4000 λ 

50
0 

λ 

x

z

 



chosen as 2 ) power 

Fig. 10. As Fig. 8, but ε = 5°. 
 

Fig. 11. As Fig. 8, but Δx = 2.25 λ. 

.2 Near-Core Power 

ing in and near the core, as 

w = 6.75 λ. The (small amount of
not guided is radiated off almost in two single “beams” 
under an angle of approximately α = ±5.7°. As before, 
the angular misalignment (Fig. 10) leads to an 
asymmetric distribution while the transverse 
misalignment does (almost) not (Fig. 11). 
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he power p(z) propagatT
defined in Sect. 4.2, was calculated also for Gaussian 
input beams. Fig. 12 gives the function p(z) for the four 
examples presented in the previous section. 
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Fig. 12. Gaussian input: Power fraction p(z) within a 
central area of width D = 18 λ. Labels (8) to (11) give 

the correspondence to the cases defined in Fig. 8 to  
Fig. 11, respectively. 
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100 + 4000  λ 5.3 Coupling Efficiency 
 
With the definition given by Eq. (4) the coupling 
efficiency η was calculated from the numerically 
obtained intensity distribution for the four cases of 
Gaussian input beams specified above (see Table 2). A 
value of η close to unity is obtained for optimized field 
match (2w = 6.75 λ). The penalty to pay for diameter 
mismatch is much less severe than for the sinc input 
field: For an input diameter of 2w = 15 λ corre-
sponding to a relative mismatch of 122%, we still 
obtain a slightly higher efficiency than for the sinc case 
with a relative mismatch of 64%. Also the dependence 
of coupling efficiency on angular and transverse 
misalignment is less pronounced for the Gaussian input 
field. For all cases the numerically obtained values can 
easily be checked analytically. Again full agreement 
was found. 
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Table 2. Examples of coupling efficiency η for focused 
Gaussian beam. A perfect anti-reflection coating on the 

waveguide facet is assumed. 
 

η 2w [λ] ε [°] Δx [λ] A [λ] 
0.996 6.75 0 0 ∞ 
0.773 15.0 0 0 ∞ 
0.431 6.75 5 0 ∞ 
0.648 6.75 0 2.25 ∞ 

 
 

6. SUMMARY AND OUTLOOK 
 
The numerical method developed allows us to calculate 
the intensity distribution at the input end of optical 
waveguides, i.e. in the transition region from free-

 



space radiation to guided modes. We applied the 
technique to a dielectric step-index single-mode slab 
waveguide and made visible how the input power splits 
into radiation modes and into the waveguide’s steady-
state fundamental mode. Computing the power within 
and in close vicinity of the core as a function of the 
distance from the input facet, p(z), permits to assess the 
waveguide length necessary for obtaining a modal 
filter. As a by-product, the coupling efficiency into the 
fundamental mode is found. Although demonstrated 
here just for the two-dimensional case, the method 
already gives hints on how to design modal filters with 
high suppression of all but the guided modes. In the 
future we will apply the technique to more complicated 
waveguide structures modeling better what is found in 
reality, and also expand it to three-dimensional cases 
such as fibers.  
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