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Quantum confined Au nanoclusters exhibit molecule-like properties, including atomic precision 

and discrete energy levels. The electrical conductivity of Au nanocluster films can vary by 

several orders of magnitude, and is determined by the strength of the electronic coupling 

between the individual nanoclusters in the film. Similar to quantum confined, semiconducting 

quantum dots, the electrical coupling in films is dependent on the size and structure of the Au 

core and the length and conjugation of the organic ligands surrounding it. Unlike quantum dots, 

however, semiconducting transport has not been reported in Au nanocluster films. We 

demonstrate that through a simple yet careful choice of cluster size and organic ligands, stable 

Au nanocluster films can electronically couple and become semiconducting, exhibiting electric 

field effect and photoconductivity. The molecule-like nature of the Au nanoclusters is evidenced 

by a hopping transport mechanism reminiscent of doped, disordered organic semiconductor 

films. These results demonstrate the potential of metal nanoclusters as a solution processed 

material for semiconducting devices. 
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Individual organic semiconductor (OSC)[1] molecules and colloidal semiconducting quantum 

dots (SQDs)[2] possess discrete energy levels. Collective properties can emerge in films of these 

materials if they are electronically coupled, that is, if the individual constituents are close enough 

for their wavefunctions to interact, allowing charge transport to occur. The properties of these 

films can be modified either by varying the properties of their individual constituents, such as 

their size and composition, or by tuning the strength of the electronic coupling, for example 

through ligand exchange in SQD films.[2, 3] Such bottom-up procedures for cheaply and easily 

constructing high-quality semiconductors from SQDs[4] and OSCs[5] have found applications in 

field effect transistors, photodetectors, solar cells and LEDs.  

Au nanoclusters (NCs) also possess discrete energy levels, which, as in SQDs, are the result of 

quantum confinement arising from the small number of core Au atoms.[6, 7] Like OSCs, Au NCs 

are atomically precise, containing a specific number of core Au atoms, typically 100 or less. This 

makes them fundamentally different than SQDs, whose core size is defined by a size distribution 

in the nanometer range.[8] However, one key similarity between Au NCs and SQDs is that 

organic ligands surround their cores and make them colloidally stable. The core size and organic 

ligands determine the strength of electronic coupling in both SQD and Au NC films. For 

example, electrostatic Coulomb repulsion governs charge transport in highly resistive, 

electrically isolated films comprised of the extensively studied Au NCs with 55 core atoms and 

short aromatic ligands.[9] Increasing the electronic coupling by crosslinking the Au cores with 

dithiol ligands eliminates Coulombic effects and drastically increases the film’s conductivity.[10] 

However, despite similarities to SQDs or OSCs, semiconducting behavior has not been observed 

in films of Au NCs of any size.  
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We report the observation of field effect and photoconductivity in phototransistors made from 

semiconducting films of [Au25(PPh3)10(SC2H4Ph)5X2]
2+ NCs, where X=Cl or Br (abbreviated as 

Au25). This work demonstrates the viability of metal NCs as a new class of low cost, solution 

processed semiconducting material that combines the atomic precision of OSCs with the 

possibility for ligand engineering and size/energy level tuning of SQDs. Precise control of these 

very characteristics was key to obtaining semiconducting Au25 NC films, by preventing excessive 

electronic coupling and a concomitant transition into a metallic state. First, the number of core 

Au atoms was reduced to 25, from 55 or more in previous studies.[9, 10] Due to quantum 

confinement, this generates an essential increase in the energy gap between the highest occupied 

molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Second, steric 

hindrance from the phenyl containing ligands controlled the distance between the Au cores, 

preventing their wavefunctions from interacting excessively.[4, 8] These characteristics limited the 

electronic coupling just enough to ensure that the film remained semiconducting. The importance 

of the core size and ligands was investigated by synthesizing and measuring the electronic 

properties of two other Au nanocluster systems that did not exhibit semiconducting behavior.  

Au25 NCs are synthesized in ambient at a maximum temperature of 40° C (see SI for details and 

Figure S1 for mass spectrometry). Thorough removal of synthesis byproducts is critical for 

obtaining stable, high quality transport in the films.[11] The Au25 NC, shown in Figure 1a, is 

comprised of two back-to-back Au13 sub-units sharing a common vertex,[12] with the longest 

dimension of the Au core being 1.1 nm. All of the Au atoms are bonded to organic ligands, 

except for the two end atoms, which are bonded to Cl or Br. The absorption spectrum of the 

purified Au25 NC dispersion, shown in black in Fig. 1b, displays sharp, molecule-like optical 

transitions. The low energy peak at 674 nm corresponds to the HOMO-LUMO energy gap, 
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whereas the high energy features below 500 nm correspond to HOMO-n to LUMO+n transitions, 

arising from transitions within the Au13 sub-units.[7] The spectrum of a 16 nm thick (Figure S2) 

Au25 NC film, spin coated on a quartz substrate, is also shown in Figure 1b. Its HOMO-LUMO 

peak has its maximum at 687 nm, corresponding to a red-shift of 40 meV (from 1.84 to 1.80 eV) 

compared to the solution, as shown in Figure 1c. Such red-shifting is indicative of electronic 

coupling between the individual NCs.[3, 13]  

To probe their electronic properties, the NCs are integrated into a field effect transistor (FET) by 

spin coating films onto a substrate with interdigitated Au electrodes. The transfer and output 

curves in Figure 1d and 1e, respectively, demonstrate n-type field effect: clear semiconducting 

behavior in a film of metal NCs. A high ON/OFF ratio of 5×104  is obtained for a drain voltage 

Vd=6 V, and the charge carrier mobility approaches 10-5 cm2V-1s-1 at Vd=20 V. The output curves 

(Figure 1e) reveal exponential behavior below a certain critical Vd. This Schottky-like behavior is 

due to an energy mismatch between the metal Au electrode Fermi energy and the electrical 

transport band in the semiconducting film formed from the LUMO orbitals of the Au NCs. By 

increasing Vd, electrons are able to overcome the charge injection energy barrier, and the current 

exhibits the expected transistor output. In the transistor OFF state, mobile ions[14] and charged 

byproducts in the film also play a role in charge transport (further details in SI and Figures S3 

and S4).  

Photoconductivity, shown in Figure 2 and Figure S5, is further proof that the Au25 NC films are 

semiconducting. Illumination with 635 nm light increases film conductivity and eliminates 

charge suppression at low Vd, as shown in Figure 2a. This is an indication of a photodiode effect, 

through which photoexcited charge carriers are able to overcome the energy barriers at the metal 

electrode/semiconducting film interface. Figure 2b shows that illumination shifts the device’s 
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transfer curve to lower voltages, effectively n-doping it and revealing a photogating effect.[15] 

This mechanism, illustrated in Figure 2c, requires that one type of charge carrier, in this case 

holes, have a much lower carrier mobility. Upon illumination, photoexcited holes will remain 

essentially trapped in comparison to the much higher mobility electrons. Depending on the 

device geometry and the material’s mobility, the electrons can circulate through the device 

multiple times before recombining, producing a sensitivity enhancing gain mechanism. The low 

hole carrier mobility is confirmed by measuring the Au25 NC film in ambient, where the films 

are exposed to electron accepting oxygen and water in the air, and therefore exhibit p-type 

behavior. Comparing the film’s electrical characteristics in ambient, where it is p-type, and in 

vacuum, where it is n-type, allows us to compare the magnitude of the hole and electron 

mobility, respectively. As shown in Figure S6, the electron mobility is over 103 times larger than 

the hole mobility. Trapping and/or scattering of hole charge carriers, interacting electrostatically 

with unbound Br- and Cl- ions in the film, could be responsible for the very low hole mobility. 

The device’s much higher responsivity at weak incident power, shown in Figure 2d, is another 

indication of photogating.[15] The device’s temporal response to light while in the ON state 

(Vg=60 V) is shown in Figure 2e. Through a photodiode effect, the energy mismatch at the 

contacts is likely responsible for the fast rise time of 3.6 ms when the transistor is in the ON state 

(gate voltage Vg=60 V). This response time is already comparable or better than optimized 2D 

material photodetectors.[16] The photocurrent fall time at high incident power (19.6 ms), and the 

overall response at low incident power is significantly slower. This slow, sensitive 

photodetection mechanism is a result of photogating, whose response is limited by the 

characteristic recombination lifetime of the photoexcited charge carriers.[15]  
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[Au11(PPh3)8Cl2]Cl[17] (Au11) and [Au25(SC2H4Ph)18]
1- (Au25-PET1-) were synthesized to test the 

effect of varying the ligands and number of core Au atoms, respectively, on the electrical 

properties of the Au NC films. Films from both of these clusters showed much lower electrical 

conductivity compared to Au25, as shown in Figure 3a, and no semiconducting field effect or 

photoconduction. The Au25-PET clusters can be readily oxidized by ambient oxygen, changing 

the charge state from -1 to 0.[18] Both of these Au25-PET NCs have absorption spectra with 

features similar to the Au25, as shown in Figure 3b. The Au25-PET film (absorption spectra 

shown between that of the Au25-PET0 and Au25-PET1- solution) was spin coated from the Au25-

PET1- solution, but lacks its characteristic peak at 444 nm. Indeed, the film’s absorption 

spectrum appears to be similar to that of the charge-neutral Au25-PET0 NCs in solution, 

indicating that the film readily oxidizes in air and forms aggregates on the substrate surface, as 

shown in the dark field optical images in Figure S7. Additionally, in contrast to what was 

observed for Au25, the HOMO-LUMO transition of the Au25-PET is at the same location for both 

film and solution (around 680 nm), indicating that there is no electronic coupling between the 

individual Au25-PET NCs. This, along with the film’s chemical and structural instability, 

explains its poor electrical conductivity and lack of semiconducting properties.  

In the Au11 NCs, the lower number of core Au atoms results in stronger quantum confinement, 

and increases the energy of the HOMO-LUMO transition (418 nm, 2.97 eV) compared to the 

NCs with 25 core atoms (674 nm, 1.83 eV). Similar to the Au25-PET film, the optical spectrum 

of the Au11 film is not indicative of electronic coupling, which, along with the increased HOMO-

LUMO gap, will impede charge transport, producing highly resistive, non-semiconducting films. 

The Au25 NCs thus appear to be within a size/energy window that allows for an adequate amount 

of electronic coupling in the film: enough so that charges are able to flow through the film and 



7 

 

collective semiconducting properties can emerge, but not so much that the films become 

metallic.    

Having established that the Au25 NC film is semiconducting and identified the reasons for this 

behavior, we proceeded to explore its charge transport mechanism, which was surprisingly 

similar to that of an amorphous OSC film. The curves in Figure 4a reveal that the charge carrier 

mobility µ  increases with both the charge carrier density, proportional to Vg, and the applied 

electric field F=Vd/L, where L is the device channel length. As shown in Figure 4b, at higher 

electric fields the mobility follows a Poole-Frenkel relationship log(µ)~βF1/2,[19] where 

β=1.2×10-3 (V/cm)1/2 is a fitting constant. Deviation from this behavior at low electric fields is 

due to the contact resistance of the device. In addition, the applied electric field strongly affects 

the mobility’s temperature dependence, as shown in Figure 4c. The mobility’s overall 

dependence on charge carrier density, electric field and its decrease at lower temperatures is 

consistent with a Gaussian disorder model (GDM). Often used to describe OSC films, the GDM 

assumes that charge transport occurs via thermally activated hopping between randomly 

distributed states. Moreover, the GDM assumes that the density of states (DOS) have a Gaussian 

energetic distribution of bandwidth σ.[20] At high temperatures, transport is dominated by upward 

hops from states located near the Fermi energy εF to states near the so-called transport energy εT, 

as shown in the schematics of Figure 4a. As the carrier density, and thus εF, is increased with the 

gate voltage, it becomes easier for charge carriers to hop to the transport level, causing the 

observed mobility increase.[21] At very low temperatures, the temperature dependence is reduced 

because the lack of thermal energy forces charges to tunnel long distances to energetically 

similar states instead of to spatially closer, higher energy states.[20]  
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The flattening and eventual decrease of the mobility at high gate voltages, observed in Figure 4a, 

has been observed in highly doped, amorphous OSC films.[22] The unbound Br- and Cl- ions in 

the film may be acting as dopants and increasing the overall charge carrier concentration. The 

relatively low mobility (<10-5 cm2V-1s-1) may be a result of intrinsic (e.g. grain boundaries) and 

extrinsic (e.g. contacts) factors.[23] 

The relationship between mobility, charge carrier concentration and temperature can be used to 

calculate the approximate width of the Gaussian DOS in the Au25 NC film.[24] In the range where 

the mobility depends strongly on the charge carrier concentration (about 0<Vg<30 V), it follows 

an Arrhenius-like log(µ)~T-1 dependence at high temperature, as shown in Figure 4d. The 

activation energy in this region decreases with increasing charge carrier concentration, as shown 

in Figure 4e. Extending the lines used to fit the activation energy shows that they intersect at a 

higher temperature. This behavior, which is further indication of the similarity to OSCs, can be 

used to calculate an approximate DOS width σ=5kBT0/2=70 meV, considering an effective 

medium approach within the GDM.[24] The bandwidth falls within the range of typical 

disordered, amorphous OSC films of small molecules or solution processed polymers.[24]  

Semiconducting behavior has been demonstrated for the first time in a metal NC film. Charge 

transport could be improved in such films via ligand engineering, extrinsic doping, or even 

altering the atomic composition of the core. Further optimization could pave the way for exciting 

discoveries and device applications based on solution-processed, semiconducting metal NC 

films.  

 

Experimental Section  

Materials: The following chemicals were used as received. Triphenylphosphine (99%), ethanol 

(99.98%), acetonitrile (99,3%)  and toluene (99.85%), were purchased from Acros Organics. 
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Methanol (99,8%), Tetrahydrofurane (min 99%), and n-hexane (96%) were purchased from 

VWR. Gold(III) chloride trihydrate (99,995%) and tetraoctylammonium bromide (98%) were 

obtained from Alfa Aesar. Pentane (99,9%) and dichlormethane (DCM, 99,5%) was obtained 

from Grüssing. Water was purified using a Millipore-Q System (18.2 MΩ cm). 

Au NC Synthesis: Au25 NCs were synthesized in two steps. First, polydisperse Au nanoparticles 

(1-3 nm diameter) are synthesized. Second, thiol etching of the Au nanoparticles was employed 

in order to obtain the desired Au25 NCs with the formula [Au25(PPh3)10(PET)5X2]
2+ (X= Cl or 

Br).[11] To start, HAuCl4 ·  3H2O (0.100 g, dissolved in 3 mL of Millipore H2O) was added into a 

8 mL toluene solution of tetraoctylammonium bromide (TOAB, 0.145 g) and stirred vigorously 

(400 rpm) at room temperature for 15 min. When the aqueous phase became colorless and clear, 

indicating the complete transfer of the gold compound from aqueous to toluene phase, it was 

removed with a pipette. The organic phase was subsequently transferred using a glass pipette 

into the 3-neck flask. Subsequently, triphenylphosphine (PPh3, 0.180 g) was added into the flask 

under stirring (800 rpm). Within few to tens of seconds, the solution became cloudy white. After 

15 min, freshly dissolved sodium borhydride (NaBH4, 0.026 g, dissolved by ultrasonication in 5 

mL of EtOH) was injected rapidly to reduce AuI(PPH3)X (starting material) to Au nanoparticles. 

After 2 hours, the black dispersion was dried by rotary evaporation at 50°C, resulting in a dry 

black solid. The black solid was mixed with 20 mL dicholormethane (DCM), vortexed and 

centrifuged at 16000 rpm for 3 min. The resulting black supernatant was then heated to 40°C 

under reflux. Phenylethanethiol (PET, 300 μL) was added to the black dispersion, which was 

stirred at 400 rpm. When the UV-Vis optical spectrum evolved to look like that in Fig. 1B, or 

latest after 96 h, the yellow/brownish dispersion was dried by rotary evaporation at 50°C. An 

oily black product was obtained, mixed with 2 mL DCM and transferred into a glass centrifuge 
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flask. Subsequently, the suspension was precipitated with 80 mL of hexane, centrifuged at 3000 

rpm and the supernatant was removed. The DCM/hexane washing step was repeated four more 

times (VDCM/VHex= 1/20; 1/40; 0.5/40; 0.5/40). Finally, the [Au25(PPh3)10(SC2H4Ph)5X2]
2+ were 

extracted by mixing with 10 mL MeOH, vortexing and centrifugation at 16000 rpm. Au25-PET 

was synthesized according to procedures from Zhu et al[25] and Qian et al;[26] Au11 according to 

McKenzie, et al.[17] 

Device Fabrication: Field effect transistor devices were fabricated on highly n-doped Si wafers 

covered by 300 nm SiO2. Two probe, interdigitated geometries were patterned on the wafer 

surface via optical lithography, thermal evaporation of 5/45 nm Ti/Au and liftoff. Au NC 

solutions (methanol for Au25, tetrahydrofuran for Au25-PET, dichloromethane for Au11) were 

adjusted to have an optical density between 3 and 6 at 415 nm. Solutions were spin-coated onto 

the substrate with an acceleration of 250 rpm/s and speed of 4000 rpm/s for 20 s. The length L of 

the FET channel in these electrodes ranged from 5 to 15 µm. The device width W was either 99 

channels by 600 µm long (59400 µm) or 79 channels by 500 µm long (39500 µm). 

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Figures 

 

 

 
 

Figure 1. a) Schematic of Au25 NC with yellow = Au, blue = P, red = S, green = Br or Cl. Scale 

bar 0.5 nm. Crystallographic data from Qian et al.[12]  b) Optical absorption of Au25 NC in 

solution and spin coated film. c) Closeup of optical absorption of HOMO-LUMO peak. d) 

Transfer and e) output curves of Au25 film FET. Transfer Vd=8 V and output Vg=30 V curves 

shown also for logarithmic axes. L, W=10, 59400 μm. 
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Figure 2. Device response using laser light with a wavelength of 635 nm. a)  IV (Vg=0 V) and b) 

transfer (Vd=20 V) curve of dark and illuminated device. c) Schematics of illustrating 

photocurrent generation via photogating, showing Fermi energy εF approaching transport energy 

εT when illuminated. Idark, Ipc are dark and photocurrent, respectively. d) Device responsivity 

(Vg=0 V, Vd=4 V). e) Time response of photocurrent (Vg=0 V, Vd=4 V). L, W = 10, 39500 μm.  
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Figure 3. a)  IV (Vg=0 V) curves of various Au nanocluter films. b) Optical absorption of various 

Au nanoclusters in solution (dark, solid lines) and films (dashed, light lines). Arrow indicates the 

oxidation of Au25-PET1- to Au25-PET0 via H2O2 addition in solution or exposure to air in film. L, 

W = 10, 39500 μm. 
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Figure 4. a) Mobility versus gate voltage curves at the indicated VSD and F. Schematic shows the 

Gaussian and occupied density of states (gold), along with the evolution of the Fermi and 

transport energies versus gate voltage. b) Mobility versus F showing Poole-Frenkel behavior in 

the film. Arrhenius plot of the mobility over c) the entire temperature and d) at high temperature. 

e) Activation energies versus gate voltage. L, W = 10, 39500 μm, except in b) where also L = 5 

μm.     
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Figure S1. Mass spectrometry of the [Au25(PPh3)10(SC2H4Ph)5X2]2+ NC solution, showing X=Cl or 

Br. Inset: Closeup of [Au25(PPh3)10(SC2H4Ph)5Br2]2+ peak. The spacing of 0.5 in the isotope pattern 

indicates a total charge of 2+.   
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Figure S2. Au25 NC spin-coated film morphology. a) and b) atomic force microscopy, revealing 

a film height of 16 nm and root-mean-square roughness of 3.2 nm. c) and d) scanning electron 

microscopy, revealing light-colored, round particles in the film about 100 nm in size. In addition, 

smaller, darker regions, which appear to be voids or holes in the film, are also observed. The 

particles and voids may result from impurities and drying effects due to the relatively fast film 

formation time (<20 s) from spin coating.  
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Figure S3. Ion motion in Au25 NC films. Temporal response of source-drain current a) after 

applying source drain voltage. Curves go from Vd=0.2 V (blue) to 2 V (yellow) in 0.2 V interval. 

b) Temporal response of turning off the voltage (Vd=0) immediately following curves in a). Red 

dotted curves in a) and b) are fits. c) Schematic showing band bending due to ionic motion, 

ignoring Schottky contact effects for simplicity. 

 

Figure S3a shows the temporal evolution of drain current Id after applying a constant drain 

voltage Vd (V ON). For Vd≤1.2 V, the positive current decays continuously with time, eventually 

reaching a steady state value. In contrast, for Vd>1.2 V, after an initial decay the current begins to 

increase. When the voltage is set back to 0, (V OFF, Fig. S3b), the current becomes negative, 

spiking before decaying towards 0. This behavior can be explained by ions, most likely unbound 

Br- or Cl- leftover from the synthesis, moving in response to the applied electric field.[1] The 

curves that experience pure decay (Vd≤1.2 V) are fit  to a double exponential model 


BeAeItI eq

ssSD )(  where ssI  is the steady state current, eq  is the time response of the 
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measuring equipment,   is the time constant of the ions’ motion in the film, and A and B are 

fitting constants.[2] The ions have a time constant between 3 and 4 seconds in the ON state, and 

between 4 and 5 seconds in the OFF state.  

 

 

Figure S4. Forward and backwards output sweeps. L, W=10, 59400 μm. 

 

A schematic of the ions’ motion in response to the applied electric field is presented in 

Figure S3c. Initially (t=0-), the mobile, negatively charged ions are assumed to be 

homogeneously distributed throughout the film.  The moment a voltage is applied across the 

channel (t=0+), a current is generated as electrons flow towards the positive electrode. The 

negatively charged ions also move (much more slowly than the electrons) towards the positive 

electrode, accumulating near it. The speed with which the ions drift towards the electrodes is 

reflected in the ionic motion time constant. In effect, for times t~τ, a forward-biased pn junction 

forms in the device, with the accumulated negative ions corresponding to the p side. The ions 

accumulated near the electrode screen the applied electric field, reducing the current. For times 

much greater than τ, the ion concentration in the vicinity of the positive constant is very high, 

effectively forming a p+n diode (a highly p-doped region). Higher applied electric fields can 

compress the ions into a smaller space, and thus achieve higher p-doping in the junction. Above 

a certain critical voltage Vcr, the ionic compression and applied electric field combine to achieve 

a flat band condition, eliminating the energy barrier and allowing current to flow freely. This is 
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seen in Figure S3a for Vd>Vcr=1.2 V. After an initial decay, corresponding to a pn junction, the 

current increases as the p+n junction forms and the ions are increasingly compressed against the 

positive electrode. When the applied voltage is removed, the ions are still accumulated on one 

side of the channel, and generate an electric field with polarity opposite to the initially applied 

one. This results in the negative current spike seen in Figure S3b, with the decay corresponding 

to the ions diffusing back to their original homogeneous distribution. Hysteresis in the film’s 

output curves, shown in Fig. S4, are likely a result of ionic motion. This hysteresis is especially 

large in the transistor OFF state, for Vg=-50 V.  
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Figure S5. Photoresponse of device to 635 nm light for Vd=4 V, Vg=0 V. Blue and orange curves 

correspond to 0.64 and 29.9 mW cm-2 incident power. L, W=10, 39500 μm.  

 

 

 

Figure S6. Transfer curve of a device in a) ambient and b) vacuum for Vd=16 V. L, W=10, 39500 

μm.  

 



23 

 

 

Figure S7. Dark field optical images of Au25-PET film, showing aggregation of NCs.  
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