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Surface effects of a doped thin film made of a strongly correlated material are investigated both in the

absence and presence of a perpendicular electric field. We use an inhomogeneous Gutzwiller approximation

for a single-band Hubbard model in order to describe correlation effects. For low doping, the bulk value of the

quasiparticle weight is recovered exponentially deep into the slab, but with increasing doping, additional Friedel

oscillations appear near the surface. We show that the inverse correlation length has a power-law dependence

on the doping level. In the presence of an electrical field, considerable changes in the quasiparticle weight can

be realized throughout the system. We observe a large difference (as large as five orders of magnitude) in the

quasiparticle weight near the opposite sides of the slab. This effect can be significant in switching devices that

use the surface states for transport.

DOI: 10.1103/PhysRevB.87.035131 PACS number(s): 71.30.+h, 71.27.+a, 73.61.−r

I. INTRODUCTION

The metal insulator transition (MIT) based on carrier

doping of a Mott insulator has been investigated experi-

mentally and theoretically.1,2 Recently, the formation of a

superconducting phase was observed at the interface of a Mott

and band insulator, and the possible tuning of these transitions

by an external electric field was reported.3 Moreover, a

three-terminal setup was implemented by Son et al. who

induced hole doping in a thin Mott insulator film from a doped

band insulator through the application of a voltage difference

between the drain and the gate terminals.4

For the above class of phenomena inhomogeneities and

proximity effects play an essential role. In order to deal

with such systems one needs a theoretical model that is

able to include correlation effects in heterostructures while

not being too computationally expensive such that one has

the possibility to consider large enough system sizes. This

is crucial, especially for the investigation of systems where

surfaces and finite-size effects are significant, such as thin

films made of strongly correlated materials. The interface

between a band insulator and a strongly correlated system

has been studied theoretically with a two-site dynamical

mean field theory (DMFT)5 and the slave boson mean field

theory (SBMFT).6 Such studies predict the formation of a

two-dimensional electron gas at the interface which arises

due to charge reconstruction. Surface correlation effects were

studied theoretically in half-filled heterostructures modeled

by a single-band Hubbard model.7 Also the penetration of

metallic behavior into a Mott insulator was studied both within

the Gutzwiller approximation and DMFT for the half-filled

case.8,9 Surface correlation effects of a doped semi-infinite

Hubbard model were investigated within an embedded DMFT

for both single-band and multiband systems.10,11 Within this

method, due to numerical limitations, only few surface layers

(up to 6) can be used in order to address site dependent

correlation effects. When the correlation length is large, this

method is not reliable any more.

In order to describe position-dependent electronic corre-

lation effects in a slab geometry we employ the Gutzwiller

approximation (GA). While the GA works only for the metallic

phase, it gives reliable information about the quasiparticle

(QP) weight of electrons at different spatial locations. For

heterostructures, the GA was found to be in good qualitative

agreement with the more refined DMFT method for the

half-filled case.9 While the GA and SBMFT are equivalent

for zero temperature,12 in two-site DMFT, like the GA, the

bulk QP weight is governed by a simple power law and there

is only a correction to Uc when compared with the linearized

DMFT.13,14 Generally, the GA overestimates the QP weight

at all dopings but it is considered to be accurate enough

to describe low-energy excitations and is routinely used for

interpolations in combination with DMFT methods.2

The aim of this paper is to investigate the spatial dependence

of the charge density and the QP weight of a doped correlated

slab and to understand the correlation effects in the presence

of an external electric field. We predict significant changes in

the QP weight throughout the system. This study is motivated

by potential applications in nanoscale switching devices with

spatial controllable conductivity through the application of an

external electric field.

The outline of the paper is as follows: after a brief derivation

of the saddle-point equations for a slab geometry (Sec. II) the

results for a doped correlated slab are presented in Sec. III A.

Next the effect of an electric field is discussed in Sec. III B,

and finally we present our conclusions in Sec. IV.

II. MODEL AND METHOD

The simplest Hamiltonian that is able to capture the

essential physics of strongly correlated systems is the single-

band Hubbard model,15

ĤU = −
∑

〈ij〉σ

tijc
†
iσ cjσ +

∑

i

Un̂iσ n̂iσ̄ , (1)

where tij are the hopping amplitudes, 〈ij 〉 is summation over

nearest-neighbor sites, and U is the Hubbard energy describing

the Coulomb interaction between two electrons with opposite

spin located on the same site. In the presence of an external

electric field the model becomes16

Ĥ = ĤU +
∑

iσ

vi n̂iσ , (2)
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where vi is the position-dependent potential. In spite of the

simple form of the Hubbard model, exact solutions exist only

for d = 1 and d = ∞,1,17,18 and therefore we are forced to

work with approximations. If one is only concerned about

ground-state properties or low-energy excitations,19 one of

the choices is the Gutzwiller approximation (GA) which is

the infinite dimension limit of the Gutzwiller wave function

(GWF).18,20,21 The GWF is a many-body wave function with

an additional degree of freedom used to reduce the weight

of higher energy configurations. In the single-band Hubbard

model these configurations are on-site double occupancies

obtained when two electrons with opposite spin reside on the

same site. The GWF is written as

|GWF〉 =
∏

i

P̂i |φ0〉, (3)

where i is the lattice site index, and the projector operators

are defined as P̂i = ge,i êi + gσ,i ŝσ,i + gσ̄ ,i ŝσ̄ ,i + gd,i d̂i . The

operators ê = (1 − n̂iσ )(1 − n̂iσ̄ ), ŝσ = n̂iσ (1 − n̂iσ̄ ), and d̂ =
n̂iσ n̂iσ̄ are local projectors of zero, singly, and doubly occupied

states, |ϕ0〉 is a noninteracting Fermi sea and consists of

both spin up and spin down states, and the g coefficients are

variational parameters. The following local constraints have

to be satisfied in order to remove the local contributions in the

diagramatic expansion of various expectation values:19,21

〈P̂ †
i P̂i〉0 = 1, (4)

〈P̂ †
i P̂ic

†
iσ ciσ 〉0 = 〈c†iσ ciσ 〉0, (5)

where 〈· · ·〉0 represents the expectation value with respect

to |ϕ0〉. The explicit form of the above constraints is the

following:

giσ
2〈êi〉0 +

∑

σ

giσ
2〈siσ 〉0 + gd,i

2〈d̂i〉0 = 1, (6)

giσ
2〈siσ 〉0 + gd,i

2〈d̂i〉0 = 〈n̂iσ 〉0. (7)

In the limit of infinite dimensions the effect of the projectors

Pi requires the renormalization of the hopping amplitudes

between different sites.18,21 These renormalization factors can

be written as

√
qiσ =

ge,igσ,i

√

〈êi〉0〈ŝσ,i〉0 + gd,igσ̄ ,i

√

〈d̂i〉0〈ŝσ̄ ,i〉0

〈niσ 〉0(1 − 〈niσ 〉0)
. (8)

By substituting Eqs. (6) and (7) into Eq. (8) one arrives at an

expression for
√

q
iσ

that is only a function of gd,i , 〈n̂iσ 〉0 and

〈n̂iσ̄ 〉0 as

√
qiσ =

√

(1 − 〈n̂i〉0 + di)(〈n̂iσ 〉0 − di) +
√

di(〈n̂iσ̄ 〉0 − di)

〈niσ 〉0(1 − 〈niσ 〉0)
,

where di = g2
d,i〈n̂iσ 〉0〈n̂iσ̄ 〉0 is the probability of double

occupancy that is calculated within |GWF〉 and 〈n̂i〉0 =
〈n̂iσ 〉0 + 〈n̂iσ̄ 〉0. Moreover, in addition to Eq. (8) the relation

〈n̂iσ 〉Gutzwiller = 〈n̂iσ 〉0 holds in the limit of infinite dimensions.

By considering the above relations, the total energy functional

of an inhomogeneous system has the following form:

〈Ĥ 〉GWF =
∑

〈ij〉,σ

−tij
√

qiσ

√
qjσ 〈ĉ†iσ ĉjσ 〉0 +

∑

i,σ

vi〈n̂iσ 〉0,

+
∑

i

Ug2
d,i〈n̂iσ 〉0〈n̂iσ̄ 〉0, (9)

The conditions 〈GWF|GWF〉 = 〈ϕ0|ϕ0〉 and 〈ϕ0|ϕ0〉 = 1 are

used in the above relation; the first relation itself is a

consequence of the infinite dimensional limit and the second

relation is just the normalization condition for |φ0〉.
Away from half-filling the problem of minimizing the

energy functional is combersome because the renormalization

factors, qiσ , are functions of 〈n̂iσ 〉0. Therefore it is impossible

to simply vary the above energy functional with respect to 〈φ0|.
A possible approach, similar to DFT, is to start with an arbitrary

value for 〈n̂iσ 〉0 and then to expand the energy functional as

function of 〈n̂iσ 〉0 up to linear order around the starting 〈n̂iσ 〉0.

This allows us to vary the energy functional with respect to

〈φ0|; moreover, this variation together with the normalization

condition for |φ0〉 leads one to solve an eigenvalue problem,

and a new value of 〈n̂iσ̄ 〉0 can be calculated by using the

resulting wave function. This should be done until the desired

convergence of the wave function or energy functional is

achieved.

However, to alleviate this complication, instead of calcu-

lating the expectation value 〈n̂iσ 〉0, we introduce a set of

new variational parameters niσ s that will play the role of

local noninteracting occupancies (local noninteracting density

matrices) which appear in the renormalization factors and

double occupancies. It is then possible to let niσ vary

independently from |φ0〉. The energy functional that should

be optimized has now the following form for a simple cubic

slab geometry with periodic boundary conditions in the x-y

plane with free (001) surfaces:

〈Ĥ 〉 =
∑

i,k‖,σ

(qiσ ǫk‖ + vi)〈φ0|ĉ†ik‖σ
ĉik‖σ |φ0〉

−
∑

〈ij〉k‖σ

√
qiσ

√
qjσ t〈φ0|ĉ†ik‖σ

ĉjk‖σ |ϕ0〉

+
∑

iσ

λiσ

(

∑

k‖

〈φ0|ĉ†ik‖σ
ĉik‖σ |φ0〉 − Nk‖niσ

)

+ λ

(

Nk‖

∑

iσ

niσ − N

)

+ E(1 − 〈ϕ0|ϕ0〉)

+
∑

i

Nk‖Ug2
d,iniσniσ̄ , (10)

where ǫk‖ = −2t(cos kx + cos ky); the Lagrange multipliers

λiσ are introduced to fix niσ to 〈n̂iσ 〉0. � is introduced to fix

the total number of electrons, E is considered to make sure that

|ϕ0〉 is normalized, i and j are index of layers in the z direction,

and Nk‖ = Nkx
Nky

is the total number of k points. The

optimization of the Lagrange function is performed through an

iterative procedure, starting with a minimization with respect

to |ϕ0〉, which leads to a Schrödinger-like eigenvalue problem
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that has to be solved for each k point:
∑

iσ

(qiσ ǫk‖ + vi + λiσ )ĉ
†
ik‖σ

ĉik‖σ |ϕ0〉

−
∑

〈ij〉σ

√
qiσ

√
qjσ t ĉ

†
ik‖σ

ĉjk‖σ |ϕ0〉 = Ek‖ |ϕ0〉, (11)

The resulting noninteracting many-body ground state en-

ergy and wave function are computed in the following way:

ENI =
∑

Ek‖ ,n<EF
Ek‖,n and |ϕ0〉 =

∏

Ek‖,n<EF
ĉ
†
k‖,nσ ĉ

†
k‖,nσ̄ |0〉,

where EF is the Fermi energy and n is the quantum number for

the energy level of each k point. The above noninteracting state

|ϕ0〉, which is now implicitly a function of all the variational

parameters λiσ , niσ , gi , and λ, should be inserted into Eq. (10),

which becomes

〈Ĥ 〉 = ENI (niσ ,λiσ ,gd,i,|ϕ0〉) − Nk‖

∑

i,σ

λiσniσ

+ λ

(

Nk‖

∑

i,σ

niσ − N

)

+ Nk‖

∑

i

Ug2
d,iniσniσ̄ . (12)

In the next step we search for the stationary points of the

above Lagrange function of a slab geometry for a paramagnetic

system with niσ = niσ̄ = ni and 〈n̂iσ 〉0 = 〈n̂iσ̄ 〉0 as

∂〈Ĥ 〉
∂gd,i

= 2
∂qiσ

∂gd,i

(

t̃i + δi,j±1

√

qjσ

qiσ

t̃ij

)

+ 2Nk‖Uni
2gi,d = 0,

(13)

∂〈Ĥ 〉
∂ni

= 2
∂qiσ

∂ni

(

t̃i + δi,j±1

√

qjσ

qiσ

t̃ij

)

+ 2Nk‖ (λ − λi) + 2Nk‖Ugi,d
2ni = 0, (14)

∂〈Ĥ 〉
∂λi

= 2〈ϕ0|
∑

k‖

ĉ
†
ik‖σ

ĉik‖σ |ϕ0〉 − 2Nk‖ni = 0, (15)

∂〈Ĥ 〉
∂λ

=

(

Ntotal − 2Nk‖

∑

i

ni

)

= 0, (16)

where the spin index of renormalization factors and

λiσ is droped due to paramagnetic condition, t̃i =
∑

k‖
ǫk‖〈ϕ0|ĉ†ik‖σ

ĉik‖σ |ϕ0〉, t̃ij = −t
∑

k‖
〈ϕ0|ĉ†ik‖σ

ĉjk‖σ |ϕ0〉, and

Ntotal is the total number of electrons. t̃i,i+1 and t̃0,1 are equal

to zero at the edge of the slab. For a detailed derivation

of the saddle-point equations for an slab geometry in the

paramagnetic case, we refer to Ref. [ 22]. This set of nonlinear

equations can be solved by using a nonlinear solver based on

Newton and/or quasi-Newton methods. Notice that |φ0〉 is still

implicitly a function of the variational parameters and has to

be updated again through Eq. (11) during the evaluations of the

saddle-point equations throughout the optimization procedure.

This means that we are all the time working with a |φ0〉 which

satisfies the condition δ〈Ĥ 〉
δ〈φ0| = 0.

It should be noticed that, together with the saddle point

equations, the electrostatic forces due to long-range electron-

electron and electron-ion interactions should be in principle

considered. However, since the background permittivity of

strongly correlated materials is usually very high,23 we tested

the solutions with various high values of background permit-

tivity and observed that long-range screening is negligible.22

We therefore set the value of the background permittivity to

infinity in our calculations and ignore these effects. In order to

numerically solve the set of saddle-point equations, we use a

16 × 16 Monkhorst-Pack24 k grid for which the total energy is

well converged. We report results for qi as being the position-

dependent QP weight, which is a measure of the mobility

of the electrons within Fermi liquid theory. The inverse of

the QP weight is proportional to the mass renormalization,

which becomes divergent for qi = 0 corresponding to an

insulating phase.25 The parameters U and v are scaled by the

tight-binding parameter t . Throughout this work the thickness

of the slab is taken as Lz = 90 in units of the lattice constant.

III. RESULTS

A. Hole doped correlated slab

In Fig. 1(a) we depict the charge distribution near the

surface for different values of doping and U = 16.2, which

is larger than the bulk critical U for the half-filled case,

i.e., U
bulk,hf
C = 16. The surface region in which the charge

density recovers its bulk value is doping dependent, resulting

in the doping-dependent correlation length. Higher doping

corresponds to lower correlation length. In the inset of

Fig. 1(a) we present the charge transfer from the bulk to

the surface (nsurface − nbulk). The doping dependence of this

charge transfer is non-monotonic and is at maximum around
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FIG. 1. (Color online) (a) Charge distribution for different dop-

ings. Inset: Charge transfer from bulk to surface as a function of

doping. (b) QP weight relative to the bulk QP weight near the surface

for different dopings. The inset shows the doping dependence of the

bulk QP weight.
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δ = 0.15. While our results for the charge transfer are in

agreement with recent DMFT calculations for a hole-doped

semi-infinite single-band Hubbard model10 in the limit of large

enough doping, our scaling analysis shows that considering

only a few layers for the QP calculation may not be enough,

specially for values of doping near half-filling for which

the correlation length is larger that 6 lattice constants. In

Fig. 1(b) the spatial-distribution QP weights (qi − qbulk) are

plotted for different values of doping and U = 16.2. As in

the half-filled case,7,9,22 the QP of electrons near the surface

sites is suppressed due to the reduced coordination number

together with the charge transfer to the surface sites from the

bulk, which in turn results in a lack of kinetic energy and

an enhancement of correlation effects. One can also observe

Friedel oscillations which are more pronounced for higher

doping due to lower correlation lengths. The inset of Fig. 1(b)

shows the doping dependence of the bulk QP weight, qbulk,

which is in agreement with previous works and shows that,

by increasing the doping, correlation effects are weaker.2

The correlation length can also be extracted from the spatial

distribution of the QP weight near the surface. Similar to the

dependence of the charge density, the QP weight recovers its

bulk value within a characteristic length scale that depends

on the correlation length. Friedel oscillations can also be

observed but are suppressed for lower doping. Following Ref. 9

we observe that the spatial distribution of
√

q(x) − √
qbulk is

well fitted by an exponential decay for different values of the

Hubbard repulsion and doping:

√

q(x) =
√

qbulk + (
√

qsurface −
√

qbulk)e
− 1

ξ
(x−1)

, (17)

where ξ is the correlation length and x the number of layer,

starting from x = 1. Since the correlation length ξ depends on

both U and δ, by fitting separately the spatial distribution of the

QP weight we extract the corresponding correlation lengths.

The results are summarized in Fig. 2, where 1/ξ is plotted

as a function of doping for different values of the Hubbard

repulsion. We can extract a simple power-law dependence for

the inverse correlation length: 1
ξ

= Aδη, with a mean-field-like

0
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1
/ξ

δ

1/ξ ∝ δ
η
, η=0.5 ± 0.07U=16.2
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 16.2  16.8  17.4  18

1
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U

FIG. 2. (Color online) (a) Inverse correlation length as a function

of doping for values of U = 16.2, 16.5, 17.0, and 18.0. The inset

shows the inverse of the correlation length as function of U for four

values of δ = 0.009, 0.013, 0.017, and 0.032 from bottom to top

curves.

exponent,8,26 η = 0.5 ± 0.07, and a prefactor A that is only a

function of U . The inset of Fig. 2 shows the inverse correlation

length as a function of U for different dopings and, as expected,

it is enhanced for higher Hubbard repulsions. The power-law

dependence of the correlation length versus doping shows

that for half-filling the correlation length diverges, which is

a signature of the MIT that occurs for U > U bulk,hf
c . A similar

dependence of the correlation length versus Hubbard repulsion

is observed for half-filling but when U < U bulk,hf
c .26 In the

latter case the criticality is governed by the Hubbard repulsion

rather than the doping level.

B. The effect of electric field

The effect of an external electric field perpendicular to the

slab on the spatial distribution of the QP weight is shown in

Fig. 3 for U = 16.2, δ = 0.002, and different values of the

voltage difference. The inset shows the charge distribution

for the same parameters. The main effect of the electric field

is to redistribute the charges within the slab; however, in

the strongly correlated regime when the Hubbard repulsion

exceeds a certain crossover value, correlation effects enhance

the charge transfer from less correlated sites to more correlated

ones. This correlation-enhanced charge redistribution results

in the accumulation of charges near the surface layers, bringing

one side of the slab very close to half-filling. This effect is

largest for U > U bulk,hf
c .

To better clarify the correlation effects on the surface states
of a correlated slab in the presence of an electric field, we
depict in Fig. 4 the charge and quasiparticle (QP) distribution
of a slab 90 layers thick and with a voltage difference v = 0.88.
The charge distribution for U = 15.22 shows peaks near
the surfaces, as expected; however, this behavior disappears
for U = 15.74 and U = 16.2. This shows a clear crossover
regime related to the enhancement of correlation effects.
On the other hand the naive expectation, that the effect of
an increased Hubbard repulsion is only to screen out the
electric field, fails to explain the behavior of the system in the
presence of the electric field in the strong-coupling regime.
As shown in Fig. 4, by increasing the Hubbard repulsion,
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FIG. 4. (Color online) Charge distribution; the inset shows the

charge transfer as a function of U for fixed v = 0.88 and δ = 0.002.

the charges do not go away from the surface but instead are
accumulated at the surface. This mechanism of charge transfer
from the places with enhanced delocalization to the places with
enhanced correlations leads to a nontrivial enhancement of QP
difference between the surfaces for large Hubbard repulsions.
To further understand the charge redistribution enhancement
due to correlation effects, we present in the inset of Fig. 4
the charge difference between the layers with highest charge
density and the layers with lowest charge density as a function
of U . This can be considered as a measure of the charge transfer
throughout the system. As is clear from the inset of Fig. 4 there
is a crossover value for U , given a fixed doping δ = 0.002 and
voltage difference v = 0.88. Above this value the effect of
the U plays a different role in the charge redistribution in the
system. While below the crossover interaction the Hubbard
repulsion competes with v to prevent charge redistribution
due to voltage difference, above the crossover it enhances the
charge redistribution in favor of v. As is obvious from Fig. 3,
the maximum QP weight is already achieved after a few layers
from the surface on that side of the slab where the deviation of
the charge density from half-filling is maximal. The reason that
the QP weight is not maximal exactly at the surface is because
of the suppression of the kinetic energy near the surface. On
the other side of the slab, for larger electric fields the charge
transfer assures that the charge density is near half-filling.
Therefore, due to local correlation effects the QP weight is
strongly suppressed. While the charge density near the surface
is very close to half-filling (i.e., n − 1 ≃ 10−7) one may infer
that the residual QP indicated in Fig. 3 for x = 1 is mostly
due to the proximity of the surface site to sites with higher
QP weight rather than due to the local doping effect of these
regions. In order to better understand the dependence of the
QP weight on opposite sides of the slab, in Fig. 5 we show the
QP weight for layers x = 1 and x = 90 as functions of voltage
difference for three different values of doping.
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FIG. 5. (Color online) QP for x = 1 and x = 90 as functions of

voltage difference for U = 16.2 and three values of δ.

The QP weights on the two surfaces differ by many orders of

magnitude. For larger doping, higher electric fields are needed

in order to achieve the same QP weight difference. This is

because of the competing influence of doping and Hubbard

repulsion on the correlation effects. The huge difference in

QP weight near the two surfaces could be used for creating

a transistor-like device made of strongly correlated materials.

By using the surface states to conduct current one can simply

switch on/off the device by switching the polarity of the

gate. Thus, turning on/off the electric conduction is now a

consequence of the surface resistance ratio of the two sides.

IV. CONCLUSIONS

By using an inhomogeneous Gutzwiller approach applied

to the paramagnetic single-band Hubbard model for a slab

geometry, we described a hole-doped Mott thin film. In the

absence of applied electric field we calculated the position-

dependent charge density and QP weight and showed that

the inverse correlation length has a power-law dependence on

doping.

When a perpendicular electric field is applied, charges will

accumulate on one side of the slab. This correlation enhanced

charge redistribution will in turn induce a large difference

in the QP weight on the two sides of the slab, which was

found to be as large as five orders of magnitude. We propose

that a three-terminal device with surface contacts can take

advantage of this effect. For resistance switching purposes one

would expect large on/off ratios of surface resistances when

the electric field switches polarity.
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