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Abstract
We derive the complete photon count statistics of an interferometer based on two beam
splitters. As a special case we consider a joint intensity–electric field measurement. Our
approach is based on the transformation properties of state vectors as well as field operators at
a beam splitter.

PACS numbers: 42.50.Ct, 42.50.Ar, 42.50.Dv

1. Introduction

The dream of a quantum internet [1] that is a network
where ‘flying’ qubits transmit quantum information [2]
between several nodes processing this information has come
a long way7. Indeed, by now several elements of such
an arrangement have been realized experimentally (see for
example [4]) using ions in traps, entangled photons or a
cavity QED. Despite this breathtaking progress in quantum
technology, there is still a lot to be learned and we recall the
warning of Thomas Henry Huxley (1825–1895) who wrote in
1868 in an inaugural address titled ‘A Liberal Education; and
Where to Find it’ [5]:

‘The chess board is the world, the pieces are the
phenomena of the universe, the rules of the game
are what we call the laws of nature. The player on
the other side is hidden from us. We know that his

∗ The work presented here was stimulated by discussions during the
Lake Garda Conference 2001. The recent experimental interest in six-port
interferometry has moved us to return to the problem. We feel, moreover, that
the topic is appropriate for the Festschrift in honour of Stig Stenholm since he
can truly be considered a pioneer in the field of quantum networks. We hope
that our discussion may pique his interest.
6 Herbert Walther was an active participant in this project in his familiar style.
He was also a close friend of Stig’s. Herbert remains a co-author although he
did not live to see the completion of this manuscript.
7 For landmark papers on the quantum internet see Cirac et al [3] and
Kimble [3]; for a recent proposal see Vasilev et al [3].

play is always fair, just, and patient. But also we
know, to our cost, that he never overlooks a mistake,
or makes the smallest allowance for ignorance. To
the man who plays well the highest stakes are paid
with that sort of overflowing generosity with which
the strong shows delight in strength. And one who
plays ill is checkmated—without haste, but without
remorse.’

With this warning in mind we concentrate in this paper
on a six-port interferometer, which represents an elementary
version of a quantum network. Such an analytical device is
made of two beam splitters as shown in the rectangle on the
left-hand side of figure 1.

The present analysis is in the tradition of earlier work8

on multi-port interferometers. In the context of an operational
approach [7] towards the old question of the phase operator
(see for example [8]) in quantum mechanics, the eight-port
interferometer operated as a double homodyne detector has
been studied extensively [9]. It was shown that in the
limit of a strong local oscillator the count statistics of
this device is given by the Q-function of the input field.
The underlying operators are identical to the ones of the
Einstein–Podolsky–Rosen situation [10–12].

8 For expositions of the theory of multiports, see for example [6].
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Figure 1. The six-port interferometer shown in the left box analyses the light created, for example, by the interaction of an atom with a
driven cavity field. The three inputs are: (i) the field emerging from the cavity described by the density operator ρ̂, (ii) the vacuum field
denoted by the state |0〉 and (iii) a local oscillator in a coherent state |α〉. Detectors D1, D2 and D3 count the excitations of the three output
modes. The counts of detectors D2 and D3 are subtracted from each other, providing a homodyne measurement. In the limit of a strong local
oscillator this setup is equivalent to the one shown in the right box consisting of a single beam splitter with projections of the two output
modes on the photon number state |n〉 and the electric field state |Eθ 〉.

1.1. Six-port interferometer setups and experimental
applications

In its most elementary version, a single beam splitter consists
of two input and two output ports. Thus for two such beam
splitters we have a total of four input and four output modes.
When we feed one of the output modes of one of the beam
splitters into one of the input ports of the other, we arrive at
a total of three input and three output ports. This arrangement
of two beam splitters constitutes the six-port interferometer
discussed in this paper9.

During the last decades a special version of this device
has become rather popular. Here, a joint photon number and
an electric field measurement is made. In this situation the
three input ports are occupied by: the field to be analysed, the
vacuum field and a local oscillator field. On all three output
modes intensity measurements are made. However, the photon
counts from two of the three detectors are subtracted from
each other as indicated in the left box of figure 1.

Setups of this type have been used in many experimental
situations. In the early days of squeezing it was proposed [14]
to measure the quadrature distribution of one of the two
photons created by a parametric oscillator using the second
photon as a trigger. At first sight this arrangement seems to
be different from the one discussed in this paper. Indeed, it
involves only a single beam splitter to make the quadrature
measurement by mixing the field to be measured with the local
oscillator. However, the missing beam splitter is represented
by the nonlinear medium.

Experiments [15, 16] following this recipe [14] have
reconstructed the Wigner function of a single Fock state
with the help of the Radon transform [17] of the measured
quadrature field distributions. Moreover, this concept of
a heralding photon underlying the six-port interferometer
has also been applied successfully to induce conditional
coherence and conditional-phase switch [18] as well as
the generation of ultrafast single photons in pure quantum
states [19]. Following earlier theoretical ideas [20] recent
experiments have created Schrödinger kittens [21] as well as
non-local superpositions of quasi-classical light states [22]

9 Other versions of six-port interferometers have been suggested. For
example, in [13] it was shown that a six-port interferometer consisting of
three beam splitters can be used to reconstruct the full quantum state of one
of the three input fields.

using conditional measurements of photon number and
electric field using a six-port interferometer.

A different class of experiments uses six-port
interferometers to study the wave–particle nature of the
radiation created in a cavity QED experiment [23–27] shown
on the left of figure 1. An atom in a high-Q resonator driven
by an external laser field interacts (see for example [28])
with a single mode of the cavity field. The so-created
electromagnetic field is coupled out of the resonator and
fed into a six-port interferometer operated in the homodyne
mode. Recently, a similar experiment [29] in the weak local
oscillator limit has been performed analysing the radiation
from a single ion stored in a trap. Moreover, a related setup
has been used to bridge particle and wave sensitivity in a
configurable detector [30].

So far these experiments have been discussed in the
framework of the quantum Monte Carlo method [23, 25] and
weak measurements [31]. These techniques also yield in a
natural way the density operator of the field created by the
interaction of the atom with the light in the cavity [27]. Since
in the present paper we are interested in the measurement
rather than the generation aspects, it is convenient to pursue a
more direct evaluation of the count statistics starting from the
beam splitter transformations (see for example [32]) occurring
in the six-port interferometer.

1.2. Outline of the paper

Our paper is organized as follows: in section 2, we provide
a description of the six-port interferometer in terms of state
vectors. This method yields immediately the complete photon
count statistics of this device. We then turn in section 3 to
a six-port interferometer in homodyne mode. In the limit of
a strong local oscillator this arrangement is equivalent to a
single beam splitter provided that we make a photon number
and an electric field measurement on the two output modes.
Moreover, we derive an expression for the average count rate.

In contrast to the state vector technique pursued in
the first part of the paper, the description of the six-port
interferometer presented in section 4 is in terms of correlation
functions of electric field operators (see for example [33]).
This approach is valid for arbitrary delay times between the
two measurements. In particular, we show that due to the
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coherent state of the local oscillator, the correlation function
g(2) reduces to one that can be called g(1.5).

The more familiar notation g(n) for the correlation
function dates from an era in which all measurements were
measurements of fluctuating intensities of optical fields. The
integer n reflects the fact that we deal with the correlation
between n creation operators with n annihilation operators.
The experimental arrangement of the six-port interferometer,
as we shall see, allows the measurement of the correlations
between two creation operators and one annihilation operator
(and vice versa). We resolve this dilemma of notation by
calling such correlation functions g(3/2)

= g(1.5).
We conclude in section 5 with a brief summary of

our results.

2. Complete photon count statistics

In this section, we provide the foundation for our analysis
of the six-port interferometer operated in a homodyne mode
discussed in the next section. We derive the count statistics
of the three detectors at the exit modes of the interferometer
shown in figure 1. Since coherent states transform at
beam splitters like classical fields [32], we use a diagonal
representation of a density operator in terms of coherent
states, that is, a P-representation, to find the density operator
ρ̂out of the three output modes.

The density operator

ρ̂in ≡

∫
d2β P(β) |β〉〈β| ⊗ |0〉〈0| ⊗ |α〉〈α| (1)

of the three input modes consists of the state

ρ̂ ≡

∫
d2β P(β) |β〉〈β| (2)

to be investigated and described by a P-distribution, the
vacuum |0〉 and a coherent state |α〉 associated with the local
oscillator. Here |β〉 denotes coherent states used in the phase
space integral of the density operator ρ̂.

Since coherent states transform at beam splitters like
classical fields, the input density operator ρ̂in given by
equation (1) transforms into

ρ̂out =

∫
d2β P(β)

∣∣∣∣− β
√

2

〉
1

〈
−

β
√

2

∣∣∣∣
⊗

∣∣∣∣−β

2
+

α
√

2

〉
2

〈
−

β

2
+

α
√

2

∣∣∣∣
⊗

∣∣∣∣β2 +
α

√
2

〉
3

〈
β

2
+

α
√

2

∣∣∣∣ . (3)

Here, we have assumed for the sake of simplicity 50:50 beam
splitters and have introduced a phase shift of π due to the
reflection from a thicker medium.

The expression equation (3) for ρ̂out indicates that the
field states in the three exit modes are entangled unless the
P-distribution is a delta function, that is, the field is in a
coherent state. Therefore, the photon count statistics

W (n1, n2, n3) ≡ 〈n1, n2, n3|ρ̂out|n1, n2, n3〉 (4)

at the three detectors must be correlated. Indeed, when we
substitute the density operator ρ̂out given by equation (3)
into (4),we arrive at

W (n1, n2, n3) =

∫
d2β P(β) Wn1

(
−

β
√

2

)
× Wn2

(
−

β

2
+

α
√

2

)
Wn3

(
β

2
+

α
√

2

)
, (5)

where

Wm(γ ) ≡ |〈m|γ 〉|
2
=

|γ |
2m

m!
e−|γ |

2
(6)

denotes the Poissonian photon statistics of a coherent state of
amplitude γ .

Hence, the complete count statistics of the six-port
interferometer determined by probability W (n1, n2, n3) to
find the number of photons n1, n2 and n3 in the three exit
modes follows from a phase-space integral. Its integrand
consists of the product of the P-distribution of the state to be
analysed and the three Poissonian distributions Wn1 , Wn2 and
Wn3 corresponding to the counts in the output ports. Due to
integration over the coherent state |β〉, it is more convenient to
interpret Poissonian Wm as the Husimi Q-function of a photon
number state |m〉 recalling the identity

Qm(γ ) =
1

π
Wm(γ ) . (7)

In this sense the count statistics

W (n1, n2, n3) = π3
∫

d2β P(β) Qn1

(
−

β
√

2

)
× Qn2

(
−

β

2
+

α
√

2

)
Qn3

(
β

2
+

α
√

2

)
(8)

is given by the phase-space integral of the product of the
P-distribution and three Husimi Q-functions corresponding
to the counts n1, n2 and n3.

3. Joint intensity–electric field measurement

In the preceding section, we have derived an expression for
the count statistics of a six-port interferometer when we retain
the complete information about the photon counts in all exit
modes. However, when the interferometer is operated in the
homodyne mode, the counts at the detectors D2 and D3 are
subtracted and the information about the individual counts
is erased. In the present section, we first derive an exact
expression for the count statistics of a six-port interferometer
in the homodyne mode and then consider the strong local
oscillator limit. In this case, the interferometer performs a
joint intensity–electric field measurement.

3.1. Local oscillator of arbitrary strength

The photon statistics of this device then corresponds to the
probability

W (n1, n32) ≡

∑
n2

W (n1, n2, n32 + n2) (9)

3
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of finding n1 quanta of excitation in mode 1 and the
corresponding difference n32 ≡ n3 − n2 in modes 2 and 3.
Here we sum over the unobserved photon numbers n2.

When we substitute the explicit expression equation (5)
for the photon statistics into equation (9), we find

W (n1, n32) =

∫
d2β P(β) Wn1

(
−

β
√

2

)
Kn32

(
β

√
2
, α

)
,

(10)
where the homodyne kernel

Kn32(γ, γ̃ ) ≡

∑
n2

Wn2

(
γ̃ − γ
√

2

)
Wn32+n2

(
γ̃ + γ
√

2

)
, (11)

consisting of the sum over the product of two Poisson
distributions, equation (6), takes the form [32, 34]

Kn32(γ, γ̃ ) =

∣∣∣∣ γ̃ + γ

γ̃ − γ

∣∣∣∣n32

I|n32|

(∣∣γ̃ 2
− γ 2

∣∣) e−|γ |
2
−|γ̃ |

2
. (12)

Here Im denotes the modified Bessel function of mth order.
When we recall the connection equation (7) between

the Q-function of a number state and the photon number
distribution of a coherent state, the photon statistics of a
six-port interferometer in homodyne mode takes the form

W (n1, n32) = π

∫
d2β P(β) Qn1

(
−

β
√

2

)
Kn32

(
β

√
2
, α

)
.

(13)
It is given by the phase-space integral of the product of the
P-distribution, a Husimi Q-function and the homodyne kernel
corresponding to the photon number state n1 and the count
difference n32, respectively.

3.2. Strong local oscillator limit

We emphasize that the expression equation (10) for
W (n2, n32) is valid for an arbitrary amplitude |α| of the
coherent field. When |α| is large, that is, 1 � |α|, a reference
phase is established. We now consider the count statistics
equation (10) in this limit.

The asymptotic expansion

In(x) ≈
1

√
2πx

exp

(
x −

n2

2x

)
(14)

of the modified Bessel function In reduces [32, 34] the kernel
Kn32 to

Kn32(γ, γ̃ ) ≈
1√

2π |γ̃ |2
exp

[
−

1

2

(
n32

|γ̃ |
−

γ ∗γ̃ + γ γ̃ ∗

|γ̃ |

)2
]
.

(15)

Hence, the photon count statistics equation (10) reads

W (n1, n32) =
1√

2π |α|2

∫
d2β P(β) Wn1

(
−

β
√

2

)

× exp

[
−

1

2

(
n32

|α|
−

α∗β + αβ∗

√
2|α|

)2
]
. (16)

This result becomes more transparent when we recall the
relationship [32]

Kn32(γ, γ̃ ) ≈
1

√
2|γ̃ |

∣∣∣∣〈Eθ =
n32

√
2|γ̃ |

∣∣∣ γ 〉∣∣∣∣2

(17)

between the homodyne kernel Kn32 and the eigenstates |Eθ 〉 of
the rotated electric field operator

Êθ ≡
1

√
2

(
â e−iθ + â† eiθ

)
. (18)

Indeed, for a fixed angle θ of the local oscillator, that is, for
α ≡ |α|eiθ , the count statistics given by equation (10) takes the
form

W (n1, n32; θ) =
1

√
2|α|

∫
d2β P(β)

∣∣∣∣〈n1| −
β

√
2

〉∣∣∣∣2

×

∣∣∣∣〈Eθ =
n32

√
2|α|

∣∣∣ β
√

2

〉∣∣∣∣2

. (19)

This expression is the result of the projection of a photon
number state |n1〉 and an electric field eigenstate |Eθ 〉 on the
two output modes of a single beam splitter described by the
density operator

ρ̂out ≡

∫
d2β P(β)

∣∣∣∣− β
√

2

〉
1

〈
−

β
√

2

∣∣∣∣ ⊗ ∣∣∣∣β2
〉

2

〈
β

2

∣∣∣∣ . (20)

Consequently, in the strong local oscillator limit we can
replace—at least for the purpose of calculation—the beam
splitter arrangement on the left-hand side of figure 1 by a
device that projects on electric field eigenstates and photon
number states as indicated on the right-hand side of the figure.

3.3. Average count rate

We conclude our discussion of the joint intensity–electric field
measurement using a six-port interferometer in the homodyne
mode by calculating the average count rate

s0 ≡

∑
n1

∑
n32

n1n32W (n1, n32) (21)

that is the average number of quanta in mode 1 and in the
difference n32. This quantity is measured in the experiments
of [23, 24].

One way to proceed consists of substituting the
expression equation (10) for the photon statistics together with
equations (6) and (12) into the definition equation (21) of s0

and performing the sums. However, it is more convenient to
recall the definition equation (9) of W (n1, n32) in terms of the
count statistics W (n1, n2, n3), which yields

s0 =

∑
n1

∑
n32

n1n32

∑
n2

W (n1, n2, n32 + n2) (22)

or
s0 =

∑
n1

∑
n2

∑
n3

n1 (n3 − n2) W (n1, n2, n3) . (23)

When we substitute the photon distribution
W (n1, n2, n3), equation (5), into this expression and
recall the first moment∑

m

m Wm(γ ) = |γ |
2 (24)

of a Poisson distribution together with the normalization
property ∑

m

Wm = 1, (25)

4



Phys. Scr. T140 (2010) 014002 R J Glauber et al

D2
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Figure 2. The six-port interferometer used, for example, in [23, 24]
to analyse the wave–particle character of light is a generalization of
the Hanbury-Brown and Twiss interferometer. It correlates the
photon counts at detector D1 at time t with the difference of counts
at the detectors D2 and D3 at time t ′. The fields at the three input
modes are in a state described by the density operator ρ̂, in the
vacuum state and in a coherent state |α〉. The corresponding electric
field operators are Ê , Ê0 and Â, respectively. The operators of the
output modes impinging on the three detectors are Ê1, Ê2 and Ê3.

we arrive at

s0 =
1

2
√

2

∫
d2β P(β) |β|

2
(
α∗β + αβ∗

)
. (26)

It is interesting to note that this derivation holds true
for any value of |α|. In particular, it does not rely on the
strong local oscillator limit. It is therefore not surprising that
when we use the strong local oscillator limit, equation (16),
of the count statistics and evaluate s0 given by equation (21)
by replacing the summation over n32 by integration, we also
arrive at equation (26).

4. Correlation function g(1.5)

Correlation functions of intensities (see for example [33])
reveal quantum mechanical features of the electromagnetic
radiation. Since the operator of intensity is the product
of two field operators, these correlation functions must
always contain an even number of field operators. The
most prominent example is the correlation function g(2),
which expresses the correlations between two intensity
measurements and, therefore, involves four electric field
operators. This quantity is at the very heart of the
Hanbury-Brown and Twiss [35] experiment, which can be
arguably considered the birth of quantum optics.

We now show that the average count rate of the
joint intensity–electric field measurement discussed in the
preceding section can be described by correlation functions
between three field operators giving rise to g(1.5). This unusual
type of correlation function arises from the fact that one of
the fields is in a coherent state. In our treatment, we even
allow a time delay between the photon and the electric field
measurement.

4.1. Measured signal expressed by g(2)

The six-port interferometer of figure 2 correlates the intensity
measurement at time t at detector D1 with the homodyne

measurement at time t ′ at detectors D2 and D3. The resulting
signal [33]

s(t, t ′) ≡

〈
Ê (−)

1 (t)
[

Ê (−)
3 (t ′)Ê (+)

3 (t ′)

−Ê (−)
2 (t ′)Ê (+)

2 (t ′)
]

Ê (+)
1 (t)

〉
(27)

is the expectation value of the normally ordered product
of four field operators. They are the positive and negative
frequency components Ê (+)

j and Ê (−)
j of the field operator Ê j

corresponding to the j th mode where j = 1, 2, 3.
Since the expectation value is taken with respect to the

input states, it is necessary to express the field operators of the
output modes in terms of the ones of the input modes. For this
purpose, we consider the action of the two beam splitters in
figure 2 on the field operators.

A beam splitter represents a linear transformation of field
operators [32]. Hence, the operators Ê1, Ê2 and Ê3 of the
three exit modes are linear combinations of the three operators
Ê0, Ê and Â of the three input modes corresponding to the
vacuum, the field to be investigated and the local oscillator,
respectively. When we take into account a phase shift of π

in the reflection from the thicker medium, we find for 50:50
beam splitters the combination

Ê1 =
1

√
2
(Ê0 − Ê) (28)

for the field operator Ê1 of mode 1 and the combinations

Ê2 = −
1

2
(Ê0 + Ê) +

1
√

2
Â (29)

and

Ê3 =
1

2
(Ê0 + Ê) +

1
√

2
Â (30)

for the field operators Ê2 and Ê3 for modes 2 and 3 forming
the homodyne detector.

We substitute the field operators Ê1, Ê2 and Ê3 given by
equations (28), (29) and (30) into equation (27) and recall that
vacuum expectation values of normally ordered products of
field operator vanish. As a result we can drop the electric field
operator Ê0 of the vacuum mode, which yields

s(t, t ′) =
1

8
〈Ê (−)(t){[Ê (−)(t ′) +

√
2 Â(−)(t ′)]

× [Ê (+)(t ′) +
√

2 Â(+)(t ′)]

− [−Ê (−)(t ′) +
√

2 Â(−)(t ′)]

× [−Ê (+)(t ′) +
√

2 Â(+)(t ′)]}Ê (+)(t)〉, (31)

or

s(t, t ′) =
1

2
√

2
〈Ê (−)(t)[Ê (−)(t ′) Â(+)(t ′)

+ Â(−)(t ′)Ê (+)(t ′)]Ê (+)(t)〉. (32)

This expression can be interpreted as the sum of two
second-order correlation functions g(2). The first one has two
negative frequency parts of Ê and one positive frequency
part of Ê and Â, whereas the second one has two positive
frequency parts of Ê and one negative frequency part of
Ê and Â.

5
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4.2. Local oscillator expectation value

Since the local oscillator is in a coherent state |α〉, we can now
simplify equation (32) using

〈 Â(±)(t ′)〉 =A0 |α| e±iθ e∓iωt ′

. (33)

We choose the constant A0 real and combine the phases
appearing in the field operator decomposition with the phase
of the coherent state in the phase θ . Therefore, the signal
s(t, t ′) can be cast in the form

s(t, t ′) =
A0 |α|

2
√

2
〈Ê (−)(t) [Ê (−)(t ′) eiθ e−iωt ′

+ Ê (+)(t ′) e−iθ eiωt ′

]Ê (+)(t)〉, (34)

or

s(t, t ′) =
A0 |α|

2
√

2
[〈Ê (−)(t) Ê (−)(t ′) Ê (+)(t)〉eiθ e−iωt ′

+ 〈Ê (−)(t) Ê (+)(t ′) Ê (+)(t)〉e−iθ eiωt ′

]. (35)

Hence, the signal is given by the sum of correlation functions
which involve three field operators. In this sense, we can speak
of a correlation function g(1.5).

However, we emphasize that the signal s defined by
equation (27) involves the product of four field operators.
Since one of the fields is in a coherent state, the corresponding
field operator reduces to a c-number, which we can factor out
of the expectation value and arrive at the product of three
operators.

4.3. Connection to average counts

In order to connect equation (34) with the joint count statistics
equation (19), we introduce the quadrature field operator

Êθ (t
′) ≡

1
√

2
(Ê (+)(t ′) e−iθ eiωt ′

+ Ê (−)(t ′) eiθ e−iωt ′

) (36)

and equation (34) reduces to

s(t, t ′) =
A0 |α|

2
〈Ê (−)(t) Êθ (t

′) Ê (+)(t)〉. (37)

This expression brings out most clearly that the
measurement summarized in figure 1 measures the correlation
between the intensity at time t and the quadrature of the
electric field at time t ′.

We conclude by showing that for t = t ′ the signal
s(t, t ′) reduces (up to a constant) to equation (26). For this
purpose we recall that the field operators Ê (+) and Ê (−) are
proportional to the annihilation operator and the creation
operator â and â† and obtain from equation (35)

s(t, t) =
A0 |α| E3

0

2
√

2

[
eiφ

〈â†â†â〉 + e−iφ
〈â†ââ〉

]
. (38)

Here we have combined various phases into a phase φ. An
additional real constant E0 appears since we have expressed
the field operators in terms of creation and annihilation
operators.

Next we use equation (2) to express the density operator
ρ̂ for the field Ê in terms of the P-distribution. When we
take into account that normally ordered expectation values can
easily be calculated [33] with the help of the P-distribution,
we immediately arrive (up to a constant) at equation (26) with
α ≡ |α| eiφ .

5. Summary

In this paper, we have analysed a simultaneous joint
intensity–electric field measurement using a six-port
interferometer. For this purpose, we have first used the
familiar beam splitter transformation of state vectors to derive
an analytical expression for the complete count statistics. We
have then focused on the homodyne measurement. In this
case the count statistics is given by a phase-space integral
of the product of the P-distribution of the state of interest,
a Husimi Q-function and the homodyne kernel. In the limit
of a strong local oscillator, the kernel reduces to the electric
field distribution of a coherent state. As a result, this specific
six-port interferometer consisting of two beam splitters acts
as a single one with the vacuum and the state of interest in the
input modes. The count statistics is then determined by the
projection of the two output modes on a photon number and
an electric field eigenstate.

It is interesting to compare and contrast this study with
one that is based on the beam splitter transformation of the
electric field operators. In this way we have obtained an
expression for the corresponding correlation function of the
six-port interferometer operated in a homodyne mode. Since
one of the field modes is in a coherent state, the correlation
function describing this setup and containing the product
of four field operators reduces to one consisting of three
operators giving rise to a correlation function g(1.5). Our study
allows for a time delay between the intensity and the field
measurement. However, it can only provide the average count
rate.

In our analysis of the six-port interferometer, we have
concentrated purely on the conceptual aspects of this device.
We have neglected any details of or imperfections in the
various experimental realizations. Our goal in this effort was
to gain deeper insight into, that is, in-depth understanding
of, the subtle aspects of the wave–particle duality of light.
We do realize that light is one of the essential ingredients of
communication between human beings and builds the bridge
between science and art. We are reminded of the striking
comparison [36] between science and art by the German
philosopher Ernst Cassirer (1874–1945):

‘There is a conceptual depth as well as a purely
visual depth. The first is discovered by science;
the second is revealed in art. The first aids us
in understanding the reasons of things; the second
in seeing their forms. In science we try to trace
phenomena back to their first causes, and to general
laws and principles. In art we are absorbed in their
immediate appearance, and we enjoy this appearance
to the fullest extent in all its richness and variety.
Here we are not concerned with the uniformity
of laws but with the multiformity and diversity of
intuitions.’
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