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Recent experiments on the S=1/2 antiferromagnetic chain compound, Cu benzoate, discovered
an unexpected gap scaling as approximately the 2/3 power of an applied magnetic field. A theory of
this gap, based on an effective staggered field, orthogonal to the applied uniform field, resulting from
a staggered gyromagnetic tensor and a Dzyaloshinskii-Moriya interaction, leading to a sine-Gordon
quantum field theory, has been developed. Here we discuss many aspects of this subject in consider-
able detail, including a review of the S=1/2 chain in a uniform field, a spin-wave theory analysis of
the uniform plus staggered field problem, exact amplitudes for the scaling of gap, staggered suscep-
tibility and staggered magnetization with field or temperature, intensities of soliton and breather
peaks in the structure function and field and temperature dependence of the total susceptibility.

I. INTRODUCTION

The effect of a magnetic field on an S=1/2 antiferromagnetic chain has been extensively investigated theoretically
over many years. The Hamiltonian is written:

Ĥ =
∑

j

[J ~Sj · ~Sj+1 − gµBHSz
j ]. (1.1)

An important conclusion was that the groundstate remains gapless right up to the saturation field. The low-energy
excitations can be described by bosonization which predicts gapless excitations at wave-vectors 0 and π and also at
the incommensurate wave-vectors

k1 = ±2πm(H) and k2 = π ± 2πm(H), (1.2)

where m(H) is the magnetization per site, m ≡< Sz
i >. The first detailed experimental study of such systems at

large fields with gµBH of O(J) were only performed very recently,1 on Cu benzoate. This material has a relatively
small exchange energy, J ≈ 1.57 meV so that gµBH/J ≈ .52 for a field of 7 T. While these experiments verified, in
detail, the expected field-dependent shift of the wave-vector at which a gap minimum occurs, they also discovered an
unexpected result. A non-zero gap appeared which seemed to scale as approximatelyH2/3, with strong dependence on
the field orientation. Dender et al.1 suggested that this gap might arise from the staggered g (gyromagnetic)-tensor,
associated with the low symmetry of the crystal structure and the presence of 2 crystallographically inequivalent Cu
sites on each chain. Thus the last term in Eq. (1.1) must be replaced by:

ĤH = −µB

∑

j,a,b

Hs[guab + (−1)jgsab]S
b
j . (1.3)

This results in the presence of an effective staggered field, gs ~H , upon the application of a uniform field. Such a
staggered field, which couples directly to the Néel order parameter, is expected to produce an ordered antiferromagnetic
moment and a gap which scale with field.
This idea was developed in detail in Ref. [ 3] where it was found that a staggered Dzyaloshinskii-Moriya4,5 (DM)

interaction also contributes a roughly equal amount to this effective staggered field. This corresponds to an additional
term in the Hamiltonian:

ĤDM =
∑

j

(−1)j ~D · (~Sj−1 × ~Sj). (1.4)

It was found that several aspects of the experiments could be explained in detail by this model. These include the
field orientation dependence of the gap and its scaling with field magnitude. Much of this work used the bosonization
technique which maps the problem onto the sine-Gordon model, for which various exact results are available. The ex-
citations observed in neutron scattering were identified with the soliton, antisoliton and “breather” (soliton-antisoliton
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boundstate) spectrum of the sine-Gordon model. Additional results, further supporting this approach, were obtained
by Essler and Tsvelik.6 The purpose of this paper is to provide more details and some extensions of the results in [ 3].
While Cu Benzoate is the only example of such a system that we discuss in the present paper, it should be possible
to apply our theory to other quasi-one dimensional system with similar crystallographic structure.
In the absence of a staggered field, the critical behaviour of the antiferromagnet is determined by 3 field dependent

quantities: the magnetization, m(H) [which determines the soft wave-vectors via Eq. (1.2)], the spin-wave velocity,
v(H) and the boson compactification radius (which determines the critical exponents), R(H). All three of these
quantities can be determined very accurately by numerical solution of Bethe ansatz equations. Furthermore, we
derive an exact relationship between these three functions using field theory arguments. We also derive the logarithmic
dependence of R on H , as H → 0, from the existence of a marginally irrelevant operator, using the renormalization
group.
We determine the scaling of gap with field, order parameter with field and susceptibility with temperature. The

calculations are done including logarithmic corrections which arise from a marginally irrelevant operator and take into
account both uniform and staggered fields. Furthermore, the exact amplitudes of the scaling functions are determined
using a recent result of Lukyanov and Zamalodchikov.12 (After this calculation was finished we received the preprint [
7] which gives the same result for the gap, without a discussion of logarithmic corrections.) We also give some further
discussion of the structure factors Sa(q, ω), measured in neutron scattering. We discuss a hidden SU(2) symmetry of
the model. We prove that the longitudinal structure factor (for “a’’ corresponding to the uniform field direction) gets
contributions from only the soliton and anti-soliton intermediate states, in agreement with experiment. On the other
hand, the transverse structure function gets contributions only from the breathers. Using the approximate SU(2)
symmetry, we discuss the relative intensity of the various single-particle peaks in the neutron-scattering cross-section,
taking into account the polarization dependent factors which arise from Fourier transforming the dipole interaction
between neutrons and spins which were omitted in Ref. [ 6]. A comparison is made with experimental results. In

particular, the problem of determining a consistent value for the DM vector, ~D is discussed. The susceptibility of
the sine-Gordon model is calculated, using the integrability of the model, giving essentially the field and temperature
dependence of the staggered susceptibility.
In Section II we discuss the DM interaction and the mapping of the system into a Heisenberg model with orthogonal

uniform and staggered fields. In Section III we treat this problem using conventional spin-wave theory. In Section IV
we discuss bosonization in the presence of a uniform magnetic field. In Section V we extend the bosonization approach
to the case with staggered field and analyze the induced gap. In Section VI we discuss structure factors and compare
with the observed neutron scattering cross-section. In Section VII we present estimates of the DM interaction based
on several experimental results. In Section VIII we discuss the magnetization and susceptibility.

II. EFFECTIVE HAMILTONIAN

The crystal structure of Cu benzoate is shown in Fig. (1) and Fig. (2). The chain direction is the c-axis. Note that
each Cu atom is surrounded by 6 ligands with a local symmetry which is almost tetragonal. However the principal
axes for this tetragonal symmetry alternate along the chain, with the two inequivalent c-axes being rotated by 10◦

relative to each other. These corresponding c-axes are labelled I and II in Fig. (3). The b-axes are the same for both
Cu sites. Neither of these sets of principal axes correspond to the crystal axes. It is expected that the principal axes
for the gyromagnetic tensor will also alternate, corresponding to the local tetragonal axes around each Cu ion. The
principal axis for the anisotropic exchange interaction is expected to be the c′ axes, the perpendicular bisector of
I and II axes. On the other hand, the principal axis for the dipole interaction, which is of roughly the same order
of magnitude is essentially the c-axis. Combining these two types of contributions to the nearest neighbor spin-spin
interaction, gives a principal axis which roughly bisects c′ and c, and is denoted c′′ in Fig. (4). It is convenient to
refer the g-tensor to this a′′-b-c′′ coordinate system. From electron spin resonance (ESR) measurements,8 it takes the
form:

g =





2.115 ±0.0190 0.0906
±0.0190 2.059 ±0.0495
0.0906 ±0.0495 2.316



 ≡ gu ± gs, (2.1)

with the ± referring to the 2 inequivalent Cu sites. gu and gs are the uniform and staggered parts of the g-tensor.

This staggered g-tensor produces an effective staggered field, ±gs ~H, while the uniform g-tensor produces an effective

uniform field gu ~H . In the special cases where the applied field is along the b axis or in the a′′c′′ plane the effective
staggered field is perpendicular to the applied field and also to the effective uniform field. For general directions of
the applied field they are almost perpendicular (to within a few %).
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As discussed by Dzyaloshinskii4 and Moriya5, in magnetic crystals of low symmetry an additional antisymmetric
exchange interaction occurs, the DM interaction :

ĤDM =
∑

j

~Dj · (~Sj × ~Sj+1). (2.2)

The possible values of the DM vector ~Dj can be limited by considering crystal symmetries of Cu benzoate. Firstly,
the compound is invariant under a translation along the c-axis by two sites. This means the DM vectors are the same
among the even (or odd) links, but even and odd DM vectors can be different. Secondly, there is a symmetry under
rotation by angle π about an axis parallel to the b-axis that passes through the mid-point of two neighboring sites (j
and j + 1), along the chains (c-axis). As noticed by Moriya,5 this implies the DM vector for the interaction between
j and j + 1 must be orthogonal to the b-axis. This can be shown as follows: assume we have the DM interaction
~D · (~Sj × ~Sj+1). Now apply the rotation described above. It acts on the spin operators as Sa,c

k → −Sa,c
2j+1−k and

Sb
k → Sb

2j+1−k. Thus, for the b-component of ~D, the DM interaction would be inverted while it is unchanged for the

a, c-component of ~D implying that Db = 0. Finally, the crystal structure is invariant under the combined operation
of one site translation along the chain (c) direction and reflection in the ac-plane. Considering the fact that the spin

vector ~Sj is an axial vector, the operation acts as Sa,c
k → −Sa,c

k+1 and Sb
k → Sb

k+1. Since the DM vector is orthogonal

to the b-axis (and thus one factor of Sb always appears in the outer product), the DM interaction term is inverted

by the combined operation: ~D · (~Sj × ~Sj+1) → − ~D · (~Sj+1 × ~Sj+2). Thus, the DM vector is alternating as in Eq.
(1.4). There are apparently no other restrictions that can be placed on the DM vector using symmetry alone. By
considering a tight-binding model for the exchange interactions it was estimated5 that D/J is of O(δg/g) where δg is
the deviation of g from twice the identity matrix.
Apart from the antisymmetric DM interaction, the remaining exchange anisotropy is believed to be quite negligible

(about 1% of J) and we will henceforth ignore it. Taking ~D ∝ ẑ, we may write the Hamiltonian:

Ĥ =
1

2

∑

j

[J S+
2j−1S

−
2j + J ∗S+

2jS
−
2j+1 + (h.c.)]

+J
∑

j

[Sz
2j−1S

z
2j + Sz

2jS
z
2j+1], (2.3)

where J ≡ J + iD. Performing a rotation9 of the spins by an angle ±α/2:

S+
2j → S+

2je
iα/2, S+

2j+1 → S+
2j+1e

−iα/2, (2.4)

where

tanα = D/J, (2.5)

the Hamiltonian is transformed to the standard xxz model:

Ĥ =
∑

j

[JSz
j S

z
j+1 +

|J |
2

(S+
j S−

j+1 + h.c.)]. (2.6)

With some assumptions this anisotropic exchange may cancel the pre-existing one. In any event, it is small and we
will ignore it.
Now consider an external magnetic field, approximating the g-tensor as 2 times the identity matrix. The spin

redefinition of Eq. (2.4) introduces an effective staggered field. For example, for a uniform field in the x-direction:

−H
∑

j

Sx
j → −H

∑

j

[cos
α

2
Sx
j + (−1)j sin

α

2
Sy
j ]. (2.7)

Combining the actual form of the g-tensor with the DM interaction, we can obtain effective uniform and staggered

fields corresponding to an arbitrary applied one. Writing the rotation matrices by ±α/2 around ~D as:

R~D(±α/2) ≡ Ru ±Rs, (2.8)

the effective uniform and staggered fields are defined by:
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~Hu ≡ [Rugu +Rsgs] ~H

~Hs ≡ [Rsgu +Rugs] ~H. (2.9)

In general ~Hs is nearly orthogonal to ~Hu. For small gs and D/J , the staggered field can be approximated as

~Hs ∼ gs ~H +
1

2J
~D × (gu ~H), (2.10)

namely the sum of two contributions.

Henceforth, since we are ignoring the small residual exchange anisotropy and assuming that ~Hu ⊥ ~Hs, we will take
~Hu to be in the z-direction and ~Hs to be in the x-direction and refer to them as simply H and h respectively. Also
setting 2µB = 1 we arrive at the simple effective Hamiltonian:

Ĥeff =
∑

i

[J ~Si · ~Si+1 −HSz
i − h(−1)iSx

i ], (2.11)

with h << H . [Note that we have switched the directions of the uniform and applied fields relative to our earlier
paper3 which, unfortunately, contained some inconsistencies of notation.]

III. SPIN-WAVE THEORY

In this section we summarize the results of spin-wave theory (leading order 1/S expansion) for the effective Hamil-
tonian of Eq. (2.11). [As far as we know, spin-wave theory results for this problem were first published in Ref. [ 10].]
Although this misses certain features caused by quantum fluctuations in one dimension, it is still quite instructive.
The classical groundstate is a canted antiferromagnetic structure, shown in Figure (5). The spins on both sub-

lattices lie in the xz plane canted towards the z-axis by an angle θ from the ± x-axis. The classical energy of this
state is:

E(θ)/L = −JS2 cos 2θ − hS cos θ −HS sin θ. (3.1)

This is minimized for θ the solution of:

4JS2 sin θ cos θ + hS sin θ −HS cos θ = 0. (3.2)

For h = 0, the solution is:

sin θ = H/4JS. (3.3)

In order to do a systematic 1/S expansion, it is convenient to regard H and h as being of O(S). We assume that H
is less than the saturation field, 4JS. The leading order spin-wave expansion for a spin pointing in the x-direction is:

~S0
j ≈

[

S − a†jaj ,

√

S

2
(a†j + aj), i

√

S

2
(a†j − ai)

]

(3.4)

Here aj is a boson annihilation operator. To consider small fluctuations about the canted structure we simply write:

~S2i ≈ Ry
~S0
2i

~S2i+1 ≈ RzRy
~S0
2i+1. (3.5)

where Ry is a rotation about the y-axis by −θ:

Ry ≡





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



 , (3.6)

and Rz is a rotation by π about the z-axis:

4



Rz ≡





−1 0 0
0 −1 0
0 0 1



 . (3.7)

Using the facts that:

RT
z = Rz

(RzRy)3i = (Ry)3i

(RzRy)1i = −(Ry)1i, (3.8)

the Hamiltonian may be written in a manifestly translationally invariant way:

Ĥ =
∑

j

[J ~S0
j · RT

y RzRy
~S0
j+1 −H(Ry

~S0
j )z − h(Ry

~S0
j )x]. (3.9)

It is the translational invariance of Eq. (3.9) which motivated the somewhat peculiar looking choice of transformation
matrices in Eq. (3.5). Substituting Eq. (3.5) into the Hamiltonian of Eq. (3.9), we find that the term of O(S2) is a
c-number and the term of O(S3/2) vanishes. The term of O(S) is:

Ĥ ≈
∑

j

[(2JS cos 2θ +H sin θ + h cos θ)a†jaj + (JS/2)(cos 2θ − 1)(a†jaj+1 + a†j+1aj)

+(JS/2)(cos 2θ + 1)(a†ja
†
j+1 + ajaj+1)]. (3.10)

Fourier transforming and performing a Bogoliubov transformation that mixes ak with a†−k, we obtain a single band
of spin waves in the paramagnetic Brillouin zone, −π < k < π with dispersion relation:

E(k) =
{

[2JS cos 2θ +H sin θ + h cos θ − JS(1− cos 2θ) cos k]2

−[JS(1 + cos 2θ) cosk]2
}1/2

. (3.11)

The above transformation has allowed us to obtain a single band in the paramagnetic Brillouin zone. We may
equivalently fold the dispersion relation into the antiferromagnetic Brillouin zone, −π/2 < k < π/2. This gives us 2
branches of spin-waves with dispersion relations:

E±(k) =
{

[2JS cos 2θ +H sin θ + h cos θ ± JS(1− cos 2θ) cos k]2

−[JS(1 + cos 2θ) cos k]2
}1/2

. (3.12)

While this is a fairly simple and explicit formula for the energies in terms of θ, it must be borne in mind that θ is
determined in terms of J , H and h by Eq. (3.2). In the special case h = 0, using Eq. (3.3), we obtain:

E±(k) = 2JS

[

sin2 k + 2

(

H

4JS

)2

(cos2 k ± cos k)

]1/2

. (3.13)

Note that at k = 0, or equivalently k = π,

E− = 0

E+ = H. (3.14)

The E− mode is the Goldstone mode corresponding to a uniform precession about the z-axis. A non-zero h gives this
mode a gap, pinning the spins along the x-axis. We may calculate this gap, to lowest order in h using, from Eq. (3.2)
θ = sin−1(H/4JS) + δθ where

δθ ≈ − Hh

16J2S2 −H2
. (3.15)

To linear order the gap is given by

∆2 ≈ ∂E2
−

∂θ
δθ +

∂E2
−

∂h
h. (3.16)
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thus:

∆ ≈
√

4JSh[1 + (H2/8J2S2)][1− (H/4JS)2]1/4 +O(h3/2). (3.17)

Note that ∆ is a singular function of the staggered field, exhibiting a mean field exponent of 1/2. On the other hand,
it depends only weakly on the uniform field, being almost independent of H up to H of O(JS). While this mean field
exponent changes when one-dimensional quantum fluctuations are taken into account, it is reasonable to expect this
weak dependence on H to remain true. The upper mode, E+(0) depends strongly on H but only weakly on h. For
h << H E+(0) ≈ H .

IV. BOSONIZATION FOR 0 STAGGERED FIELD

In the one-dimensional case, an exact picture of the low-energy behavior can be obtained using bosonization and
RG arguments. Here we summarize the results for the case of a uniform field, but no staggered field.
We begin with the case where the uniform field also vanishes. The low energy degrees of freedom of the quantum

spin variables can be represented in terms of a free boson with Lagrangian density:

L =
1

2
[(∂tφ)

2 − v2s (∂xφ)
2]. (4.1)

[Here vs is the spin-wave velocity which we will generally set equal to 1.] The boson field, φ can be separated into
left and right moving terms:

φ(t, x) = φL(t+ x) + φR(t− x). (4.2)

Their difference defines the dual field:

φ̃ = φL − φR. (4.3)

For H = 0 there are low energy degrees of freedom at wave-vectors 0 and π. The spin operators can be approximated
as:

Sz
j ≈ 1

2πR

∂φ

∂x
+ (−1)j cos

φ

R

S−
j ≈ i · constant

[

ei(2πRφ̃+φ/R) + ei(2πRφ̃−φ/R)
]

+ C(−1)jei2πRφ̃. (4.4)

(The first constant above is universal. The next three (real) constants are not, but C has been recently determined
using the integrability of the model12,13 and will be discussed in the next section.)

For the H=0 Heisenberg model, R = 1/
√
2π. For the xxz model R (and C) vary with the anisotropy parameter.

Writing the Hamiltonian:

H = J
∑

j

[Sx
j S

x
j+1 + Sy

j S
y
j+1 + δSz

j S
z
j+1], (4.5)

exact Bethe ansatz results determine:

2πR2 = 1− cos−1 δ

π
. (4.6)

R varies between 1/
√
2π and 0 along the xxz critical line, −1 < δ < 1.

In order to understand the vicinity of the isotropic antiferromagnetic point, δ = 1, it is convenient to use non-abelian
bosonization:

~Sj ≈ ( ~JL + ~JR) + constant(−1)jtr(~σg). (4.7)

Here g is the SU(2) matrix field of the Wess-Zumino-Witten, k=1 non-linear σ-model (WZW model). ~JL and ~JR are
the left and right moving conserved currents associated with the SU(2) symmetry of the spin chain. By comparing
Eqs. (4.4) and (4.7) we may read off the correspondences between the WZW fields and the free boson fields. These
are:
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Jz
L =

1√
8π

∂−φ, Jz
R = − 1√

8π
∂+φ

J−
L ∝ ei

√
8πφL , J−

R ∝ e−i
√
8πφR

g ∝
(

ei
√
2πφ e−i

√
2πφ̃

−ei
√
2πφ̃ e−i

√
2πφ

)

. (4.8)

Here ∂± ≡ ∂t ± ∂x.
The bosonized spin-chain Lagrangian contains, in addition to the free boson Lagrangian, interaction terms:

Lint =
8π2

√
3
[λzJ

z
LJ

z
R + λ⊥(J

x
LJ

x
R + Jy

LJ
y
R)]. (4.9)

For the isotropic Heisenberg model, λz = λ⊥ = O(1). Including small anisotropy, λz − λ⊥ ∝ 1 − δ. These obey the
RG equations:

dλz/d lnE = (4π/
√
3)λ2

⊥

dλ⊥/d lnE = (4π/
√
3)λzλ⊥ (4.10)

The RG trajectories are hyperbolas as shown in Fig. (6). For λz > λ⊥, they end at the λz axis, corresponding to
the xxz critical line. For λz < λ⊥ they lead towards strong coupling, corresponding to the easy axis ordered phase.
Reverting to abelian bosonization, we see that the fixed point Lagrangian contains the extra term:

8π2

√
3
λz(0)J

z
LJ

z
R = − π√

3
λz(0)[(∂tφ)

2 − (∂xφ)
2]. (4.11)

Since this is proportional to the free Lagrangian, we can eliminate it by a rescaling of φ. This corresponds to a
rescaling of the parameter, R, decreasing it by an amount of O(λz(0)) = O(1− δ) in agreement with the Bethe ansatz
result of Eq. (4.6).
We now consider the Heisenberg model with a uniform external field (but no staggered field). The extra term in

the Lagrangian becomes, upon bosonization,

LH =
H√
2π

∂φ

∂x
. (4.12)

This term can be eliminated by a redefinition of the boson field:

φ(t, x) → φ(t, x) +
H√
2π

x. (4.13)

This leaves the free Lagrangian unchanged. However, it does effect the interaction term and the bosonization formulae.
The interaction term is changed due to the shift of the ± components of the currents:

J−
L,R → J−

L,Re
±iHx

J+
L,R → J+

L,Re
∓iHx

Jz
L,R → Jz

L,R (4.14)

(Note that the phases add, rather than cancel in the interaction term J+
L J−

R .) The effect of these phases on the RG
equations can be determined from a consideration of the operator product expansion (OPE). One of the OPE’s gets
shifted while the other one does not:

J+
L (x)J−

L (x′) → eiH(x′−x) Jz
L

x− x′

J+
L (x)Jz

L(x
′) → J+

L

x− x′ . (4.15)

The one-loop RG equations can be conveniently derived using an ultraviolet cut off on the distance between any pairs
of insertions of the interaction Lagrangian in perturbation theory. (See for example [ 11].) As the position space
ultraviolet cut off is increased from a to a′, we integrate over that range of separation of the two points, using the
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OPE. The net effect is that, when the cut-off is small compared to 1/H the phase factor in the OPE is nearly constant
and can be ignored. However, when the cut-off is large compared to 1/H the phase factor produces rapid oscillations
which tend to cancel out the term from the effective renormalization. Reverting to an energy cut-off, this means that
the RG equations of Eq. (4.10) are essentially correct for E >> H , but for E << H the right hand side should be
replaced by 0 in the first equation. That is, λz ceases renormalizing, at E of O(H) whereas λ⊥ continues to renormalize
as before. Thus the RG trajectories are essentially 2 straight lines. For E >> H the couplings renormalize along the
isotropic separatrix, λz(E) = λ⊥(E), but for E << H λz is constant and λ⊥ renormalizes to 0. See Fig. (7). Thus,
in order to determine λz(0) we simply need to calculate λ(H) using the isotropic RG equations of Eq. (4.10). For
H << J , these give:

λ(H) ≈
√
3

4π ln(J/H)
. (4.16)

This argument may seem rather naive and it certainly does not give the correct RG trajectory for E of O(H). However,
due to the weak, logarithmic, dependence of λ on E we expect that this argument gives the correct behaviour of λz(0)
with H for H << J . This argument then determines the dependence of R on H for H << J :

2πR2 = 1− 2π√
3
λz(0) = 1− 1

2 ln(J/H)
. (4.17)

Precisely this result was obtained from the Bethe ansatz16 in the limit H << J . See Fig. (8). For larger values of
H higher order terms in the RG equations would be needed and additional interactions would have to be considered,
some of which break Lorentz invariance. The net effect is that the H-dependence of R becomes more complicated at
larger H and also the spin-wave velocity also change with H. We have so far set it equal to 1. It is known to have the
value πJ/2 from the Bethe ansatz, for the Heisenberg model at H = 0. It can be determined numerically from the
Bethe ansatz integral equations16, and is given in Fig. (9).
Apart from the functions v(H) and R(H) we will also be interested in the behavior of the magnetization, m(H).

From bosonization we obtain:

m(H) → H

2πv
, (4.18)

as H → 0. One way of obtaining this result is from calculating the zero field susceptibility:

χ =
1

T
〈





∑

j

Sz
j





2

〉T =
1

2πT
〈
(∫

dx
∂φ

∂x

)2

>T . (4.19)

Bosonization leads to an exact relation between the three functions v(H), R(H) and m(H). This follows from
calculating the susceptibility at arbitrary field, H , using Eq. (4.4) with the corresponding value of R(H):

dm

dH
≡ χ(H) =

1

(2π)2R(H)2v(H)
. (4.20)

In particular, in the limit of small H this predicts a logarithmic correction to the magnetization:

m → H

2πv

[

1 +
1

2 ln(J/H)

]

. (4.21)

Eqs. (4.17), (4.20) and (4.21) are universal. They should remain true for generic half-integer spin isotropic antiferro-
magnets in the gapless phase. For the particular case of the nearest neighbour S=1/2 Heisenberg model we can set
v = πJ/2 in Eq. (4.21). Eq. (4.20) agrees very well with our numerical solution of the Bethe ansatz equations. [See
figs. (8), (9), (10).] As far as we know the first (numerical) calculation of these quantities for 0 < H < 2J were Ref.
[ 17] for m(H), Refs. [ 18, 19] for R(H) and Ref. [ 20] for v(H). (Numerical calculations in Refs. [ 19, 20] were based
on the Bethe ansatz integral equations of Ref. [ 16].)
Once m, v and R are determined from the Bethe ansatz, all low energy properties of the system are determined by

bosonization. From Eq. (4.4) the magnetization can be written:

m(H) =
1

2πR(H)

∫

dx
∂φ

∂x
. (4.22)
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Therefore the exact formula for the field-induced shift in φ is:

φ → φ+ 2πR(H)m(H)x. (4.23)

All low energy Green’s functions are then determined from Eq. (4.4) after shifting φ(x). In particular we see that Gz

has the soft wave-vectors 0 and π ± 2πm(H) whereas G± has the soft wave-vectors ±2πm(H) and π.

V. BOSONIZATION FOR NON-ZERO STAGGERED FIELD

Now we consider the effective Hamiltonian of Eq. (2.11) with both uniform and staggered fields non-zero and
h << H . We begin by using the results of the previous section to obtain the h = 0 theory with the shifted and
rescaled boson field characterized by R(H), m(H) and v(H). For h = 0, upon making these tranformations, the
Lagrangian density is simply the free boson one of Eq. (4.1). From the bosonization formulae of Eq. (4.4) the
staggered field adds the interaction term:

Lint = hC cos (2πRφ̃). (5.1)

Noting the duality transformation between φ and φ̃:

∂tφ = ∂xφ̃ ∂xφ = −∂tφ̃, (5.2)

we may also write the free Lagrangian in terms of φ̃:

L0 =
1

2
[(∂tφ̃)

2 − (∂xφ̃)
2]. (5.3)

Hence we have the standard sine-Gordon field theory. An impressive array of conjectured exact results are available
on this model, which can be brought to bear on the spin-chain problem. The interaction term is sometimes written
as cosβφ̃, so we see that we have β = 2πR. In the next section we will discuss details of the excitation spectrum of
this model. In this section we discuss the dependence of the gap on the uniform and staggered field.
The renormalization group scaling dimension of this operator is πR2 from which it follows that the gap scales as:

∆

J
→ A

(

H

J

)(

h

J

)1/(2−πR(H)2)

, (5.4)

for some function A. Since, for small uniform fields, πR2 ≈ 1/2, it follows that the exponent is approximately 2/3, as
found in the experiment. Note that this formula is valid for h → 0 at fixed H . This is a reasonable order of limits for
describing the experiments since h is only a few per cent of H . The exponent is determined by R(H), given in Figure
(8).
We wish to improve on this result in two ways. First of all, if we consider the case where H is strictly 0, then this

formula is modified to:

∆/J → A0

(

h

J

)2/3

ln1/6
(

J

h

)

. (5.5)

We will calculate exactly the amplitude A0. This is not of direct relevance to the experiments however since they are
in the opposite limit H >> h. More importantly, we can determine the amplitude function A(H/J) in Eq. (5.4) for
H << J :

A
(

H

J

)

→ A ln1/6
(

J

H

)

. (5.6)

We will also determine exactly the numerical factor, A, which is different than A0 in Eq. (5.5). While the logarithmic
factors in Eqs. (5.5) and (5.6) are universal and follow from an RG treatment of the marginal interaction, the exact
numerical coefficients are specific to the ordinary nearest neighbour Heisenberg S=1/2 model and are obtained by
using a remarkable exact conjecture made recently by Lukyanov and Zamalodchikov12 extended to the Heisenberg
point following the method in Ref. [ 13]. [See also Ref. [ 14].]
Our calculations follow the notation of Refs. [ 15] and [ 13]. We consider the renormalization group equation obeyed

by the effective coupling constant g(E) multiplying the cos interaction in Eq. (5.1), with bare value hC/J for a bare
cut off J , taking into acount, to linear order, the effect of the marginal interactions of Eq. (4.9). This is:
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dg

d(lnE)
= −[2− γ(g, ~λ)]g. (5.7)

The anomalous dimension is given, to low order, by:

γ ≈ 1

2
− π√

3
λz. (5.8)

λz obeys the RG equation of Eq. (4.10). By the usual scaling arguments, we determined the gap, ∆ by reducing
the ultraviolet cut-off down to a scale ∆ such that g(∆) is O(1). Taking into account the dependence of the effective
coupling constant, g(E) on the bare coupling constant, h/J , then determines the dependence of the gap on h. In the
case H = 0, the RG flow of λz(E) is given by Eq. (4.10) for all E. On the other hand, for finite H , λz(E) essentially
stops renormalizing at a scale of order H . Integrating Eq. (5.7), gives:

g(E) =

(

E

J

)−3/2

e
−π/

√
3
∫

E

J
d lnE′λz(E

′)
. (5.9)

This integral can be conveniently evaluated by changing integration variables to λ⊥(E
′) using the second of Eqs.

(4.10). This gives:

g(E) ≈ g(J)(E/J)−3/2[λ⊥(E)/λ⊥(J)]
1/4. (5.10)

Determining the gap by the condition g(∆) = 1 and setting g(J) ∝ h/J , gives:

h/J = B(∆/J)3/2[4πλ⊥(∆)/
√
3]1/4, (5.11)

for some non-universal constant B, of O(1).
In the case H = 0, the solution of the RG equation Eq. (4.10) is:

λ⊥(∆) ≈
√
3

4π ln(J/∆)
. (5.12)

Thus,

∆/J = B−2/3(h/J)2/3[ln(J/h)]1/6[1 +O(1/ ln(J/h))]. (5.13)

For non-zero H , the first of Eq. (4.10) is only valid for E >> H . At lower energies, λz stops renormalizing. Its
fixed value at low E determines R(H):

2πλz(0)/
√
3 = 1− 2πR(H)2 ≈ 1

2 ln(J/H)
(5.14)

We can extend somewhat the accuracy of our results to larger H , by expressing the subsequent results in terms of
R(H), determined numerically from the Bethe ansatz, rather than by using the above asymptotic small H result for
R(H). For ∆ << H , we use the second of Eq. (4.10) with λz fixed at λz(0) as given by Eq. (5.14) and the initial
condition

λ⊥(H) ≈ λz(H) ≈ λz(0), (5.15)

to obtain:

λ⊥(E) ≈
√
3

2π
[1− 2πR(H)2](

E

H
)2[1−2πR(H)2 ]. (5.16)

Setting E = ∆ and substituting into Eq. (5.11) gives:

h

J
= B

(

∆

J

)2−πR2
(

J

H

)(1−2πR2)/2
[

2(1− 2πR2)
]1/4

. (5.17)

Thus we obtain Eq. (5.4) with
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A(H/J) ≈
{

B

(

J

H

)(1−2πR2)/2
[

2(1− 2πR2)
]1/4

}−1/(2−πR2)

. (5.18)

Note that in Eq. (5.4) and (5.18) R is a function of H , shown in Fig. (8) and given approximately by Eq. (5.14). As
H → 0, we may evaluate A(H) explicitly, from Eq. (5.14). Using:

(

J

H

)1/4 ln(J/H)

= e1/4, (5.19)

this gives:

A(H) → B−2/3e−1/6(ln (J/H))1/6. (5.20)

Note that the same numerical constant, B, occurs in the H = 0 case, Eq. (5.13) and the H >> ∆ case, Eq. (5.4)
and (5.20). However, in the latter case it gets multiplied by an extra factor of e−1/6.
Finally we wish to determine the dimensionless amplitude, B, appearing in Eq. (5.11) and below. This can be done

using two remarkable results. One of them is the exact proportionality constant in the bosonization formula for the
staggered part of Sx

j , that is the constant C in Eq. (4.4). This fixes the coupling constant in the sine-Gordon model,
Ch, in Eq. (5.1). The other recent result is the exact relationship between the sine-Gordon coupling constant and the
mass of the lightest particle in the spectrum of the sine-Gordon model, which is the gap, ∆. This determines the exact
relationship between ∆ and h. This calculation was done in zero uniform field for the xxz S=1/2 antiferromagnet
of Eq. (4.5). The calculation was performed for all δ along the critical line, −1 < δ < 1. Due to the logarithmic
corrections at the isotropic point, δ = 1, an additional calculation is needed at that point. This can be done using
the RG. We essentially just need to apply Eq. (5.11) to the case of H = 0 but δ slightly less than 1. Comparing to
the exact result for all δ < 1 then determines the coefficient, B.
For δ < 1 and H = 0 we use the RG equations of Eq. (4.10) at low energies. The RG flows are hyperbolas

terminating on the positive λz axis. These flows are conveniently labelled by:

ǫ ≡ 4πλz(0)/
√
3 = 2[1− 2πR2] = 2

cos−1 δ

π
. (5.21)

The solution of Eq. (4.10) with this initial condition is:

4πλ⊥(∆)√
3

=
ǫ

sinh[ǫ ln(J/∆)]
. (5.22)

Substituting into Eq. (5.11) gives:

h

J
→ B

(

∆

J

)3/2 {
ǫ

sinh[ǫ ln(J/∆)]

}1/4

. (5.23)

Note that in the isotropic limit, ǫ → 0, we recover our previous logarithmic result of Eq. (5.5). On the other hand,
taking ∆/J → 0 with ǫ held fixed it gives:

h

J
→ (2ǫ)1/4B

(

∆

J

)3/2+ǫ/4

. (5.24)

By comparing this to the exact result for arbitrary δ (and hence ǫ) we may extract the value of the amplitude, B.
In Ref. [ 12] the spin correlation function in the xxz antiferromagnet is shown to have the asymptotic behavior:

< Sx
0S

x
r >→ (−1)r

C(R)2

2
r−2πR2

, (5.25)

with an exact expression determined for the amplitude C(R)2. In the isotropic limit, R → 1/
√
2π:

C(R)2

2
→ 1

4ǫ1/2π3/2
. (5.26)

In Ref. [ 12] the operator cos 2πRφ̃ is normalized so:

11



〈cos[2πRφ̃(0)] cos[2πRφ̃(r)]〉 → 1

2
|r|−2πR2

, (5.27)

(after accounting for a difference in normalization of the free boson Lagrangian by a factor of 8π). This determines
the exact proportionality constant in the bosonization formula of Eq. (4.4):

Sx
j ≈ (−1)jC(R) cos[2πRφ̃]. (5.28)

Hence the coupling constant in the sine-Gordon Lagrangian is precisely C(R)h. The exact relationship between this
coupling constant and the mass, ∆, of the soliton of the sine-Gordon model is:

C(R)h

2
=

∆2−πR2

v1−πR2

Γ(πR2/2)

πΓ(1 − πR2/2)





√
πΓ

(

1
2(1−πR2/2)

)

2Γ
(

πR2

4−2πR2

)





2−πR2

. (5.29)

Here we have inserted, by dimensional analysis, the spin-wave velocity v. Taking the isotropic limit on both sides of
this equation, using v = πJ/2, gives:

h

2
√
2π3/4ǫ1/4J

→
(

∆

J

)3/2+ǫ/4
Γ(1/4)

2π3/4Γ(3/4)

[

Γ(2/3)

Γ(1/6)

]3/2

. (5.30)

We see that this is equivalent to the RG result of Eq. (5.24) with the amplitude determined to be:

B = 21/4
Γ(1/4)

Γ(3/4)

[

Γ(2/3)

Γ(1/6)

]3/2

(5.31)

From Eq. (5.13), for H = 0, the gap behaves as:

∆/J → A0(h/J)
2/3(ln(J/h))1/6, (5.32)

with:

A0 = B−2/3 = 2−1/6

[

Γ(3/4)

Γ(1/4)

]2/3
Γ(1/6)

Γ(2/3)
≈ 1.77695. (5.33)

Since we were not aware of the result [ 12] at the time, in [ 3] the behavior of the gap with staggered field (for H = 0)
was estimated numerically by extrapolating Lanczos results for lengths up to 22 sites. A very good fit to Eq. (5.32)
was obtained with:

A0 ≈ 1.85. (5.34)

Considering the numerical difficulties related to logarithmic corrections this is remarkably good agreement with the
exact result of Eq. (5.33). In the experimentally relevant case, ∆ << H , the gap behaves as in Eq. (5.4) and, for
small H/J , the amplitude is given by Eq. (5.6) with, from Eq. (5.20),

A = B−2/3e−1/6 ≈ 1.50416. (5.35)

Thus our expression for the gap becomes:

∆/J → 1.50416[ln(J/H)]1/6(h/J)1/[2−πR(H)2)]. (5.36)

For larger H/J greater accuracy might be obtained by using Eq. (5.18) with B given in Eq. (5.31). That is:

∆/J →
{

.422169(J/H)[1−2πR(H)2]/2[2(1− 2πR(H)2)]1/4
}−1/[2−πR(H)2]

(h/J)1/[2−πR(H)2], (5.37)

where R(H) is given, from the Bethe ansatz, in Fig. (8). Inserting its asymptotic value at low H ,

2πR(H)2 ≈ 1− 1

2 ln(J/H)
, (5.38)

gives back Eq. (5.36). We note that, to actually fit the experimental data, we take h = cH for some constant of
proportionality which depends on field direction but is generally of order a few %. Thus the actual scaling of gap
with field is not a pure power law.
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VI. STRUCTURE FUNCTIONS

For H = 0 it is convenient to use non-abelian bosonization, Eq. (4.7) so that the interaction term is written:

Lint ∝ tr(gσx). (6.1)

In this case the model has an SU(2) symmetry. Note that when both uniform and staggered fields vanish and ignoring
the marginal operator, the symmetry is actually SU(2)×SU(2):

g → UgV †. (6.2)

These two independent SU(2)’s act on left and right-movers separately. The ordinary SU(2) symmetry of the spin
chain is the diagonal subgroup with U = V . This symmetry is broken by the staggered field. However, a different
SU(2) subgroup of the original SU(2)×SU(2) survives for which:

V = σxUσx. (6.3)

We may redefine the field g by

g → gσx (6.4)

in which case the interaction becomes trg, which has the diagonal SU(2) symmetry. In fact, this continuum limit
interaction arises from a staggered Heisenberg exchange interaction, as occurs in the spin-Peierls problem. The
equivalence of the continuum limit of these two apparently very different problems, is a non-trivial consequence of the

chiral symmetry which maps (−1)j ~Sj into (−1)j ~Sj · ~Sj+1.
If we assume that the only effect of the uniform field is to add a term to the Hamiltonian:

δH = − H√
2π

∂φ

∂x
= −H(Jz

L + Jz
R), (6.5)

then the uniform field can be removed by the gauge transformation:

φ(x) → φ(x) +
H√
2π

x, (6.6)

or equivalently:

Jz
L,R → Jz

L,R − H

2
. (6.7)

[Here we have set v = 1.] This transforms the matrix field g as:

g(x) → eiHxσz/2g(x)eiHxσz/2. (6.8)

This gauge transformation leaves invariant the staggered field term trgσx. Thus the exact SU(2) symmetry remains
in this approximation. However, additional irrelevant terms in the Hamiltonian in the presence of a uniform field
break the exact SU(2) symmetry, as evidenced by the change in the parameter R with field. The SU(2) symmetry is

only present for R = 1/
√
2π.

The non-abelian bosonization formula for the staggered part of the spin operators (for H = 0) is:

~Sj ≈ (−1)jCtrg~σ. (6.9)

The magnetic field leads to the gauge transformation of Eq. (6.8). The parts of the spin operators with wave-vectors
near π thus become:

Sa
j ≈ C cos(πj)trgσa (a = x, y)

Sz
j ≈ C{ei(π+H)jtrg(1 + σz)/2− ei(π−H)jtrg(1− σz)/2} (6.10)

Now making the transformation g → gσx, this becomes:
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Sx
j ≈ C cos(πj)trg

Sy
j ≈ iC cos(πj)trgσz

Sz
j ≈ C{ei(π+H)jtrgσ−/2− ei(π−H)jtrgσ+/2}. (6.11)

In general the spectrum of the sine-Gordon theory consists of the soliton, anti-soliton and breathers (soliton-anti-
soliton boundstates).21 In the SU(2) symmetric case, the excitation spectrum of the sine-Gordon model with β2 = 2π
consists of a triplet composed of soliton, anti-soliton and lowest breather and a second breather, heavier by a factor of√
3. The degeneracy of the triplet is a result of the SU(2) symmetry. Due to the SU(2) symmetry, the 3 elements of

the triplet are produced by the 3 operators trg~σ with equal intensity, whereas the singlet is produced by the operator
trg. Thus setting H = 0 (but not h) the structure functions Gyy and Gzz would be equal. Note that, for H = 0,
Sz
j ∝ trgσy, creates the y-polarized member of the triplet. This can be regarded as a linear combination of the soliton

(created by trgσ−) and the anti-soliton (created by trgσ+). Gzz(π, ω) consists of 2 identical contributions from the
σ− and σ+ terms in Eq. (6.11). Each contributes exactly (1/2)Gyy(π, ω). The effect of H is to split the soliton and
anti-soliton contributions to Gzz into two separate contributions at different wave-vectors π ±H . Thus, ignoring the
small SU(2) symmetry breaking:

Gzz(π ±H,ω) = (1/2)Gyy(π, ω). (6.12)

It is also interesting to note that the staggered part of the energy density is given by:

~Sj · ~Sj+1 ∝ (−1)jtrg. (6.13)

This operator couples to lattice displacements (phonons) and is used to describe Raman scattering experiments. Upon
making the gauge transformation of Eq. (6.8) and the redefinition of Eq. (6.4) this becomes:

~Sj · ~Sj+1 ∝ ei(π+H)jtr
gσ−

2
+ ei(π−H)jtr

gσ+

2
. (6.14)

Thus this operator also creates the soliton and anti-soliton. Hence this theory predicts a single particle excitation
observable in Raman scattering at the same field-dependent wave-vector and frequency as the incommensurate mode
observed in neutron scattering.
Upon allowing for SU(2) symmetry breaking the radius changes. After making the gauge transformation, a U(1)

symmetry still survives, corresponding to shifting φ by a constant. The triplet is now split, with the lowest breather
having a different mass than the degenerate soliton antisoliton pair. Since the operators e±iφ/R have charge ±1 with
respect to this U(1) symmetry, we see that the soliton and anti-soliton are created by the q = π± 2πm Fourier modes

of Sz
j respectively. The breathers can be classified as even or odd with respect to the discrete symmetry φ̃ → −φ̃.

The odd breathers are created by the q = π component of Sy and the even breathers by the q = π component of
Sx. It can be shown that even and odd breather alternate in the spectrum of the sine-Gordon model. Furthermore,
the number of breathers increases with decreasing R. A third breather drops below the soliton antisoliton (ss̄)

continuum immediately as soon as R decreases below the isotropic value, 1/
√
2π with another one dropping below

the ss̄ continuum each time 2/πR2 passes through an integer. The mass of the nth breather, expressed in terms of
the soliton mass, M , is:

Mn = 2M sin(nπξ/2), (6.15)

where:

1

ξ
≡ 2

πR2
− 1. (6.16)

Thus the odd-numbered breathers contribute single-particle poles to Gyy and the even-numbered ones to Gxx while the
soliton and antisoliton contribute single-particle poles to Gzz . In addition various multi-particle continua contribute
to the three spectral functions.
For a field of 7 T. we estimate πR2 = .41. There are 3 breathers at this point, with masses .79M, 1.45M and

1.87M. A resolution limited peak was observed at q = 1.22π, at energy .22 meV. We identify this with the soliton (or
anti-soliton) contribution to Gzz ; hence M=.22meV. A resolution limited peak is clearly observable in the neutron
scattering data at q = π and an energy of .17meV=.77M . This agrees very well with the prediction for the first
breather mass.
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We may also test the SU(2) prediction of Eq. (6.12). The SU(2) symmetry is broken by various small effects as
exemplified by the fact that πR2 6= 1/2. In particular, this implies that Gyy(π, ω) has a second peak, of very low
intensity, corresponding to the third breather. Ignoring these effects we expect the intensity of the lowest breather
peak in Gyy to be approximately twice the intensity of the soliton peak in Gzz.
However, before a comparison can be made with experiment it must be taken into account that the unpolarized

neutron scattering cross-section contains an important direction dependence arising from the Fourier transform of the
dipole-dipole interaction between the neutron and the spins. The cross-section can be written:

σ(~k, ω) =
∑

s

(1− k̂2a)G
aa(~k, ω)f(~k), (6.17)

where k̂ is a unit vector in the direction of ~k and the function f(~k) is slowly varying. Thus the soliton, even breathers

and odd breathers are weighted by different factors 1− k̂2z , 1− k̂2x and 1− k̂2y, respectively. We also have to consider

the variation of f(~k) in examining the relative intensity of solitons to breathers since they occur at different values of
kz. It must be recalled that x̂ here refers to the direction of the effective staggered magnetic field (and ẑ the direction
of the uniform field). In the neutron scattering experiments the field was along the b-axis. We note that the a′′ axis
is rotated by about −17◦ from the crystal axis, a. [We define the rotation angle in the ac- (a′′c′′-) plane so that c
axis is +90◦ rotated from a-axis.]
Strictly speaking, we must take into account the effect of the redefinition of the spin operators, discussed in Section

II, that was used to eliminate the DM interaction. Letting S̃a
j to be the rotated spin operators, defined in Eq. (2.4),

and inverting the transformation, we may write the structure function for the original spin operators in terms of the
structure function for the rotated operators, which we write as G̃ab(k). In this way we obtain:

Gxx(k) = cos2(α/2)G̃xx(k) + sin2(α/2)G̃yy(k − π)

Gyy(k) = cos2(α/2)G̃yy(k) + sin2(α/2)G̃xx(k − π). (6.18)

Gxy remains 0 due to translation invariance and the Gaz are unaffected by the transformation. Here x and y refer to

two axes orthogonal to ~D ( not orthogonal to ~H as in most of this paper.) We expect the second terms in Eqs. (6.18)

to be negligible since α is small. Furthermore, the G̃aa(k) are small for k ≈ 0 also making the second terms in Eq.

(6.18) smaller than the first for k near π. Henceforth we ignore this small correction and simply use G̃aa(k) ≈ Gaa(k).
The direction (and magnitude) of the effective staggered field depends on both the staggered part of the g-tensor

and DM interaction. Since the DM interaction in Cu Benzoate is unknown, the direction x̂ is not known at present.
(The DM interaction in Cu Benzoate may be estimated from various experimental results based on the present theory.
We will discuss this issue in the next section.) However, the direction x̂ can be deduced from the polarization analysis2

of the neutron scattering experiment. Dender et al. analysed the polarization of the neutron scattering at constant
energy h̄ω = 0.21meV and various momentum transfers. For magnetic field H = 7T ‖ b and momentum transfer
along the chain π, this should probe the lowest (n = 1) breather. As discussed above, this odd breather is polarized
orthogonal to the total effective staggered field. In Ref. [ 1] it was claimed that the observed scattering is polarized
in the a′′ direction. Also note that a misstatement of the crystal orientation occurred in Ref. [ 2] so that the wrong

sign appeared there for ~k · ~a.22 Correcting this error, the polarization is +18◦ from a-axis, or equivalently +35◦ from
a′′-axis. This implies that, for an applied field in b-direction, the total effective staggered field −72◦ (+108◦) from
a-axis, or equivalently −55◦ (+125◦) from a′′-axis. [There is actually another feature of the polarization analysis in
Ref. [ 2] which appears inconsistent with the theory presented here, namely the polarization analysis in zero field.
The strong dependence of the intensity on the a-component of the momentum is taken to indicate that Gbb ≈ 0. Our
work ignores any anisotropy in the zero field limit and therefore predicts Gbb = Gaa = Gcc in that limit. We do not
understand the source of this discrepancy at present.]
The constant-Q (momentum transfer) scan experiments, sensitive to the breather modes, were carried out at the

fixed momentum transfer:

(~k · ~a,~k ·~b,~k · ~c)/2π = (−.3, 0, 1), (6.19)

where the lattice constants are a = 6.91A, b = 34.12A and c = 89.3A. Here we have again corrected the misstatement22

of the crystal orientation in Ref. [ 1] mentioned above. Note that the antiferromagnetic wave-vector, in the chain
direction, is actually 2π/c rather than the normal π/c, because there are 2 Cu atoms per unit cell along the c-axis.
The crystal axes a, b and c are essentially orthogonal. Thus, in the a-b-c system:

k̂ = (−.26, 0, .97), (6.20)
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k̂ is rotated +105◦ from the a axis, or +122◦ from the a′′-axis. We note that, this k̂ is almost parallel to the direction
of the total effective staggered field estimated from the polarization analysis above.
The constant-Q scan for the soliton modes was done for a slightly different momentum transfer

(~k · ~a,~k ·~b,~k · ~c)/2π = (−.3, 0, 1.12). (6.21)

However, the direction of this momentum transfer k̂ is almost the same as the above and we will ignore the difference.

The fact that, an intense first breather peak is observed experimentally, supports the deduction that k̂ is nearly

parallel to the total effective staggered field. In fact, assuming that k̂ is completely parallel to the staggered field,
the approximate SU(2) prediction is that the lowest peak at k = π (from the first breather in Gyy) should have twice
the intensity of the lowest peak at k = π ± H (from the soliton/antisoliton in Gzz). This prediction is only a very

approximate one due to the breaking of SU(2). There could also be corrections from the function f(~k) in Eq. (6.17).
Experimentally this ratio appears to be about 2.8. This is perhaps satisfactory agreement. This agreement is only

worsened if k̂ deviates from the direction of the staggered field.
Thus, analyses of polarization and of the scattering intensity of the lowest breather mode are consistent, and

apparently lead to the conclusion that the total staggered field for H‖b is almost parallel to the k̂ direction of Eq.
(6.20) used in the constant-Q scan.
On the other hand, in Ref. [ 3] we discussed a feature in the experimental data at k = π, and ω = .34meV = 1.55M .

This is very close to the predicted mass of the second breather, which contributes to Gxx. A recent calculation, based
on integrability of the sine-Gordon model, indicates that the relative intensity of the second breather in peak in Gxx

should be roughly 1/2 of the intensity of the first breather in Gyy. However, we expect this to have essentially zero

intensity in the neutron scattering cross-section due to the factor of 1 − k̂2x in Eq. (6.17). [In Ref. [ 6] an apparently

good agreement between theory and experiment was obtained because the factors of (1 − k̂2a) were not included.
In Ref. [ 3] intensities were not considered.] A possible resolution of this disagreement is that this “feature” at
ω = .34meV , discussed by two groups of theorists, is just noise. As stated in Ref. [ 2] “Given the quality of the data,
this double-gap conjecture is highly speculative”. Clearly more data is needed to determine whether or not there is
really another sharp peak at this frequency. An even more statistically insignificant feature in the data, at k = π and
ω = .44meV , was discussed in Ref. [ 6] where it was interpreted as the third breather peak in Gyy. Both the energy
(≈ 2M) and the intensity (very approximately 1/6 the intensity of the first breather) agree with the predictions of

the sine-Gordon model. Note that in this case the factor of 1− k̂2y is common to first and third breathers so it doesn’t
affect the intensity ratio. However, once again, considerably more data is needed to determine if there is really a peak
at this frequency.
Another striking feature of the neutron scattering data is a second resolution limited peak at k = π and ω =

.8meV ≈ H . This also has a possible interpretation in our field theory approach. It is natural to assume that this
peak actually comes from Gzz . At this wave-vector, from Eq. (6.11), this is proportional to < trgσ−trgσ+ > at
wave-vector k = H . We expect the continuum limit to hold for some range of wave-vectors close to the gap minimum
at wave-vector π+H . Thus, at least for weak enough fields, we would expect the soliton to persist as a single-particle
excitation in Gzz up to wave-vector π. Its energy should obey the Lorentz invariant formula:

ω =
√

M2 + k2 =
√

M2 +H2. (6.22)

(Here k is measured from the incommensurate wave-vector k +H and v is set equal to 1.) Since H >> M this gives
approximately ω = H , as seen in the experiment. The intensity of this feature in Gzz can be easily calculated. The
result follows from the fact that the k near π parts of the spin operators are all Lorentz scalars. The matrix element
between groundstate and a single particle excited state of a Lorentz scalar operator is independent of the momentum
of the particle, by Lorentz invariance (assuming a Lorentz-invariant normalization of the state). It then follows that
the soliton and anti-soliton peaks in Gzz have an intensity that is proportional to 1/ω. The energy is approximately
four times higher at k = π. We must also take into account that both soliton and anti-soliton are contributing at
k = π which increases the intensity by a factor of 2. Thus, we expect the single-particle peak at ω ≈ H , k = π to
have an intensity approximately 1/2 that of the peak at k = π+H . Experimentally this ratio looks somewhat larger
than 1/2 but it must be remembered that the peak at ω ≈ H , k = π is sitting on top of a background from Gyy.
Taking this into account, the agreement looks fair.
There is actually a possible objection to this argument. The same reasoning would seem to imply sharp peaks

near ω = H at k = π + H coming from Gyy and Gxx. These were not observed experimentally; at most a small
shoulder, was observed beginning at ω = H for k = π +H . This may simply mean that the breathers have merged
into the continuum by this wave-vector, (due to non-relativistic effects not contained in the continuum limit field
theory) whereas the soliton has not.
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We note that spin-wave theory fails to capture the one-dimensional quantum fluctuation dominated physics in
various ways. It predicts a single low energy mode with ∆ ∝ h1/2, instead of h2/3 with soft wave-vectors π and 0,
missing the incommensurate shift. It also predicts another single particle mode at energy approximately H , at the
same wave-vectors.

VII. ESTIMATE OF DM VECTOR

In the present framework, the only unknown parameters of Cu Benzoate are the DM vector, which has not been
determined directly in previous studies. Based on the present theory, we can in principle determine the DM vector
from several experimental results. Actually, there seem to be no solution that can perfectly fit all the available
experimental data, as explained below. Presumably, a precise error estimate on an experiment gives a permissible
region for the DM vector, and such constraints from several experiments would give a region of possible values of the
true DM vector. However, it should be noted that we have been ignoring the interchain effects, irrelevant operators
etc. which might be necessary in such a precise discussion.

Firstly, as argued in Sec. II ~D must lie in the a′′ − c′′ plane, leaving two free parameters. The total staggered field
is determined by eq. (2.9).
Here we list the constraints on the DM vector from various experiments.

A. Angular dependence of the gap

As observed in Ref. [ 1], the induced gap is strongly dependent on the direction of the applied uniform field. In the
present theory, this is accounted by the field direction dependent constants of proportionality between the uniform
and staggered magnetic fields. As discussed in Sec. II, the proportionality constant should be given by the g-tensors

and the DM vector ~D. Since the g-tensors were obtained previously8, the measured gap can be used to determine ~D.
The gap is proportional to essentially the 2/3 power of this effective staggered field. The specific heat measurements

of Ref. [ 1] were fit by the authors to the specific heat of a collection of free massive relativistic bosons. The masses
were found to scale approximately as H2/3 with a direction dependent amplitude in the a′′ : b : c′′ = .55 : 1.0 : 2.0.
In Ref. [ 3], this ratio was used to estimate the DM vector.
Very recently7 the specific heat of the sine-Gordon model was calculated from the thermal Bethe ansatz and fit to

the Cu benzoate data. Again a good fit of the gap to H2/3 was obtained for fields in the b or c′′ directions with a
somewhat different amplitude ratio b : c′′ = 1.0 : 2.2. (The velocity, v(H) is another parameter in the fit. This may
also be determined from Bethe ansatz for the S=1/2 chain in a uniform field. A slightly better fit to the specific heat
data was obtained in [ 7] by letting v(H) be a free parameter.)
A reasonable fit was not obtained for the field in the a′′ direction where the specific heat data is nearly linear. This

suggests that, for H‖ a′′ the apparent gap structure was either due to some sort of experimental error or due to other
mechanisms7 than the effective staggered field. In any case, it seems that the effective staggered field for H‖ a′′ is
rather close to zero. This implies the cancellation of the effective staggered field coming from the staggered g-tensor
and the DM interaction. It is not quite unnatural, because for the applied field in ac-plane, both the staggered field
generated by the staggered g-tensor and the DM interaction point to b-direction. Thus there is a direction in the
ac-plane where the cancellation occurs, for a wide range of parameters. Actually, the cancellation of the staggered
field is also consistent with the Electron Spin Resonance (ESR) result, which will be explained later.
Assuming the cancellation of the staggered field for H‖ a′′, and that observed gap for H‖b and H‖ c′′ are entirely

due to the staggered field, the ratio of the proportionality constants between staggered and uniform fields for H‖ a′′,
H‖b and H‖ c′′ are 0 : 1 : (2.2)3/2 = 3.26. The ratio gives a constraint on the DM vector through (2.9).

B. Magnitude of the gap

Based on several exact results on the sine-Gordon field theory and on the S = 1/2 Heisenberg antiferromagnetic
chain, we have determined the magnitude of the gap for a given staggered field h. Thus, comparing this with the gap
estimated from the specific heat measurement, we can fix the proportionality constant c between the staggered field
h and the applied field H (h = cH).
Here we use only the result for H‖ c′′, which is presumably most reliable. For H‖ c′′, the gap is very well fit by

the power law ∆ = kH2/3, without introducing the logarithmic correction. The proportionality constant is given by
k = 1.316 if ∆ and H are measured in units of Kelvin and Tesla, respectively. By comparing this with eqs. (5.32) and
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(5.33), where we assume the logarithmic factor to be close to unity for the present case, we obtain c = 0.111. This
also gives a constraint on the DM vector through eq. (2.9).

C. ESR linewidth

An anomalous broadening of ESR, which is strongly dependent on the field direction, at low temperatures was
observed23 in Cu Benzoate. The mechanism of this broadening was left unexplained. However, we have recently
developed a field-theory approach to ESR on quantum spin chains at low temperature.24 According to the theory, the
contribution of the staggered field to the ESR linewidth is given by

Γ ∝ h2

T 2
. (7.1)

This diverges at lower temperature, in agreement with the experiment. The direction dependence can also be explained
by the direction-dependent proportionality constant between the effective staggered field and applied uniform field.
Actually, this is consistent with the previous discussion on the field-induced gap, at least qualitatively. In particular,
for H‖ a′′, the low-temperature anomalous part of the ESR linewidth vanishes. This implies the cancellation of the
staggered field for H‖ a′′. While this appears to contradict the apparent gap found in Ref. [ 1], it is rather consistent
with more refined analysis discussed in the last subsection. In addition, H‖ c′′ gives the largest linewidth, which is
consistent with the larger field-induced gap for H‖ c′′.
On the other hand, the ratio of the staggered field is not quantitatively consistent with the specific heat measurement.

The estimate of the staggered field is somewhat subtle because there are also contributions to the ESR linewidth from
other sources (most importantly exchange anisotropy/dipolar interaction). The low-temperature anomalous part,
which is related to staggered field, appears to be approximately 1 : 4.6 for H‖b and H‖ c′′. This gives the ratio of the
staggered field 1 : 2.1 for H‖b and H‖ c′′. This is smaller than expected from the specific heat analysis.

D. Neutron Scattering

As we have discussed in Section VI, the analyses on the polarization and intensity of the first breather suggests
that the total effective staggered points to −72◦ (+108◦) from a-axis, or equivalently −55◦ (+125◦) from a′′-axis, if
the external field is applied in b-direction. This gives another constraint on the DM vector.

E. Summary of the estimate of the DM vector

There are several experimental data which give some constraints on the DM vector, and they are not perfectly
consistent. The estimate of DM vector is also sensitive to the assumed form of the g-tensor, extracted from ESR
measurements.8 The experimental data are presumably subject to several errors which has not been identified precisely.
We hope that more experimental data will be available in the future to make more precise comparison with the theory.
The ESR linewidth was measured for various directions of the applied field. Thus it is perhaps quite reliable that

the staggered field precisely cancels at H‖ a′′. As we have discussed, this is rather consistent with the refined specific
heat result. This gives a single constraint on the DM vector. In the linearized approximation, it reads

ha′′ = 0.0190 + 0.0453
Da′′

J
− 1.058

Dc′′

J
= 0 (7.2)

The estimated ratio of the staggered field for H‖b and H‖ c′′ was inconsistent between the specific heat and ESR.
However, it should be recalled that each analysis has its own problem. In the specific heat analysis, an apparent
gap structure, which is unrelated to the staggered field, was observed for H‖ a′′. Whatever the origin of this gap
structure, it is natural to expect similar contributions also for other field directions. Unfortunately, we do not know
how to estimate these effects at present. On the other hand, there are also contribution to the ESR linewidth from
other sources than the staggered field, and the subtraction causes some uncertainty, in addition to the estimate of the
linewidth itself.
The constraint from various experimental result on the DM vector is summarized in Fig. (11). For the case of neutron

scattering polarization we have included an estimated error bar from the polarization analysis of Ref. [ 2]. We have not
attempted to estimate error bars in the other cases. We see that a candidate DM vector (Da′′ , Dc′′) ∼ (0.13, 0.02)J ,
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which satisfies the most reliable requirement of the cancellation for H‖ a′′, is roughly consistent with all the constraints
except for the ratio of the gap between H‖b and H‖ c′′.
This suggests that the observed ratio of the gap was wrong, or was affected by other factors than the staggered

field. More experimental data are needed to draw a reliable conclusion.

VIII. SUSCEPTIBILITY

In the first subsection we consider the staggered susceptibility, resulting from the application of a staggered magnetic
field, using the mapping onto the sine-Gordonmodel. In the next subsection we combine this with the standard uniform
magnetization of the S=1/2 Heisenberg model to obtain the total physical susceptibility.

A. Staggered Susceptibility

We first discuss the susceptibility of the sine-Gordon model. Writing the sine-Gordon Lagrangian in the form:

L =
1

2
∂νφ∂νφ+ 2µ cos(

√
2πφ), (8.1)

and adopting units where the velocity is set to 1, we define the sine-Gordon susceptibility as:

χ ≡ −∂2F

∂µ2
, (8.2)

where F is the free energy. The groundstate energy (i.e. the T = 0 free energy) is expressed in terms of the gap
as:25,26

E0 = − ∆2

4
√
3
. (8.3)

This determines the T = 0 susceptibility using the exact relationship between the coupling constant, µ and the mass
∆:

∆ = µ2/3Ã, (8.4)

where25,26

Ã ≡ A02(2π)
1/6 = 2π1/6

[

Γ(3/4)

Γ(1/4)

]2/3 [
Γ(1/6)

Γ(2/3)

]

≈ 4.82764. (8.5)

This gives the T = 0 susceptibility:

χ(0) =
Ã3

9
√
3∆

(8.6)

The high-temperature susceptibility is given by:

χ → 4

∫ β

0

dτ

∫ ∞

−∞
dx < cos

√
2πφ(τ, x) cos

√
2πφ(0, 0) > . (8.7)

This Green’s function is normalized to 1/2r (at T = τ = 0). At finite τ and T we have:

1√
r2 + τ2

→ 1

β
π

[

sin π
β (τ + ix) sin π

β (τ − ix)
]1/2

. (8.8)

Here β ≡ 1/T . Thus, the susceptibility becomes:

χ(T ) → πT

∫ ∞

−∞
dx

∫ β

0

dτ
πT

[

sin π
β (τ + ix) sin π

β (τ − ix)
]1/2

=
1

T

[

Γ(1/4)

Γ(3/4)

]2

≈ 8.75376

T
. (8.9)
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(This result for the integral can be obtained, by analytic continuation, from the general results of Schulz.27) An
integral equation determining the sine-Gordon free energy at finite T was given in Ref. [ 28]. We may determine the
susceptibility by differentiating twice with respect to µ. Note however that this integral equation actually determines
F (T )− E0 so we must add the zero-temperature part of the susceptibility, given above. The resulting susceptibility,
χ∆ is plotted versus T/∆ in Fig. (12). As expected, it agrees quite well with high temperature result ∼ 8.73576/T
down to T ∼ ∆. It has a maximum at about T ∼ 0.5∆. The T = 0 value is given by Eq. (8.6), (8.5).
Up to a multiplicative factor and logarithmic corrections, the sine-Gordon susceptibility essentially gives the stag-

gered susceptibility of the S=1/2 chain, i.e. its response to a staggered field:

χs(T, h,H) ≡ −∂2F

∂h2
. (8.10)

In order to determine this factor and estimate the logarithmic corrections we first consider the T = 0 staggered
magnetization of the S=1/2 chain.
We refer to the staggered magnetization as ms:

< Sx
j >= (−1)jms. (8.11)

In the continuum limit,

ms ∝< trgσx >∝< cos(2πRφ̃) > . (8.12)

Since this operator has scaling dimension πR2, a standard RG scaling argument gives the scaling of the staggered
magnetization with staggered field:

ms → D
(

H

J

)(

h

J

)πR2/(2−πR2)

(8.13)

for some function D. For weak fields the exponent is approximately 1/3. In a similar way to our analysis of the gap in
the previous section, by combining the exact results for the xxz model with an RG analysis of the marginal operator
we may determine the scaling of magnetization with staggered field in the case of zero uniform field:

ms → D0(h/J)
1/3

[

ln
J

h

]1/3

(8.14)

and determine the behavior of D(H/J) in Eq. (8.13) for small field:

D(H/J) → D[ln(J/H)]1/3. (8.15)

ms obeys a standard RG equation relating a change in the cut-off energy scale, E, to a change in the coupling constant,
λ:

[
∂

∂ lnE
− ~β(~λ) · ∂

∂~λ
− γ(~λ)]m = 0. (8.16)

Working to linear order in the marginal couplings, as before, we set β ≈ 0 and use Eq. (5.8). Using Eq. (4.10), and
lowering the cut-off scale to the gap, ∆, this gives:

ms → F

(

∆

J

)1/2 [
4π√
3
λ⊥(∆)

]−1/4

, (8.17)

for some constant, F . Using Eq. (5.11), and (5.33)) this can be written:

ms → FA
1/2
0

(

h

J

)1/3 [
4π√
3
λ⊥(∆)

]−1/3

, (8.18)

where A0 is defined in Eq. (5.5) and determined in Eq. (5.33). As in the previous sections we obtain the various
formulae from the different asymptotic scaling of λ⊥(∆) in the 3 cases: H = 0, H >> ∆ and H = 0 with exchange
anisotropy ǫ, defined in Eq. (5.21). Using Eq. (5.12) we obtain Eq. (8.14) with:
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D0 = FA
1/2
0 , (8.19)

Using Eq. (5.16) we obtain Eq. (8.13) with:

D

(

H

J

)

= D0[2(1− 2πR2)]−1/3

(

H

J

)−2(1−2πR2)/3

. (8.20)

Using Eq. (5.14) we obtain Eq. (8.15) with:

D = D0e
−1/3. (8.21)

Using Eq. (5.22), in the limit ∆/J → 0, in Eq. (8.17) we obtain an expression for ms in terms of ∆ with exchange
anisotropy:

ms → F (2ǫ)−1/4(∆/J)1/2−ǫ/4 (8.22)

We may determine the constant F , by comparing to the exact result of Ref. [ 12)]. From Eq. (5.28):

ms → C(R) < exp[2πiRφ̃] >, (8.23)

with the exact formula for C(R) give in Eq. (5.26). This expectation value is given in terms of the soliton mass, ∆
in [ 12], Eq. (15), with:

β =

√

π

2
R ≈ 1

2
− ǫ

8
. (8.24)

Inserting a power of the spin-wave velocity, v by dimensional analysis, and taking the limit of small ǫ, we obtain:

< e2πiRφ̃ >→ (4/3)πΓ(3/4)

16 sin(π/3)Γ(1/4)

(

Γ(2/3)Γ(5/6)

4
√
π

)−3/2 (
∆

v

)1/2−ǫ/4

. (8.25)

This gives a result consistent with Eq. (8.22) and determines the constant, F , to be:

F = 29/4
√
π

3
√
3

Γ(3/4)

Γ(1/4)
[Γ(2/3)Γ(5/6)]−3/2 = 2A

3/2
0 /(3

√
3π), (8.26)

where the constant A0 is defined in Eq. (5.5) and its value is given in Eq. (5.33). Here we have used the exact identity
Γ(1/6)Γ(5/6) = 2π. Hence the amplitude of Eq. (8.14) is given by:

D0 = FA
1/2
0 = 2A2

0/(3
√
3π). (8.27)

We thus obtain the T = 0 staggered susceptibility of the S=1/2 chain by differentiating ms with respect to h:

χs(T = 0, h) =
2A3

0

9π
√
3

ln1/2(J/∆)

∆
, (8.28)

for H = 0. Comparing to Eqs. (8.5) and (8.6), we see that:

χs(T = 0,∆) =
ln1/2(J/∆)

2(2π)3/2
χSG(T = 0,∆). (8.29)

The susceptibility for T >> ∆ (and H = 0) follows from Eqs. (8.8)-(8.9). Here we use the exact result for the
T = 0 correlation function of the S=1/2 chain:13

< Sx(r)Sx(0) >→ (ln r)1/2

(2π)3/2r
. (8.30)

This differs from the correlation function of the sine-Gordon model by a factor of (ln r)1/2/2(2π)3/2. [Note the factor
of 4 difference in the susceptibilities due to the factor of 2 in the interaction term of the sine-Gordon Lagrangian
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of Eq. (8.1).] Upon going to finite T and Fourier transforming at zero frequency and wave-vector, we expect the

logarithmic factor to become: ln1/2(J/T ). Thus:

χs(T >> ∆) =
.277904 ln1/2(J/T )

T
=

ln1/2(J/T )

2(2π)3/2
χSG(T >> ∆). (8.31)

Comparing to Eq. (8.29) suggests the heuristic formula:

χs(T,∆) =
ln1/2[J/max(T,∆)]

2(2π)3/2
χSG(T,∆). (8.32)

χSG/[2(2π)
3/2] ≈ χs is plotted in Fig. (12).

Including a small uniform field, H , only makes unimportant changes in these formulas. At T = 0, the power of ∆
in Eq. (8.28) changes by a small amount; the argument of the logarithm changes to J/H and the amplitude by a
factor of e−1/3. For T >> ∆ we must distinguish two regimes, depending on the relative magnitude of H and T . For
∆ << T << H , the power of T changes. On the other hand, for ∆ << H << T we expect to obtain Eq. (8.31).

B. Physical Susceptibility

Above we considered the staggered susceptibility resulting from (independent) staggered and uniform fields. To
make any comparison with experiments we must take into account that the effective staggered field is proportional to
the uniform field,

h = cH, (8.33)

where the constant of proportionality, c is strongly dependent on field direction. The physical susceptibility is
conveniently obtained from its thermodynamic definition:

χ = − d2F

dH2
, (8.34)

where F is the free energy. Writing F as a function of uniform and staggered fields, we must set h = cH before
taking the H-derivative. We may calculate the free energy in the rotated spin basis of Eq. (2.4), used throughout
this paper. Noting that the first derivative of F with respect to H or h gives the uniform magnetization, mu and
staggered magnetization ms respectively (in the rotated basis), we obtain:

χphys =
∂mu

∂H
+ c2

∂ms

∂h
+ 2c

∂ms

∂H
, (8.35)

where we have used:

∂mu

∂h
=

∂ms

∂H
=

∫ β

0

dτ〈ms(τ)mu(τ)〉, (8.36)

We may ignore the dependence on h of the first term and use the standard result for the uniform susceptibility of the
S = 1/2 chain, χ0

u. For low fields and temperatures this gives:

∂mu

∂H
≈ χ0

u → 1

2πvs
=

1

π2J
, (8.37)

independent of field and temperature. The second term in Eq. (8.35) is larger than the third so we approximate:

χphys ≈ χ0
u + c2χs(h, T ), (8.38)

where χs is the staggered susceptibility discussed in the previous subsection. Thus, when measuring the physical
susceptibility of the present system, one actually probes also the staggered susceptibility29.
While the first term, the standard result for the susceptibility of the S=1/2 chain, goes to a finite constant, at T

an H → 0, the second term, resulting from the effective staggered field, is highly singular. At zero field it blows up

at T → 0 as .278 ln1/2(J/T )/T . Thus, although it is multiplied by the small constant, c2, it eventually dominates for
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low enough T . For any finite field, the divergence of the second term is cut off, at essentially the gap energy, ∆(h), at

a value of approximately .229 ln1/2(J/∆)/∆, as shown in Fig. (12). At low fields the behavior looks quite similar to
a paramagnetic impurity contribution. It can be distinguished from that, however, by its very strong field-direction
dependence. The effect is largest for the field in the c-direction when the parameter c2 ≈ .01.
The experimental susceptibility30 of Cu benzoate shows very peculiar behavior at low fields and temperatures. As

the temperature is lowered, in low fields, the susceptibility grows. This effect is highly direction dependent with the
biggest effect occurring for fields in the c-direction. This effect is cut off by the application of a field. Qualitatively, the
experimental results look similar to our predictions. However, at a more quantitative level there are many differences.
The anomalous low field low T part of χ is much larger in the experiments than in the theory. For instance, at zero
field, a temperature of 1K ≈ J/18, and c2 = .01, the value that we find for H‖c, the second term in Eq. (8.35) is
still smaller than the first by a factor of about 1/2. The anomalous contribution could be somewhat larger due to
the third term in (8.35) and the logarithmic correction. However, the anomalous term in χc observed in Cu benzoate
at this zero field and low T is about six times larger than the χ0

u. This is perhaps too large to be explained by our
theory which is purely one-dimensional.
Furthermore, the detailed experimental dependence on T and H is quite complex. The maximum susceptibility

occurs at a field of about 30G. and T=1.5K. At lower fields or temperatures the susceptibility decreases somewhat.
At low fields, two extra low temperature peaks are observed in the susceptibility as a function of T (in addition to the
normal one for an S=1/2 chain at T ≈ .6J). While it is tempting to try to identify the higher-T peak with the peak in
χs shown in Fig. (12), and the lower-T peak with the onset of Néel order, both susceptibility peaks are broad, unlike
what would be expected from a phase transition. (Indeed, no evidence for magnetic order was found from neutron
scattering,2 down to T=.8K.) A strong frequency dependence of the low T and H susceptibility was also observed.
We expect that a proper theoretical description of the low field and temperature susceptibility of Cu benzoate will

require the inclusion of inter-chain coupling effects. The interchain super-exchange paths look complicated and it
is not even clear what is the sign of the interchain coupling. We remark that a perfectly one-dimensional S=1/2
antiferromagnet with SU(2) symmetry broken only by the DM interaction has a disordered groundstate. This follows
from our spin redefinition in Sec. II which maps the system into an easy plane xxz model which is well-known to
have a disordered groundstate with power-law correlations. We may think of the spins as fluctuating primarily in the

plane perpendicular to ~D with a tendency for the cross-product of neighboring spins to be parallel to ~D. This system
has a U(1) symmetry. Interchain coupling would normally be expected to produce long-range order with both an

anti-ferromagnetic component and a possible perpendicular ferromagnetic component. For example, for ~D ∝ ẑ,

< ~Sj >= −ms(−1)jx̂+muŷ. (8.39)

See Fig. (13).
The standard mean field treatment of the interchain interactions31 would suggest a critical temperature of order

the interchain coupling (assuming that it is antiferromagnetic). On the other hand, when a magnetic field is applied

(not parallel to ~D), the U(1) symmetry is broken and the phase transition should disappear. ms and mu now becomes
non-zero even in the purely one-dimensional system and are no longer order parameters for spontaneous symmetry
breaking. Thus the application of a magnetic field smoothes out the phase transition in this system. Surprisingly,
neutron scattering experiments in zero field have failed to detect a Néel transition.
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FIG. 1. Crystal structure of Cu Benzoate. Filled circles are Cu2+ ions, connected atoms are benzoate group and grey circles
represent H2O molecules. Unit cell is shown as a frame, and arrows indicate crystal axes. part of the figure.
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FIG. 2. Enlargement of crystal structure near a Cu (black spheres) chain with O atoms of H2O (dark spheres) and those of
benzoate groups (light spheres). Note that the oxygen octahedra have two different orientations on staggered Cu atoms.
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FIG. 3. Local magnetic principal axes of inequivalent Cu sites (I and II). The principal axes of the average g-tensors are
denoted as a′,b and c′.
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FIG. 4. Local principal axes of combined magnetic interactions a′′ and c′′, shown in ac-plane.
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FIG. 5. Classical spin configuration.
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FIG. 6. The Kosterlitz-Thouless RG flows of Eq. (4.10).
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FIG. 7. The RG flows in the presence of a magnetic field. The turn occurs at an energy scale of O(H).
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FIG. 8. Critical exponent 2πR2 as a function of the applied field H . Exact solution is compared with the leading terms
2πR2

∼ 1 − 1/[2 log (H0/H)] in the RG analysis. We show a good fit to the numerical solution of the Bethe ansatz integral

equations with H0 =
√

32π3/e. This choice of H0 is 4 times the value in Ref. [ 16], which gives worse fitting.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

v=J

H=J

Spin-wave veloity

Exat

FIG. 9. Spin-wave velocity v as a function of the applied field H , determined from Bethe Ansatz integral equations.
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FIG. 10. Magnetization m as a function of the applied field H , determined from Bethe Ansatz integral equations.
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FIG. 11. Estimate of the DM vector from various experiments. Each constraint gives a set of allowed DM vectors as a curve
in Da′′ −Dc′′ plane. The constraint from neutron scattering polarization is drawn with an assumed error of ±5◦.
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FIG. 12. Susceptibility of the sine-Gordon model, as defined by Eq. (8.1), (8.2), divided by a factor of 2(2π)3/2. This is
essentially the staggered susceptibility of the spin chain, multiplied by ∆, up to a slowly varying logarithmic factor. The
exact curve is obtained by a numerical solution of the integral equation, and the high-temperature asymptotics is from the
perturbation theory, .278∆/T . The T = 0 value is given by .229, in agreement with Eq. (8.6), (8.5).
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FIG. 13. Spin order for antiferromagnet with DM interaction.
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