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High-precision DC magnetization measurements have been made on Cu(C4H4N2)(NO3)2 in mag-
netic fields up to 14.7 T, slightly above the saturation field Hs =13.97 T, in the temperature range
from 0.08K to 15K. The magnetization curve and differential susceptibility at the lowest temper-
ature show excellent agreement with exact theoretical results for the spin-1/2 Heisenberg antifer-
romagnet in one dimension. A broad peak is observed in magnetization measured as a function of
temperature, signalling a crossover to a low-temperature Tomonaga-Luttinger-liquid regime. With
increasing field, the peak moves gradually to lower temperatures, compressing the regime, and at Hs

the magnetization exhibits a strong upturn. This quantum critical behavior of the magnetization,
and that of the specific heat, withstand quantitative tests against theory, demonstrating that the
material is a practically perfect one-dimensional spin-1/2 Heisenberg antiferromagnet.

PACS numbers: 73.43.Nq, 75.10.Pq, 75.40.Cx, 75.50.Ee

Quantum spin systems in one dimension have been the
subjects of intensive experimental and theoretical studies
because of their intriguing properties arising from strong
quantum fluctuations [1]. Among them, one of the sim-
plest is the spin-1/2 one-dimensional (1D) Heisenberg
antiferromagnet (HAF), whose ground state is a quan-
tum critical state called a Tomonaga-Luttinger liquid
(TLL) [2]. Two hallmarks of this unique state are gapless
elementary excitations, which are interacting spin-1/2
quasiparticles known as spinons, and power-law decays
of correlation functions indicating a quasi-long-range or-
der [1]. The basic character of the TLL in this system
has been well established theoretically, yet quantitative
comparisons with experiment are still incomplete, partic-
ularly near the saturation magnetic field.
In a magnetic field H , the Hamiltonian of the spin-1/2

1D HAF is

H = J
∑

i

Si · Si+1 − gµBH
∑

i

Siz, (1)

where J is the intra-chain coupling constant, and g and
µB are the g factor and the Bohr magneton, respec-
tively. The TLL survives up to the saturation field
Hs =2J/gµB [1–3], the quantum critical point (QCP) —
in fact the end point of a line of quantum critical points
— at which it gives way to a gapped, field-induced ferro-
magnetic state.
In 1D spin systems that are gapped at zero field, such

as spin-1 Haldane chains and spin-1/2 two-leg ladders,
an additional QCP exists — the lower critical field Hc,
at which a quantum phase transition takes place from a
gapped, disordered state to a TLL. Near Hs and Hc, an
effective description of the TLL is given in terms of inter-
acting magnons — quasiparticles carrying spin 1 [4, 5];

the ground states in the regions H ≥Hs and H ≤Hc can
be considered vacuums, in which excitations are respec-
tively Sz =−1 and Sz =1 magnons [6].
In the dilute limit, these 1D magnons can be exactly

mapped onto free fermions [7, 8]. As a result, the number
of magnons, Nm, near the QCPs is given by

Nm

L
=

∫

∞

0

dǫD(ǫ)f(ǫ− µ)

=

√
2mkBT

π~

∫

∞

0

dx

ex2
−µ/kBT + 1

, (2)

where L is the number of spins, f(ǫ−µ) the Fermi distri-
bution function, and D(ǫ) the density of states of the free
fermions, whose dispersion at the band edge is quadratic,
ǫ= ~

2k2/2m. Herem is the effective mass, and the chem-
ical potential µ is gµB(Hs −H) or gµB(H −Hc) [6, 9].
Magnetization per spin, M/L, is (Ms −Nm)/L and
Nm/L near Hs and Hc, respectively, where Ms is the
saturation magnetization.
According to Eq. (2), the magnetization at a given µ

has an extremum at [6]

kBTex = 0.762 38µ, (3)

where Nm becomes minimum. This universal relation,
confirmed in the spin-ladder system (Cu7H10N)2CuBr2
(DIMPY) near Hc =3T [10], marks the boundary at
which the quadratic dispersion becomes a poor ap-
proximation because of the linear dispersion of spinons
near ε=0 — a crossover from a quantum-critical re-
gion to a TLL region [6, 9, 11]. The magnetiza-
tion extremum persists even at fields far away from
the QCPs, as has been shown by numerical calcula-
tions for spin-1 Haldane chains [6] and spin-1/2 two-
leg spin ladders [12, 13], and as has been observed in
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DIMPY [10], Ni(C5H14N2)2N3(PF6) (NDMAP) [14], and
(Cu5H12N)2CuBr4 (BPCB) [15]. This easily identifiable
anomaly in magnetization hence serves as a convenient
marker of the crossover to the low-temperature, TLL re-
gion at all fields [15]. However, in spin-1/2 1D HAFs,
no experimental work has been done to our knowledge
to investigate a temperature dependence of magnetiza-
tion in detail at fields near Hs, the QCP, because many
spin-1/2 1D HAFs, including Sr2CuO3 (J =2200K) [16]
and KCuF3 (J =380K) [17], need very strong magnetic
fields, in excess of hundreds of teslas, to reach Hs.

In this Letter, we investigate quantum critical behav-
ior of the magnetization of a spin-1/2 1D HAF near
this QCP in detail. For this purpose, we have per-
formed high-precision DC magnetization measurements,
supplemented by some specific-heat measurements, on
Cu(C4H4N2)(NO3)2, or CuPzN for short — a proto-
typical spin-1/2 1D HAF compound with a relatively
small intra-chain coupling of J =10.3K [18] and a corre-
sponding Hs of about 14T. Comparison of the magneti-
zation data, taken at 0.08K which is less than 0.01J ,
with a Bethe-ansatz prediction and our exact calcu-
lation employing the quantum transfer-matrix (QTM)
method [19, 20] demonstrates that CuPzN is a practi-
cally perfect spin-1/2 1D HAF. We observe quantum crit-
ical behavior near the QCP in excellent agreement with
Eqs. (2) and (3) and with QTM results. Preliminary
results have been reported in Ref. [21].

In CuPzN, chains of S=1/2 Cu2+ run along the crys-
tallographic a axis [18, 22]. A zero-field muon-spin-
relaxation experiment has detected three-dimensional
(3D) magnetic ordering at TN =0.107K [23]. From this,
the interchain coupling constant J ′ has been estimated
to be 0.046K. Consistent with such a small J ′ relative to
J , no anomaly indicative of the ordering has been found
in specific heat and magnetization down to 0.05K, well
below TN [24].

Our DC magnetization measurements were performed
on a 3.59mg sample of CuPzN, using a force magne-
tometer [25]. A 3He-4He dilution refrigerator and a
sorption-type 3He refrigerator were used in the tem-
perature ranges 0.08K≤T ≤ 2K and 0.3K≤T ≤ 15K,
respectively. Static magnetic fields up to 14.7T were
applied along the b axis, perpendicular to the spin-
chain direction. Precise calibration of the magnetization
was made by comparing the M(H) data at 4.2K with
those obtained by a SQUID magnetometer. In addition,
specific-heat measurements were performed on a 1.10mg
sample at 14T with a relaxation technique. The samples
for both measurements were single crystals grown by slow
evaporation of a mixture of deuterated pyrazine with a
heavy-water solution of copper nitrate [22].

Figure 1(a) shows the magnetization M and the mag-
netic susceptibility dM/dH of CuPzN at 0.08K as a func-
tion of the magnetic field up to 14.7T. Figure 1(b) is
an enlarged view of Fig. 1(a) near the saturation field

Hs, along with the well-known exact Bethe-ansatz curve
at T =0 [26] recomputed for the present purpose. The
best fit of the curve to the data gives J =10.8(1)K and
g=2.30(1), which agree well with previously reported
values [18, 27], and Hs is found to be 13.97(6)T. The fit
is excellent up to 13.9T, but the data very nearHs do not
exhibit a square-root singularity, Ms−M ∝ (Hs−H)1/2,
predicted by theory [28, 29]. Accordingly, dM/dH has a
prominent peak at 13.95T but does not diverge. How-
ever, fitting the expression 1−M/Ms =D(1−H/Hs)

1/δ

to the data between 13.6T and 13.9T yields D=1.24(8),
Hs =13.98(1)T, and δ=1.98(8), with D and δ agreeing
with the predicted values 4/π≈1.273 [29] and 2, respec-
tively. Moreover, our exact curve for T =0.08K, calcu-
lated by the QTM method and shown in Figs. 1(a) and
1(b), is in close agreement with the data even near Hs.
These observations strongly suggest that the rounding of
M and the corresponding non-divergence of dM/dH at
Hs are not caused by the interchain coupling J ′, but by
thermal fluctuations in the vicinity of the QCP [30].
The temperature at which the M(H) curve was mea-

sured, 0.08K, is definitely below the zero-field TN of
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FIG. 1. (color online). (a) Field dependence of the mag-
netization M (solid circles) and the differential susceptibility
dM/dH (solid squares) at 0.08 K, along with the result of
exact QTM calculations for the 1D spin-1/2 HAF at 0.08K
(open symbols). (b) Enlarged plot near Hs =13.97 T. The
dashed line is a Bethe-anzatz result for T =0. In both panels,
thin solid lines are guides to the eye.
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0.107K. Therefore, the boundary of the 3D ordered
phase will cross this temperature at some field below Hs.
Nonetheless, the M(H) curve exhibits no anomaly that
indicates such a transition, in accordance with the previ-
ous experiment on a powder sample [24]. Taken together,
these results suggest that the 3D ordering has a negligible
effect on the thermodynamic properties of CuPzN.

The temperature dependence of the magnetization is
shown in Fig. 2 for several magnetic fields. The magne-
tization has been divided by the field to compare data
taken at different fields. In the limit of H→ 0, M/H is
expected to reach a maximum at Tp ∼ 0.641J [29, 32].
This relation, combined with the experimental value of
Tp =6.89K at 1T, yields J =10.8K, in perfect agreement
with the value determined from the M(H) data. With
increasing field, Tp gradually decreases, and at 13.9T the
magnetization peak eventually vanishes into a tempera-
ture region well below 0.08K (see Fig. 2(b)). At 14T, the
data shows a strong upturn as T → 0, indicative of quan-
tum criticality. At fields above Hs, where the ground
state is a gapped, field-induced ferromagnetic state, the
magnetization levels off at low temperatures as seen in
the 14.5T data. These features have been expected by
numerical calculations for spin-1/2 1D HAFs [35].

Figure 3(a) shows the variation of (Ms −M)/H with
temperature for several fields very near Hs in a log-
log plot. At 14T, a field that is indistinguishable from
Hs within experimental uncertainty, (Ms −M)/H is ap-
proximately proportional to

√
T down to the lowest

temperature investigated; the best fit of the expres-
sion (Ms −M)/H ∝T β to the data below 1K yields
β=0.48(1)≈ 1/2. This power-law behavior can be ex-
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FIG. 2. (color online). (a) Temperature dependence of M/H
at various fields. The black arrows indicate the peak position
Tp. (b) Low-temperature part (T ≤ 1.5K) of the M/H plot
for magnetic fields slightly below (open symbols) and slightly
above (solid symbols) Hs. Thin lines are guides to the eye.

plained by Eq. (2), in which the integral becomes a con-
stant at H = Hs, where µ=0, yielding

Ms −M = 0.241 32 gµB

√

kBT/J (4)

per Cu2+, because m= ~
2/J . As shown in Fig. 3(b), the

equation Ms −M =B
√

kBT/J can be fitted very well
to the 14T data over the entire temperature range of
the measurements, up to 15K, by choosing Ms and B
as separate fitting parameters, while J is set at 10.8K
obtained from theM(H) data. The fit givesMs =1.14µB

per Cu2+, in excellent agreement with 1.15µB obtained
from the M(H) data (see Fig. 1), and B=0.230(1)gµB

in good agreement with the exact prefactor in Eq. (4).
Moreover, as also shown in the figure, the data are in
nearly perfect agreement with our QTM calculation at
Hs using the J and g obtained from the M(H) data.
At this field, specific heat divided by tempera-

ture, shown in the inset to Fig. 3(b), also exhibits
characteristic power-law behavior. The best fit of
the relation C/T ∝T−α to the data below 2K yields
α=0.49(1)≈ 1/2. This power-law dependence arises
directly from the density of states in one dimension,
D(ǫ)∝ 1/

√
ǫ: since C/T is approximately proportional

to D(kBT ) when µ = 0, it follows that it is proportional
to 1/

√
T [35]. To be precise,

C/T = 0.228 94 k
3/2
B /

√
JT (5)
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FIG. 3. (color online). (a) Log-log plot of (Ms −M)/H near
Hs as a function of temperature below 2K. The saturation
magnetization Ms =1.15µB has been taken from the magne-
tization curve at 0.08K (see Fig. 3). The best fit of a power
law, (Ms − M)/H ∝T β, to the 14T data yields β=0.48(1)
(solid line). (b) Comparison of M at 14T with the result of
a QTM calculation for a 1D spin-1/2 HAF at Hs (crosses).
The solid line is the best fit with β=1/2 described in the
text. Inset: C/T as a function of temperature at 14T (open
circles). Nuclear and phonon contributions have been sub-
tracted. Crosses are QTM results. The best fit of the power
law C/T ∝T−α below 2K yields α=0.49(1) (dotted line).
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FIG. 4. (color online). T vs H phase diagram of CuPzN
based on the temperature derivative of M/H . Open circles
denote the positions of Tp, the temperature of the broad peak
in M . The dotted line is the universal crossover line for the
free-fermion limit, Eq. (6).

per Cu2+. Fitting the expression C/T =A/
√
JT to the

data below 2K—where A is the only fitting parameter,
with J the one obtained from the M(H) data—yields

A=0.215(1)k
3/2
B in good agreement with the exact pref-

actor in Eq. (5). As also shown in the figure, the data are
in excellent agreement with our QTM calculation using
the J obtained from the M(H) data.
At fields slightly away from Hs, the (Ms −M)/H vs

T plots in Fig. 3(a) deviate from the
√
T behavior at

low temperatures but retain it above 1K. This trend can
also be explained by Eq. (2). Since H and T appear in
the integrand of Eq. (2) only as the combination µ/kBT ,
Eq. (4) holds for kBT ≫ gµB(Hs −H) as long as the dis-
persion is quadratic. It should be emphasized, however,
that the

√
T behavior persists down to T =0 only at Hs.

A brief remark on the power-law exponents is in order.
Obviously, the combination α+ β(1+ δ)= 1.92(4) of the
exponents α=0.49(1), β=0.48(1), and δ=1.98(8) from
our experiment is very close to the universal scaling value
2. In fact, α=1/2 can be obtained simply from the scal-
ing relation α=2− (d + z)/z, where the dynamical ex-
ponent z is 2 for free fermions and the spatial dimension
d is 1. Similarly, β=1/2 and δ=2 can be derived by
employing a scaling argument [9].
Finally, the magnetic phase diagram of CuPzN is pre-

sented in Fig. 4 on the basis of d(M/H)/dT , with Tp

from Fig. 2 superposed to indicate the crossover to the
TLL phase. Note that Eq. (3) gives a parameter-free
expression for Tp,

Tp = 0.762 38
gµB

kB
(Hs −H). (6)

This universal relation, shown as a dotted line with the g
andHs obtained from the M(H) data, with no fitting pa-
rameter, agrees excellently with the data near Hs. The

linear dependence, distinct from the power-law depen-
dence for a Bose-Einstein condensation of magnons [36],
indicates that the 3D magnetic ordering of CuPzN due to
J ′ is irrelevant in the temperature range of the present
study, at least near Hs. This is further supported by
the 1D exponents for the specific heat and magnetiza-
tion, α=0.49(1)≈ 1/2 and β=0.48(1)≈ 1/2, which are
in marked contrast to α=− 1/2 and β = 3/2 found in the
magnon BEC in NiCl2-4SC(NH2)2 [37]. As the magnetic
field further decreases, Tp deviates downward from the
straight line, owing to repulsion between magnons [6].
In summary, we have examined in detail a crossover

of CuPzN from a thermally disordered high-temperature
phase to the Tomonaga-Luttinger-liquid phase, and the
critical behavior of the magnetization and specific heat
near the saturation field Hs. The crossover tempera-
ture Tp — the temperature of the broad magnetization
peak — starts off at a low field with the theoretical value
that has been well known for 50 years [29] for the one-
dimensional spin-1/2 Heisenberg model, decreases with
increasing field, and smoothly connects near Hs to the
universal, linear line for free fermions. At Hs, the mag-
netization and specific heat are in excellent agreement
with universal power laws for free fermions and with ex-
act results calculated with the quantum transfer-matrix
(QTM) method. The magnetization curve at 0.08K is
also in excellent quantitative agreement with an exact
Bethe-ansatz result up to 99% of Hs. The deviation
very near Hs is fully accounted for by QTM calculations
at this temperature. These findings demonstrate that
CuPzN is a practically perfect one-dimensional spin-1/2
Heisenberg antiferromagnet.
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D. Biner, and K. W. Krämer, Phys. Rev. Lett. 101,
247202 (2008).

[16] N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett.
76, 3212 (1996).

[17] K. Hirakawa and Y. Kurogi, Prog. Theor. Phys., Suppl.
46, 147 (1970).

[18] P. R. Hammar, M. B. Stone, D. H. Reich, C. Broholm,
P. J. Gibson, M. M. Turnbull, C. P. Landee, and M. Os-
hikawa, Phys. Rev. B 59, 1008 (1999).
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