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Introduction 
The spatial variation of the main magnetic field distorts the desired Fourier encoding and gives rise to image artifacts if neglected in reconstruction. 
Several algorithms have been developed over the years to correct these off-resonance effects, mainly for echo planar and spiral imaging [1-3]. Espe-
cially those for spiral imaging generally introduce an interpolation to reduce the computational complexity. So far, this has been done independent of 
the approximation that the reconstruction of non-Cartesian acquisitions usually relies on. The present work proposes a new algorithm for field in-
homogeneity correction, which is based on the same concept as standard gridding reconstruction and which is demonstrated to possess several at-
tractive properties in simulations and phantom experiments.  

Methods 
Most gridding and non-equispaced Fast Fourier Transform (NFFT) [4] algorithms 
make use of an approximation of the form 
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,     k ∈ [-π, π],  x = -N/2,...,N/2-1, 

where α denotes an oversampling factor, N the number of samples in the image 
domain, w′ a window function of kernel size 2m, w the periodization of w′, and ŵ 
the Fourier transform of w. It can be shown that this approximation remains valid 
for real x ∈ [-N/2,N/2] if k ∈ [-π+2πm/αN, π-2πm/αN].  
Most field inhomogeneity correction algorithms for non-Cartesian acquisitions, in-
cluding both direct and iterative ones, involve an evaluation of 
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where sκ denotes the estimated signal at position kκ at time tκ, mρ the magnetiza-
tion and ωρ the angular off-resonance frequency at position rρ, N1N2 the number of 
pixels, M the number of samples in the k-space domain, and dκ an optional sam-
pling density compensation. In principle, ω and t may be considered as extra di-
mensions in image and k-space, respectively. Evaluating one of the sums then 
amounts to calculating a trivariate Fourier transform with non-equispaced sam-
pling in both domains. To improve accuracy and efficiency, we suggest to directly 
apply the above approximation to the field inhomogeneity-induced exponential. 
For this purpose, we define  

)2/|)2π/(max(|4 αω κρ mtN3 +≥   and   ))/21(/(|)max(| 3NmtT απκ −= . 

The first of the two sums may then be rewritten as  
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Thus, its evaluation involves αN3 times a weighting of the magnetization mρ and 
the calculation of a 2D NFFT, and once a local convolution along the t axis. The 
second sum may be expressed similarly.  
To assess this approach, we integrated it into a conjugate phase and an iterative re-
construction, and applied it to simulated and measured spiral k-space data. We 
used the same Kaiser-Bessel window for ŵ [5] and identical settings for α and m 
for the NFFT and the field inhomogeneity correction.  

Results 
The accuracy of the new algorithm is compared to that of others for α = 1.25 and 
m = 2 in Fig. 1. In this example, αN3 equals 14. If more than 14 segments are used, 
the accuracy of the least squares and gridding-based approaches is obviously dom-
inated by the NFFT. The computation times per iteration are listed in Tab. 1 for a 
resolution of 256 x 256. Differences mainly result from the varying locality of the 
convolution along the t axis. Finally, the new algorithm is demonstrated on phan-
tom data in Fig. 2. The resonance frequency deviated by ±95Hz in this case.  

Conclusions 
For standard oversampling factors α and kernel sizes m, our gridding-based ap-
proach achieves a similar accuracy as a least squares approach. It provides a rule 
for choosing the number of segments in the interpolation and allows balancing the 
accuracy of the reconstruction and of the correction. Moreover, the interpolation 
coefficients are simply given by the window function w′, and the convolution 
along the t axis is local, thus reducing the computational complexity substantially.  
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Fig. 1. Error as a function of the number of segments in the 
interpolation, determined in simulations using an iterative re-
construction. Gridding-based denotes the proposed new algo-
rithm, Least squares [3], Man [2], and Hanning [1] other ex-
isting ones. 
 

Method Running time 
Least squares 1530 ms 
Gridding-based 840 ms 
Man 1530 ms 
Hanning 710 ms 

 

Tab. 1. Computation times per iteration using 14 segments, 
excluding the initial calculation of interpolation coefficients. 
 

   
 

Fig. 2. Phantom image obtained with standard gridding re-
construction (left) and the proposed field inhomogeneity cor-
rection (right) from data acquired with a segmented spiral se-
quence (8 interleaves, 42.5 ms sampling window).  
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