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ABSTRACT 

Field Measurements of Photosynthesis and Leaf 
Growth Rates of Three Alpine Plant Species 

by 
Douglas A. Johnson, Master of Science 

Utah State University, 1973 
Ma jor Professor: Martyn M. Caldwell 
Department: Range Science 

v 

Leaf photosynthetic measurements using a portable 14co
2 

field
system were carried out and correlative leaf relative growth rates, 
RGR, were determined at different leaf positions of three alpine 
plant species throughout the growing season. Initially there was 
a period of high leaf RGR associated with a period of increasing 
photosynthetic activity. Following this stage was a long period 
of no net change in length of the living leaf. During this period, 
photosynthetic activity generally increased to a maximum level and 
then decreased steadily. The final ontogenetic stage was a period 
of negative leaf RGR denoting leaf senescence which was associated 
with a marked dee] ine in leaf co

2 
uptake. Ontogenetic timing of these 

alpine species is geared with the surge and dee] ine of individual 
leaf photosynthetic activity so that one to several leaves operating 
at near maximal photosynthetic capacity are always maintained during 
the growing season for each plant, These findings are discussed 
in relation to their adaptive significance for these species. 

00 pages) 



INTRODUCTION 
Photosynthesis of individual leaves exhibits an increase after 

leaf emergence, a leveling off before or after full leaf expansion, 

and a dee! ine with leaf senescence. This pattern has become apparent 

from field co2 uptake studies done for individual leaves of agricultural 

species (e.g., Beuerlein and Pendleton, 1971; Turner and lncoll, 1971). 

In alpine areas where the growing season is short and relatively severe 

field photosynthesis measurements of whole plants have been carried 

out (e.g., Scott and Billings, 1964; Moser, 1973). However, little or 

no field work has been done in alpine areas with photosynthesis of 

individual leaves. The present investigation with three major alpine 

tundra species was concerned with investigating the field photo-

synthetic response of individual leaves at several leaf positions 

and correlating this photosynthetic response with the seasonal 

progressions of leaf growth rate during the alpine growing season. 

METHODS 
Leaf photosynthetic measurements were determined using a 

14 portable co2 field system. The field system and procedure have 

been described in detail by Tieszen, et al. (in press). The field 

system consists of a plexiglass leaf chamber which is temperature 

controlled by a Peltier thermoelectric stage. The procedure involves 

exposing an intact leaf to a 14co air mixture, immediately cooling 2 
the leaf sample in the field following exposure, subsequent drying 

of the exposed leaf sample, combusting this sample, and radioactivity 

counting using I iquid scintillation techniques. 



According to studies by Ludwig and Canvin (1971) net 14co2
uptake in a leaf is maximum at exposure periods less than 30 sec. 

This initial period approximates what might be termed as gross co2
influx. After 30 sec, net co2 uptake decreases as the exposure time

in 14co2 is extended and after 10 min approaches normal net co2
exchange rates. This decrease 14 in co2 uptake is associated with
14co2 evolution from the leaf. Thus, with exposure times of min

used in this study, co2 uptake measured was between gross co2 uptake

and net photosynthesis. 

All co2 uptake determinations were carried out under a constant

chamber temperature of 10.0 �.soc which is representative of the mean 

daytime growing season temperatures at the study area. These were 

measured using a shielded copper-constantan fine wire thermocouple. 

Leaf temperatures were also monitored and were always within ±1 .o0c

of chamber air temperature. Artificial irradiation was provided by 

a high intensity incandescent lamp and was monitored with a Lambda 

Co. Model Ll-190SR quantum sensor. A constant intensity of 2700±200 

microeinsteins.m-2·sec-l in the 400-700 nm wavelength range was used

for all determinations and is approximately equal to maximum midday 

solar radiation values. A period of five minutes was allowed for 

the leaf to attain a steady state gas exchange rate under these 
14 environmental conditions before co2 exposure. These temperature

and radiation conditions were used consistently in this study in 

order to assess the combined influence of other factors such as 

leaf age and leaf position. 

Leaf areas for Deschampsia caespitosa and Kobresia myosuroides 

were determined by direct measurement of leaf length and width and 

2 
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are accurate to ~5%. Area values for the highly dissected leaves 

of Geum rossi i were estimated from regression relationships of leaf 

dry weight, leaf length and width, and leaf area which was determined 

by a modified optical planimeter (Caldwell and Moore, 1971). These 

basic relationships were determined at three times during the season. 

For the leaf growth rate study, ten plants each of Geum rossii 

and Kobresia myosuroides in the Kobresia meadow site and ten plants 

each of Deschampsia caespitosa and Geum rossii in the Deschampsia 

meadow site were selected on 15 June. These individual plants were 

observed and measured every five days for leaf emergence, leaf 

elongation, and senescence throughout the course of the growing 

season. Leaf length was measured from the base of the plant to 

the most distal green portion of the outstretched leaf. Each leaf 

was individually measured and the same leaf was followed through 

emergence, expansion, and senescence. 

From these individual leaf measurements, the mean leaf 

relative growth rate, RGR, was calculated by (Kvet, et al., 1971): 

RGR -1 -1 
l e n g t h · l e n g t h · t i me ( l ) 

where 12 and 11 are the lengths at times t
2 

and t
1 

respectively. 

In both the leaf photosynthetic and lea f RGR studies the same 

numerical id e ntification of leaf position was used. The first green 

leaf present on the plant and thus the oldest living leaf on the plant 

was given the designation of # 1 leaf, followed by the second green 

leaf to emerge as #2 leaf, with successive numbering up to the 

youngest leaf. 



STUDY AREA 

The area of the study was on Niwot Ridge (40° 04 1 N, 1050 36 1 N) 

at an elevation of 3476 m in the Front Range of the Colorado Rocky 

Mountains. The study sites were the U.S. Tundra Biome intensive 

sites, one a Kobresia community and the other a Deschampsia meadow. 

The Kobresia site has a southwest aspect and 5° slope, while the 

Deschampsia site has a southeast aspect and a 4° slope. 

The two intensive study sites are located on a gently sloping 

sadd le and have vegetation characterized by low perennial grasses, 

sedges, and herbs. The Kobresia site is a well-developed mesic 

meadow , whereas the Deschampsia site is an area with heavy snow melt 

water runof f . A further characterization of the study sites can 

be found in Fa reed (1973). Plant nomenclature follows that of 

Weber (1967). The co2 uptake and leaf growth rate studies were 

initiated in June and continued through August, 1972. 

RESULTS AND DISCUSSION 

Figures l and 2 illustrate the photosynth et ic capacity and leaf 

RGR of Geum rossi i, Deschampsia caespitosa, and Kobresia myosuroides 

at different leaf positions throughout the growing season. In Geum 

rossii all leaves arose from the current year's growth. The first 

leaf in Deschampsia caespitosa and Kobresia myosuroides was one which 

typically had initiated growth in the prior season, but which had not 

at tained complete exsert ion and devel opment. Thus, during the second 

season of growth, leaf elongation ensued. 

In all species studied, the greatest lea f RGR was exhibited by 

4 
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Figure 1. Leaf photosynthesis rates and leaf RGR of Geum ross11 in the 

Kobresia site and the Deschampsia site. Each point on the 
photosynthesis figure is the mean of four to eight replicates 
with the v ertical bars representing+ one standard error. 
Each point on th e leaf RGR figure is-the mean of ten plants 

with the standard errors ranging from 0.01 to 0.58. Negative 
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the mean of four to eight replicates with the vertical bars 

representing~ one standard error. Each point on the leaf 

RGR figure is the mean of ten plants with the standard errors 

ranging from 0.01 to 0.94. Negative leaf RGR denotes leaf 

senescence. 
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the upper leaves. Presumably, leaves at lower positions on the plant 

exhibited the same pattern of growth but this took place prior to our 

first sampling date. In Deschampsia caespitosa and Kobresia myosuroides, 

this period of rapid growth may have taken place the previous growing 

season and the leaves may have been completing exsertion in this 

subsequent growing season. Standard errors of the leaf RGR means 

ranged from 0.01 to 0.94. 

A similar ontogenetic pattern was exhibited in all species 

studied. Initially there was a period of high leaf RGR associated 

with a period of increasing photosynthetic activity. Following this 

stage was a long period of no net change in length of the I iving 

leaf. During this period, photosynthetic activity generally increased 

to a maximum level and then decreased steadily. The final leaf 

ontogenetic stage was a period of negative leaf RGR denoting leaf 

se nescence which was associated with a marked dee] ine in leaf co
2 

uptake rate. All species studied exhibited a decrease in photo

s yn thetic rate prior to negative leaf RGR. 

Growth in the Deschampsia meadow site was initiated during the 

beginning of Jun e. Growth in the Kobresia stand site was initiated 

so mewhat earlier in the season with substantial growth before the 

first samplin g period. Thi s earlier growth initiation in the 

Kobre sia site may be attributed to t he snow melt date of 22 May as 

compa r ed with 9 June as the snow melt date in the Desc hampsia 

site (Dian e Ebert May, unpublished data). 

This difference between sites is particularly apparent when 

photos ynthetic and leaf relative growth rates in leaf positions # 7-10 
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of Geum rossi i are compared. In the Kobresia site leaves in these 

positions approached zero net leaf RGR near 8 July as contrasted 

to 18 July in the Deschampsia site. In the Kobresia site, Geum rossii 

leaves in positions #7-10 declined earlier in their photosynthetic 

-2 -1 rates and exhibited less than 3 mg co
2

·dm ·hr uptake by 17 August. 

In the Deschampsia site comparable leaves exhibited rates of more than 

-2 -1 
13 mg C02 ·dm ·hr on 19 August. Even by 31 August these leaves 

had not declined to the low levels of co
2 

uptake exhibited by 17 

August in the Kobresia site. 

This earlier dee] ine in leaf photosynthetic capacity and leaf 

RGR of Geum rossi i in the Kobresia site may be due to differences in 

plant age. The same ontogenetic sequence took place in Geum rossi i 

in both the Kobresia and Deschampsia sites. However, due to the earlier 

snow melt date in the Kobresia site, the ontogeny in the Kobresia 

site was initiated earlier than in the Deschampsia site. Thus, as 

Geum rossi i was completing its ontogenetic pattern in the Kobresia 

site, Geum rossi i in the Deschampsia site was exhibiting a time lag 

of more than t e n days. 

Differ ences in water s tress may also account for this earlier 

dee] ine in the Kobresia site. Leaf water potentials for Geum rossi i 

as measure d by the Scholander pressure bomb technique were on the 

order of -18 bar s by 18 July in the Kobresia sit e, whereas comparable 

leaf water potentials were not obse rved until 29 July in the 

Deschampsia s it e. Leaf water potential measurements throughout the 

1972 growing season ranged from -1 bar to less than -30 bars in 

Descham psi a caespitosa, -1 bar to -20 bars in Geum rossi i, and -7 

bars to -29 bars in Kobresia myosuroides. Leaf photosynthetic 
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capacities of Geum rossi i and Deschampsia caespitosa have been shown 

to be signif icantly depressed with these decreases in leaf water 

potential for leaves of the same age (Johnson, et al., in press). 

In addition the number of leaves operating at near maximal 

efficiencies at any specific time may also be reduced. 

Leaves in the lower positions exhibited their highest photo-

synthetic capacity in the early portion of the season and generally 

showed a steady decline throughout the rest of the season. However, 

as photosynthetic activity in the older senescing leaves declined, 

new leaves were emerging to assume the function of the primary 

photosynthetic structures (Fig. 3). Ontogenetic timing of these 

alpine species is geared with the surge and dee] ine of individual 

leaf photo sy nthetic capacity so that one to several leaves operating 

at near maximal photosynthetic capacity are always maintained during 

the growing season of each plant. This generalized seasonal co
2 

uptake pattern has been shown for other species such as Nicotiana 

v ,L v ,, 
sanderae (Sescak and Catsky, 1962) and Sorghum almum and Vigna luteola 

(Ludlow a nd Wilson, 1971). 

When leaves are f irs t formed, th ey are developed near the top 

of the canopy and are well i lluminat ed. As new leaves are produced 

these older leaves become increasingly shaded. Thus, the effects of 

leaf age on photosynthetic capacity are confounde d with the effe cts of 

decreased light intensity. Osman and Milthorpe (1971) and Woledge 

(1971) indi cate that there is a more marked decline in photosynthetic 

capacity with a ge under high radi a tion intensities than under low 

light conditions. Further more, Woledge ( 1971) indicated that the 

old leaves become saturated at low 1 ight int e nsities, whereas s aturation 





I.I) 100 
I.I) 

w 
I 
I-

80 z 
>-
I.I) 

~ 
0 60 
I 
n... 

:z: 
:::) 40 
:z: 
x 
<! 
:z: 20 
LL 
0 
~ 

0 0 

I.I) 100 

I.I) 

w 
I 

•-1- 80 
z 
~ 

§ ,_ 
60 

I 
n... 

:z: 
:::) 40 ,_ 

:z: 
x 
<! 
:Z: 20 
LL 
0 

-

~ 
0 0 

I.I) 

l/) 

w 

100 

I 80-
1-
z 
~ 
~ 60-
0 
I 
n... 

:Z: 40 
:::) 

:z: 
~ 
:Z: 20 

LL 
0 

22 JUNE 

,__ 

-

21 JU NE 

1 JULY 

7 JULY 16 AUG. 

- -

1"""1111111 

26 JULY 15 AUG . 

-

15 AUG . 

G..e.u.m ro s s ii 

0 = Leaves 1-3 

III!)= Leaves4-6 

0 = Leaves 7-10 

Qes!:;h amosia 
Pi tosa caes 

D= 

mo= 
D= 

Leaf 2 

Leaf 3 

Leaf 4 

Kobresia 
myosuroi des 

0 = Leaves 1-2 

mo = Leaves 3-4 

0 = Leaves 5-6 

11 



in the young leaves is not reached until higher light intensities. 

Thus, under high light intensities the co
2 

uptake activity is 

substantial ly higher in the younger leaves than in the older 

leaves. 

Having the older leaves in the position of low light intensity 

may both prolong the photosynthetic contribution of the older leaves 

and minimize the reduction in photosynthesis due to the aging of 

leaves. With this strategy the leaves of the plant are arranged for 

maximum photosynthesis at any one time of the season. The young 

leaves with their peak photosynthetic capacities intercept the high 

light intensities, whereas the older leaves with their declining 

stages of photosynthesis receive lower light intensities . This 

results in maximum photosynthetic efficiency in the upper, younger 

leaves as well as prolonged photosynthetic efficiency 1n the lower, 

older leaves. Since these older leaves are saturated at low 1 ight 

intensities, shading would be of no immediate disadvantage for 

these older lea ves . 

When the photo s ynthetic capacity of these older leaves reaches 

ex tremely low levels, death of these leaves would represent a 

conservation of energy and nutrients for the plant (Leopold, 1961; 

Hopkinson, 1966; Leopold, 1967). Wi 11 iams (1955) indicates that this 

dee] ine and eventual senescence of the older leaves permits a 

reutilization of nutrients from these organs. Williams (1936) showed 

that there was a net loss of nitrogen and phosphoru s from the older 

l eaves into the upper, younger leaves. According to Hopkinson ( 1966) 

these le af nutrients in the older leaves can presumably be more 

12 



profitably used to produce photosynthetic surfaces at more favorably 

illuminated sites. Thus, this redistribution of nitrients results 

in the continuous rearrangem e nt of the assimilating surfaces as 

tc ensure the most efficient exploitation of the available 1 ight 

energy. When a leaf's photosynthetic contribution is no longer 

worth the price of its maintenance, the plant mobilizes as much 

useful material as possible before total leaf death takes place. 

13 

This change in leaf photosynthetic capacity with leaf age was 

also apparent in multiple regression analysis of the leaf photo

synthesis data. A leaf phenology index was a consistently significant 

independent variable and corresponded to the periods of positive 

leaf RGR, zero leaf RGR, and negative leaf RGR. In addition the 

leaf area/dry weight ratio was a consistently significant independent 

variable. A reciprocal function, specific leaf weight (SLW, 

dry weight/area), has been used as an indicator of internal leaf 

anatomy in crop species (e.g., Pearce, et al., 1969; Wolf and 

Blaser, 1972). Stra ley and Cooper (1972) propose that light 

intensity during and following leaf formation as well as I ight intensity 

within the canopy are principal factors influencing SLW for leaves. 

Thus, it was not sur prising that both the leaf phenology index and 

the leaf area/dry weight ratio were consistently significant, since 

both these variables represent to some degree the internal metabolic 

activity of the leaf. 
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l . De l i v e r y S y s t em : 

14 
Air mixtures containing co

2 
are ordered from Matheson Gas 

Products and contain 300 ppm co
2 

and a specific activity of l .5 

- l 
mcurie·mmole . With our flow rates and exposure periods, more 

than 400 analyses can be made from each bottle. Since absolute 

17 

determinations of photosynthesis are critically dependent on accurate 

l f . d 14 . f. . . ana yses O C0
2 

concentrations an CQ
2 

Spec1 IC act1v1ty, a 

routine procedure for calibrating all air mixtures is used. The 

cy linders are analyzed for total co
2 

concentration with a differential 

infrared gas analyzer, IRGA, with an accuracy of at least l ppm. 

A correction is not applied for the differential sensitivity of the 

14 
infrared analyzer to co2. 

The specific activity is determined by absorbing all co
2 

from 

a known volume of air and subsequent absolute counting. Air is 

bubbled from t he lecture bottle at a known flow rate through a series 

of five absorbing vess els with the intakes 1n each vessel immersed 

under l ml of NCS. At the e nd of 30 seconds, the air flow is 

stopped, the NCS divided into 0.5 ml portions, JO ml of counting 

solution added (270 ml methanol, 460 ml toluene, 5 g PPO, and JOO mg 

of POPOP), and the sa mples counted using the channels ratio method for 

quench correction. 

Leaf Chamber with Temperature Control 

Components of the temperature controlled delivery system are 

illustrated in Figure l. The leaf chamber (Figure 2) is constructed 

of 1/4" plexiglass a nd consists of a h inged top and a bottom with a 

14
co2 labeled-air inlet, an unlabeled-air inlet and an air outlet. 

Polyurethane st rips line t he borders of both the top and bottom 
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Figure 1. Schematic of system used to deliver prepared 
14 co

2 
air mixture 

to the temperature controlled leaf cha mber. The labeled air 

cylinder and regulator are represented with dashed lines. 

lloard on which system is mounted is about 74 cm in length and 

60 cm in width. Total weight of the field system is about 

15 kg without th e 12 volt batt ery . 
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Figur e 2. Diagram of temperature controlled leaf cha mber showing the 

thermoelectric stage, mica, aluminum fins, fin cover plate, 

"squirrel cage" fan, and plexiglass construction. 
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chambers preventing leaf damage during exposure yet providing a 

nearly airtight seal. This chamber is mounted on a Peltier thermo

electric stage which acts as a heat exchanger for the chamber. Mounted 

on the thermoelectric stage is an aluminum block with fins for 

maximizing convective heat exchange between the thermoelectric stage 

and the leaf chamber. A layer of mica separates the aluminum block 

from the thermoelectric stage. This mica layer conducts heat 

effectively to the aluminum block, and electrically insulates the 

block from the thermoelectric stage. An aluminum cover plate is 

mounted across the top of the aluminum fins. A circular "squirrel 

cage 11 fan, milled from a teflon rod and driven by a de motor 

with rheostatic control, continually circulates air between the 

aluminum fins and then across the plant leaf. This effectively 

exchanges heat between the leaf and the Peltier heat exchanger, 

minimizes boundary layer development around the leaf, and mixes 

the chamber air. 

The portion of the thermoelectric heat exchanger that is external 

to the leaf chamber must usually be cooled. This is accomplished by 

a water cooling system. The water cooling system has a de operated 

pump which circulates water from a one gallon insulated reservoir. 

The reservoir is filled two-thirds ful 1 with ice and provides adequate 

cooling for more than eight hours of operation. The cooli ng reservior 

is 1 inked to the thermoelectric module with l/8 11 I. D. tygon tubing 

wr a pped with aluminum foil. The leaf chamber and thermoelectric 

module are mounted on a flexible goose neck from a microphone stand. 

The goose neck is fitted with a stake which is pushed into the ground. 

Thi s s ystem allows for a great deal. of maneuverabil i ty while at the 
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same time giving a firm and steady support during the exposure period. 

The thermoelectric module is controlled by a bipolar proportional 

controller. The bipolar nature of the controller allows for both 

heating and cooling of the leaf chamber. The leaf chamber has a 

temperature control range from o0 c to 50°c and a stability of 

± 5oc. The controller can be operated from a 12 volt de source, 

has dimensions of 20 cm x 36 cm x 25 cm and a total weight of 

11. 5 kg. 

Because of the relatively large chamber volume in this temperature-

controlled leaf chamber, it was necessary to initially flush the 

leaf chamber rapidly with 
14

co
2
-labeled air. This rapid replacement 

of the leaf chamber air with 
14

co
2

-labeled air is of paramount 

importance if absol ut e values of photosynthesis are to be obtained. 

This is accomplished with two lever-operated togg le valves. One 

valve is placed immediately after the 
14

co
2
-labeled air flow meter 

and the other valv e is placed in a by-pass around this flow meter. 

With sufficient pressure in the labeled-air line, the by-pass valve 

can be depressed and the leaf chamber purged with labeled air 1n 

le ss than three seconds. 

When ambient air temperatures are not used, a period of 

equilibration is necessary fo r the leaf to attain a new steady-state 

temperature and photosynthetic rate. A 2-1 iter rubber air reservoir 

with an attached "squeeze bulb " for pressurizing this re servoir 

provides a co nstant flow of unlabeled air during this equilibration 

time. In order to r educe co
2 

dif fusion the air lines were constructed 

of l/8 11 co pper tubing and fitt ings. 
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2. Exposure of Plant: 

Use of this exposure system involves placing an intact leaf (or 

other plant part) across the lower portion of the chamber and tightly 

closing the chamber top. The unlabeled air reservoir is filled, the 

chamber is appropriately oriented, unlabeled air flow is initiated, 

the chamber fan and water pump are started, and the bipolar controller 

is adjusted to the desired temperature. After leaf temperature 

and photosynthetic equilibration, the unlabeled air stream is stopped, 

and the by-pass valve is opened for purging of the chamber with 

labeled air. Then the by-pass valve is closed and simultaneously 

the labeled-air flow valve is opened for the short exposure period. 

3. Sample Preparation : 

Following exposure, the labeled section is immediately cut, its 

area is measured, and it is placed in a vial on ice in a freezing 

chest until it can be returned to the laboratory for processing. The 

samp le is then placed in a drying oven at Joo0 c for 12 hours. The 

dry weight of the sample is taken and it is placed in a tightly 

capped storage or scintillation vial until combustion. 

4. Combustion: 

A dry in-vial combustion t ec hnique provides a rapid, convenient 

14 method of combustion and a llows accurate determinations of co
2 

from 

exposed leaf samples. This procedure involve s making a cup containe r 

from lens paper soaked in black ink and placing it into a coiled 

wir e holder. The cup container ,n the wire holder is t hen placed 

into an empty scintillation vial. A dried sample ,s placed into the cup 



container, the vial is momentarily flushed with a stream of pure 

oxygen, and the vial is immediately capped tightly with a #15 serum 

stopper cap. The sample in the coiled wire stand is then ignited 

with a focused 1 ight beam from a modified slide projector. The 

sample ignites and burns to completion in approximately 5 seconds. 

Maximum sample size for this technique is dependent upon caloric 

content of the material and is usually less than 10 mg dry weight. 

5. Counting: 

23 

After a 5 minute cooling period, 0.5 ml of NCS are injected through 

the serum stopper cap with a glass syringe. After an absorption 

period of 6 hours (sufficient for complete absorption), the serum 

stopper cap is removed and 20 ml of scintillation grade counting 

solution are placed 1n the vial which is then closed with a cap 

containing a teflon liner. A combination of NCS and a toluene base 

scintillation liquid minimizes problems of chemiluminescence, remains 

stable for at least several days, and yields consistent counting 

efficiencies of 70-75 %. The samples are counted in a liquid 

s cintillation count e r. The counting efficiency for each vial is 

determineci by the channels ratio met hod and DPM are calculated. The 

calibration curve i s established with a toluene base quenched 

s t a ndard set. 

6. Calculations: 

The abs o l ute rates of co
2 

fi xa tion (P) are calculat e d from 

the counts pe r minute (CPM), counting efficiency as a fraction (E), 

area in dm
2 

or gram dry weight of the leaf sample (A), exposure time 



in minutes (T) , and the specific activity of the 14co 

(SA) . 

p 

2 

The conversion equation can be expressed as: 

(SA,mc·mMole-

== {CPM} { l. 19 x 10-6} -2 - l 
(E) (T) (SA) (A) 

mg co
2

,dm ·hr 

CPM = COUNTS PER MI NUTE 

E EFFICIENCY AS A FRACTION, CPM/DPM 

T EXPOSURE TIME AS PART OF A MINUTE 

SA SPECIFIC ACTIVITY OF 
14

co2-AI~ MIXTURE 

A = AREA OF SAMPLE 
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air mixture 

C02 (A ,dm 

In summary, the system described is inexpensive relative to most 

gas analysis systems, has the advantage of ease of use and complete 

portability, and provides data comparable to those obtained with 

conventional IRGA techniques. The method is recommended whenever 

portability is an essential prerequisite or where IRGA methods are 

impractical. 
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