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Abstract Integration of low-cost air quality sensors
with the internet of things (IoT) has become a feasible
approach towards the development of smart cities. Sev-
eral studies have assessed the performance of low-cost
air quality sensors by comparing their measurements
with reference instruments. We examined the perfor-
mance of a low-cost IoT particulate matter (PM10 and
PM2.5) sensor in the urban environment of Santiago,
Chile. The prototype was assembled from a PM10–

PM2.5 sensor (SDS011), a temperature and relative hu-
midity sensor (BME280) and an IoT board (ESP8266/
Node MCU). Field tests were conducted at three regu-
latory monitoring stations during the 2018 austral winter
and spring seasons. The sensors at each site were

operated in parallel with continuous reference air quality
monitors (BAM 1020 and TEOM 1400) and a filter-
based sampler (Partisol 2000i). Variability between sen-
sor units (n = 7) and the correlation between the sensor
and reference instruments were examined. Moderate
inter-unit variability was observed between sensors for
PM2.5 (normalized root-mean-square error 9–24%) and
PM10 (10–37%). The correlations between the 1-h av-
erage concentrations reported by the sensors and con-
tinuous monitors were higher for PM2.5 (R

2 0.47–0.86)
than PM10 (0.24–0.56). The correlations (R2) between
the 24-h PM2.5 averages from the sensors and reference
instruments were 0.63–0.87 for continuous monitoring
and 0.69–0.93 for filter-based samplers. Correlation
analysis revealed that sensors tended to overestimate
PM concentrations in high relative humidity (RH >
75%) and underestimate when RH was below 50%.
Overall, the prototype evaluated exhibited adequate per-
formance and may be potentially suitable for monitoring
daily PM2.5 averages after correcting for RH.

Keywords Citizen science . Reproducibility . Relative
humidity . SDS011

Introduction

Particulate matter (PM) air pollution is currently the
leading environmental risk factor for premature death
(Cohen et al. 2017; Gakidou et al. 2017). Global esti-
mates indicate diseases resulting from long-term expo-
sure to PM account for 4 to 9 million deaths annually
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(Burnett et al. 2018; Stanaway et al. 2018). Particles
with an aerodynamic diameter (da) smaller than 10 μm
(μm), collectively identified as PM10, are potentially
harmful since they can be inhaled. However, the greatest
concern relates to the fine fraction, or particles with a
da ≤ 2.5 μm (PM2.5). Although the mechanisms remain
unclear, there are indications that PM2.5 can penetrate
the alveolar epithelium, enter the bloodstream and mi-
grate to various organs in the human body (Nakane,
2012; Li et al. 2019).

While the air concentration of PM2.5 varies spatially
and temporally (Karagulian et al. 2015; Cheng et al.
2016), a considerable proportion of the world’s popula-
tion (91%) reside in cities where the PM2.5 concentra-
tions exceed suggested thresholds (World Health
Organization, 2018). Given the health risk of fine parti-
cles, the ambient air concentrations of PM are widely
monitored by public agencies at so-called regulatory air
quality stations. These sites are equipped with instru-
mentation that performs standard reference methods,
namely beta attenuation monitors (BAM), tapered ele-
ment oscillating microbalances (TEOM), and filter-
based gravimetric samplers. These scientific-grade de-
vices are characterized as being large and expensive,
among other features that hinder the expansion of air
quality monitoring networks (Borrego et al. 2015).

Developments in sensor technology over the last
decade have led to the emergence of miniature, com-
mercially available, low-cost devices (less than 100 US
dollars) for the surveillance of air pollution (Kumar et al.
2015). The appearance of these inexpensive sensors has
resulted in a change in the monitoring paradigm, with a
shift from the current governmental model towards the
establishment of community-based monitoring net-
works (Snyder et al. 2013; Rai et al. 2017; Morawska
et al. 2018). The ease with which citizens can acquire air
quality monitors has led to the development of multiple
crowdsourced projects that aim to increase the density of
monitoring networks in regions that currently lack air
quality monitoring equipment (Thompson, 2016;
Castell et al. 2017; Chen et al. 2017).

Despite this progress in sensor development, system-
atic research on the reliability and accuracy of the mea-
surements obtained using new devices has just begun to
be conducted. Several experiments have examined the
performance of commercially available, low-cost sen-
sors, including laboratory tests (Wang et al. 2015;
Manikonda et al. 2016; Papapostolou et al. 2017) and
field comparisons against reference methods at

regulatory air quality monitoring stations (Holstius
et al. 2014; Zikova et al. 2017; Feinberg et al. 2018;
Kuula et al. 2019). Although a small number of models
have indicated adequate correlations between the sen-
sors and reference instruments, there is consensus that
the current generation of low-cost sensors needs further
improvements to achieve the accuracy of reference
monitors (Budde et al., 2014; Hall et al. 2014;
Clements et al. 2017). Since most low-cost PM sensors
calculate concentrations based on the principle of light
scattering, environmental variables such as temperature
and relative humidity (RH) may significantly bias their
measurements. Research conducted to date suggests
the performance of the sensors decreases in environ-
ments with RH ≥ 75%, mainly due to hygroscopic
growth of the particles after condensation of water
droplets (Zheng et al. 2018; Jayaratne et al. 2018;
Crilley et al. 2018).

Despite these limitations, the integration of Wi-Fi
microchips and internet of things (IoT) technology in
recent years has improved the monitoring potential of
low-cost sensors and provides an opportunity to achieve
significant progress in the development of smart cities
(Alvear et al. 2018). In this study, we examined the field
performance of a custom-built IoT air quality sensor
prototype, which was developed within the framework
of the citizen science project LoV-IoT, (http://www.
loviot.se). Our objective was to provide the first
examination of the suitability of a low-cost sensor for
the monitoring of PM10 and PM2.5 in the urban environ-
ment of Santiago, Chile.

Methods

Sensor assembly

The sensor prototype evaluated in this study (Fig. 1) was
assembled from a low-cost PM sensor (SDS011 v1.3),
an IoT Wi-Fi module (ESP8266) and an environmental
sensor for air temperature and RH (BME280).

The SDS011 (Nova Fitness Ltd. Co., China) is clas-
sified as an optical sensor as it measures PM10 and
PM2.5 through the principle of light scattering. A small
fan produces negative pressure to create a continuous
airflow from the inlet to the measuring chamber, where a
laser beam radiates light to the air sample. The amount
of light dispersed by the particles is detected by a
photodiode, which in turn, translates the signal into
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electrical pulses. A microcontroller unit (MCU) ana-
lyzes these signals and calculates the PM mass concen-
tration based on the pulse wave amplitude. According to
the manufacturer, the SDS011 measures concentrations
from 0.0 to 999.9 μg m−3 and detect particles with a
minimum diameter of 0.3 μm (Nova Fitness, 2015).

The ESP8266 (Espressif Systems, China) is a low-
cost Wi-Fi microchip coupled to an open hardware IoT
board (Node MCU LoLin V3) and contains a USB port
that also powers the module. The third component of the
integrated sensor, the BME280 3.3 V (Bosch Sensortec,
Germany), is a small-sized, high-resolution sensor that
measures air temperature and RH.

The components were integrated using color jump
wires, first connecting the ESP8266/Node MCU to the
SDS011 and then to the BME280 (Fig. 1b), details of
the specific connection pins are provided in the Supple-
mentary Table 1. An IP55 junction box with lateral
rubber orifices was used to house the integrated compo-
nents (Fig. 1a). ATygon® hose was inserted on the right
side of the enclosure and connected to the SDS011
sensor inlet. An additional hose was inserted on the
left—but not connected to any component—to allow

unrestricted airflow. The USB cable and BME280 sen-
sor were arranged inside a plastic tube at the bottom of
the junction box. The Node MCU was connected to a
PC and programmed using Arduino IDE software. The
firmware used to configure the IoT board was
downloaded from the Luftdaten project website
(http://luftdaten.info).

Field tests

During the austral winter and spring seasons of 2018,
7 units of the IoT sensor were tested in the metropolitan
area of Santiago, Chile (33.4° S, 70.6° W). The typical
climate of Santiago is Mediterranean, with some cold
semi-arid features (Sarricolea et al. 2017). Due to its
topography, Santiago experiences unfavorable condi-
tions for the dispersion of air pollutants. The geographic
and meteorological factors that affect air quality in this
city have been extensively described (Rutllant and
Garreaud, 1995; Schmitz, 2005; Ragsdale et al. 2013;
Toro et al. 2014; Muñoz and Corral, 2017).

To evaluate field performance, the assembled sensors
were placed at three regulatory air quality monitoring

Fig. 1 Assembly of the IoT sensor prototype. a) Electronic components (upper panel), enclosure and hose outlets (central panel), BME280
sensor array and power cable (bottom panel). b) Diagram of the connections between the individual components
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stations, Las Condes, O’Higgins Park and Pudahuel
(Fig. 2), alongside U.S. Federal reference or equivalent
monitors such as the BAM 1020 (Met One Inc., USA),
TEOM 1400 (Thermo Scientific, USA) and filter-based
sampler Partisol 2000i (Thermo Scientific, USA).

The sensors were and installed on the roof of the
station (2.5 m above the ground), approximately 2 m
from the monitor’s inlet, and connected to a power
source using the USB cable. The Wi-Fi signal was
provided by a cellphone deployed in the vicinity. The
measurement time resolution was adjusted to produce
one reading every 3 min. Data were automatically sent
to the cloud-based storage platform belonging to the
citizen science project Luftdaten (http://santiago.maps.
luftdaten.info).

Aweek-long campaign was conducted at Las Condes
station between May 24th and 31st, 2018, to evaluate
reproducibility, in other words, the variation in the mea-
surements recorded by different sensor units (n = 7).

Field tests were subsequently performed over longer
periods of time to determine the accuracy of the sensors
relative to the reference measurements. The long-term
campaign was developed using a smaller number of
units (n = 4), which were placed at Las Condes (n = 2)
from June 1st to September 5th; O’Higgins Park (n = 1)
from June 6th to September 7th; and Pudahuel (n = 1)
from June 14th to September 30th.

Minor maintenance was carried out throughout the
study in order to replicate normal handling of sensors by

citizens as end users. Additional visits to the stations
were necessary when a loss of data transmission was
detected. The sensors’ databases were downloaded from
the cloud-based data storage site (https://www.madavi.
de/sensor/csvfiles.php) and data from the reference
monitors were downloaded from the website of the
public air quality monitoring network (https://sinca.
mma.gob.cl).

Statistics

A shallow scan of the database was made to discard any
out-of-range values due to apparent malfunctions. The
sensor readings were averaged over 1 and 24 h. The
reproducibility of the 1-h averages of the 7 units ar-
ranged at Las Condes was compared through correlation
analysis and normalized root-mean-squared-error
(nRMSE). The nRMSE is a measure of dispersion, in
which lower percentage values indicate less residual
variance, and was calculated using Eq. (1), in which
yi,1 and yi,2 represent the ith measurement of the pair of
sensors compared and n is the total number of paired
observations.

nRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑n

i¼1 yi;1−yi;2
� �2

r

1

2n
∑n

i¼1 yi;1 þ yi;2
� �

ð1Þ

The relationship between the sensor data and refer-
ence measurements during the short-term monitoring
campaign at Las Condes was examined through orthog-
onal regression. The responses of the sensors during the
long-term monitoring period were analyzed by linear
regression against the 1-h and 24-h average reference
concentrations reported by the BAM for PM2.5 and
TEOM for PM10.

Linear regression was used to estimate the correlation
between the 24-h average PM2.5 concentrations reported
by the sensors and the filter-based samplers. Partisol
2000i, available only at Las Condes and O’Higgins Park
stations, was used to collect PM2.5 on Teflon filters
every 3 days. The filters were weighed to determine
the mass concentration at the Gravimetric Laboratory
of the Ministry of the Environment, Chile. The daily
averages reported by the sensors were calculated from
the 1-h averages. Only data from days with a complete-
ness level of 75%, i.e., at least 18 hourly averages, were
included in further analyses.

Table 1 Correlation coefficients (R2) for the 1-h average PM10

and PM2.5 concentrations reported by the sensor replicates and the
reference monitor at Las Condes station. Each concentration is the
average for the one-week campaign (n = 150)

PM10

μg m−3
R2 PM2.5

μg m−3
R2

Monitor

TEOM 1400 65.1 –

BAM 1020 (reference) – 25.4

Sensor

Unit #1 40.3 0.45 18.3 0.69

Unit #2 38.6 0.41 20.7 0.67

Unit #3 38.8 0.47 21.5 0.72

Unit #4 38.0 0.44 19.1 0.68

Unit #5 39.1 0.40 20.0 0.71

Unit #6 40.5 0.45 20.9 0.71

Unit #7 42.7 0.44 20.1 0.69
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As a measure of strength of the correlations, the
coefficients of determinations (R2) obtained from the
linear or orthogonal regressions were calculated. The
effect of air humidity on the PM sensor performance

was assessed through a scatter plot colored by the RH
values reported by the BME280 sensor. The average
magnitude of the errors, Mean Bias Error (MBA) and
Mean Absolute Error (MAE), were used to estimate the
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accuracy of the sensor compared to the filter-based
samples. The metric expressed in μg m−3was calculated
as shown elsewhere (Feenstra et al., 2019).

Results and discussion

Inter-unit variability

Reproducibility, or inter-unit variability, is a mea-
sure of the similarity of the data generated by dif-
ferent units of the same sensor model. In this study,
reproducibility was calculated for the data reported
by 7 units of the SDS011, the low-cost PM sensor
integrated into the IoT prototype. As shown in
Fig. 3, there was a high correlation between the 1-
h PM10 average concentrations generated by all

seven sensors, with R2 values ranging from 0.99 to
1. Strong linearity was also observed over the entire
range of 1-h averages, with minimum and maximum
average concentrations (± SD) of 1.5 (± 0.2) and
136.3 (± 15.2) μg m−3, respectively. The frequency
distribution histogram revealed an incline in the
distribution towards lower values, indicating that
most of the hourly PM10 average concentrations
recorded by the sensors were below 40 μg m−3.

The correlation matrix for the 1-h average PM2.5

concentrations indicated high linearity and correlation
between the measurements made by the 7 units (Fig. 4).
Linearity was also observed over the entire concentra-
tion range, with minimum and maximum average con-
centrations of 0.8 (± 0.3) and 76.2 (± 6.0) μg m−3, re-
spectively. Although the PM2.5 frequency distribution
histogram was not identical to the PM10 histogram,

Fig. 3 Correlation matrix for the 1-h PM10 average concentrations reported by different units of the SDS011 sensor (n = 7)
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some similarities were observed; for example, the higher
frequency of lower concentration data.

The nRMSE was calculated to quantify the variabil-
ity in the measurements between sensors. The nRMSE
is expressed as a percentage; values close to zero repre-
sent lower dispersion and therefore greater reproducibil-
ity between sensors. The nRMSE ranged from 10 to
37% for PM10 and 9–24% for PM2.5. The lower nRMSE
for PM2.5 indicates that the SDS011 unit may provide
more reproducible measurements of the fine fraction
than the coarse fraction.

The time series recorded during the short-term field
campaign at Las Condes monitoring station is presented
in Fig. 5. The capacity of the sensors to detect the
dynamics of PM10 and PM2.5 in Santiago can be inferred
from the shape of the time series. For example, it was

possible to observe short periods of higher PM concen-
trations, usually caused by the morning rush hour traffic.
However, a significant increase in PM10 was observed
towards the end of the series, together with a smaller
increase in PM2.5 also observed. These increases may be
positive artifacts due to overestimation caused by the
high RH (92%) experienced during the final days of the
field campaign (Sup. Fig. 1).

Correlation between sensor and reference 1-h average
concentrations

The divergence between the measurements recorded by
the sensors and the reference values (BAM and TEOM)
was investigated through orthogonal regression
(Table 1). The correlation between the 1-h average
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values reported by the sensors and BAM and TEOM at
Las Condes was higher for PM2.5 (R

2 0.67–0.72) than
PM10 (R2 0.40–0.47). During the measurement cam-
paign, the 1-h PM2.5 average concentration reported by
the sensors was approximately 5 μg m−3 lower than the
reference 1-h average. Similarly, the sensors
underestimated the reference 1-h average PM10 concen-
tration by nearly 25 μg m−3.

The results of the correlation analysis for the long-
term campaign are shown in Table 2. Linear regression
analysis was performed for the 1-h averages reported by
the BAM or TEOM and the sensor units arranged at the
three regulatory monitoring stations. Despite power out-
ages and loss of Wi-Fi signal affecting the data capture,
acceptable levels of database completeness were
achieved at each monitoring station, corresponding to
84% at Las Condes, 75% at O’Higgins Park and 87% at
Pudahuel.

As observed in the short-term campaign, a stronger
correlation was observed between the sensor data and
reference measurements for PM2.5 than for PM10

(Table 2). The best fit between the sensors and contin-
uous measurements for the 1-h average PM2.5 concen-
trations was observed at Las Condes (R2 of 0.84–0.86),
although the correlations between the sensor and refer-
ence PM10 values were considerably poorer (R

2 of 0.53–

0.56). The weakest correlation was observed at
O’Higgins Park for the 1-h average PM10 concentrations
(R2 0.24).

A number of studies have suggested that RH is
the main factor that induces overestimation by opti-
cal PM sensors, thus we investigated the accuracy of
the SDS011 sensors based on 1-h average percent-
age RH reported by the BME280. The sensor per-
formance suggests that was a considerable trend
towards the overestimation of PM concentrations in
conditions when ambient RH exceeded 75%, with a

Fig. 5 Time series of the 1-hour
average concentrations reported
by the different units of the
SDS011 sensor deployed at Las
Condes monitoring station

Table 2 Correlation coefficients (R2) for the 1-h average PM10

and PM2.5 concentrations reported by the sensors and the reference
monitors during the long-term campaign

Station TEOM 1400
(PM10)

BAM 1020
(PM2.5)

Las Condes

Unit #3 0.56 0.86

Unit #4 0.53 0.84

O’Higgins Park

Unit #2 0.24 0.51

Pudahuel

Unit #1 0.42 0.47
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bias more intense for PM10 (Fig. 6) than PM2.5

(Fig. 7). To the greatest extent, the sensors tended
to overestimate the concentrations under high hu-
midity conditions but also tended to understate at
RH below 50%.

The underestimation in Figs. 6 and 7 is represented by
the values shown below the 45° diagonal line that denotes
the 1:1 ratio. In all correlations, the slope of the regression
was negative and under the 45° diagonal line, indicating
that the sensors reported lower concentrations than the
reference values most of the time. A significant underesti-
mation reported by the sensors was observed at O’Higgins
Park for PM10 when ambient RH was less than 40%.

Correlation between sensor and reference 24-h average
concentrations

Linear correlation analysis revealed stronger corre-
lations between the 24-h average concentrations es-
timated by the sensors and the reference monitors
than the corresponding 1-h averages. After averag-
ing in 24 h, the correlation for PM10 showed a slight
increase in R2 although with significant underesti-
mations at low RH (Fig. 8). Likewise, the 24-h
correlations for PM2.5 averages also improved in
terms of R2 and reached maximum values at Las
Condes station (0.85–0.87). However, and despite

Fig. 6 Correlation of 1-h average PM10 concentrations at the regulatory monitoring stations
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the better performance, the sensor showed consider-
able deviations from the PM2.5 reference value on
days with low ambient humidity (Fig. 9).

Figure 10 illustrates the accuracy of the 24-h measure-
ments reported by the sensors and values generated by
gravimetric analysis of the filter-based samples. The
highest coefficient was observed for the units deployed at
Las Condes station (Units #1 and #2), with R2 of 0.91 and
0.93. Conversely, lower correlation was observed between
the reference measurements and the data captured by the
sensor at O’Higgins Park (R2 0.69). In terms of error
between the reference and sensor measurements, a higher
MAE was calculated for the sensor at Ohiggins Park
(13.7), compared to lower MAE values determined for
the sensors arranged at Las Condes (5.5 and 7.6).

Based on the comparison with the reference method of
filter-based sampling, the difference in sensor perfor-
mances may be explained by significant overestimations
caused by the effect of ambient humidity since the envi-
ronment in the O’Higgins Park experienced the highest
average RH during the monitoring campaign (Sup. Fig. 2).

Accuracy of RH sensor measurements compared
to reference values

Linear regression of the 1-h RH averages was performed
to compare the accuracy of the BME280 sensor against
the reference instrument at the air quality stations (HMP
35A, Vaisala). As shown in Fig. 11, strong—but not
fully linear—correlations were observed between the

Fig. 7 Correlation of 1-h average PM2.5 concentrations at the regulatory monitoring stations
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sensors and the reference measurements. The overall
evaluation of the BME280 sensor indicates its perfor-
mance followed the same pattern as the SDS011, that is,
better correlation with reference measurements at Las
Condes (R2 0.92), and lower correlations at Pudahuel
(R2 0.90) and O’Higgins Park (R2 0.76).

At O’Higgins Park, some stagnant measurements
were recorded for 3 days (August 10–13); these
measures are represented by the series that forms a
horizontal line in Fig. 10c at RH 38–40%. However,
no significant correlations were found in the corre-
lations of sensor and reference monitors for PM10

and PM2.5 (Sup. Fig. 3). The latter suggests that
even though the correlations shown for O’Higgins

Park include the data captured during the period in
which the stagnant RH measurements occurred, the
size of these data points (n = 70) did not significant-
ly influence the correlation obtained with the data of
the whole campaign.

Also, at times when the reference instrument reported
100% RH, humidity records delivered by the sensors at
O’Higgins Park and Pudahuel were observed
underestimated (vertical lines of data points in
Figs. 10c and d). These discrepancies suggest the RH
sensors malfunctioned or external factors prevented ac-
curate measurement of air humidity, such as obstruction
caused by the enclosure or physical obstacles in the
proximity of the sensors.

Fig. 8 Correlation of the 24-h average PM10 concentrations at the regulatory monitoring stations
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Discussion of the general performance of the low-cost
IoT PM sensor

The sensor prototype tested in this study estimated the 1-
h PM10 and PM2.5 averages with modest (R2 ~ 0.5) and
robust (R2 > 0.8) accuracy, respectively. Several field
tests have shown the precision of low-cost sensors de-
pends on the model type. Results of the 1-h correlation
analysis for a variety of sensors and U.S. Federal equiv-
alent methods are presented in Table 3. Similar to that
shown in this study, better performances have been
reported for the measurement of PM2.5 compared to
PM10.

Correlations were also better for the 24-h average
concentrations than the 1-h averages, especially at Las

Condes (R2 0.84–0.86). In Santiago, Caquilpán et al.
(2019) evaluated the performance of low-cost sensors
models PMS3003 and PM2005 in Pudahuel and Las
Condes, respectively, and reported R2 of 0.73 and 0.86
for the correlations with reference PM2.5 monitors. The
study also indicates MAE in the range of 5–11, which
decreased to 3–4 after correcting the sensor data through
random forest regression. In a similar magnitude,
Feenstra et al. (2019) informed MAE of 4–7 for low-
cost PM2.5 sensors models Shinyei and Alphasense,
which were tested in Riverside, California, an area with
a Mediterranean climate that experienced average RH
between 48 and 68%, similar to that found in Las
Condes (Sup. Fig. 2). In consideration of these studies
and our results, we inferred that current models of low-

Fig. 9 Correlation of the 24-h average PM2.5 concentrations at the regulatory monitoring stations
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cost PM sensors might have a better performance for
measuring PM2.5 in conditions of RH between 50 and
70%.

Regardless of the environment, the studies conducted
to date indicate that modern low-cost sensors may be
more suitable for monitoring the fine fraction than the

Environ Monit Assess (2020) 192: 171 Page 13 of 18 171
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coarse fraction. Laboratory tests have reported the
SDS011 model can accurately measure particles with a
da of 0.3 to 1 μm but not particles with a da greater than
5μm (Budde et al. 2018). These findingsmay explain the
higher reported correlations for PM2.5 than PM10 detected
in this study, as well as the lowest nRMSE calculated for
PM2.5 measurements as a metric of inter-unit variability.

Considering the data produced in parallel by different
units of the IoT prototype, the inter-unit variability between
the sensors is concordant and slightly better than the values
reported for other optical models. In this study, the nRMSE
between the SDS011 sensors ranged from 10 to 37% for
PM10 and 9–24% for PM2.5. Manikonda et al. (2016)
reported nRMSE for other models, such as Dylos
DC1100 Pro sensor (13–46%), Sharp GP2Y1010AU0F

(3–118%) and Samyoung DSM501A (22–52%). Further,
Sayahi et al. (2019) assessed inter-unit variability through
the nRMSE for the Plantower models PMS 1003 (63–
124%) and PMS 5003 (37–57%).

Previous research has suggested that the magnitude
of PM concentrations may influence reproducibility be-
tween sensors. Kuula et al. (2019) showed that inter-unit
variability decreased as concentrations increased. In the
same study, a magnitude of 264% of nRMSE was cal-
culated for the Shinyei PPD60PVat low concentrations
(< 4 μg m−3), which supports indications that perfor-
mance of low-cost sensors improves as the PM concen-
tration increases, since low concentrations are usually
close to the noise level (Johnson et al. 2018; Zheng et al.
2018). Nevertheless, high concentrations could be

Table 3 Correlation coefficients (R2) reported in field studies for the 1-h average concentrations estimated by sensors and reference method

Test location PM10 PM2.5

This study Santiago, Chile

Nova Fitness SDS011 0.24–0.56 0.47–0.86

South Coast Air Quality Management District n.d. Southern California, USA

Shinyei PPD60PV 0.31–0.40 0.77–0.85

Alphasense OPC-N3 0.45–0.52 0.52–0.67

Dylos DC1700 0.15–0.18 0.58–0.68

IQAir Airvisual Pro 0.24–0.41 0.69–0.73

Crilley et al. 2018 Birmingham, UK

Alphasense OPC-N2 0.64–0.67 0.70–0.74

Feinberg et al. 2018 Denver, Colorado, USA

Alphasense OPC-N3 0.20–0.68

Johnson et al. 2018 Hyderabad, India

Shinyei PPD20V 0.81–0.86

Kelly et al. 2017 Salt Lake City, Utah, USA

Plantower PMS1003 0.83–0.92

Badura et al. 2018 Wrocław, Poland

Nova Fitness SDS011 0.79–0.86

Plantower PMS7003 0.83–0.89

Liu et al. 2019 Oslo, Norway

Nova Fitness SDS011 0.55–0.71

Kuula et al. 2019 Helsinki, Finland

Shinyei PPD60PV 0.02–0.77

Gao et al. 2015 Xi’an, China

Shinyei PPD42NS 0.86–0.89

Feenstra et al. 2019 Riverside, California, USA

Shinyei PM Evaluation Kit 0.73–0.75

Alphasense OPC-N2 0.38–0.67
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considered potentially negative, as a higher amount of
particles can cause saturation of the photodetector and
lead to poor performance.

To the best of our knowledge, there no reports on the
performance of the SDS011 sensor model in climates
similar to Santiago, specifically, the Mediterranean type
with dry summers. A few studies have assessed the
performance of the SDS011 in humid subtropical cli-
mates, for example, in Thessaloniki, Greece
(Genikomsakis et al. 2018) and Florence, Italy
(Cavaliere et al. 2018). In both of these locations, R2

above 0.85 was observed for the correlations between
the PM2.5 averages informed by the SDS011 and stan-
dard optical instruments. Results reported by field tests
conducted in environments with higher RH due to the
influence of oceanic climates, such as Wrocław, Poland,
(Badura et al. 2018) and Oslo, Norway (Liu et al., 2019)
suggest that SDS011 can reach modest to robust corre-
lations in high-humidity ambient as well (R2 0.55–0.86;
Table 3).

The studies described above suggest the SDS011 is
highly adaptable to different locations and climate. Dif-
ferences in local ambient conditions may increase inter-
sensor variability at the spatial level since areas with
higher air humidity could lead to biased measurements.
As an example, the better overall performance in our
study was observed in sensors deployed in Las Condes,
an area that presented RH between 40 and 60% and
usually experiences an RH 6% lower than the one
recorded at O’Higgins Park and Pudahuel (Toro et al.
2014). At sites, the sensors achieved weaker
performance.

Although the intercomparison of seven SDS011 units
indicated low variability between sensors, no correc-
tions of raw data were made, which can be considered
a limitation of this study. However, in addition to the
low inter-sensor variability, the greater correlation found
in the comparisons with the reference filter-based sam-
pling indicates that the evaluated sensors can accurately
capture the 24-h average of PM2.5 concentration with
reduced spatial variation at the city scale.

Other limitations of the current version of the sensor
must be recognized, including the difficulty of detecting
black carbon due to the low light scattering ability of
these particles. Also, the lack of accuracy in measure-
ment of PM10 concentrations and, to a lesser extent,
PM2.5, may reflect the limitations of this sensor technol-
ogy, such as the absence of the drying system present in
reference monitors (Budde et al. 2018). Furthermore,

our evaluation revealed discrepancies between the
BME280 sensor and the reference hygrometer, suggest-
ing that the design of the sensor enclosure may impose
additional limitations.

Conclusions

An IoT prototype for air quality monitoring was assem-
bled by integrating a low-cost PM sensor (SDS011), a
temperature and RH sensor (BME280) and an IoT mod-
ule (ESP8266). The IoTcomponent conferred the ability
to transmit data in real time to the cloud-based storage
platform. During the winter and spring of 2018, the IoT
prototype was evaluated at three regulatory monitoring
stations in Santiago, Chile. The field tests revealed low
inter-unit variability and good linearity with reference
data, though the sensors had a limited capacity to esti-
mate the correct concentrations of airborne particles.
The sensor performed reasonably in terms of 24-h aver-
age PM2.5 concentrations; however, considerable bias
was observed in the 1-h average measurements, includ-
ing overestimation when RH exceeded 75% and under-
estimation when RH was under 50%. Overall, the per-
formance of the sensor was adequate for PM2.5, but not
for PM10. The BME280 sensor data exhibited a good fit
and precision with the reference RH measurements.
However, some underestimation of high humidity was
detected at two monitoring stations, indicating possible
interference with the enclosure. Future research on this
prototype is required to address and reduce biases using
calibration methods that incorporate the RH variable.
Overall, we conclude that the SDS011 sensor is suitable
for citizen science projects, and with some refinements,
could eventually be suitable for expansion of the current
air quality monitoring network in Santiago.
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