
Field Programmable Gate Arrays with
Hardwired Networks on Chip

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op

dinsdag 6 november 2012 om 15:00 uur

door

MUHAMMAD AQEEL WAHLAH

Master of Science in Information Technology

Pakistan Institute of Engineering and Applied Sciences (PIEAS)

geboren te Lahore, Pakistan.

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. K.G.W. Goossens

Copromotor:

Dr. ir. J.S.S.M. Wong

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof. dr. K.G.W. Goossens Technische Universiteit Eindhoven, promotor

Dr. ir. J.S.S.M. Wong Technische Universiteit Delft, copromotor

Prof. dr. S. Pillement Technical University of Nantes, France

Prof. dr.-Ing. M. Hubner Ruhr-Universitat-Bochum, Germany

Prof. dr. D. Stroobandt University of Gent, Belgium

Prof. dr. K.L.M. Bertels Technische Universiteit Delft

Prof. dr.ir. A.J. van der Veen Technische Universiteit Delft, reservelid

ISBN: 978-94-6186-066-8

Keywords: Field Programmable Gate Arrays, Hardwired, Networks on Chip

Copyright c⃝ 2012 Muhammad Aqeel Wahlah

All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without permission of the author.

Printed in The Netherlands

Acknowledgments

T
oday when I look back, I find it a very interesting journey filled with

different emotions, i.e., joy and frustration, hope and despair, and

laughter and sadness. At the same time, I feel that I am lucky enough

to have some great people around, without whom the journey could not have

been possible. I would like to express my gratitude to all of them as following.

First of all I would like to convey my gratitude to Kees Goossens, my pro-

moter and supervisor, for his erudite and invaluable supervision with sustained

inspirations and incessant motivation. He guided me to explore the challenging

research problems while giving me the complete flexibility, which provided the

rationale to unleash my ingenuity and creativity along with an in-depth explo-

ration of various research issues. Despite being a busy person, he still managed

to extract time to provide me with his sufficient feedback. His encouragement

and meticulous feedback wrapped in constructive criticism helped me to keep

the impetus and to remain streamlined on the road of research that resulted in

the triumphant completion of this work.

I would also like to thank the PhD committee, i.e., Kees Goossens, Sebastien

Pillment, Dirk Stroobandt, Michael Hubner, Koen Bertels, and Stephan Wong

for investing their precious time to read the thesis and providing me with their

valuable feedback.

I am grateful to Higher Education Commission (HEC) Pakistan for financially

supporting my research work during the initial four years of my PhD that en-

abled me to work and do research in the Computer engineering department of

Technical University of Delft, one of the leading universities in the world.

I would like to pay my thanks to all of the colleagues from the Computer

engineering department for their discussions and feedback. In particular, I

want to thank Dr. Jae Young Hur for the many discussions, motivational talks

and valuable guidance during my first two years of PhD. I also want to extend

my thanks to Dr. Chunyang Guo for being such a nice friend and office mate

in all those PhD years. Furthermore, I want to acknowledge the support of

our chair secretary Lidwina Tromp, and administrators Erik de Vries and Eef

Hartman to provide a good working environment.

I would like to pay my deepest gratitude to my parents (Muhammad Siddique

Wahlah and Razia Sultana) and my siblings (Anwar-us-Saeed, Riffat Shahid,

Tasneem Khalid, Muhammad Shafique, Naseem Atif), and my in-laws (Razia

3

Naveed, Afzal Naveed, and Saba Naveed) for their never-ending support, sin-

cere prayers, and encouragement throughout my Ph.D studies. In particular, I

am thankful and pay salute to my parents (Muhammad Siddique Wahlah and

Razia Sultana) for their unconditional love and exceptional sacrifice. I always

found them standing beside me whenever I needed them. I must say that I can

not thank enough to Almighty Allah, Who gave me such great parents.

Finally, I get to the persons who I owe the most for the completion of this

journey. My wife Tahira Aqeel, who always stood beside me through this

long journey. I must say that she endures all the efforts that were put in to

produce the thesis. I would not have reached this point without her loving and

caring support, and I want to take this opportunity to thank her from the core

of my heart. I also want to present bundle of thanks and love to my little three

years old princess Ayesha Aqeel, whose smile and little acts always freshens

up my mind and brightens up my days. More so often she makes me feel how

beautiful life could have been, and how much blessed a person I am.

I dedicate this thesis to all of my family members, and my advisor Prof. Kees

Goossens.

4

Field Programmable Gate Arrays

with

Hardwired Networks on Chip

Muhammad Aqeel Wahlah

Abstract

T
echnology down-scaling and platform-based designs have enforced

a number of application and architecture trends for system-on-chip

(SOC) designs. A modern SOC is now a multi-functional machine

that can execute a large number of complex applications by using tens or

even hundreds of intellectual properties (IPs). Meanwhile, due to a number

of constraints, e.g., short time to market, fickle market demands, and high

non-recurring engineering (NRE) costs to name a few, Field Programmable

Gate Arrays (FPGAs) have gained popularity to implement SOC designs. The

applications in an SOC can be dynamically started and stopped thus forming

multiple use-cases. The applications can also have diverse Quality-of-Service

(QoS) constraints ranging from non real-time to soft, firm, and hard real-time

constraints. At the same time the IP cores in an SOC are heterogenous in nature

and run at diverse clock frequencies. The IPs can be microprocessors, DSP

slices, memories, and ALU units, etc. The increasing number and diversity

of applications and IPs require a powerful onchip communication architecture

for quick integration and appropriate QoS. In contemporary FPGAs the onchip

interconnect would be soft, i.e., programmed in the configurable fabric.

The above-mentioned application and architecture trends have triggered a se-

ries of problems. (1) An increasing number of applications on an FPGA often

requires dynamic reconfiguration of an application, which in turn can produce

interference with other running applications. (2) The increasing complexity

of an application may mean that it can not be mapped entirely on the FPGA,

which in turn can encounter loss of state of data during intra-application dy-

namic partial reconfiguration. (3) The diverse natures of applications make it

difficult to fulfill the Quality-of-Service constraints of an application. (4) Sim-

ilarly, it is hard to achieve (physical) timing closure in an SOC, because of the

i

increasing number and diversity of the IP cores. (5) The technology down-

scaling leads to FPGA architectures that are more prone to faults, e.g., config-

uration memories and logic elements in an FPGA can be stuck at a particular

value. (6) Because communication architecture and IPs are both mapped as

soft IPs in the same logic plane of the FPGA, their placement has many re-

strictions to allow for dynamic partial reconfiguration.

In this thesis, we aim to address the above-mentioned problems by proposing

the architecture and design flow of a new FPGA. As the main contribution

of the thesis, we propose the FPGA architecture with a hardwired network

on chip (HWNoC), and multiple test, configuration, and functional regions

(TCFRs). We call it hardwired, because the NoC in an FPGA is built in sil-

icon and not by using the reconfigurable elements. By having a HWNOC

we can have a globally asynchronous locally synchronous (GALS) environ-

ment, which in turn ensures that data is not lost during inter-IP communi-

cation. The HWNOC separates the communication and computation in two

disjoint planes, which alleviates restrictions on the placement of IPs. As the

second contribution of the thesis, we show how we can use the HWNOC to

transport unified test, configuration, and functional data to TCFRs, for testing,

faster configuration, and interference-free communication during execution of

applications. As the third contribution of the thesis, we demonstrate that how

the proposed design flow ensures predictable application behavior by fulfill-

ing the QoS constraints. We also present a 3-tier reconfiguration model that

uses the HWNOC, which ensures contention-free communication at archi-

tecture level, to overcome the problems of interference and state-loss during

inter-application and intra-application reconfiguration respectively. Another

contribution of the thesis is that it proposes a non-intrusive test methodology

that uses the HWNOC as a test access mechanism to test the presence of faults

reliability of FPGA architecture. In other words, the proposed methodology

makes sure that applications are always reconfigured and executed on a reliable

region of an FPGA, and without effecting the other running applications.

ii

Table of contents

Acknowledgments . 3

Abstract . i

List of Tables . ix

List of Figures . xi

List of Algorithms . xvii

1 Introduction . 1

1.1 Trends . 2

1.1.1 Application Point of View 2

1.1.2 Architecture Point of View 6

1.1.3 Summary . 11

1.2 Problems . 12

1.2.1 Application Point of View 12

1.2.2 Architecture Point of View 13

1.2.3 Summary . 15

1.3 Requirements . 16

1.4 Techniques . 17

1.4.1 Hardwired Network on Chip 19

1.4.2 Design Flow to Bind Applications on FPGA 21

1.4.3 Composable and Persistent-State Dynamic Reconfig-

uration using 3-Tier Model 21

1.4.4 Online FPGA Testing 22

1.4.5 Summary . 23

1.5 Problem Statement . 24

1.6 Thesis Organisation . 24

1.7 Thesis Contributions . 25

iii

2 Background on FPGA & Networks on Chip 27

2.1 Background: Field Programmable Gate Array 27

2.1.1 FPGA Architecture 27

2.1.2 FPGA Design Flow 32

2.2 Background: Networks on Chip 35

2.2.1 NoC Architecture . 35

2.2.2 NoC Design Flow 44

2.3 Conclusions . 46

3 Proposed Solution and Related Work 47

3.1 Proposed Solution: FPGA with Hardwired NoC 47

3.1.1 Proposed Architecture 47

3.1.2 Proposed Design Flow 50

3.2 Technique: Hardwired Network on Chip 53

3.2.1 Overview . 54

3.2.2 Motivation . 54

3.2.3 Related Work on Conventional FPGA with Soft &

Hard Interconnect . 55

3.2.4 Positioning with the State of the Art 57

3.2.5 Related Work on Custom Reconfigurable Architectures 59

3.2.6 Positioning with the State of the Art 61

3.3 Technique: Binding of Applications to FPGA 62

3.3.1 Overview . 62

3.3.2 Motivation . 64

3.3.3 Related Work . 65

3.3.4 Positioning with the State of the Art 67

3.4 Technique: Composable and Persistent-State Dynamic Re-

configuration . 69

3.4.1 Overview . 69

3.4.2 Motivation . 70

3.4.3 Related Work . 72

3.4.4 Positioning with the State of the Art 74

3.5 Technique: Online Testing 76

3.5.1 Overview . 77

3.5.2 Motivation . 78

3.5.3 Related Work . 81

3.5.4 Positioning with the State of the Art 82

3.6 Conclusions . 84

iv

4 FPGA Architecture with a Hardwired Network on Chip 85

4.1 Overview . 85

4.2 Hardwired NoC Architecture 88

4.3 Test Configuration Functional Region Architecture 89

4.3.1 Minimum Test Configuration Regions 89

4.3.2 Bus Macros . 90

4.3.3 Clock Domain Crossing FIFOs 91

4.3.4 Bitstream Manager 91

4.3.5 Clock / Reset Manager 92

4.4 Control Processor Architecture 94

4.5 Hard Soft Partitioning . 97

4.5.1 Hardwired NoC Partitioning 97

4.5.2 TCFR Partitioning 99

4.5.3 Control Processor Partitioning 101

4.6 Implementation versus Modeling 101

4.6.1 Hardwired NoC Implementation versus Modeling . . . 101

4.6.2 TCFR Implementation versus Modeling 102

4.6.3 Control Processor Implementation versus Modeling . . 104

4.7 Hardwired NoC Extensions 104

4.7.1 Soft & Multi FPGA NoC 104

4.7.2 Applicability Extensions 105

4.8 Architectural Limitations . 106

4.9 Results and Analysis . 107

4.9.1 Network Interface Variations 108

4.9.2 Router Variations . 110

4.9.3 Test Configuration Functional Region Variations . . . 110

4.9.4 Design Space Exploration with Constant TCFR Size . 111

4.9.5 Design Space Exploration with Variable TCFR Size . 114

4.9.6 Area & Functional Performance Comparison of Soft

& Hard NoC . 116

4.10 Conclusions . 119

5 Preparing the FPGA System at Compile Time 121

5.1 Architecture and Application Specifications 121

5.1.1 Architecture Specifications 121

5.1.2 Application Specifications 122

5.1.3 Required Objectives 123

5.2 PUMA: (Road to) Unified Placement, Mapping, and Allocation 124

v

5.2.1 Preprocessing: Database Creation 126

5.2.2 Traversing the Application and Creating Clusters . . . 127

5.2.3 Solution Space Extraction 130

5.2.4 Candidate Solution Finding 133

5.2.5 Solution Construction 139

5.2.6 Cluster Resource Reservation 143

5.3 Limitations . 143

5.4 Results And Analysis . 144

5.4.1 Performance: Success Rate 145

5.4.2 PUMA Scalability 147

5.5 Conclusions . 148

6 Run-Time FPGA System Adaptation 149

6.1 System Configuration & Programming: Overview 149

6.1.1 FPGA With Soft Interconnect 151

6.1.2 FPGA With Hard Interconnect 151

6.1.3 Summary . 153

6.2 3-Tier Model for Composable & Persistent-State Run-Time

Reconfiguration . 153

6.2.1 Responsibilities Across the 3 Tiers 153

6.2.2 Enforcing the Inter-Application Composability 155

6.2.3 Run Time Application Reconfiguration 156

6.2.4 Assuring the Intra-Application Persistent-State Tran-

sition . 159

6.2.5 Summary . 167

6.3 Limitations . 168

6.4 Evaluation and Results . 168

6.4.1 Configuration, Programming, & Functional: Compar-

ison . 169

6.4.2 Conventional and Proposed Architecture Comparison

for Larger Systems 172

6.5 Conclusions . 174

7 Online Testing of FPGA Architecture 175

7.1 The Test Methodology . 176

7.1.1 TCFR Testing . 177

7.1.2 Perform HWNoC Test 181

7.2 Limitations . 181

vi

7.3 Results And Analysis . 181

7.3.1 A Non-Intrusive Test Methodology 182

7.3.2 Performance: Fault Detection Latency 184

7.3.3 Spatiotemporal Cost 185

7.3.4 TCFR Area Impact on Performance & Cost 186

7.3.5 Comparison with the State of the Art 187

7.4 Conclusion . 190

8 H.264 Encoder Case Study . 193

8.1 Design Time Specifications 193

8.1.1 H.264 Specifications 193

8.1.2 FPGA Specifications 194

8.2 Compile Time Binding of H.264 to FPGA 195

8.2.1 Cluster Creation . 195

8.2.2 QoS Ensured Cluster Binding 196

8.2.3 Cost of QoS Guarantees 197

8.3 Run Time H.264 Dynamic Reconfiguration 198

8.3.1 Temporal Analysis of Application Binding 199

8.3.2 Persistent State Intra-Application 200

8.3.3 Composable Inter-Application 203

8.4 Conclusions . 203

9 Conclusions . 205

9.1 Thesis Summary . 205

9.2 Thesis Contributions . 207

9.3 Open Issues and Future Directions 208

Bibliography . 209

A Glossary . 225

A.1 List of Abbreviations . 225

A.2 List of Terminology . 227

A.3 List of Legends . 229

B System XML specification . 230

B.1 Architecture specification . 230

B.2 Application Specification . 232

List of Publications . 234

vii

Samenvatting . 237

Curriculum Vitae . 239

viii

List of Tables

1.1 Overview Of Trends, Problems, Requirements, and Techniques 18

3.1 Our Work Positioning with respect to the State of the Art on

Traditional FPGAs. 57

3.2 Our Work Positioning with respect to the State of the Art on

Traditional FPGAs. 63

3.3 Our Work Positioning with respect to the State of the Art on

Traditional FPGAs. 68

3.4 Our Work Positioning with respect to Composable Dynamic

Reconfiguration Approaches. 75

3.5 Our Work Positioning with respect to Persistent-State Dy-

namic Reconfiguration Approaches. 76

3.6 Our Work Positioning with respect to the State of the Art on

Traditional FPGAs. 83

4.1 Hard Soft Partitioning of FPGA with Hardwired NoC. 98

4.2 Modeling Vs Implementation of the Proposed Architecture. . . 102

4.3 Specifications of the Target FPGA Architecture. 111

4.4 Soft and Hard Values of Different Components in FPGA. . . . 112

4.5 Results of Design Space Exploration with Variable TCFR Size. 115

4.6 Area of Network on Chip Components. 117

5.1 Success Rate over Multiple Applications and FPGA Dimen-

sions. 148

ix

6.1 Configuration, Programming, and Functional Comparison of

Conventional and Proposed Architectures. 172

7.1 IP Synthesized Area, Frequency, and Bitstream Frames. 182

7.2 Cost Evaluated for the Complete FPGA after Varying TCFR

Area . 186

8.1 Application IP Synthesized Area, Frequency and Reconfigu-

ration Time . 194

8.2 Application IP Frequency and Reconfiguration Time 199

x

List of Figures

1.1 A Simple Application. 3

1.2 Video Application Standards Become More Complex. 4

1.3 SoC Architecture Example. 5

1.4 Design Productivity Gap [68]. 6

1.5 System on Chip Predicted Future Performance [69]. 7

1.6 FPGA Virtex Family Logic Densities over the Years [155,156,

158, 161, 162]. 8

1.7 FPGA Virtex Family Architectural Evolution over the

Years [155, 156, 158, 161, 162]. 9

1.8 FPGA Architecture and Application on FPGA. 10

1.9 Interconnect Delay over Different Process Technologies [67]. . 11

1.10 3-Tier Behavior and Interaction in Multiple Use-cases 22

2.1 Architecture of Conventional FPGA. 28

2.2 Configurable Logic Block Architecture. 29

2.3 Different Types of Wires to Connect Logic Blocks. 30

2.4 High Level View of FPGA Architecture with Application on it. 31

2.5 Design Flow of Binding Application on a Conventional FPGA. 33

2.6 Network on Chip Architecture 36

2.7 Architecture of Master and Slave Buses in NoC. 38

2.8 Architecture of Master and Slave Network Interface Shells. . . 40

2.9 Network Interface Kernel Architecture. 41

2.10 Router Architecture. 43

xi

2.11 Aethereal NoC Design Flow. 45

3.1 Abstract View of the Proposed Solution (FPGA with Hard-

wired NoC). 48

3.2 Architecture of the Proposed FPGA. 49

3.3 Architecture of the Proposed FPGA Architecture and Appli-

cation on it. 50

3.4 Our Design Flow for the Proposed FPGA Architecture. 51

3.5 Restricted IP Placement due to the Presence of Soft Functional

Interconnect. 55

3.6 Motivational Case Study for Unified Placement, Mapping,

and Allocation. 64

3.7 Motivation for 3-Tier Reconfiguration Model with HWNOC. . 71

3.8 Motivation for our Online Test Scheme. 79

4.1 Overview Diagram of the Proposed FPGA Architecture. . . . 86

4.2 IP with one Master and one Slave Port, without Reprogram-

ming and Reconfiguration Privileges, and its NI Shell and Ker-

nel. 87

4.3 Detailed Functional Architecture of a Minimum Test Config-

uration Region. 90

4.4 Bitstream Manager to Write Bitstreams in a TCFR. 92

4.5 Clock Tree in a Test Configuration Functional Region. 93

4.6 Control Processor Communication with TCFRs. 94

4.7 Details Architecture of the Control Processor. 95

4.8 Data Forwarders in the SystemC Model of a Test Configura-

tion Functional Region. 103

4.9 Architectural Extensions of the Hardwired NoC. 105

4.10 NI Kernel with Variable FIFO Depths. 108

4.11 NI Kernel with Variable Time-Slots. 108

4.12 NI Kernel with Variable Ports. 109

4.13 Router Area Overhead with Variable Number of Ports. 110

xii

4.14 Bitstream Manager Area Overhead with Variable Sizes of a

TCFR. 111

4.15 Soft NoC Cost for a Virtex-4 FPGA with Variable TCFR Sizes. 114

4.16 Soft NoC Benefit for a Virtex-4 FPGA with Variable TCFR

Sizes. 116

4.17 HWNoC Cost for a Virtex-4 FPGA with Variable TCFR Sizes. 117

4.18 HWNoC Benefit for a Virtex-4 FPGA with Variable TCFR

Sizes. 118

5.1 FPGA with Hardwired NoC: (A) High level Architecture, (B)

Architecture Resource Details. 122

5.2 An Example Instance of Two IPs on FPGA Nodes and Con-

nection Path in Between Them. 123

5.3 High Level Flow of our PUMA Scheme. 125

5.4 An Example Application Task Graph and its Clusters. 128

5.5 Example that Shows the Binding of Clusters on our FPGA. . . 134

5.6 Finding the Candidates Solutions. 135

5.7 PUMA Success Rate with Variable Communication and Area

Demands. 144

5.8 Binding Results of Applications with Variable Standard Devi-

ations w.r.t. the Communication Throughput Demands. 145

5.9 Impact on the Binding Success of Applications by Increasing

Inter-IP Dependencies. 146

5.10 PUMA Success Rate with High Area (i.e., 50% and 70% Area

of FPGA) and Variable Communication Requirements. 147

5.11 PUMA Success Rate with Low Area (i.e., 15% and 30% Area

of FPGA) and Variable Communication Requirements. 148

6.1 Conventional Configuration and Programming with (A) Non-

Programmable Soft Functional Interconnect, and (B) Pro-

grammable Soft Functional Interconnect. 150

6.2 New Configuration and Programming with Programmable

Hardwired Network on Chip. 152

xiii

6.3 3-Tier Reconfiguration Model with an Overview of Responsi-

bilities of each Tier. 154

6.4 Application Configuration by Using the System Manager. . . . 157

6.5 Starting a Soft IP. 158

6.6 Interaction between an Application Manager and its Application. 159

6.7 Application with Sub Applications and its Interaction with an

Application Manager. 160

6.8 Procedural Description to Assure Persistent State by Using

Application Manager. 162

6.9 Programming Protocol Structure. 164

6.10 An Example Case Study of Application Manager Operating

on Input Data. 166

6.11 Procedure to Program NoC Connection. 170

6.12 Configuration Time Comparison Between the Soft and Hard

Architectures. 173

6.13 Programming Time Comparison Between the Soft and Hard

Architectures. 173

7.1 Run Time Flow for the Test Process. 176

7.2 Test IP placed in our FPGA with Different Abstract Level

Details. 179

7.3 Applications in Different TCFRs. 183

7.4 Details of Interleaved Test, Load, and Execute for Multiple

Applications. 184

7.5 Different FPGA Architectures with Variable TCFR Area and

Count. Also Showing Fault Detection Latency Per TCFR. . . 187

7.6 Per TCFR: Fault Detection Latency (mili sec). 188

7.7 Per TCFR: Spatiotemporal Overheads. 189

8.1 H.264 Task Graph with Communication Demands. 194

8.2 Specification of the Target FPGA Architecture. 195

8.3 Showing H264 Clusters Created by using PUMA. 196

xiv

8.4 Compile Time Binding of H.264 to the Target FPGA Archi-

tecture. 197

8.5 Showing Communication Cost that is Paid for the H.264 Bind-

ing. 198

8.6 Showing Hop Count between the IP that Communicate with

Each Other. 199

8.7 Showing: Temporal Analysis for SA1 and SA2 201

8.8 Bitstream Loading with Fixed Latency with Departure Time at

Control Processor (X-axis) and Arrival Time at TCFR (Y-axis). 202

8.9 Persistent State Intra-Application Analysis. 202

8.10 Showing: (A) Composable Inter-Application Reconfigura-

tion, (B) Allocated Time Slots 203

A.1 Showing Different Figures that are Used in the Thesis. 229

xv

List of Algorithms

5.1 Calculation of Effective Throughput between two FPGA Nodes. 126

5.2 Cluster Creation Process. 129

5.3 Finding the Solution Space for a Cluster. 131

5.4 Determining the Placement of Source IP of a Cluster. 132

5.5 Determining the Solution Space for an IP of a Cluster. 133

5.6 The Process to Find Candidate Solutions. 136

5.7 Allocation Pruning Process. 138

5.8 Construction of the Best Solution. 140

5.9 Calculating Area Cost Matrix to Determine the Best Solution. . 141

5.10 Resource Reservation Process for the Best Solution. 142

xvii

1
Introduction

Over the years, the down-scaling of silicon process technologies has followed

Moore’s law [96, 97], due to which millions of transistors can be placed on

a single chip of few millimeter dimensions [34, 65]. System designers have

exploited the increased transistor densities by building systems on a single

chip (SOC), with enhanced features and increased complexities [10, 33]. The

SOCs have proliferated into almost every walk of our life in the form of

embedded systems [54, 55], such as cell phones, PDA, GPS, MP3 players,

video / still cameras, and many more. A modern day SOC can comprise nu-

merous heterogenous intellectual properties (IPs) to execute multiple applica-

tions [69, 138]. The on-chip interconnect that enables different IPs to commu-

nicate with each other plays a pivotal role in achieving the desired performance

for an SOC [48, 55].

From a target platform viewpoint, Field Programmable Gate Arrays (FPGAs)

are increasingly popular to implement SOC designs [85]. The FPGA-based

SOCs promise a solution to short time to market, fickle market demands, tight

fiscal constraints, and high non-recurring engineering (NRE) costs [73]. A

modern day FPGA architecture can offer application-specific integrated cir-

cuit (ASIC) like features [8,162], by embedding hardwired1 IP blocks [8,162],

e.g. DSP units, MAC units, memory blocks, etc. These computational blocks

achieve performance gains for FPGA systems compared to their soft2 imple-

mentation. However, as we shall discuss, the current FPGA architectures still

face critical challenges in meeting the requirements of scalability, composabil-

ity, predictability, and reliability required for SOC designs.

To fulfill the requirements, we propose a new FPGA architecture with a hard-

wired network on chip (HWNOC), and multiple test, configuration, and func-

1We define an IP as hardwired or hard when it is directly implemented in silicon.
2A soft IP is mapped on the reconfigurable resources (e.g. CLBs) of FPGA.

1

2 CHAPTER 1. INTRODUCTION

tional regions (TCFRs). The HWNOC serves as the system-level communi-

cation architecture and transports test, configuration, and functional data to

TCFRs, so as to test, configure, and execute the applications on TCFRs. The

proposed architecture has been simulated in SystemC (and is not implemented

in the real FPGA hardware). This differs from current FPGA chips that, as we

shall explain in Section 2.1, have only a single test and configuration architec-

ture. Additionally, the conventional FPGAs do not have hardwired commu-

nication architecture. Instead, the FPGA-based SOCs make use of soft com-

munication architecture (e.g., bus, cross bar, and NoC) to transport inter-IP

data.

The rest of this chapter is organised as follows. We start with describing

the trends of SOCs, Section 1.1. We then point out the problems that have

emerged due to these trends, Section1.2. We continue by discussing the key

requirements to overcome the problems to implement the FPGA-based SOC

in Section 1.3. We then present the techniques to fulfill the requirements in

Section 1.4. Afterwards, we state the problem that is the focus of the thesis in

Section 1.5. At the end, we list the organisation and contributions of our thesis

in Section 1.6 and Section 1.7, respectively.

1.1 Trends

In this section we explain the SOC trends from the application point of view,

and from the architecture point of view.

1.1.1 Application Point of View

SOC functionality is defined by the set of its applications3. An application

is comprised of multiple (hardwired) IPs, which can have data and control

ports to process the functional data4 and control data5. The IPs use logical

connections to communicate with each other, as shown in Figure 1.1.

The recent trends indicate a large number of applications in SOC designs [10,

138]. For instance, OMAP SOC from Texas Instruments can be used for

video and speech processing, location-based services, security, gaming, and

3An application can be defined as a program that is designed to perform a specific function.
4Functional data (or simply data) stands for the data that is computed or stored by the IPs.
5Control data is used to program the IPs by writing to their memory-mapped input output

(MMIO) registers.

1.1. TRENDS 3

IP A
Mem
ory

IP B

Communication Connections

Figure 1.1: A Simple Application.

multimedia [138]. Similarly, the present day cell phones, which were tradi-

tionally used to receive and place phones calls, are now capable of conduct-

ing video conferencing, messaging, web browsing, storing pictures, and many

more functions [55]. Today’s FPGAs [158, 161] are used to implement SOCs

that can run complex use-cases6 [45, 100]. The applications can be started

and stopped independently (e.g., on user command). As applications are of-

ten developed by different companies, it is desirable that they can be designed

and tested independently. Therefore, the absence of interference is required

for this, so that applications can be safely loaded at run time7 and without af-

fecting the already running applications [5, 49, 81]. In short, SOCs have many

applications that are dynamically started / stopped as per user demand.

Typically, applications that execute on FPGA or ASIC architecture, can

have diverse performance constraints on the basis of which SOC applica-

tions can be classified as control-oriented or streaming [105,152] applications.

Control-oriented applications often have non real-time constraints8, whereas

the streaming applications often have real-time Quality-of-Service (QoS) re-

quirements and are widely used in embedded systems in the form of video,

audio, and gaming. The real-time QoS constraints of streaming applications

should be met in a timely manner to ensure a predictable application behav-

ior [12]. The QoS constraints of an application are related to its throughput9

6A use-case is defined as the set of applications that execute in parallel at a given time.
7Run time is defined as the time during which an application executes.
8Control-oriented applications at times can have hard real-time guarantees, e.g., in automo-

tive industry [108] and aerospace
9Throughput is the average data transfer rate that is required over a communication connec-

tion.

4 CHAPTER 1. INTRODUCTION

Motion
Compensation

Intra-Predictions

RES DCT QT

HTIHT

IQTIDCT

CAVLC
Frame
From

Memory

Frame
To

Memory

Encoded
Bitstream

H.264 Encoder Application

DCT QT Huffman Coding

Motion JPEG Encoder Application

Memory
Encoded
Bitstream

Motion
Estim-
ation

In-Loop
De-blocking Filter

Level
Shifting

Figure 1.2: Video Application Standards Become More Complex.

and latency10 requirements [12], and can fall into soft, firm, and hard cate-

gories. In applications with soft real-time quality constraints, the temporal

behavior is not critical to preserve the functional correctness of SOC. For in-

stance, during the video conferencing involving H.264 application, an occa-

sional frame’s processing deadline miss can be tolerated. On the other hand,

the applications with firm and hard real-time quality constraints can not afford

such a deadline miss. In these applications, the temporal behavior is critical

to preserve the functional correctness of the SOC. Notably, the applications

with firm and hard QoS requirements differ with each other in a safety or

security aspect. The applications with firm requirements are not safety criti-

cal and can be found in consumer electronics, e.g., a Software-Defined Radio

(SDR) [98]. On the contrary, in applications with hard real-time requirements,

along with satisfaction over the quality constraints, an additional aspect of cus-

tomer safety is also introduced. The applications with hard constraints occur

in the automotive industry [108] and aerospace. Hence we can say that SOCs

can have applications with diverse natures, i.e., with different performance

constraints. For the thesis, we consider streaming applications that execute on

FPGA architectures, and have soft and firm QoS constraints [95].

The end-user influence has also become a driving force in implementing SOC

designs. The end users are pushing the vendors for better service quality [12],

10 Latency stands for the amount of time data takes to traverse the communication connection.

1.1. TRENDS 5

Motion
Estimation

Communication Architecture

Intra-
Predictions

Motion
Compensation

RES DCT QT CAVLC

HT IHT IQT IDCT
In-Loop

De-Blocking
Filter

MEMORY

Figure 1.3: SoC Architecture Example.

such as higher video resolutions. For instance, the authors in [91] show that

H.264 [75] Intra Prediction modes outperform the previously used motion

JPEG 2000 [74], in terms of both subjective (visual appearance) and objec-

tive (Peak Signal to Noise Ratio) video quality. However, the high quality of

H.264 Intra Prediction modes induce high computation as well as communica-

tion requirements [59]. Figure 1.2 shows an abstract comparison (in terms of

IP blocks) between H.264 and motion JPEG. It shows that the H.264 encoder

task graph contains more computational IPs than that of an earlier video cod-

ing standard of motion JPEG. Hence we can conclude that SOC applications

are becoming more complex.

In recent years the SOC product life cycle has shortened due to the rapid tech-

nology changes [69]. The product life cycle is defined as the period in which

the product is: (i) introduced through marketing, (ii) grows in sales, (iii) attains

the maturity during which sales revenue stabilizes, and at some point reaches

(iv) a saturation or decline stage [23]. Time to market has become a critical

factor, because shorter time to market enables a company to launch its products

ahead of its competitors.

These application trends have enforced a number of architecture trends for

the SOC implementation of these applications. We explain these in the next

Section 1.1.2.

6 CHAPTER 1. INTRODUCTION

Design Productivity Gap

0

100

200

300

400

500

1981 1985 1989 1993 1997 2001 2005 2009 2013 2017 2021 2025

Year

P
ro

du
ct

iv
ity

 (x
 ti

m
es

)

Technology Capability HW design productivity

+20%

+40%

Figure 1.4: Design Productivity Gap [68].

1.1.2 Architecture Point of View

From the architecture point of view, a SOC comprises multiple IPs and a com-

munication architecture [10,33,152]. The IPs implement computation or stor-

age to execute the set of applications11. The IPs in SOC can be programmable

processors, on-chip memories, digital signal processing units, dedicated hard-

ware, peripherals, and internal / external interfaces such as SelectMap, ICAP,

etc. [10, 162]. The IPs are made by multiple vendors and, therefore, can have

different clocks and interfaces, e.g., AXI [9], DTL [110] for IPs from Philips

and NXP, and PLB [157] for the µBlaze family from Xilinx. The IPs com-

municate (send control and functional data) with each other by making use of

standard communication protocols (e.g. Advanced eXtensible Interface (AXI)

and Device Transaction Level (DTL)) implemented by a communication archi-

tecture such as bus [10, 33], cross-bar switch [62, 151], or a Network-on-Chip

(NoC) [13, 43, 48]. Figure 1.3 is an example of a SOC architecture, where

the IPs of H.264 video encoder connect to the communication architecture.

In short, a single SOC chip can have many IPs with diverse natures in terms

of clock frequencies and interfaces, and a communication architecture is used

to implement inter-IP communication, i.e., transporting functional and control

data.

As a result of the technology down-scaling, the architecture of SOC chip has

taken a giant leap during the past twenty years or so. Modern SOCs can com-

prise tens of IP cores [55], and the designers have enforced platform-based

design to implement such complex systems [69]. The platform-based design

relies on high reuse of IPs and performs scalable IP integration in a plug-and-

11 In our discussions Memory is considered as an IP.

1.1. TRENDS 7

9
25

80
170

400
1000

2000
4000 9000

9
18

50 80 110
230

400
850

1500

1

10

100

1000

10000

2009 2011 2013 2015 2017 2019 2021 2023 2024

Year

System Performance Number of Cores

Figure 1.5: System on Chip Predicted Future Performance [69].

play fashion [123]. Through platform-based design, system designers try to

reduce the design productivity gap, which indicates the difference in between

the available and used number of transistors on a chip [55]. Figure 1.4 shows

that the number of transistors on a chip double every 24 months (annual in-

crease of 40%) [68], but the hardware design productivity (of VLSI designers)

increases annually with 20%. Importantly, the predicted trends [18, 69] show

that future systems will be far complex than the existing ones. Figure 1.5 il-

lustrates one such trend that is mentioned in [69]. It shows that in comparison

with an existing SOC in year 2009, a future SOC in year 2024 would posses

approximately 150 times more processing elements to obtain a performance

of 9000 times better. Hence we can say that the current and predicted trends

indicate SOCs with many IP cores.

In recent years, FPGAs have emerged as target architectures to implement

SOC designs [76, 85]. For instance, the modern FPGAs can now be found in

the fields of communications [114], medicine [3, 27], radio astronomy [24],

particle physics [35], and high performance computing [7, 27, 28], etc. The

architecture of FPGA can be divided into two physical planes: the logic and

configuration planes12. The logic plane executes the desired application(s),

whereas the configuration plane (re)configures13 the desired application on

the logic plane.

The increasing FPGA popularity is due to the FPGA architectures, which are

at the forefront of technology down-scaling. This trend can be observed from

12The detailed discussion on FPGA architecture can be found in Section 2.1.1.
13We define (re)configuration as the installation of new functionality in the FPGA by sending

a bitstream to a reconfiguration region.

8 CHAPTER 1. INTRODUCTION

40

90

130

180

220

65

150

V

V-E

V-II
V-II
Pro

V-4

V-5

V-6

Process Technology (nm)

1997 -- 00 2001 2002-03 20062004 2009

Years

200

300

Logic Cells (K)

100

400

500

600

Virtex-FPGA Family

Trend
Line

28K

72K
93K 99K

200K

330K

560K

V V-E V-II V-II-Pro V-4 V-5 V-6

V = Virtex

Figure 1.6: FPGA Virtex Family Logic Densities over the Years [155, 156, 158, 161,

162].

Figure 1.6A, which shows that modern FPGA features have scaled down from

220 nm to 40 nm during the last 15 years14. Consequently, the logic density

of FPGA chip has increased by approximately 2000% over the same period,

Figure 1.6B. The decreasing number of successful ASIC design starts also

motivate the use of FPGAs for SOC implementations. As stated in [113], the

number of successful ASIC design starts have significantly reduced from 4000

in 1997 to approximately 1000 in year 2008. The decline of ASIC designs is

mainly because of: (i) longer time to market that has become one of the key

element in deciding the success of SOC designs [69], (ii) high non-recurring-

engineering (NRE) cost [22], (iii) and increased mask plus wafer costs [22].

In short, the modern FPGAs use the most advanced semiconductor processes

and have become popular for SOC designs.

It is also important to note that the architectures of modern FPGAs are no

longer a mere combination of configurable interconnection network and recon-

figurable logic blocks (CLBs). The modern FPGA architectures also contain

a number of hardwired blocks [162]. Figure 1.7 illustrates the architectural

evolution for one of the Xilinx Virtex families. Over the years, in addition to

increasing the reconfigurable logic density, the Virtex families [158, 161, 162]

have been embellished with an increasing number and size of ASIC-like hard

14The new Virtex-7, which is not part of Figure 1.6, is even of smaller dimension of 28

nm [163].

1.1. TRENDS 9

1985-1992 1992-2000 2000 -2002

Block
RAM

Logic MAC
Units

Clock
Management Unit

Progra-
mmable
IO

2002 - 2004 2004 - 2005 2005 - 2009

DSP
Slices

Micro-
Processor

Mult-Gigabit Transcievers

Ethernet
MAC

PCI
Interface

System Monitor

Figure 1.7: FPGA Virtex Family Architectural Evolution over the Years [155, 156,

158, 161, 162].

IP blocks. These include on-chip block RAMs, DSP slices, digital clock man-

agers, programmable IO, programmable processors, Ethernet MAC, system

monitor, transceivers, and PCI Interfaces. In existing FPGA architectures,

application IPs can be hard or soft. However, the inter-IP communication ar-

chitecture (e.g., NoC), which transports control and functional data among the

IPs, is soft only. This means, in existing FPGA architectures, the bus, switch,

or NoC is configurable and mapped on the reconfigurable resources of FPGA,

i.e., CLBs, switch-matrices, and interconnection wires.

For the convenience of the reader, an abstract view of FPGA architecture is

shown in Figure 1.8A. An FPGA is comprised of reconfigurable interconnect

and logic blocks (CLBs), and programmable hard IP blocks. The Figure 1.8B

10 CHAPTER 1. INTRODUCTION

CLB

CLB

CLB

CLB CLB

CLB

CLB

CLB

CLB

Pow
er
PC

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

IP A

IP B

Mem
ory

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

BRA
M

Soft
NoC

Configurable
Interconnect

Configurable
Logic Block

Hard IP

(A)

(B)

Figure 1.8: (A) Abstract View of FPGA Architecture, and (B) Application on FPGA.

shows an application (of Figure 1.1) that is mapped on FPGA architecture. In

Figure 1.8B, application IPs are mapped on soft and hard blocks of the FPGA,

and a soft network on chip (consisting of network interfaces and routers)15 is

used for inter-IP communication.

Existing ASIC and FPGA architectures belong to the deep sub-micron (DSM)

regime, where the delays due to long wires have become prominent. With each

developing process technology, the gap between the interconnection delay and

the gate delay is increasing [67]. Figure 1.9 shows this trend, according to

which the gap between the interconnection delay and the gate delay is expected

to increase from 2:1 for 180 nm to 9:1 for 65 nm technology. This indicates that

the communication is becoming the key performance bottleneck in the deep-

sub-micron regime.

15The detailed discussion on NoC architecture can be found in Section 2.2.1.

1.1. TRENDS 11

Figure 1.9: Interconnect Delay over Different Process Technologies [67].

1.1.3 Summary

Recapitulating the preceding discussions, we see that the technology down-

scaling has enabled system designers to converge multiple applications in a

single chip. Therefore, a number of application and architecture trends have

emerged to implement SOCs.

From the application point of view, SOC can have an increasing number of

complex applications. A user can dynamically start / stop applications, thus

forming multiple use-cases. A single SOC can be used for multiple purposes,

which means applications can impose diverse Quality-of-Service constraints.

Meanwhile, time to market has become important due to shorter product life

cycles.

From the architecture point of view, SOC applications require computation and

storage resources in the form of IPs. The IPs in turn require communication

resources for inter-IP communication to transport control and functional data.

Importantly, the technology down-scaling and platform based designs have

enabled the integration of many IPs. These IPs, which reach tens or even

hundreds in number, can have diverse clock frequencies. Meanwhile, FPGAs

are now popular (as target architecture) to implement SOC designs. The delays

12 CHAPTER 1. INTRODUCTION

in the interconnection wires of ASIC and FPGA architectures have become

prominent, due to the deep sub-micron regime. This increases the importance

of communication in comparison with the computation.

1.2 Problems

The above-mentioned trends give rise to a number of problems that need to

be addressed. The problems are explained below, and can be classified from

application and (FPGA) architecture points of view.

1.2.1 Application Point of View

The first problem is due to many applications in SOC. Due to the increasing

number of applications, all the applications might not fit in a single FPGA

simultaneously. This means at a particular time instance, not all applications

are executing on FPGA architecture. To execute the applications that do not

reside on FPGA, dynamic partial reconfiguration16 is performed. However,

the dynamically configured applications might interfere with the execution of

applications that already execute on the FPGA [60,125]. The interference can

arise due to the rerouting of signal paths (i.e., the wires that connect differ-

ent CLBs at inter-IP level) of existing applications, when a new application

is dynamically reconfigured [125]. Moreover, the interference can be in the

form of resource conflicts between the newly reconfigured application and al-

ready executing applications. For instance, the new application can induce

resource conflicts in the communication architecture, or by sharing the same

set of CLBs that are in use by the executing applications. In short, we can say

that the presence of many applications can lead to dynamic reconfiguration

of applications, which can introduce the problem of inter-application interfer-

ence.

Due to the increasing complexity of applications, a single application might

not even fit on a FPGA, which means the resources required by the applica-

tion exceed the available FPGA resources. In this situation, a complex ap-

plication is divided into multiple sub-applications [144]. For a single execu-

tion of the application, one by one, all of its sub-applications are swapped in

FPGA. A sub-application is swapped out when it completes a (partial) com-

putation. Afterwards, the next sub-application is swapped in. This implements

16Dynamic partial reconfiguration allows the reconfiguration of selected area of FPGA with-

out shutting down the applications that run on rest of FPGA.

1.2. PROBLEMS 13

dynamic partial reconfiguration at the intra-application level. However, with-

out an adequate partial dynamic reconfiguration process the state information

of a sub-application, which is swapped out of FPGA, might be lost [107].

Hence the presence of a complex application that does not fit on FPGA can

trigger dynamic reconfiguration at sub-application level, which can introduce

the problem of intra-application state loss. Dynamic inter / intra application

reconfiguration lead to interference, which is a problem because QoS may not

be met, verification is harder since you need all applications and all interleav-

ing / usecases to test. Hence we wish no interference between applications.

Applications can have different area and Quality-of-Service constraints. Some

applications might occupy large area, whereas some applications might oc-

cupy small area in an FPGA. Moreover, due to the diverse Quality-of-Service

constraints, the functional interconnect resources (e.g., communication links,

buffers, etc.) that are shared between multiple applications are utilized dif-

ferently by the SOC applications. In other words, the applications with high

throughput have high resource requirements as compared to applications with

low throughput. The diverse natures of applications, therefore, can produce

high fragmentation of resources, which makes it difficult to meet area and

Quality-of-Service constraints. The problem is aggravated with each addi-

tional application. A new application introduces additional requirements in

terms of area and throughput, which in turn can increase the probability of

resource conflict at an application level. This again makes it hard to ensure

area and Quality-of-Service requirements for SOCs that have diverse as well

as many applications.

As the number and complexity of applications increase in SOC, more time and

efforts are required to solve the issues that can come while reconfiguring and

/ or executing applications on FPGA. This means the complexity and number

of applications translate into long design time, which directly impacts the time

to market trend of SOC implementation.

1.2.2 Architecture Point of View

Each IP that is integrated in a SOC operates synchronously, i.e., an IP has its

own independent clock. However, an IP can have a different clock frequency

than the functional interconnect. This introduces multiple clock domains, due

to which the timing closure problem can arise during inter-IP communication.

Importantly, the growing diversity of IPs introduces an increasing number of

clock domains, making it improbable to achieve a single clock domain in a

SOC.

14 CHAPTER 1. INTRODUCTION

The problem of IP integration can get aggravated due to the growing number

of IPs, because the number of inter-IP communication connections increases.

The communication architecture is therefore required to serve more number

of communication connections. This in turn can raise a number of issues,

e.g., (a) redesign of the communication architecture to accommodate an in-

creasing number of connections, (b) contention of data that belong to different

connections, and (c) congestion of data that flows through the communication

architecture. In short, we can conclude that more number of IPs can introduce

the problem of more communication connections.

Generally, the timing closure of an IP in isolation is not problematic, because

its size is limited by the size of a single clock domain, and its lay-out is con-

fined in space. However, the communication architecture (e.g., NoC) can in-

troduce unpredictable delays during inter-IP communication [41]. This is due

to the soft nature of the communication architecture, which means the recon-

figurable elements (i.e., CLBs, switch-matrices, and interconnection wires) are

used to construct the communication architecture. Since the global communi-

cation wires are long and span the chip, and should operate at high speed, it is

difficult to achieve timing closure, i.e., to synthesise, and place and route them

without timing violations.

The functional interconnect serves as the backbone for the SOC, because it

provides transportation of data for all applications. The dynamic reconfig-

uration of an application involves the reconfiguration of its IPs and updat-

ing i.e., reconfiguration17 and / or reprogramming18 the functional intercon-

nect [125, 144]. Ideally, updating the functional interconnect should not affect

the executing applications. However, if it becomes inevitable to stop / pause

the execution of already running application during the reconfiguration of new

application, then the functional interconnect must be updated as fast as pos-

sible [144]. It is important to note that reconfiguration is a slow process as

compared to reprogramming. When the reconfigured part of functional inter-

connect occupies significant resources of FPGA. It will induce high reconfig-

uration overhead in terms of bitstream size and latency. A high reconfiguration

overhead might, therefore, lead to highly delayed response to execute the user

application. In short, the soft nature of functional interconnect leads to the

problem of high reconfiguration overhead.

Additionally, a soft communication architecture, which is placed in different

areas of FPGA, can also pose restrictions on the placement of application IPs.

17Configuring an IP means loading its bitstream in the configuration plane.
18Programming an IP means changing the state of its registers.

1.2. PROBLEMS 15

The reason is that due to the presence of a soft communication architecture (in

the same logic plane), an IP of a particular dimension might not be placeable.

In this situation the IP has to be partitioned into multiple smaller IPs, so that

they can be placed in the FPGA, as illustrated in Section 3.2. To solve the

problem of restricted IP placement, which is worse with the soft functional

interconnect, communication and computation should be separated from each

other. In short, the soft nature of functional interconnect causes the problem of

restricted IP placement.

The existing FPGA architectures have small feature size, and are therefore,

prone to faults [1,2,37,142]. The chances of FPGA to become faulty increases,

if it is used for mission-critical systems or exposed to harsh external conditions

(e.g., cosmic radiations). The radiations can flip the bits in the memory cells of

the configuration plane, thus resulting in wrong values for the memory cells.

A value in the memory cells of configuration plane can be propagated to the

logic plane [86], i.e., in CLBs, IPs, and interconnection network, resulting in

an unreliable logic plane. In other words, due to small feature sizes and harsh

external conditions, faults can arise in FPGAs.

1.2.3 Summary

Recapitulating the above discussion, we see that the application and architec-

ture trends have raised a number of problems.

From the application point of view, an increasing number of applications

might trigger dynamic reconfiguration at inter-application level. The dynamic

reconfiguration process might interfere with already executing applications.

Meanwhile, due to the increasing complexity of applications, an application

can be dynamically reconfigured at sub-application level. In this case, the

problem of state loss at intra-application level can arise during dynamic recon-

figuration. At the same time, due to the diversity of applications, it becomes

hard to fulfill area and Quality-of-Service constraints. Finally, an increasing

number and diversity of applications is translated into long design times.

From the architecture point of view, an increasing number and diversity of IPs

introduce difficulties in the integration of IPs in a SOC. Particularly, due to the

diversity of IPs multiple clock domains exist in a SOC, which create the prob-

lem in achieving the global synchronisation. The technology down-scaling has

resulted in small feature sizes for FPGA architectures, which are more prone

to faults. Moreover, the soft nature of the functional interconnect can give rise

to multiple problems that include: a) hard to achieve timing closure for inter-

16 CHAPTER 1. INTRODUCTION

IP communication, b) high reconfiguration overhead, and c) restrictions on the

placement of IPs in FPGA.

1.3 Requirements

Base on problems in the previous Section 1.2, we impose nine requirements

that should be fulfilled for a successful SOC design.

1. Globally Asynchronous Locally Synchronous (GALS) techniques are re-

quired to solve the problem of single clock domain. In a GALS envi-

ronment, the synchronous IPs communicate with each other in an asyn-

chronous fashion. This can be exercised by using asynchronous wrap-

pers or bisynchronous FIFOs to connect two distinct clock domains [82].

2. Scalable IP integration is required to solve the problem hard to achieve

IP integration. This can be achieved by using a communication architec-

ture, supported by a design flow, with an inherent modular and scalable19

nature.

3. Communication and computation should be separate from each other

to alleviate restrictions on IP placement. This can be achieved at the

physical level, i.e., communication architecture and computational IPs

both do not coexist in the same logic plane.

4. Fast updates for the communication architecture should be performed

to reduce the reconfiguration time of a dynamically started new applica-

tion.

5. Composable dynamic reconfiguration is required to overcome the prob-

lem of interference during inter-application dynamic reconfiguration.

Composable dynamic reconfiguration ensures that no interference is ex-

perienced during the steady state or dynamic run time reconfiguration.

This can be achieved when the principles [80] of error containment, non-

interfering interactions, and stability of prior services are fulfilled, while

applications are executed or dynamically started and stopped in FPGA.

Here, avoiding error containment means that errors in one application

are not propagated to other application(s). Stability of prior services

19Scalability is the ability of something (hardware of software) to adapt to increased de-

mands [116].

1.4. TECHNIQUES 17

means that a dynamically inserted application has no impact and con-

flict with the logic and communication plane resources of the existing

application(s). Non-interfering interactions mean that application dur-

ing its execution time does not affect the other applications as long as

their allocation remains unchanged.

6. Persistent-state dynamic reconfiguration is required to overcome the

problem of state loss during intra-application dynamic reconfiguration.

Persistent-state dynamic reconfiguration makes sure that data is not lost

during intra-application dynamic reconfiguration [94, 107]. This means

the state information (spread at multiple places in the system) of the sub-

application must be saved, when it is swapped out. It is essential to avoid

unpredictable behavior of the system.

7. Predictability is required to offer good application QoS, and avoid un-

predictable application behavior and architecture. At the application

level, predictability is required to fulfil QoS, i.e., throughput and latency

constraints [48]. At the architectural level, predictability is required to

resolve the timing closure issues of the soft communication architecture.

8. Reliable architecture for the target FPGA to ensure that the applications

always execute on a fault-free FPGA.

9. Automation, which refers to having parts of the design process done by

tools, is required to overcome the problem of high design times. Au-

tomating the process of binding20 of application to FPGA can directly

impact the time to market by reducing the design and verification efforts.

1.4 Techniques

To fulfill the above requirements, we propose a number of techniques that

are shown in Table 1.1. We position the trends, problems, requirements, and

techniques, where the order in which techniques are explained defines the order

of Table 1.1 rows.

20An application is said to be: (i) placed when its IPs are placed on FPGA logic plane, (ii)

mapped when its IP ports are connected to the functional interconnect, and (iii) allocated when

its IPs can communicate (after programming the NoC) with each other as per QoS constraints.

We term the whole process of placing, mapping, and allocation as binding.

18 CHAPTER 1. INTRODUCTION

Table 1.1: Overview Of Trends, Problems, Requirements, and Techniques

Trends Problems Requirements Techniques

Diverse Many GALS Hardwired

IPs Clock Environment Network on Chip

Domains (1)

Many Many Scalable IP Hardwired

IPs Connections Integration (2) Network on Chip

Soft Inter-IP Restricted Separate Hardwired

Interconnect IP Placement Communication Network on Chip

(Layout Trend) & Computation (3)

Soft Inter-IP High (Re)Con- Fast Updates for Hardwired

Interconnect figuration Communication Network on Chip

(Update Trend) Overhead Architecture (4)

Soft Inter-IP Hard to Meet Predictability Hardwired

Interconnect Timing (7) Network on Chip

(DSM Trend) Closure

Short High Automation Design Flow to

Time to Design (9) Bind Applications

Market Times on FPGA

Diverse Hard to Meet Predictability Design Flow to

Applications Area & (7) Bind Applications

QoS on FPGA

Constraints

Multiple Inter- Composable 3-Tier Model

Applications Application Dynamic for Composable

Interference Reconfiguration Dynamic

(5) Reconfiguration

(Too) Large Intra- Persistent- 3-Tier Model

Applications Application state for Persistent-

State Dynamic State Dynamic

Loss Reconfiguration Reconfiguration

(6)

Small FPGA Increasing Reliable Online

Feature size Faults Architecture (8) Testing

1.4. TECHNIQUES 19

1.4.1 Hardwired Network on Chip

In a FPGA architecture, the presence of an embedded hardwired system level

interconnect can fulfill a number of requirements that have discussed before.

The embedded system level interconnect provides inter-IP communication,

and can be a hardwired network on chip (HWNOC). In the following discus-

sion, we see that how the presence of a HWNOC in a FPGA is helpful to fulfil

the requirements of a GALS environment, scalable IP integration, decoupled

communication and computation, fast updates for the inter-IP communication

architecture, predictable architecture, and automation.

To cross a clock domain from IP to NoC, the HWNOC decouples communi-

cation from computation by using bi-synchronous FIFOs. By doing this, the

hardwired NoC provides a globally asynchronous locally synchronous plat-

form, where all IPs can run at their (variable) clock speeds.

In our newly proposed FPGA chip, the hardwired NoC can serve multiple

connections to transport inter-IP communication data, simultaneously [145].

Moreover, the HWNOC exhibits a scalable and modular architecture, and is

made up of reusable blocks (i.e., network interfaces, routers, and connecting

links) [41]. An increasing number of IPs can demand a bigger interconnect

than the HWNOC topology, the dimensions of which have been decided by

the FPGA manufacturers at the fabrication time of FPGA chip. However, the

HWNOC due to its modular nature can be extended into the reconfigurable

logic plane of FPGA and without changing the existing parts, as shall also

discuss in Section 4.7 and show in Figure 4.9. This means that redesign of the

HWNOC architecture is not required as the number of IPs increases.

In our FPGA chip, the hardwired interconnect does not occupy space in the

FPGA reconfigurable plane. This means the restrictions on IP placement,

which are caused by the layout of the conventional soft function intercon-

nect, no longer exist. Instead, more IPs can be placed, because the FPGA

reconfigurable plane will only be reserved for the SOC IPs and not for inter-

IP communication architecture. In short, the communication and computation

are physically disjoint because of the hardwired nature of the HWNoC. The

presence of HWNOC as such does not impose constraint on the design of an

IP except that in our architecture, an IP consists of a data-path to execute a

specific functionality and a protocol shell to exchange data with the HWNOC.

The connection between a protocol shell and the HWNOC is soft that is made

up of FPGA reconfigurable elements such as interconnection wires and switch

20 CHAPTER 1. INTRODUCTION

matrices21.

The dynamic addition / removal of applications can trigger an update in the

inter-IP communication architecture. An FPGA with a hardwired interconnect

(e.g., HWNOC) requires less time to update, as compared to an FPGA with

a soft interconnection (e.g., a soft bus, crossbar or NoC). This is because the

hardwired NoC can be updated by simply programming the registers. On the

contrary, a soft interconnect, only if not a soft NoC, can only be updated after

loading the bitstream. Importantly, the programming of registers can be done

at a faster speed as compared to the bitstream loading [41]. Thus requiring

shorter time cycle to update the inter-IP communication architecture during

dynamic reconfiguration process.

The architecture of HWNoC is predictable, because the timing closure issues

are solved at design time22 of FPGA. For instance, the global wires that can be

required (to connect adjacent routers) in case of a soft functional interconnect

are no longer required for the hardwired NoC. Instead, these are replaced with

optimised segmented wires with well-defined timing characteristics. There-

fore, the HWNoC can transport the data from one IP to another IP in a pre-

dictable amount of time, provided application (QoS compliant) resources are

allocated at compile time.

The design and verification times of complex systems are continue to grow.

The HWNoC can reduce these by providing a pre-verified, and stable com-

munication architecture with tested electrical parameters. The presence of

HWNoC, therefore, helps the automation process by introducing short design

and verification time cycles for FPGA-based SOC.

However, the cost of the above-mentioned benefits of the HWNoC should

not be prohibitively high. Moreover, embedding a HWNoC should not af-

fect the architecture of the primitive reconfigurable blocks of the FPGA, i.e.,

CLBs and switch-matrices. This will then encourage the vendors to intro-

duce FPGAs with hardwired NoC by embedding as a separate IP, and without

changing the FPGA reconfigurable logic plane.

21Please refer to Section 2.1.1 for the detailed discussion on the architecture of FPGA recon-

figurable plane.
22As explained in Section 2.1.2, we split design time and compile time in two distinct phases,

here we intend the former only.

1.4. TECHNIQUES 21

1.4.2 Design Flow to Bind Applications on FPGA

The design flow can meet a number of requirements that include automation

and predictability. In the following discussion, we discuss these one after the

other.

The design flow overcomes the problem of long design times by automating the

process of binding SOC applications to FPGA. First, the design flow dimen-

sions the FPGA architecture from the specifications, i.e., FPGA topology and

dimensions. Then, from the given application specifications, i.e., task graph

and Quality of Service requirements, the design flow determines the binding

of application to FPGA architecture, at compile time23. For each application,

the binding algorithm has three responsibilities: (a) on which logic elements

of FPGA an application IPs are to be placed, (b) to which ports of the hard-

wired NoC the IPs are to be mapped, (c) which paths are to be allocated, in the

hardwired NoC, to transport data between the IPs.

The binding solution, therefore, takes into account the required (application)

resources and available (FPGA) resources across both the logic and commu-

nication planes, simultaneously. The binding algorithm, which is triggered

during the compile time phase of the design flow, ensures the predictability.

In other words, the binding of application is performed only and only if its

QoS constraints are fulfilled at compile time. For this purpose, our binding so-

lution divides FPGA into two virtual planes (i.e., logic and communication).

The logic resources (i.e., area) are required to place the IPs, whereas the com-

munication resources (i.e., ports and throughput connections) are required for

inter-IP communication.

It is important that the binding solution should have: (a) high performance i.e.,

high success-rate while binding applications with diverse QoS constraints, (b)

low cost in terms of logic fragmentation and communication allocation.

1.4.3 Composable and Persistent-State Dynamic Reconfiguration

using 3-Tier Model

To implement composable and persistent-state dynamic reconfiguration, we

use a 3-tier reconfiguration model [143], as shown in Figure 1.10. Figure 1.10

illustrates the time-space relation, as well as abstracted interaction among the

three tiers of our reconfiguration model, which are explained below.

23Compile time is defined as the time during which the user specifications are being translated

into the executable code (for hardware and software), see Section 2.1.2.

22 CHAPTER 1. INTRODUCTION

UseCase 0 UseCase 1

(A0): System Manager

(A1): Application Manager

(A2) (A3)

Application

Figure 1.10: 3-Tier Behavior and Interaction in Multiple Use-cases

The 3-Tier reconfiguration model makes use of the System Manager (SM) as

the foundation layer, and an Application Manager (AM) per application to

ensure composability across the applications. The SM provides the services

for application-specific actions, which include: configuration of application

and programming the HWNoC to transport data for application IPs. Prior to

configuring an application, the system manager ensures that one application

can never affect another. An AM provides intra-application services, which

include I/O and storage to client sub-application. An AM also enforces data-

integrity between the sub-applications that are dynamically swapped in/out.

However, it is challenging to implement a composable and persistent-state sys-

tem even with a 3-tier reconfiguration model, because the 3-tier reconfigura-

tion model faces the challenges to maintain scalability and predictability with

an increasing number of applications. As more and more applications are in-

tegrated, the number of dynamic reconfiguration instances of applications also

increase. This in turn put more work load on the system manager that is respon-

sible for the reconfiguration of applications. In addition, with the increasing

number of applications, the level of resources sharing increases [49, 144] that

in turn increases the probability of unintended behavior of applications, due to

the inter-application interference.

1.4.4 Online FPGA Testing

To ensure a reliable architecture for a mission-critical FPGA system, we en-

force online testing24 of FPGA. However, due to the mission-critical nature of

FPGA system, the online testing can not be performed on the whole FPGA

24Online testing verifies the FPGA chip while the system is operational. It can be further

classified into structural and functional tests.

1.4. TECHNIQUES 23

chip, simultaneously [1, 142]. Conventionally, it is performed after divid-

ing FPGA into multiple (logical) regions. A test region can be: (i) a sin-

gle configurable logic block (CLB) [38], (ii) or single / multiple columns of

CLBs [2, 129]. This means at a certain point in time, some FPGA regions

are under test (region under test (RUT)), and some regions are not under test

(RNUT).

A non-intrusive online test scheme is challenging [146] to implement since the

online test process should be transparent to RNUTs. This means (a) program-

ming and execution of SOC applications that reside on RNUTs is not disrupted,

and (b) (if required) bitstreams of new SOC applications are configured onto

RNUTs. In other words, during online testing, the normal operation of RNUTs

is not affected in terms of programming, execution, and configuration. Addi-

tionally, an ideal online test scheme should possess certain characteristics. For

instance, it should detect high percentage of faults (ideally 100% faults). It

should have small fault detection latency (ideally 1 cycle). Moreover, the spa-

tial and temporal overheads that are induced by an online test scheme should

be insignificant. Here, spatial overhead accounts for an additional test hard-

ware [1], e.g., test pattern generators (TPGs) and output response analysers

(ORAs), which are needed to perform the online verification of FPGA region.

The TPGs and ORAs can be made up of FPGA reconfigurable resources, i.e.,

CLBs and interconnection wires, etc. [2]. On the other hand, the temporal

overhead is determined by the time required to configure and use the spatial

overhead. The online test scheme should be non-intrusive for RNUTs, have a

low fault-detection latency, and have low spatio-temporal overheads.

Our online test scheme, like conventional schemes, tests FPGA architecture

in region-wise fashion, but by using the hardwired network on chip as the test

access mechanism. Meanwhile, as we shall discuss in Section 3.5, our online

test scheme is non-intrusive, has a high percentage of fault detection, low fault-

detection latency, and minimum spatio-temporal overheads.

1.4.5 Summary

Recapitulating the above discussion, we see that four techniques are used to

fulfill the requirements of Section 1.3.

By having a hardwired network on chip we can: (a) have a GALS environment,

(b) integrate IPs in a scalable way, (c) separate communication and compu-

tation in two disjoint physical planes, (d) ensure fast updates for the func-

tional interconnect, (e) have a predictable communication architecture with

24 CHAPTER 1. INTRODUCTION

well-defined timing closure, and (f) help the automation process. The detailed

overview, motivation, related work, and positioning with the state of the art of

(hardwired) NoC can be found in Section 3.2.

By having a design flow, we aim to: (a) automate the process of binding of

SOC applications to FPGA from design time specifications, (b) ensure appli-

cation level predictability by binding an application, only and only if, its QoS

constraints are fulfilled. The detailed discussion on the proposed design flow

can be found in Section 3.1.2. The detailed overview, motivation, related work,

and positioning with the state of the art automated binding approaches can be

found in Section 3.3.

By using a 3-tier model, we aim to fulfill the requirements of: (a) composabil-

ity, i.e., dynamically inserted (sub)applications do not interfere with other exe-

cuting (sub)applications, (b) persistent-state, i.e., the state information (spread

at multiple places in the system) of the sub-application must be saved, when it

is swapped out and restored when swapped in. The detailed overview, motiva-

tion, related work, and positioning with the state of the art of 3-tier reconfigu-

ration model can be found in Section 3.4.

By using an online test scheme, we aim to: (a) ensure that applications always

start execution on a reliable FPGA architecture, (b) keep a non-intrusive be-

havior for the already running applications. The detailed overview, motivation,

related work, and positioning with the state of the art of online test schemes

can be found in Section 3.5.

1.5 Problem Statement

In this thesis we address the problems listed in Section 1.2, resulting in re-

quirements of Section 1.3. We propose to solve them by the techniques of

Section 1.4 (and Chapter 3), as shown in Table 1.1.

1.6 Thesis Organisation

This thesis is organised as follows.

Chapter 2 provides background information about FPGAs and NoCs.

Chapter 3 describes the details of our proposed solution. Moreover, we pro-

vide the overview, motivation, and positioning of the techniques that use the

proposed solution (FPGA with hardwired NoC) to fulfil the requirements of

1.7. THESIS CONTRIBUTIONS 25

Section 1.3.

Chapter 4 provides the architecture of our proposed FPGA. It begins with ex-

plaining the hardwired NoC architecture, followed by expounding the FPGA

logic plane architecture, and at the end illustrating the hard and soft partition-

ing of components in both the logic and the communication planes of FPGA.

The results and analysis of the proposed architecture are also provided.

Chapter 5 explains our unified placement, mapping, and allocation scheme

that at compile time binds applications to FPGA after ensuring the predictable

performance for them. The results and analysis of the proposed application

binding scheme are also provided.

Chapter 6 illustrates the booting procedure for FPGA, and a 3-tier model

for composable and persistent-state run time application reconfiguration. The

results and analysis about the configuration of the proposed architecture are

also provided.

Chapter 7 explains the procedure for online testing of FPGA. It is performed

to ensure a reliable architecture for the executing application. The results and

analysis are also provided for the proposed online test scheme.

Chapter 8 shows the complete picture, i.e., from design time specifications to

compile time application to FPGA binding, and run time reconfiguration, ex-

ecution, and testing procedures of a real world state-of-the-art H.264 encoder.

Chapter 9 concludes our work and presents directions for the future work.

1.7 Thesis Contributions

Apart from identifying the trends, problems, and requirements imposed by the

future FPGA-based SOCs (Chapter 1), the main contributions of the thesis are

as follows. The citations indicate where the contribution has been published

before.

1. An FPGA architecture with hardwired NoC and multiple test configu-

ration functional regions (TCFRs), where each TCFR has its own con-

figuration circuit [41, 145], see Chapter 4.

2. A HWNOC as the unified communication architecture to transport test,

configuration, control, and functional data [143,144,146], see Chapter 6

and Chapter 7.

26 CHAPTER 1. INTRODUCTION

3. A binding scheme that unifies the process of placement, mapping, and

allocation while binding application to FPGA [147], see Chapter 5.

4. A 3-tier model to perform composable and persistent-state dynamic run

time reconfiguration for applications [143, 144], see Chapter 6.

5. An online test scheme that finds out the reliability of the proposed

FPGA architecture, and without producing intrusiveness with execut-

ing applications [146], see Chapter 7.

2
Background on FPGA & Networks on

Chip

In this chapter we provide the preliminary background information about the

architecture and design flow of FPGAs in Section 2.1. Afterwards, we explain

the architecture and design flow of NoCs in Section 2.2. Lastly, we provide

the concluding remarks of the chapter in Section 2.3.

2.1 Background: Field Programmable Gate Array

In this section, we describe the architecture and the design flow of FPGAs. We

have used a Xilinx FPGA for our analysis and experiments [159]. Therefore,

the discussion in this section will use Xilinx specific terminology, but other

FPGAs work similarly.

2.1.1 FPGA Architecture

The architecture of an FPGA can be divided into a logic plane to execute the

desired functionality, and a test configuration plane to configure and test the

desired functionality on the logic plane. In the following discussion, we will

explain the architecture of both the planes that are shown in Figure 2.1.

27

28 CHAPTER 2. BACKGROUND ON FPGA & NETWORKS ON CHIP

IOB IOB IOB IOB IOB IOB

IOB

IOB

IOB IOB IOB ICAP IOB IOB

IOB

IOBCLB

CLB

CLB

Logic Plane
Test and

Configuration
Plane

IOB

IOB

(A)

(B)

CLB

Soft
Blocks

Switch Box

Routing
Channels

CLB

CLB

CFG
CKT

CLB = Configurable Logic Block, IOB = Input Output Block
SMAP = Select Map Port, CFG CKT = Configuration Circuit

Configuration Memory Cell
Associated with a CLB

BRAM

BRAM Power
PC

Power
PC

JT
A

G

SM
A

P

Configuration
Memory Cell

Figure 2.1: Architecture of Conventional FPGA with (a) Logic, and (b) Test and

Configuration Planes [124].

Logic Plane Architecture

Modern FPGAs [158] comprise an array of input output blocks (IOBs)1, soft

and hard logic blocks, and interconnection network, Figure 2.1A. The soft

logic blocks are configurable and called configurable logic blocks (CLBs),

whereas the hard blocks are programmable and can include Block RAMs and

processor units (e.g. PowerPC), etc. The interconnection is configurable and

is used to connect the (hard and soft) logic blocks.

The Configurable Logic Blocks (CLBs) are the main logic resource to imple-

ment sequential as well as combinatorial logic. In FPGA (e.g. Virtex-4), a

CLB consists of four interconnected slices that are grouped in pairs, see Fig-

ure 2.2A. Each slice2 consists of two logic-function generators (or look-up ta-

bles), registers, and multiplexers, as shown in Figure 2.2B. The logic function

1The Input Output Blocks (IOBs) are not relevant for the thesis. Therefore, we do not discuss

them in the following.
2The remaining details of the slice, e.g., carry logic are omitted to keep things simple.

2.1. BACKGROUND: FIELD PROGRAMMABLE GATE ARRAY 29

Slice2

Slice3

Long Lines

Hex Lines

Single Lines

Slice0

Slice1

LUT

Clock Line

Register
M
U
X

LUT Register
M
U
X

(A)

(B)

Switch
Matrix

+
General
Routing

Double Lines

Figure 2.2: Architecture of (A) Configurable Logic Block (CLB), and (B) a CLB

Slice [159].

generators or look-up tables (LUTs) have 4 inputs and one output. This means

that a 4-input LUT can implement any arbitrarily defined four-input Boolean

function.

The interconnection network, which connects the logic blocks, is comprised of

a network of routing channels and switch matrices, as shown in Figure 2.1A.

The Figure 2.1A shows that each logic block is surrounded by routing chan-

nels that are connected via switch boxes. The routing channels contain wires of

different lengths to provide local and global routing resources. Local routing

resources are used to connect adjacent logic blocks. Global routing resources,

on the other hand, are used to connect the non-adjacent logic blocks, i.e., the

blocks that are separated by multiple logic blocks. The wire segments in a

routing channel can be categorised as long, hex, double, and direct, see Fig-

ure 2.3. The switch boxes are configured to connect the wire segments to form

30 CHAPTER 2. BACKGROUND ON FPGA & NETWORKS ON CHIP

Long Line

Hex Line

Double Line

Fast Connections

Single Lines / Direct Connections

Figure 2.3: Different Types of Wires to Connect Logic Blocks.

signal paths between the logic blocks.

It is important that the elements (i.e. CLBs, IOBs, and interconnection net-

work) of the logic plane are associated with memory cells in the configuration

plane, as shown in Figure 2.1B. The architecture of the configuration plane is

explained in the following discussion.

Test Configuration Plane Architecture

The test configuration plane architecture [124] comprises memory cells to store

the configuration bits, and the configuration circuit to load the bitstream in the

memory cells, see Figure 2.1B.

The process of loading the bitstream to FPGA memory cells is called configu-

ration. FPGA configuration, in turn, implements the desired functionality on

the FPGA logic plane. However, it is important to note that the configuration

memory is arranged in frames, which are the smallest addressable unit of the

configuration memory [154]. This means the configuration process must be

performed in a frame-wise manner. An FPGA device has a specified frame

count, frame length, and bitstream size. For instance, the configuration mem-

ory of Virtex-4-XC4VLX200 device is divided into 39,120 frames, each of

which consists of 41 32-bit words [154]. The bitstream size3 is, therefore,

3The bitstream size equals the number of configuration frames times the number of words

2.1. BACKGROUND: FIELD PROGRAMMABLE GATE ARRAY 31

JTAG SMAP

Test and Configuration Plane

Logic Plane

ICAP

JTAG SMAP

ICAP

IPA IPB

IPC

Soft
NoC

(A) (B)

Figure 2.4: (A) High Level View of Conventional FPGA Architecture, and (B) Ap-

plication on FPGA.

1,494,204 words.

The FPGA configuration circuit is used to load the bitstream to the desired

configuration memory location. The configuration circuit is comprised of a

number of units that include state machine, packet processor, address decoder,

and multiple configuration registers etc. (not shown here to keep the diagram

simple) [124]. A number of interfaces can be used to configure the elements

of the logic plane. In case the bitstream is loaded by using an external host PC,

then a JTAG or SelectMap port is used. An internal configuration port (ICAP)

is also available, by using which the FPGA is configured by an internal entity

in the logic plane, e.g., the PowerPC processor.

It is important that the same configuration circuit and JTAG port can be used to

transport the test data. The test data consists of test bitstreams and stimuli to

verify the correctness of the logic plane regions, which can be used by multiple

applications.

Application on FPGA Architecture

In this section, we briefly explain the roles of different FPGA components to

execute applications.

For the convenience of the reader, an abstract view of FPGA architecture is

shown in Figure 2.4A. An FPGA consists of a logic plane, and a test and con-

figuration plane. (1) The configuration data (or bitstream) for an application is

transported by using the configuration circuit in test and configuration plane

per frame [154].

32 CHAPTER 2. BACKGROUND ON FPGA & NETWORKS ON CHIP

and any of the JTAG, Select Map, or ICAP ports. (2) It is important that the

same configuration circuit and any of the JTAG, Select Map, or ICAP ports can

be used to transport test data to test an application regions. (3) After configu-

ration, application IPs and the associated functional interconnect are placed in

the FPGA logic plane, see Figure 2.4B. The soft functional interconnect can

be a network on chip (consisting of network interfaces and routers)4, which is

used for inter-IP communication. It is important that in the conventional FPGA

architecture both the IPs and the functional interconnect exist in the logic plane

of an FPGA, as shown in Figure 2.4B.

2.1.2 FPGA Design Flow

The design flow to configure applications on an FPGA can be divided in three

phases [153], i.e., design time, compile time, and run time, as shown in Fig-

ure 2.5. In the following discussion, we explain the phases separately.

Design Time

Design time includes the definition of the hardware and software architecture,

i.e., the common use of design time. We however split off the compilation and

synthesis phases from design time. During the design time, the input specifica-

tions are provided which include: (a) target FPGA architecture, (b) application

IPs, and (c) user constraints. The IPs can be specified by using schematic or

Hardware Description Language (HDL), such as VHDL or Verilog. For com-

plex designs, a HDL is used because it isolates the designer from the details

of the hardware, providing a faster way for the design specifications. The

user constraints are provided in a User Constraint File (UCF), and include

placement and timing constraints. The placement constraints can constraint

the placement of IPs on the target FPGA, whereas the timing constraints are

used to constraint the path timings at intra-IP and inter-IP levels.

Compile Time

The compile time phase can be subdivided into synthesis, binding, and bit-

stream generation processes.

Synthesis: After a design is specified it is synthesised. In the Synthesis phase,

the VHDL / Verilog code is translated into a device netlist format. This means

4The detailed discussion on NoC architecture can be found in Section 2.2.1.

2.1. BACKGROUND: FIELD PROGRAMMABLE GATE ARRAY 33

D
es

ig
n

T
im

e
C

om
pi

le
 T

im
e

R
un

 T
im

e

RTL Descriptions
of IPs

Behavioral
Simulation

Functional
Simulation

Static Timing
Analysis

D
es

ig
n

V
er

ifi
ca

tio
n

Synthesis

FPGA Device

Generate Bitstream

Configure, Program, and Run FPGA Device

Application Specifications Architecture Specificatio ns

User Constraints

Circuit Netlist

Bitstreams

Mapped
IP I/O Ports

Placed
IP Logic

Elements

Allocated and
Routed

IP Logic Elements

Binding (Map, Place, and Allocate)

Figure 2.5: Design Flow of Binding Application on a Conventional FPGA.

that a complete circuit is generated that is comprised of gates, flip flops, etc.

The resulting netlist is saved to an NGC (Native Generic Circuit) file for Xilinx

Synthesis Technology (XST). The synthesised design can be verified by using

Behavioral Simulation (RTL Simulation) that verifies the RTL (behavioral)

code.

Binding: Once the synthesised design is available, it is implemented on the

target FPGA device. For this purpose, the Binding process performs the map-

ping of synthesised circuit onto the target device. This process consists of three

steps: (a) translate, (b) map, and (c) place and route.

The Translate process assigns ports in a synthesised design to the physical el-

ements of the target device and specify timing requirements of a design. The

physical elements could be pins, switches, buttons, etc. For this purpose, the

34 CHAPTER 2. BACKGROUND ON FPGA & NETWORKS ON CHIP

Translate process is provided with the input netlist files that are generated dur-

ing the synthesis process. A user constraint file (UCF) is also provided that is

specified during the design time. The output of the Translate process is saved

as an NDG (Native Generic Database) file.

The Map process maps the logic blocks of the NGD file onto the logic blocks

of the target FPGA device. The logic blocks of the target FPGA can be con-

figurable logic blocks (CLBs), and input output blocks (IOB), etc. For this

purpose, the Map process divides the whole circuit (of the NGD file) into sub-

blocks such that they can fit into the FPGA logic blocks. The output of the

Map process is an NCD (Native Circuit Description) file.

The Place and Route process connects the logic blocks that are obtained from

the Map process. In other words, it allocates the FPGA interconnection re-

sources for inter-IP and intra-IP data transportation. The output of the Place

and Route process is a completely routed NCD file.

During the Binding phase, the design can be verified at various stages, as

shown in Figure 2.5. This could be Functional simulation, which is performed

after the Translate process. Functional simulation gives information about the

logic operation of the circuit. Moreover, Static Timing Analysis can also be

performed after the Map or Place and Route process. This is performed to

obtain the timing reports (signal path delays) for the input design.

Generate Bitstream: The Generate Bitstream process converts the output of

the Place and Route process into a bitstream. Conventionally, the configura-

tion bitstream consists of multiple packets, where each packet contains com-

mands and configuration data. From a routed NCD file, the Generate Bitstream

process produces a .BIT file.

Run Time

At run time, an external host PC or an internal processing unit (e.g., a PowerPc)

can be used to configure the device. The FPGA device is configured using the

bitstream that was generated at compile time. However, it is not necessary to

configure the whole FPGA, instead by using dynamic partial reconfiguration

an FPGA can be partially configured [125,141]. In partial reconfiguration, the

bitstream loading of an IP or an application can be performed. Moreover, a

non-relocatable bitstream, if required, can be loaded to the same FPGA region

for more than once. In Chapter 6, we explain and compare the configuration

process of the conventional FPGA and our proposed FPGA.

2.2. BACKGROUND: NETWORKS ON CHIP 35

2.2 Background: Networks on Chip

Different system level interconnects can be used for inter-IP communications.

These include point-to-point [63], busses [16, 125], cross-bars [21, 62], and

networks on chip [56,78,88–90,92,106,149]. We propose a hardwired network

on chip in an FPGA. Therefore, we provide the background for an NoC that

includes NoC architecture and its design flow. The subsequent discussions

are ÆTHEREAL [43, 44, 48] NoC specific, because we use ÆTHEREAL NoC

as the hardwired NoC proposed in Section 3.1. However, any NoC with the

following requirements can be used.

2.2.1 NoC Architecture

The ÆTHEREAL NoC can comprise multiple IPs, buses, network interfaces

(shell and kernel), and routers. Moreover, the NoC can have a regular / irreg-

ular topology. Figure 2.6A shows a simple NoC architecture with a regular

mesh topology. In the following discussion, we provide an overview of com-

munication inside the NoC architecture by using an example. In Figure 2.6,

we will discuss the role of different blocks of NoC when an IP (IPA) wants to

communicate with another IP (IPC).

In ÆTHEREAL NoC a logical connection is between a single master and single

slave, e.g., in Figure 2.6B a logical connection is established to transport data

between IPA and IPC. IPA can communicate with IPC by issuing a read or

write transaction and it is the job of a logical connection to transport the trans-

action. Each transaction consists of multiple request and (optional) response

message. A write request message writes the data on a specific memory ad-

dress, whereas read request message indicates the amount of data to be read

from a specific address. In return, the response message can contain acknowl-

edgment for the write operation, or data for the read operation. Therefore, a

connection consists of two channels: one request channel and one response

channel. The request channel is used to transport request messages, whereas

the response channel is used to transport response messages.

Referring back to Figure 2.6B, let us say IPA initiates a write transaction,

which is received by the local bus. The local bus, based on address, forwards

the request messages (i.e., command, address, and data) to the required NI

shell (in this case Shell 2a). Depending upon the address map, the shell then

serialises the message into individual words using the Point-to-Point Stream-

ing Data (PPSD) [47]. The serial data is then transported to the respective

36 CHAPTER 2. BACKGROUND ON FPGA & NETWORKS ON CHIP

N
I K

er
ne

l 2

b
u
s

N
I K

er
ne

l 0

N
I K

er
ne

l 3
R 0 R 1

N
I K

er
ne

l 1

R 2 R 3 IPB

IPC
IPD

NI Sh
0

IPA

NI Sh
2b

NI Sh
2a

NI Sh
1b

NI Sh
1a

NI Sh
3

IPC

N
I K

er
ne

l 2b
u
s

R 2 R 3NI Sh
2a

N
I K

er
ne

l 1

NI Sh
1a

Flits

Packets

Messages

Transactions

(B)

(A)

b
u
s

b
u
s

IPA

Figure 2.6: (A) Architecture of Network on Chip (NoC), and (B) Different Abstrac-

tions of Communication Data in NoC during Inter-IP Communication [47].

2.2. BACKGROUND: NETWORKS ON CHIP 37

input queue of the NI kernel (i.e., between protocol shell and Kernel2). It is

important that the input queue is associated with the connection that is estab-

lished between IPA and IPC. The data items stay in the input queue until the

connection is scheduled by the NI kernel scheduler, which arbitrates the in-

put queue data on the basis of time-division multiplexed (TDM) slots. The NI

kernel then converts the PPSD data into packets, and injects the packets in the

router network in the form of flow control digits (flits), where each flits is a

data unit of 3 words. The flits are routed through the router network, as deter-

mined by the packet header, until they reach the NI kernel of IPC (i.e. Kernel

1). The destination NI kernel then depacketises the received flits and puts the

payload, i.e., the streaming data, in the output queue. The respective NI shell

(i.e. Shell 1a) at IPC, then deserialises the streaming data into a request. This

in turn indicates the local bus of IPC about the write command, flags, address,

and the incoming write data. The bus then transfers the data to the attached

IPC.

After writing data, IPC sends an acknowledgment to IPA by generating a

response message. The NI shell (i.e. Shell 1a) of IPC adds a message header

and serialises the response message into streaming data that is sent back

through the NIs and routers (also referred as network). On the other side of

the network, the response message is reassembled by the master shell and

forwarded to the bus. The bus then forwards the received request to IPA.

In the following discussion, we explain the role and architecture of NoC

components.

Local Buses: Role

The local buses are attached to IPs that initiate transactions and receive trans-

actions, and are used to implement distributed memory communication [47].

An IP can use a single port to send sends data to multiple ports of multiple IPs

by using a master bus, whose architecture is shown in Figure 2.7A. Conversely,

a single port of an IP can be used to receive data from multiple IPs ports by

using a slave bus, whose architecture is shown in Figure 2.7B.

Local Buses: Architecture

A master bus connects one memory-mapped initiator port to multiple target

ports. A master bus comprises an address decoder, multiple (de)multiplexers,

FIFO, and a memory-mapped programmable port, as shown in Figure 2.7A. A

38 CHAPTER 2. BACKGROUND ON FPGA & NETWORKS ON CHIP

MU
X

C
m

d
/a

dd
r/

si
ze

write data
mask / last

re
ad

 d
at

a
m

as
k

/ l
as

t

In
iti

at
or

 id

D
e-
M
U
X

Addr
deco
der

Cmd

Write

Read

C

W

D
e-
M
U
X

T
ar

ge
t i

d

M
U
X

M
U
X

Req
Arbit

er

D
e-
M
U
X

R

C

W

R

C
m

d
/a

dd
r/

si
ze

write data
mask / last

re
ad

 d
at

a
m

as
k

/ l
as

t

Cmd

Write

Read

(A) (B)

Figure 2.7: Architecture of (A) Master Bus Attached to an Initiator Port, (B) Slave

Bus Attached to a Target Port.

local bus, based on the address of the request, multiplexes the request to the

appropriate target port. The FIFO inside the bus is used for response ordering,

which means responses are returned to the (initiator) IP in the order in which

the requests were issued. The response ordering is implemented by storing

the identifier of the target port when request was issued. Multiple transactions

may be outstanding from one master to multiple slaves.

The architecture of a master bus (i.e. address decoder, and FIFO depth) can be

dimensioned by determining the number of concurrent target ports accessed by

the attached initiator port, see as we discuss in Section 2.2.2 and Figure 2.11.

After the dimensioning phase, the number of target ports that are reachable

from each initiator port is fixed and can not be altered at run time. However,

the buses are programmable at run time which means the initiator port can be

2.2. BACKGROUND: NETWORKS ON CHIP 39

programmed to access any slave port in the network. At run time, the selection

of a target port can be made by programming the address decoder through a

memory-mapped programmable port.

A slave bus connects one memory-mapped target port to multiple initia-

tor ports. The slave bus, like the master bus, contains a number of

(de)multiplexers, FIFO, and a memory-mapped programmable port, as shown

in Figure 2.7B. However, in a slave bus the request arbiter is used in place

of the address decoder. The request arbiter is responsible for multiplexing of

requests according to a slave specific policy.

Network Interface Shell: Role

The network interface shells bridge between the memory mapped IP ports and

the streaming ports of the network interface kernel. An NI shell converts spe-

cific IP port protocols, such as AXI [9] and DTL [110] to a stream of data with

the PPSD protocol for request, and vice versa for responses. In our architec-

ture, each shell contains two finite-state-machines (FSMs) named encoder and

decoder, as shown in Figure 2.8. These are used to implement the valid / ready

handshakes per command, read / write data groups, and their (de)serialization

to / from the NI kernel ports, etc.

Network Interface Shell: Architecture

In the NoC architecture, communication is performed using a transaction-

based protocol. The master IP issues request messages (e.g., read and write

commands, and data) that are executed by the respective slave IPs. The slave

IP (optionally) responds with a response message that can contain status of the

command execution and a possible data. Therefore, NI shells are attached to

either a master or slave IP and implement the inter-IP communication proto-

col, see Figure 2.8. A master shell comprises a request encoder and a response

decoder, whereas a slave shell comprises a request decoder and a response

encoder.

For a request channel, a request (that comprises read / write commands and

their flags, read / write addresses, and a possible write data set) is received

as input by the request encoder of the master shell. A request encoder then

serialises the transaction into multiple one-word data that is presented to an

input port of the attached NI kernel. An NI kernel then uses the router network

to send the data to the destination NI kernel. The destination NI kernel after

40 CHAPTER 2. BACKGROUND ON FPGA & NETWORKS ON CHIP

cmd

address

wr_data

msg

msg

wr_resp

rd_data

msg
cmd

address

wr_data

wr_resp

rd_data

msg

encoder decoder

decoder encoder

(a) (b)

Request
channel

Response
channel

Figure 2.8: Architecture of (A) Master, and (B) Slave Network Interface Shell Archi-

tectures.

receiving the words, present them to the slave NI shell. The request decoder at

the slave NI shell, does the opposite of the request encoder, i.e. it de-serialises

the message words to indicate the attached IP about the appropriate read / write

commands, flags, address and a possible incoming write data. For the response

channel, a response that comprises write response, flags, and a possible read

data is serialised by the response encoder of the slave shell to a response mes-

sage. The response message after reaching the NI kernel of the master NI shell,

is deserialised into appropriate flag and data, Figure 2.8.

Network Interface Kernel: Role

The Network interface kernel [121] is responsible to send / receive packets to /

from a router and sending / receiving messages to / from shells. In the ÆTHE-

REAL architecture, a network interface kernel makes use of virtual point-to-

point connections between the IPs to transport data over the router network.

A connection constitutes two channels: one request channel and one response

channel. We provide guaranteed services for the communication traffic. There-

fore, each channel has its own quality of service (QoS), i.e., bandwidth and

latency guarantees. To ensure the fulfillment of required QoS, appropriate re-

2.2. BACKGROUND: NETWORKS ON CHIP 41

FIFO

FIFO

MUX

Scheduler

Packeti
zation

Channel

C
T
R
L

P1i

De-
Packet-
ization

De-
MUX

Packet

msg

Packet

msg

msg

msg

Control
Section

Input
Section

Output
Section

Credit

Space

Slot

BE / GT

FIFO

FIFO

P1o

P2o

ro

Router
Flit Port

P2i

r i

Figure 2.9: Network Interface Kernel Architecture.

source reservations are made in the source and the destination NI kernel, and

over the router network. Each request / response channel uses two queues to

store data, one in each of the two NI kernels. Hence for each connection, four

queues in total are reserved in the source and the destination network interface

kernels. End-to-end flow control is provided between the source and the desti-

nation NI kernel to avoid data loss and deadlock [51]. The flow control mecha-

nism ensures that the source NI kernel never sends data over a request/response

channel, unless there is enough space available in the corresponding queue of

the destination NI kernel [121].

Network Interface Kernel: Architecture

The architecture of the network interface kernel can be classified into three

sections, i.e., a control section, an input section, and an output section, see

Figure 2.9. In the following discussion, we present the architectural details

and inter-dependencies of these three sections.

42 CHAPTER 2. BACKGROUND ON FPGA & NETWORKS ON CHIP

The control section comprises a memory-mapped port, and three tables that

include a channel table, a space table, and a slot table. The channel and space

tables have one entry per network interface kernel port, whereas the slot table

is of arbitrary but fixed length. The slot table is cyclically traversed by the

scheduler to determine from which NI kernel port data should be injected into

the router network. The channel table contains the path of each channel that

its data traverse through the router network. The space table implements the

credits for end-to-end flow control (credits to send back to other NI) between

the NI kernels for connections.

The input section comprises multiple input ports and queues, a scheduler unit,

and a packetisation unit. Each input port is associated with an input queue, and

each input queue is associated with a channel. The input queue is used to store

and forward data from a shell to the router network. The size of each queue

is a design time parameter and is implemented, e.g., by using custom-made

ASIC first-in first-out (FIFOs) [121]. In each time-slot, the scheduler checks

if the data is available for the channel and there exist enough credits to send the

data. After finding the data and credits, the scheduler forwards the data to the

packetisation unit. In each time-slot the schedular can send 3 words (one flit)

of data to the packetisation unit. The packetisation unit afterwards constructs

a packet, which at maximum consists of 8 flits [48]. Importantly, the first flit

of the packet contains a one-word packet header and a payload of two words.

A packet header contains the path through the router network, the queue id at

the destination NI, and number of credits for NI-to-NI flow control purpose.

The output section comprises a de-packetisation unit, multiple output queues

and ports, and a credit table. The credit table, like space and channel tables,

contains one value per port. A credit table value indicates the free buffer space

available in a local output queue. The de-packetisation unit after receiving

a packet flit, inspects the packet header to find out the remote buffer space.

This information is used to update the space table. The scheduler at the source

kernel, then takes into account this value before sending data words to the des-

tination kernel. Apart from inspecting the packet header, the de-packetisation

unit forwards the payload data to the appropriate output queue. From an out-

put queue, data is consumed by the corresponding output port. As soon as

data words are consumed by the output port, the credit table is updated with

the number of credits that need to be delivered to the scheduler. These credits,

after being piggy-backed in the packet header, are sent back to the sending NI

through a reverse channel.

The input/output ports always appear in pairs and, hereafter in our discussions

2.2. BACKGROUND: NETWORKS ON CHIP 43

r i1

r i2

ro1

ro2

Flit
data

Flit
data

Flit
data

Flit
dataQ

u
e
u
e

HPU

Q
u
e
u
e

Q
u
e
u
e

HPU

Q
u
e
u
e

Switch

Figure 2.10: Router Architecture.

the term port will be used for the input / output port pair, e.g., P1 stands for

both P1i and P1o in Figure 2.9.

Router: Role

A router in NoC architecture receives a packet, and based on the specified out-

put port in the header forwards it to an attached NI kernel or (if any) to another

router. The ÆTHEREAL NoC router [48] has fixed latency for the input data,

and uses contention free routing. This in turn ensures an uncorrupted, lossless,

and ordered data transfer within the router network.

Router: Architecture

The router [48] architecture has no routing table and no notion of time-division

multiplexed (TDM) slots, Figure 2.10. Each input port of a router has one-

word queue to store the input data. For each word of input data, the router

induces a delay of three cycles. The synchronisation of the input data is per-

formed at the first stage. The second stage makes use of a header parsing unit

(HPU) to determine the output port based on the path encoded in the packet

header. In other words an HPU associates an output port with an input port,

and signals this to the cross bar switch. In the third pipeline stage the cross

bar switch sends the data from the input queue to the selected output port. The

selected output port forwards data from the input port until an End-of-Packet

44 CHAPTER 2. BACKGROUND ON FPGA & NETWORKS ON CHIP

(EoP) is encountered. Since routing is contention-free, no arbitration is per-

formed, and packets never wait in router queues.

2.2.2 NoC Design Flow

The NoC design flow is shown in Figure 2.11, and it is comprised of three

phases [48], which are explained below.

Design Time

At design time, the inputs are provided in the form of application and architec-

ture specifications. The architecture specifications include interfaces for IPs,

and NoC topology. The application specifications are provided in the form of

connections. Each connection represents communication between two IP ports

of an application, and has specific Quality-of-Service (QoS) requirements on

the NoC interconnect. Additional application specifications include uses-cases

that represent different combinations of applications that can run in parallel,

and constraints on mapping an IP ports to a specific network interface.

A NoC architecture is generated, which is comprised of buses that bridge be-

tween network and IP ports, network interface shells, network interface ker-

nels, routers, and links to connect NoC elements. Additionally, NoC resources

are dimensioned in accordance with the input application(s). These include

number of ports and queue sizes in network interface kernels, and decoder for

buses. A control infrastructure, which is part of NoC, is also generated to

program the generated NoC architecture (including buses).

Compile Time

In this phase, the physical resources of NoC are assigned to logical connec-

tions. As a first step the ports of IPs, which belong to a connection, are mapped

to NI ports. It is followed by allocation of each connection, i.e., TDM slots in

network interface kernels, and paths through the router network. The output of

the compile time phase is an application to architecture binding. The binding

here stands to map and allocate the applications all the use-cases.

2.2. BACKGROUND: NETWORKS ON CHIP 45

Task Graph (Connections b/w IPs),
QoS Requirements,

UseCases

Application Specifications Architecture Specifications

D
es

ig
n

T
im

e
C

om
pi

le
 T

im
e

R
un

 T
im

e

NoC Architecture (Topology + Control Infrastructure)

Simulation Results

Result Verification and Analysis

IP
Interfaces

Mapping and Allocation for all UseCases

Resource Allocation

Topology and
Dimensions of

NoC

NoC Architecture Dimensioning

User
Constraints

Figure 2.11: Aethereal NoC Design Flow.

Run Time

At run time, the performance of each application is verified. This is performed

after computing the worst-case minimum throughput, maximum latency, and

minimum buffer sizes per application connection. In this step, it is checked

whether the resultant application to NoC binding can fulfil the required worst-

case application(s) performance constraints. In case the application(s) con-

straints are not met, the design flow re-dimensions the NoC resources (buffers

in particular). A cycle-accurate SystemC simulation is conducted to assess the

average performance for a particular execution trace.

46 CHAPTER 2. BACKGROUND ON FPGA & NETWORKS ON CHIP

2.3 Conclusions

In this chapter, we provided the preliminary background about an FPGA ar-

chitecture, which can be divided into; a logic plane to execute the required

functionality, and a configuration plane to configure/program the logic plane

(Section 2.1.1). Next, we explained the design flow for generating application

bitstreams to be placed on a conventional FPGA architecture (Section 2.1.2).

Afterwards, we explained the background of a conventional NoC architecture

which is comprised of multiple network interfaces and routers (Section 2.2.1).

We then provided the design flow for a conventional NoC to generate an appli-

cation specific network on chip from design time specifications (Section 2.2.2).

3
Proposed Solution and Related Work

In this chapter we explain the architecture and the design flow of the proposed

solution in Section 3.1. We then explain the techniques (Section 3.2, Sec-

tion 3.3, Section 3.4, and Section 3.5) that make use of the proposed solution

to fulfill the requirements, as mentioned earlier in Section 1.3 together with

related work for each. In Section 3.6, we provide the concluding remarks of

the chapter.

3.1 Proposed Solution: FPGA with Hardwired NoC

Our proposed solution is an FPGA with a hardwired network on chip

(HWNoC). As shown in Figure 3.1, an FPGA with a hardwired NoC requires

new architecture and design flow, because such a solution deals with both the

FPGA and NoC architecture and design flow issues. Through this thesis, we

provide the architecture and the design flow for such a solution. Importantly,

the proposed solution fulfills SOC requirements that are mentioned in Sec-

tion 1.3.

3.1.1 Proposed Architecture

The existing FPGA architectures [158, 161, 162] have a single test and con-

figuration plane, and a single logic plane. Moreover, in existing FPGAs the

IPs and the communication architecture (e.g., bus or NoC) coexist in the same

logic plane. We propose innovations in the current FPGA architecture by (a)

dividing it into multiple test configuration functional regions (TCFRs), and

(b) embedding a hardwired network on chip (HWNOC) [41, 145]. Figure 3.2

shows an abstract view of our proposed FPGA architecture.

47

48 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

FPGA NoC

FPGA with HWNoC

Architecture + Design Flow Architecture + Design Flo w

Architecture +
Design Flow

Figure 3.1: Abstract View of the Proposed Solution (FPGA with Hardwired NoC).

In our proposed architecture, each TCFR represents a unified test, configura-

tion, and functional region. The hardwired NoC, which consists of routers and

network interfaces, transports the unified test (Chapter 7), and configuration,

programming, and functional data (Chapter 6) to TCFRs. The dimensioning of

TCFRs in our proposed FPGA is application independent. Though the dimen-

sions of TCFRs in our proposed FPGA are fixed at design time, but these can

range from 1 k LUTs to 32 k LUTs and even more if required. It is important

that the TCFRs are isolated at test and configuration levels, but are not iso-

lated at functional level. This means, an IP can span fully or partially multiple

TCFRs, as illustrated in Figure 3.2. Moreover, the logic plane of a TCFR is

identical to the logic plane of a conventional FPGA, i.e., consists of look-up

tables (LUTs), programmable switches, and wires.

There must be at least one IP that can program the system. This can be a CPU

that bootstraps the system by programming the HWNoC, or a hard (secure)

boot module [31, 145]. In our FPGA system, we make use of a Control pro-

cessor to bootstrap the system, Figure 3.2. Additionally, the control processor

can test, configure, and program the TCFRs by using the hardwired NoC.

More specifically we:

1. propose the architecture of the FPGA logic plane, which is a combina-

tion of multiple TCFRs.

2. propose the architecture of the FPGA communication plane, which is

an on-chip hardwired NoC.

3. define the interaction between the two planes in terms of test, configura-

tion, programming, and functional data.

3.1. PROPOSED SOLUTION: FPGA WITH HARDWIRED NOC 49

Control
Processor

TCFR
N

I K
er

ne
l

Hardwired NoC to Transport Unified Test,
Configuration, and Functional Data to TCFRs

TCFR

TCFR

N
I K

er
ne

l

N
I

R

R R

R

N
I K

er
ne

l

CFG
+

Clock

CFG
+

Clock

CFG
+

Clock

Multiple FPGA Test , Configuration , and Logic Planes

IP

Figure 3.2: Architecture of the Proposed FPGA.

4. propose a hard and soft partitioning in both the FPGA planes.

5. provide hard / soft tradeoff in both the FPGA planes.

We describe the details of the above-mentioned FPGA architecture in Chap-

ter 4.

Applications on the Proposed Architecture

In this section, we explain how IPs of an application are placed and communi-

cate with each other in the proposed FPGA architecture. For the convenience

of the reader, an abstract view of the proposed FPGA architecture is shown in

Figure 3.3A. The proposed FPGA comprises multiple test configuration func-

tional regions (TCFRs), where each TCFR consists of a logic plane, and a test

and configuration plane. The configuration data (or bitstream) for an appli-

cation is transported to any TCFR by using the unified hardwired network on

chip. Each TCFR has its local configuration circuit that, after receiving the bit-

stream, (re)configures the required logic plane resources. It is important that

the same hardwired network on chip is used to transport test data to test an

application TCFRs. After configuration, application IPs are placed in the logic

50 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

Test and Configuration
Plane

Logic Plane

CFG
+Clk

SMAP

F
Ports

Test and Configuration
Plane

Logic Plane

CFG
+Clk

F
Ports

CFG
+Clk

JTAG SMAP

CFG
+Clk

IPB

IPC
IPA

JATG

(A)

(B)

TCFR TCFR

TCFR TCFR

Unified Hardwired Network on Chip

Unified Hardwired Network on Chip

F
Ports

F
Ports

Figure 3.3: (A) Abstract View of the Proposed FPGA Architecture, and (B) Applica-

tion on the Proposed FPGA.

plane(s) of TCFR(s). However, unlike the conventional FPGA, the associ-

ated functional interconnect does not exist in the logic plane because the same

hardwired network on chip is used for inter-IP communication, i.e., to trans-

port control and functional data for application IPs, as shown in Figure 3.3B.

3.1.2 Proposed Design Flow

Figure 3.4 shows that our design flow is comprised of three phases, which are

explained below.

3.1. PROPOSED SOLUTION: FPGA WITH HARDWIRED NOC 51

Application Specification

Topology Type &
Dimensions of HWNoC

Topology &
Dimensions of TCFRs

Area & Frequencies
for soft IPs

Relocatable
Bitstreams for IPs

Map and Allocate Applications on
the HWNoC for all UseCases

Place Soft IPs of
Application on TCFRs

3-Tier Model for Composable and
Persistent-State Dynamic Reconfiguration

(Chapter 6)

Non-Intrusive Online
Test Scheme
(Chapter 7)

D
es

ig
n

T
im

e
of

 S
oC

C
om

pi
le

 T
im

e
R

u
n

 T
im

e

TCFRs
HWNoC Arch.
(Topology +

Control)

Control
Processor

F
P

G
A

 M
an

uf
ac

tu
re

rs
F

P
G

A
 U

se
rs

D
es

ig
n

T
im

e
of

F

P
G

A
 w

ith

H
ar

dw
ire

d
N

oC

Architecture Specification

Result and Analysis (Chapter 6 and Chapter 7)

SystemC Simulation

Task Graph
(Connections

b/w IPs)

Compile Time of FPGA
(Synthesis, Binding, and Bitstream Generation)

Application Binding by PUMA
(Chapter 5)

IP RTL
Description,

User
Constraints

QoS,
Use-Cases,

User
Constraints

Architecture Creation
(Chapter 4)

User Inputs

Figure 3.4: Our Design Flow for the Proposed FPGA Architecture.

52 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

Design Time

The design time specifications of FPGA with hardwired NoC can be viewed

from two point of views: (a) FPGA manufacturers, and (b) FPGA users.

The design time input specifications for FPGA manufacturers include type

and dimensions of hardwired NoC topology, size of each TCFR, total TCFRs,

hardwired NoC to TCFR mapping (i.e., how many NIs are attached to a

TCFR), and control processor. The inputs are fed to an architecture creation

tool, which generates the architectures of TCFRs and hardwired NoC. The

control processor contains different ports to configure and program the TCFRs

(Chapter 6), and test the TCFRs (Chapter 7).

The design time input specifications for FPGA users include RTL description

of IPs and user constraints. It is important that the specifications of each IP

consists of: (a) RTL description that indicates IP functionality, and (b) RTL

description of IP network interface shells (usually from a standard protocol lib,

e.g., for AXI, DTL). The user constraints define timing constraints on intra-IP

level and not on inter-IP, because inter-IP communication is taken care of by

the hardwired NoC. The inputs are fed to synthesis, binding, and generate

bitstream tools. As a result of which the relocatable bitstreams for the target

FPGA architecture are generated. Therefore, in our solution, the compile time

flow of the conventional FPGA has become a part of design time flow.

Compile Time

At compile time the outputs of design time are fed to an application to FPGA

binding tool. The tool is named PUMA that unifies the placement, mapping,

and allocation while binding an application to FPGA, Chapter 5. For this

purpose, the architecture and application specifications are provided. The ar-

chitecture specifications include TCFRs and hardwired NoC architecture. Ap-

plication specifications are provided for all the applications in SOC. For each

application the specifications include: (a) area and frequencies of soft IPs,

(b) connections between the IPs, (c) Quality-of-Service constraints for each

connection, (d) use-cases of application, and (e) (optional) user-constraints.

The PUMA tool tries to bind SOC applications on FPGA by: (a) placing IPs

in TCFRs, (b) mapping IP ports to NI kernels, (c) allocating TDM slots and

paths through the network. In case the binding fulfills QoS constraints for all

input applications, then the output is generated in the form of application to

architecture binding.

3.2. TECHNIQUE: HARDWIRED NETWORK ON CHIP 53

Run Time

The run time part of the design flow can be used to dynamically (re)configure

and program an FPGA to execute applications, Chapter 6. The hardwired

NoC and TCFR architecture takes care of composability at inter-application

level and keeps persistent-state at intra-application level during the dynamic

reconfiguration process. We can test an FPGA architecture at run time, as

described in Chapter 7. The run-time design flow ensures that the test process

does not produce intrusiveness with other running applications. At run time,

we can also verify and analyse the procedure and results by running SystemC

simulations.

Our proposed design flow provides:

1. For FPGA manufacturers, a design-time flow to generate an FPGA ar-

chitecture with a hardwired NoC.

2. For FPGA users, a compile-time flow to bind input applications to

FPGA architecture (Chapter 5).

3. For FPGA users, a run-time flow for;

• composable and persistent-state dynamic reconfiguration of appli-

cations (Chapter 6),

• a non-intrusive online test scheme to ensure that applications exe-

cute on a reliable FPGA architecture (Chapter 7).

In the remainder of this chapter, we discuss our techniques (define in Sec-

tion 1.4) that use the proposed solution (FPGA with hardwired NoC) to fulfill

the requirements of Section 1.3.

3.2 Technique: Hardwired Network on Chip

In this section, we present the overview and motivation for the hardwired NoC.

Afterwards, we provide the related work, and at the end position our technique

with respect to the existing state of the art.

54 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

3.2.1 Overview

The HWNOC, due to its embedded nature, has a fixed topology, i.e., its di-

mensions can not be changed at run time unlike a soft NoC. The HWNOC

makes use of connections that are programmable at run time, to transport data

(control and functional data) in between the IPs. In addition, by using a hard-

wired NoC we present the single-platform-serves-all concept. This means,

along with transporting the functional and control data of applications, the

hardwired NoC can transport time-multiplexed configuration data (Chapter 6),

and test data (Chapter 7) as well. Application IPs that are placed in TCFRs,

however, still make use of switch-boxes and wires for intra-IP communication.

3.2.2 Motivation

We use a motivational case study to explain how a soft functional intercon-

nect, which is stretched in FPGA logic plane, can impose restrictions in the

placement of IPs. For the motivational case study, we consider a SOC with 2

applications and an FPGA with 24 CLBs (or 6 CLB columns), Figure 3.5A

and Figure 3.5B respectively.

The soft functional interconnect is placed in the center columns of FPGA and

all application IPs are placed except IP1, which has an area requirement of 6

CLBs, Figure 3.5C. The FPGA meets the area requirements of IP1, because

it has free area equals to 6 CLBs. However, the FPGA area is fragmented

into two regions, due to which IP1 can not be placed in the FPGA. Alterna-

tively, IP1 can be placed but after being partitioned into two smaller IPs (IP1a

and IP1b), as shown in Figure 3.5D. Another option is to redesign the soft

functional interconnect to place IP1, as shown in Figure 3.5E. However, this

involves the reconfiguration of the soft NoC to accommodate IP1. This dis-

rupts the execution of other running application, i.e., A2, because during the

reconfiguration time the soft NoC is unavailable for inter-IP communication.

In contrast, the hardwired NoC does not exist in the FPGA logic plane. This

means that a hardwired NoC decouples inter-IP communication from compu-

tation. The IPs, therefore, do not face placement restrictions because of the

functional interconnect. In addition, the hardwired NoC can be used to trans-

port unified data, i.e., test, configuration, programming, and functional data.

In the following section, first we describe the related work, then we classify

and compare our our work with respect to the related work.

3.2. TECHNIQUE: HARDWIRED NETWORK ON CHIP 55

(B) (C)

A1

IP1

A2

(A) (D)

IP2

IP3

IP4

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

S
oft F

unctional Interconnect
S

oft F
unctional Interconnect

IP3

IP2

IP4

S
oft F

unctional Interconnect
S

oft F
unctional Interconnect

IP3

IP2

IP4

IP1a

IP1b

S
oft F

unctional
Interconnect

S
oft F

unctional
InterconnectIP3

IP2

IP4

IP1

(E)

Figure 3.5: Restricted IP Placement due to the Presence of Soft Functional Intercon-

nect.

3.2.3 Related Work on Conventional FPGA with Soft & Hard In-

terconnect

Our FPGA architecture comprises a hardwired NoC and multiple TCFRs, by

using which we can have: (i) decoupled communication and computation to

achieve scalable IP integration, (ii) unified data transportation, and (iii) multi-

plexed operations, i.e., configuration and test data for multiple regions is trans-

ported, simultaneously. Therefore, we will investigate the related reconfig-

urable architectures from these three above-mentioned aspects. The literature

survey is performed for schemes that use conventional FPGAs (e.g., Altera,

Xilinx) as their reconfigurable logic plane.

56 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

Conventional FPGA with Soft Interconnect

Scores of soft interconnects ranging from point-to-point [63], busses [16,125],

cross-bars [21, 62], indirect interconnection networks ,e.g., fat-tree based ap-

proaches [29,30], to NoCs [56,78,88–90,92,106,111,149] have been presented

in the literature.

These implement different cost:performance trade-offs. Larger and faster

FPGAs [162] can contain many IPs and multi-hop network solutions are sure

to gain popularity. [16] presents four communication schemes, including bus

macros, shared memories, linear array multiple bus, and external crossbars

that used for different communication modes. In [61], a reprogrammable in-

terconnect is implemented based on a LUT-based bus macro and is used to

dynamically reconfigure the attached IPs. In [21, 164], a large (928 928 bits)

crossbar using native programmable interconnects and LUTs is presented.

The authors in provide an innovative way to implement a flexible intercon-

nection architecture. They name it DRAFT, i.e., Dynamic Reconfiguration

Adapted Fat-Tree, architecture that is implemented as a central column into

the FPGA. A number of routers are used to connect the various processing el-

ements in DRAFT. The authors claim that DRAFT needs fewer resources, e.g.,

communication links, than a mesh and a fat-tree. In addition it also experiences

lower average latency than mesh and a fat-tree topology.

Integration of IPs at run time is achieved by using dynamic partial reconfigura-

tion. For a scalable IP integration, the functional interconnect and IPs must be

disjoint, otherwise they must be reconfigured simultaneously. By reprogram-

ming the functional interconnect, IPs can be dynamically added and removed

through partial reconfiguration, e.g. [16, 61, 89, 90, 125]. Only few works

reconfigure the soft interconnect itself. [63] dynamically reconfigures a point-

to-point soft interconnect and [111] shows how a soft NOC can be partially

reconfigured by adding or removing router modules at run time.

Conventional FPGA with Hard Interconnect

Only two groups have reported on hard NOCs in FPGAs [25, 39, 53]. The

authors in [53] make use of a packet-switched hardwired NoC to reconfig-

ure an FPGA, i.e., only as configuration interconnect. The hardwired NoC

serves as an additional high-level routing resource. The authors in [25, 39]

propose a hierarchical architecture for future FPGAs, consisting of two types

of regions connected by a NoC: (1) Configurable Regions (CR) consisting of

3.2. TECHNIQUE: HARDWIRED NETWORK ON CHIP 57

Table 3.1: Our Work Positioning with respect to the State of the Art on Traditional

FPGAs.

Abbreviations: Comm. = Communication, Comp. = Computation, Ops. = Operations,

xbar = Crossbar, NA = Not Applicable, T = Test, O = cOnfiguration, C = Control, F

= Functional. For example T, O, CF means three separate interconnects are used: one

for T, one for O, and one for C & F.

Scheme Comm. Separate Unified Parallel

Inter- Comm. & Data Test &

connect Comp. Config.

Hur [63] pt-to-pt No T, O, CF No

Bobda [16] bus No T, O, CF No

Sedcole [125] bus No T, O, CF No

Brebner [21] xbar No T, O, CF No

Devaux [29, 30] Fat-Tree No T, O, CF No

Hur [62] xbar No T, O, CF No

Young [164] NA No NA No

Huebner [61] NA No NA No

Marescaux [88] NoC No T, O, CF No

Nikolov [106] NoC No T, O, CF No

Wee [149] NoC No T, O, CF No

Hecht [53] hard NoC Yes T, O, CF No

Cidon [25] hard NoC Yes T, O, CF No

Gindin [39] hard NoC Yes T, O, CF No

Our hard NoC Yes TOCF Yes

Technique [41, 145]

programmable logic, (2) and Functional Regions (FR) to perform a predefined

task, e.g., general-purpose processors, DSP units, fast external interfaces, etc.

The regions are interconnected using a NoC. Given the hierarchical chip organ-

isation, the design methodology that programs such FPGA consists of follow-

ing phases: (i) division into high-level modules of roughly the size of CRs; (ii)

placement of high-level modules; (iii) implementation of each module within

a region; (iv) and inter-region routing.

3.2.4 Positioning with the State of the Art

In this section, we position our work with respect earlier presented related

work.

58 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

Traditionally, point-to-point [63], (non-) segmented buses [16, 125], cross-

bars [21,62], and indirect interconnection fat-tree based network [29,30] have

been used for data path interconnection because of their simplicity. However,

these posses a non-scalable nature and therefore, unable to meet QoS require-

ments, as the system sizes grows. For example in [21,164], even a large (928 x

928 bits) crossbar switch can connect with few IPs, using standard IP commu-

nication protocol such as AXI [9] which requires several hundred of wires per

IP. Though soft network-on-chips [88, 106, 149] present a scalable solution to

integrate IPs, but they consume a large amount of FPGA area. Hence leaving

less logic area for the IPs. Additionally, their presence restricts the placement

of IPs. In contrast to above solutions, we propose to use a hardwired NoC for

inter-IP communication.

The concept of hardwired NoC for inter-IP communication has also been pro-

posed by [25, 39]. The work of [25, 39] proposes to use a hard NoC as the

functional interconnect. Although the basic idea of a hard NoC is introduced,

no architecture details are provided. Our work differs from [25, 39] in the

following. Foremost, we combine test, configuration, control, and functional

data interconnects in the same hard NoC, which has not been proposed by any

prior work. As illustrated in Table 3.1 (Column 4), the prior works can use

the same communication architecture to transport control and functional data,

i.e., support unified control and functional data transportation. However, test

and configuration data is not transported by using the same communication ar-

chitecture. As we shall explain in Chapter 7 that by using the hardwired NoC

we can implement parallel operations of configuration and test for multiple

TCFRs. However, this has not been exercised by any of the prior works as

shown in Column 5 of Table 3.1.

Furthermore, our partitioning of the network interface (NI) in hard and soft re-

gions draws the distinction more clearly at the network versus transport layer

(see Section 4.5). For example, we firmly place routing in the hard NI ker-

nel domain. Moreover, in [25] the architecture is based on tiles (functional

regions), which can communicate only through the NoC. As we shall explain

in Section 4.3, we do not partition an FPGA in distinct functional regions

and also keep the functional regions orthogonal to the configuration regions.

Next, we define the (re)configuration and (re)programming steps required to

boot a system in Chapter 6. The requirement for guaranteed communication

services (GS) to support real-time streaming of bitstreams is not met by their

NoC (Chapter 6).

3.2. TECHNIQUE: HARDWIRED NETWORK ON CHIP 59

3.2.5 Related Work on Custom Reconfigurable Architectures

In this section, the literature survey is performed for schemes that use custom

reconfigurable architecture, and whose basic logic element is different from

the conventional FPGAs. A number of custom based reconfigurable architec-

ture have been proposed. We cover the coarse grained reconfigurable archi-

tecture to seek a comparison with our proposed approach in terms of above-

mentioned requirements, i.e., separate communication and computation, uni-

fied data communication, and parallel test and configuration approach. In the

following discussion, we will briefly outline each of these architectures, indi-

vidually.

Reconfigurable architecture workstation (RAW) [137] is a coarse grained ar-

chitecture. The RAW architecture is aimed at exploiting different kinds of

parallelism at instruction and at data levels. The RAW architecture is com-

prised of multiple tiles arranged in a 2-D mesh topology. Each tile contains a

MIPS R2000 microprocessor, ALU, different registers, a dynamic router, and a

programmable switch. A network on chip is used to provide inter-tile routing,

which connects each tile to its four neighbors. Tilera could be another similar

example that reaches 100 processing cores on a single chip [72, 139].

The Colt machine [14] is a coarse grained architecture, and uses a dis-

tributed reconfiguration mechanism called Wormhole Run Time Reconfigu-

ration (RTR). By using Wormhole Run Time Reconfiguration multiple data

ports can be used to program different sections of the chip, simultaneously. In

Wormhole RTR system a stream, used for reconfiguration, is an independent

self-steering concatenation of programming information. On the other hand,

the operand data, which interacts with other streams within the architecture,

performs a given computational problem. From an architecture viewpoint, the

work uses stream controllers to allocate and then program a path through the

chip by using one of the data ports. The stream of data proceeds through the

crossbar, and then to either the mesh of Functional Units (FUs) or to the mul-

tiplier. The stream can then go back through the crossbar to any part of the

chip or off chip via a data port.

Morphing System (MorphoSys) [131] is a coarse grained architecture. The

main component of MorphoSys is the Reconfigurable Cell (RC) array. It has

64 RCs arranged in a 2D mesh of 8 by 8 dimensions. The RC array is further

divided into quadrants of 4 by 4 16 bit RCs. Each RC features an ALU, mul-

tiplier, a register file, and a 32 bit context register to store the configuration

word. The RC interconnection network is comprised of three layers. 1) The

underlying network throughout the array is a 2D-mesh. This provides nearest-

60 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

neighbor connectivity. 2) Then comes Intra-quadrant connectivity by using

which each cell can access the output of any other cell in its row (column).

3) At the highest or global level, there are buses to route connections between

adjacent quadrants. These buses are called as express lanes and run through

rows as well as columns.

PipeRench [40] is a coarse grained architecture that is aimed to stream multi-

media applications. It is comprised of a number of 8-bit processing elements

(PEs), where each PE consists of an 8-bit ALU, a pass register file, and inter-

connection resources to communicate with other PEs. A row of PE’s create a

strip within the architecture and strips are stacked on top of each other. Each

strip consists of 16 PEs. The interconnection scheme of PipeRench features

local interconnect inside a strip, as well as local and global interconnect be-

tween strips and four global buses.

The GARP [52] architecture is a fine grained architecture. It combines a stan-

dard MIPSII processor with a dynamically reconfigurable array. GARP re-

configurable array is composed of entities called blocks. One block on each

row is known as a control block. The rest of the blocks in the array are logic

blocks, which roughly corresponds to the CLBs of Xilinx 4000 series. The

GARP architectures fixes the number of columns of blocks at 24. The number

of rows is implementation-specific, but can expected to be at least 32. The

24th column of control blocks is dedicated to managing communication out-

side the array. For fast reconfigurations, the RA features a distributed cache

with depth 4, which stores the least recently used configurations. The archi-

tecture proposes a direct connection between the reconfigurable array and the

memory.

TABULA’s [140] Time Machine is a fine grained architecture, which gives the

concept of a three-dimensional chip. It appears to be an FPGA/PLD with upto

eight stacked layers of physical logic, memory, and interconnects. However, in

reality there is only one physical layer. Unlike FPGA device that can perform

operations once per use clock cycle, the Tabula device can reconfigure and

perform eight operations in the same user clock cycle. Beginning at fold 0, the

logic operations ar performed on the data. At the end of fold 0, resources are

modified for the next fold (fold 1), according to settings stored in configuration

memory, and logic operations are performed. This process continues through

all the folds, each time with the resource being modified according to settings

stored in the configuration memory. At the completion of fold 7, the entire

user function has been performed, and the configuration of fold 0 is used again

to modify the resources for the next user clock cycle.

3.2. TECHNIQUE: HARDWIRED NETWORK ON CHIP 61

The Plastic Cell Architecture (PCA) [66] is a fined grained architecture, which

unifies the transportation of data and bitstream. It is composed of cells, where

each cell consists of two parts: a variable part as the place holder of new

configuration (Plastic), and a fixed part which is responsible to set the former

(Built-in). Built-in part configures plastic part according to given configuration

data. Plastic part has memory units, and Built-in part writes/read the config-

uration data to/from these memory cells. For this purpose, configure-in and

configure-out instructions are used. This architecture does not have support

for parallel reconfigurations.

Triptych [19], is proposed as a new FPGA architecture, for those circuits that

include both data-path elements and control logic. Triptych treats the func-

tional and the interconnect elements as a single unit. Hence it blends logic

and routing resources in a routing logic block (RLB). A Triptych RLB is capa-

ble of performing both function calculation and routing tasks simultaneously.

The RLB array is structured to match the inherent fanin/fanout tree structure

of circuit graphs. It allows the physical layout of a mapped circuit to follow

its logical structure, reducing the need for extensive routing resources. Trip-

tych falls somewhere between general-purpose and domain-specific FPGAs.

For applications with local communication, RLBs are used primarily for logic,

allowing implementations that are competitive with domain-specific FPGAs.

For more general applications such as FSMs, a higher percentage of RLBs are

used to route signals.

3-D FPGA [148] is a fine grained architecture. It is a dynamically reconfig-

urable FPGA that is comprised of three layers: i) the routing and logic block

(RLB) layer, ii) the routing layer (RL), iii) and memory layer (ML). The RLB

layer is responsible tto implement logic functions and to perform limited rout-

ing. The remaining part of the routing structures is implemented in the RL that

is formed by connecting multiple switch boxes in a mesh array structure. The

memory layer is used to stored configuration bits for both the RLB and RL.

3.2.6 Positioning with the State of the Art

In this section, we position our work with respect to earlier presented related

work.

The works of [14, 66, 148] physically decouple computation and communica-

tion planes. Therefore, can implement scalable IP integration. However, the

remaining schemes [19,40,52,131,137,140] implement computation and com-

munication in the same plane. Hence inducing restrictions in the integration /

62 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

placement of IPs.

As far as unified data transportation is considered, none of the earlier men-

tioned schemes [14,19,40,52,66,131,137,140,148] can transport all four types

of communication traffic (test, configuration, control, and functional data) by

making use of the same communication interconnect, see Table 3.2 (Column

4). Only two schemes [14, 66] support unified transportation of three types of

communication traffic, i.e., configuration, control, and functional data. How-

ever, our architecture, in addition to configuration, control, and functional data,

can transport test data as well. The architecture of [66] proposes unification of

configuration, control, and functional data by introducing cells, but no frame-

work is presented to implement it. Moreover, to exercise the above concepts

on modern FPGAs, a logic cell architecture would have to be altered. In com-

parison, we do not propose to alter it and can still implement unified data

transportation for all of test, configuration, control, and functional data.

The schemes of [14, 19, 40, 52, 66, 131, 137, 148] do not provide support for

parallel test and configuration operations. Although Tabula’s [140] time ma-

chine can provide multiple reconfigurations at one time. However, to enable

this ultra-rapid reconfiguration, configuration data is stored locally to the re-

quired resources. This local configuration memory is made to look like a stack.

As each configuration is read from the top of the stack, the next configuration

rises to the top. The current configuration goes to the bottom of the stack.

This process repeats continuously. In contrast, we just need one configuration

memory. The control processor uses multiple ports to perform multiplexed

operations, i.e. configuration and test data are transported to multiple regions

(TCFRs) simultaneously.

3.3 Technique: Binding of Applications to FPGA

In this section, we provide the overview and motivation for our technique to

achieve the required solution of application to FPGA binding. We then provide

the related work, and at the end position our technique with respect to the state

of the art.

3.3.1 Overview

Our proposed scheme performs a unified placement, mapping, and allocation

(PUMA) of applications to FPGA by:

3.3. TECHNIQUE: BINDING OF APPLICATIONS TO FPGA 63

Table 3.2: Our Work Positioning with respect to the State of the Art on Custom

Reconfigurable Architectures.

Abbreviations: Comm. = Communication, Comp. = Computation, Ops. = Operations,

xbar = Crossbar, NA = Not Applicable, T = Test, O = cOnfiguration, C = Control, F

= Functional. For example T, O, CF means three separate interconnects are used: one

for T, one for O, and one for C & F.

Scheme Comm. Separate Unified Parallel

Inter- Comm. & Data Test &

connect Comp. Config.

RAW [137] network No T, O, CF No

Colt Machine [14] xbar Yes T, OCF Yes

MorphoSys [131] buses No T, O, CF No

PipeRench [40] buses No T, O, CF Yes

GARP [52] buses No T, O, CF No

TABULA’s [140] NA No T, O, CF Yes

Plastic Cell [66] NA Yes T, OCF No

Triptych [19] custom No T, O, CF No

3-D FPGA [148] custom Yes T, O, CF No

Our Technique [41, 145] hard NoC Yes TOCF Yes

1. using a hardwired NoC as the communication plane,

2. minimizing application dependencies by decomposing it into fully / par-

tially independent clusters,

3. transforming binding (i.e., placement, mapping, and allocation) into a

single problem, while selecting an FPGA region.

1) HWNoC as communication plane: Our proposed PUMA scheme ensures

that for a successful application to FPGA binding, application QoS con-

straints are fulfilled. PUMA uses a hardwired NoC as the communication

plane. In comparison with a soft NoC, the hardwired NoC (i) does not oc-

cupy FPGA logic area and exhibits higher scalability, and (ii) poses 148 times

better cost:performance ratio (Section 4.9.6).

2) Application decomposition: Prior to performing the binding of an applica-

tion, the application is decomposed into multiple clusters. The clusters are

created by exploiting inter-IP communication dependencies, because inputs of

an IP can be dependent on the output of some other IP(s). In other words, each

cluster represents inter-communication dependencies across a group of IPs.

64 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

R0

R1

R0

R1

W

X

Y

Z

W

X

Y

Z

800
MB/s

600
MB/s

300
MB/s

1400
MB/s

W

X

Y

Z

900
MB/s

110
LUTs

90
LUTs

50
LUTs

R0

R1

W

X

1100
MB/s

80
LUTs

80
LUTs

Z

Y

(B): Logic-Centric (C): Comm.- Centric (D) : Possible Solution

PRR Size = 100 LUTs, Available Bandwidth at R0-R1 Link = 1200 MB/s
IP Sizes (in LUTs): W = 30, X = 60, Y = 20, Z = 50

PRR0 PRR0 PRR0

PRR1 PRR1 PRR1

(A): Task Graph

70
LUTs

Figure 3.6: Motivational Case Study for Unified Placement, Mapping, and Alloca-

tion.

This is done because applications are becoming increasingly complex [127].

Therefore, picking an application as a whole and try every possible binding

possibility becomes highly time consuming. Alternatively, there are different

schemes [112] that can allow cluster or level-based traversal of an application

task graph. Our PUMA scheme goes for the cluster-wise decomposition of

applications.

3) Transforming binding into a single problem: For each cluster, PUMA takes

into account the required application resources and available FPGA resources

in both the logic and communication planes, simultaneously. Hence the tempo-

ral (time-slots) and the spatial (logic CLBs, communication links) constraints

of an application are considered simultaneously, while selecting an FPGA re-

gion.

3.3.2 Motivation

Let us motivate the need for a unified placement, mapping, and allocation

scheme by means of a simple case study. We have an application to be bound

to two partial reconfigurable regions (PRRs), Figure 3.6A. The PRRs are con-

nected to a NoC. Single or multiple IPs can coexist in a single PRR, provided

these do not exceed a PRR area, i.e., 100 LUTs. An NoC link, which provides

a maximum of 2000 MB/s bandwidth, can be shared by multiple applications.

In our case study, 40% of the R0-R1 link is utilized by other existing applica-

tions (not shown for the simplicity) of the system. Therefore, the R0-R1 link

has a spare bandwidth of 1200 MB/s for our test application.

As shown in Figure 3.6A, the test application comprises an IP W, which serves

3.3. TECHNIQUE: BINDING OF APPLICATIONS TO FPGA 65

as the source for the remaining three IPs, i.e., X, Y, and Z. As a starting point,

we place W in PRR0. As shown in Figure 3.6 (B, C, and D), three different

solutions are possible to select the next IP. Figure 3.6B shows a logic-centric

binding solution, which opts for W and X in the same PRR0 to produce the

least possible fragmentation in it. Afterwards, Y, and Z are placed in PRR1.

However, it can cause an application to under perform, because W does not

get the required throughput on R0-R1 link to communicate with Y and Z. Fig-

ure 3.6B shows a communication-centric binding solution, which opts for W

and Y in the same PRR0 to restrict the highest throughput connection from

going to network, i.e., to shared link R0-R1. However, due to excessive frag-

mentation in PRR0, binding of the complete test application is not possible in

this case.

Figure 3.6D shows a successful solution for the test application binding. Be-

fore selecting an IP that is placed next to W, the temporal and the spatial con-

straints (of both application and FPGA) are evaluated. However, doing so is

complex, since that the logic-centric binding alone is an NP-hard problem [99].

The problem becomes more complex, when an application exhibits; a) more

IPs with more dependencies, b) and stringent QoS constraints.

In the following sections, first we describe the related work, then we classify

and compare our our work with respect to the related work.

3.3.3 Related Work

In existing state of the art schemes, the authors have performed application

to architecture binding such that certain metrics of interest (e.g., energy, ex-

ecution time, area, throughput, latency etc.) are optimised/fullfilled. To per-

form an application binding, the existing schemes either unify the processes

of mapping and placement, unify the processes of mapping and allocation, or

do not unify any of the processes (i.e., placement, mapping, and allocation).

Hence the techniques of existing schemes can be classified into: a) unified

place and map, b) unified map and allocate, c) and non unified. In the remain-

ing discussion, we will illustrate the existing schemes. Then, we position our

PUMA scheme with respect to the techniques applied by the existing schemes

to achieve a successful application binding.

66 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

Unified Place and Map

There are multiple schemes [4, 17, 99, 133] that are based on unified place-

ment and mapping. In [4], a physical planner is used during topology design

to reduce power consumption on wires. However, the work does not consider

the area and power consumption of switches in the design. Also, the number

and size of network partitions are determined manually. Scheme [17] on the

contrary, treats each IP as a component. The IP encapsulates a circuit imple-

mented with the resources in a given area (routers logic and IP). After an IP

is placed, the IP coordinates are set to that of its router. The work in [99]

takes into account the physical planning issues, while mapping an application

IP on the communication plane, i.e., a network on chip. For this purpose, a

floor-planner is used during the mapping process to get area and wire-length

estimates. For a given mapping, the relative position of the cores with respect

to each other is obtained from the tabu search, but the relative position of the

switches is unknown. The authors applied Mixed Linear Integer Program [79]

based physical plan algorithm, to place the IPs. Ideally, a switch should be

placed around the core to which it is connected. This is achieved by inserting

the switches into the vacant regions, which were left out after placing the appli-

cation IPs. Once the switches are in place, the IPs are mapped. It is followed by

routing and allocating the communication channels among the application IPs.

In [133], a slicing tree based floor-planner is used during the topology design

process. This work assumes that the switches are located at the corners of the

cores, and it does not consider the network components (switches, network in-

terfaces) during the floor-planning process. Also, deadlock free routing, which

is critical for custom NoC designs is not supported in the work.

Unified Map and Allocate

The works in [50,83,100,104] apply unified mapping and allocation to ensure

QoS guarantees. The authors in [50, 83, 100] incorporate application binding

into path selection, while aiming to minimize the over-allocation of the net-

work. These schemes use a network on chip as the communication plane. In

these works, mapping and allocation are tightly integrated. This is done on

a per communication flow basis. Once the resource allocation for the flow is

ensured across the communication plane, the ports of IPs, which are associated

with that communication flow, are mapped at respective network interfaces of

the NoC simultaneously. The authors in [104] analysed the average of het-

erogeneous NoC network latency in terms of the queuing latency. They ap-

3.3. TECHNIQUE: BINDING OF APPLICATIONS TO FPGA 67

plied the branch-and-bound algorithm to find out the QoS aware mapping that

automatically maps IPs onto NoC architecture, while compromising between

throughput maximization and latency minimization.

Non Unified Schemes

The works in [58,70,87,101,102,128] are based on non unified place, map, and

allocate processes. In [58] authors propose a branch-and-bound based scheme

to bind a given set of application IPs on a generic regular NoC architecture.

The binding process not only satisfies the required bandwidth constraints, but

also minimises the total communication energy for the resultant application

binding. The work in [70] uses two heuristics, a fast successive relaxation and

a genetic algorithm to find mapping over network with irregular topology. Au-

thors in [87] map an application on a regular mesh NoC by using a genetic

algorithm, with an objective of minimized execution time. Similarly, authors

in [102] uses a heuristic algorithm (NMAP) under different routing functions.

This algorithm maps the core onto NoC architecture after fulfilling bandwidth

constraints and at the same time optimising the average communication delay.

This technique uses the average packet hop value as a cost function and re-

lates it to the communication energy consumption. In [101], the authors also

propose an mapping and deterministic routing algorithm called SUNMAP that

is similar to the NMAP. The difference is that this system can automatically

choose the NoC topology from the ones embedded inside it. In [128] a Bino-

mial Mapping (BMAP) method is introduced, which aims to minimize total

traffic on network, the number of hops, and hardware costs.

In non unified schemes [70, 87, 101] real-time guarantees on an application

QoS requirements are not ensured. Moreover, authors in [101] perceived ap-

plication to architecture binding as NP-complete quadratic assignment prob-

lem (QAP). The scheme binds the tasks onto a regular mesh network under

bandwidth, area or power constraints. It is followed by routing the commu-

nication by using a predefined routing function. Although in [58, 102] QoS

constraints are fulfilled, but after iteratively refining the mapping and routing

of application IPs.

3.3.4 Positioning with the State of the Art

Table 3.6 positions our proposed PUMA scheme with respect to the existing

state of the art. In Table 3.6, the comma is used to show the non unified nature

of a specific binding decision from the rest.

68 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

Table 3.3: Our Work Positioning with respect to Existing Application Binding Ap-

proaches.

Abbreviations: P = Placement, M = Mapping, A = Allocation, + = With, - = Without.

For example PM, A means: P & M are unified, and A is non-unified from both P and

M.

Scheme Application Binding Approach

Ahonen [4] (PM , A) + QoS

Bobda [17] (PM , A) + QoS

Murali [99] (PM , A) + QoS

Srinivasan [133] (PM , A) + QoS

Hansson [50] (P, MA) + QoS

Kumar [83] (P, MA) + QoS

Murali [100] (P, MA) + QoS

Nguyen [104] (P, MA) + QoS

Jang [70] (P, M, A) - QoS

Lukovic [87] (P, M, A) - QoS

Murali [101] (P, M, A) - QoS

Hu [58] (P, M, A) + QoS

Murali [102] (P, M, A) + QoS

Our Technique [147] (PMA) + QoS

Unified Place and Map Schemes

In unified place and map schemes [4, 17, 99, 133], the placement of IPs due to

physical planning, will induce lower logic fragmentation. In addition, the IPs

and switches will be placed next to each other, which will reduce the length

of connecting wires. As a whole, the unified place and map will result in ef-

ficient logic plane resource utilizations. However, on the negative side, the

schemes [4, 17, 99, 133] could suffer through long routes with no analytical

bounds over the QoS guarantees. This is mainly because of the allocation

phase, which is not integrated with the place and map. Moreover, the map-

ping is performed in prior to routing. An optimal allocation that can satisfy

the QoS requirements of the placed application is largely dependent upon the

routing algorithm. This could cause IPs to get blocked, due to unavailability of

resources on the NoC. Additionally, the scheme of requires a fully-connected

network, which costs high in terms of area.

3.4. TECHNIQUE: COMPOSABLE AND PERSISTENT-STATE DYNAMIC

RECONFIGURATION 69

Unified Map and Allocate Schemes

In unified map and allocate schemes [50, 83, 100, 104], IP ports are mapped

only and only if resources for communication flows are guaranteed over the

NoC. However, on the negative side, placement can only be performed once

mapping and allocation are done. It is important that during mapping and allo-

cation, the available logic area against a communication node is not taken into

account during an application binding process. In other words, these schemes

can be applied to an FPGA, after assuming that sufficient logic resources are

available next to the communication node, which could result in placing an

application IP in far regions of the chip. It can be unaffordable in an FPGA,

when application to FPGA area constraints are stringent.

Non Unified Schemes

In [58, 70, 87, 101, 102, 128] the placement, mapping, and allocation processes

are non unified. In contrast, we unify all the three process of placement, map-

ping, and allocation during an application binding. Our PUMA scheme en-

sures that, for a successful application to FPGA binding, the application QoS

constraints are fulfilled. PUMA, for this purpose, takes into account the re-

quired application resources to available FPGA resources in both the logic and

communication planes, simultaneously. This means the temporal and spatial

constraints of an application are considered simultaneously, while selecting an

FPGA region. Our FPGA communication plane is a hardwired Network on

Chip (HWNoC), which does not compete with logic resources and is scalable.

3.4 Technique: Composable and Persistent-State Dy-

namic Reconfiguration

In this section, we provide the overview and motivation for our technique,

i.e., the 3-tier model, to achieve composability and persistent-state during the

dynamic reconfiguration process. We then provide the related work, and at the

end position our technique with respect to the existing state of the arts.

3.4.1 Overview

We propose a 3-tier reconfiguration model that consists of the system manager,

an application manager per application, and application(s). The role of the

70 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

system manager is to manage applications, i.e., test, reconfigure, and start /

stop the applications. The role of an application manager is to time-multiplex

parts of of a single application, by swapping in / out parts of the application

and taking care of the persistent-state between the sub-applications. The 3-tier

reconfiguration model:

1. uses a hardwired NoC for functional and configuration data transporta-

tion,

2. enforces composability, i.e. the dynamically inserted (sub)application

does not interfere with the execution of other running (sub)applications,

as long as their allocation remains unchanged,

3. enforces persistent-state, i.e. the state-information (spread at multiple

places in the system) of the sub application must be saved, when it is

swapped out.

4. enforces predictable application behavior, i.e., throughput and latency

demands for the dynamically inserted (sub)applications on an FPGA

are fulfilled.

The system manager initially configures application IPs and programs the con-

nections among the IPs. Afterwards, the respective application manager, which

has already been configured by the system manager, is programmed with pa-

rameters such as: address and quantity of input / output application data. An

application manager then programs the associated IPs with appropriate data

set. An application after receiving input data from its associated application

manager, executes on it, and forwards it back to its application manager. An

application manager, then stores the received data on the appropriate memory

addresses. Meanwhile, an application manager observes the progress of its

client application. Once, application has processed required amount of input

data, and all output data has been produced. Then, an application manager

stops from sending / receiving data to / from its client application. An appli-

cation manager afterwards signals reconfiguration request to the system man-

ager. It is important that the 3-tier model uses hardwired network on chip to

transport configuration, programming, and functional data.

3.4.2 Motivation

We use a motivational case study to explain how the presence of a soft func-

tional interconnect can affect composable dynamic reconfiguration. For the

3.4. TECHNIQUE: COMPOSABLE AND PERSISTENT-STATE DYNAMIC

RECONFIGURATION 71

(B) (C)

A1

IP1

A2

(A) (D)

IP2

IP3

IP4

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

C
L
B

F
R
A
M
E
1

F
R
A
M
E
0

F
R
A
M
E
5

F
R
A
M
E
4

F
R
A
M
E
3

F
R
A
M
E
2

IP3

IP2

IP1

IP4

S
oft F

unctional
Interconnect

S
oft F

unctional
Interconnect

Frame 4 and Frame 5
are shared between

Soft Functional Interconnect,
IP1, and IP4

Figure 3.7: (A) Two Applications, (B) FPGA Architecture, (C) Bitstream Frames in

FPGA Architecture, (D) Sharing of Frames between the Soft Functional Interconnect

and IPs.

motivational case study, we consider SOC with 2 applications and FPGA with

24 CLBs (or 6 CLB columns), Figure 3.7A and Figure 3.7B, respectively.

The FPGA is configured in a frame-wise manner, where each frame belongs

to multiple CLBs, Figure 3.7C. It is important that when an application is

started / stopped, dynamic reconfiguration is performed and as a requirement

the functional interconnect must be updated, i.e. reconfigured and/or repro-

grammed. However, in case of traditional FPGA architecture, the application

IPs and the functional interconnect can share single /multiple bitstream frames,

Figure 3.7D. In such a situation the dynamic reconfiguration performed for

the application can interfere with other applications, because the interconnect

would be stopped during the reconfiguration process.

72 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

In contrast, by using hardwired NoC, we ensure a composable system behav-

ior during the dynamic run time reconfiguration. The reason is that the IPs

and interconnect are decoupled in several senses: physically (e.g. to avoid

glitches), in placement (reconfiguration and functional regions of IP and inter-

connect are disjoint), and logically (there is no communication to / from IPs

that are reconfigured, and communication between other IPs is therefore, not

affected). Also, the fact that one TCFR never contains IPs of greater than one

applications is helpful in achieving the composable behavior of system during

the dynamic run time reconfiguration.

In the following sections, first we describe the related work, then we classify

and compare our our work with respect to the related work.

3.4.3 Related Work

We present the technique to perform dynamic application reconfiguration

with (i) composable behavior during inter-application reconfiguration, and (ii)

persistent-state assurance during intra-application reconfiguration. Addition-

ally, our technique applies a scalable (3-tier) reconfiguration model and guar-

antees over QoS constraints. In the following discussion, we present the related

work that targets any of the above requirements while performing dynamic ap-

plication reconfiguration.

Composable Dynamic Reconfiguration

In literature, a number of efforts [11, 15–17, 20, 60, 71, 125, 141] have

been performed for the dynamic inter-application reconfiguration. Authors

in [15–17, 60] place dynamically inserted module in vertical slots, which al-

low the modules to be attached at any location. On the other hand, authors

in [125] provide a way to place hardware modules of predetermined size and

positions, above each other. To connect the modules; work in [16] uses a re-

configurable multiple bus (RMB), work in [17] uses an NOC, work in [60]

uses lookup tables, and work in [125] uses bus macros. Additionally, in [11]

a dynamic instruction set architecture-based approach is used, where the au-

thors make use of dynamically rotating instructions for runtime swapping of

reconfigurable modules. The work in [20] uses a reconfigurable system that is

based on square-shaped and arbitrary-sized swappable logic units (SLUs). The

SLUs are arranged in mesh, and communicate with each other through a small

communication buffer. Work in [71] allocates FPGA resources at run time by

making use of a centralized resource manager. The research in [141] achieves

3.4. TECHNIQUE: COMPOSABLE AND PERSISTENT-STATE DYNAMIC

RECONFIGURATION 73

dynamic on-demand reconfiguration by making use of a run time system soft-

ware on MicroBlaze, which controls reconfiguration and message handling.

Persistent-State Dynamic Reconfiguration

In literature, a number of efforts [77,94,107,122,130] have been performed for

the dynamic intra-application reconfiguration. The works assume that tasks

can only migrate at predefined execution points, like we do.

The authors in [122] collects all unprocessed messages into a special buffer

when a migration point is reached. After the actual migration, all communica-

tion peers are notified and their task lookup table is updated to reflect the new

location of the migrated task.

In [107], when the task on the source tile reaches a migration point, it signals

this event to the Operating System (OS). In turn, the OS instructs the producers

to send one last tagged message and then to stop sending. The OS consequently

sets up, initializes and starts the migrating task on the destination tile. The next

step is to forward all buffered and unprocessed messages to the new location of

the migrated task. To this end, the OS initializes a so-called destination lookup

table (DLT) (containing the new destination for the messages) on the source

tile and instructs it to orderly forward all incoming messages. When all tagged

messages have been sent, the migration process is finished and the OS can free

the resources of origin tile.

In [94] when task reaches a migration point, it goes into the interrupted state.

In this interrupted state all the relevant state information of the migration point

is transferred to the Operating System (OS). Consequently, the OS re-initiates

the task on the new destination position using the received state information.

The task resumes on the second processor, by continuing to execute in the

corresponding migration point.

In [130], authors make use of bitstream readback facilities of the FPGAs con-

figuration port. All the configuration data is read back and state extraction is

performed after reading the configuration data. State extraction is achieved by

getting all status information bits out of the read back bitstream.

Unlike Simmler, the authors of [77] do not read back all configuration data.

Only those data is read back that include state information and belong to the

task to be suspended. Furthermore, the actual state information extraction is

not done after but during reading the configuration.

74 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

3.4.4 Positioning with the State of the Art

In the following discussion, we position our 3-tier model against the schemes

that perform composable dynamic reconfiguration and persistent-state dy-

namic reconfiguration.

Composable Dynamic Reconfiguration

In contrast to our inter-application level composability, the above-mentioned

approaches [11, 141] take into account single application, and implement task

level composable behavior of the system. However, due to the possible re-

source fragmentation, it becomes difficult to ensure application guarantees.

Work in [71] takes into account the concurrent execution of multiple applica-

tions, but the mechanism to implement persistent-state and QoS guarantees is

missing. The remaining approaches [15–17,60,125] do not explicitly state the

level of composability. These schemes [15–17, 60, 125] are more concerned

about providing the communication among the dynamically placed modules

rather than handling the important issues of stability of prior services, mech-

anism to assure safe-state transition, and QoS guaranteed resource allocation

with the addition/removal of application/modules.

In contrast to our layered approach (Section 3.4), the existing works of [11,

15, 20, 71, 141] make use of a centralised resource manager for dynamic re-

configuration. Unlike the works of [11, 125] that assume an FPGA system

with a single application, our technique performs dynamic reconfiguration for

a system with multiple applications. Additionally, the above approaches face

certain limitations, which are not an issue with our technique. For instance:

a) the possibility of execution time being dominated by the reconfiguration

time due to the small communication buffer [20], is avoided by an application

manager that ensures the memory allocation for its client application till the

required execution stage. b) A high ratio of area of processing to network ele-

ment [17] is avoided by hard-wiring the underlying functional architecture. c)

The possibility of run- time reconfiguration of the functional architecture [60]

that in turn could disrupt the executing applications, is avoided because our

functional architecture only needs to be programmed with each adding IP /

application. d) We offer QoS guarantees for dynamically adding applications

by providing a virtual platform for each (sub)application, and reserving the re-

quired resources across that platform in contrast to [11, 71, 141] that provide

no guarantees on Quality-of-Service requirements.

3.4. TECHNIQUE: COMPOSABLE AND PERSISTENT-STATE DYNAMIC

RECONFIGURATION 75

Table 3.4: Our Work Positioning with respect to Composable Dynamic Reconfigura-

tion Approaches.

Scheme Composability Guarantees Functional

Abstraction on QoS Interconnect

Bauer [11] Task level No Soft Interconnect

Bobda [16] Task level No Soft Interconnect

Brebner [20] Task level No Soft Interconnect

Huebner [60] Task level No Soft Interconnect

Jean [71] App. level No Soft Interconnect

Sedcole [125] Task level No Soft Interconnect

Ullmann [141] Task level No Soft Interconnect

Our Application Yes Hard

Technique [143, 144] Level Interconnect

Persistent-State Dynamic Reconfiguration

The works of [94, 107, 130] provide a mechanism to achieve persistent-state

during intra-application dynamic reconfiguration. In these works, the state in-

formation of a task is distributed: a) within the tasks, b) and in between the

tasks. The state preservation within the task/IP causes complex issues with

respect to the register states, and clock phase to preserve data and timings.

Our 3-tier model, in contrast, uses stateless IPs and an application manager

is the one that triggers the reconfiguration request. However, an application

manager triggers the reconfiguration request only when the sub application

IPs achieve the required execution granularity. Importantly, the inter-IP state

is preserved by an application manager by providing the persistent storage in

between the sub application swapping. We do not allow cycles during sub ap-

plication swapping. Therefore, the existing sub application’s pipeline is com-

pletely flushed and preserved in an application manager before starting the next

sub application.

The schemes of [94, 107, 130] make use of input queues to collect all unpro-

cessed data, or destination lookup tables (DLTs) to forward unprocessed data

to new location. In both the situations, extra / special hardware in the form of

queues and DTL is required to implement persistent-state transitions. The read

back methods do not require extra hardware, because they use inherent access

structures of the configuration circuitry and the configuration port. However,

they suffer from poor data efficiency, which means the proportion of useless

data in the readback stream is rather high. Our 3-tier model also induces extra

76 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

Table 3.5: Our Work Positioning with respect to Persistent-State Dynamic Reconfig-

uration Approaches.

Scheme Reconfiguration Hardware Resource

Decision Overhead Management

Kalte [77] Statefull IPs No Centralized

Mignolet [94] Statefull IPs Yes Centralized

Nollet [107] Statefull IPs Yes Centralized

Russ [122] Statefull IPs Yes Centralized

Simmler [130] Statefull IPs No Centralized

Our Stateless IPs Yes (Frequent) intra-

application dis-

tributed,

Technique [143, 144] (Infrequent)

inter-application

centralised

hardware in the form of an application manager per application.

All the schemes implement a centralized way of implementing the persistent-

state transitions of tasks / applications. This means that a single resource man-

ager (e.g. OS) takes care of implementing persistent-state transitions for all the

applications in SOC. This can be a performance bottleneck in several ways: (a)

frequent transitions for a single application, (b) multiple applications are going

through state transition, simultaneously. Our 3-tier model, in contrast, imple-

ments a distributed way of implementing persistent-state transitions for the

applications of SOC. This is achieve with dedicated application managers for

each application.

3.5 Technique: Online Testing

In this section, we provide the overview and motivation for our online test tech-

nique. We then provide the related work, and at the end position our technique

with respect to the existing state of the arts. The choice of state of the arts is

based on different requirements, i.e., i) test access mechanism they use, 2) the

nature of test they perform, and 3) the intrusiveness level they produce with

the already executing applications.

3.5. TECHNIQUE: ONLINE TESTING 77

3.5.1 Overview

Our proposed online test scheme performs a structural test at the startup of an

application by using the hardwired NoC. The structural test is performed for

FPGA TCFRs that are associated with the application that has been started.

More specifically, our online test scheme:

1. uses a hardwired NoC as a test access mechanism (TAM),

2. tests undisrupted in parallel with other application(s) configuration, pro-

gramming, and execution,

3. tests at an application startup, i.e., before the configuration of an appli-

cation,

4. uses structural test for the correctness of an FPGA,

5. reduces spatial and temporal overheads with respect to conventional, on-

line test schemes.

In the following discussion, we explain each of the above-mentioned points.

1 & 2) HWNoC as TAM: Our FPGA is comprised of multiple test config-

uration functional regions (TCFRs). The online testing is performed at the

granularity of TCFR. For verifying, the (structural) correctness of a TCFR,

our online test scheme uses a HWNoC [41] as a TAM. The HWNoC can trans-

port four types of data, i.e., test, configuration, and functional (programming

and execution) data. For this purpose, it uses connections. The connections are

allocated at compile time, but are created and terminated at run time. More-

over, the HWNoC architecture can ensure non-intrusive data transportation,

which means all types of data (test, configuration, programming, and execu-

tion) that flows through the same HWNoC does not produce interference with

each other. This means while testing, it is possible to achieve: (a) un-disrupted

execution for already running application(s), (b) the operations of configura-

tion, programming, and execution for new applications.

3) Test at application startup: The test procedure is triggered at application

startup time. We assume that multiple applications can not occupy the same

TCFR(s), simultaneously. However, an application can execute in multiple

TCFRs. In our online test scheme, an application TCFRs are tested in prior to

configure an application. However, before an application is executed, its asso-

ciated TCFRs are tested. By doing so, the disruption in application execution,

78 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

which could by caused by the test procedure, is avoided. On the negative side,

the application configuration is delayed until the application TCFRs are tested.

Additionally, a fault that occurs during an application execution time, can only

be detected after an application finishes its execution.

4) Structural test: Our online scheme performs the structural test and currently

detects the permanent stuck-at1 faults. The structural test provides us with the

increased reusability, which can be exploited in multiple ways. A single test

suite (bitstreams and stimuli for an FPGA TCFR) irrespective of the intended

set of applications that run on the TCFR. This mean the test bitstream and

expected results for a single TCFR can be reused for multiple TCFRs.

5) Reduced Spatiotemporal Overheads: Moreover, the analysis of structural

faults in a TCFR is performed by making use of HWNoC connections, and

the system manager [146]. The same HWNoC is used to transport functional

data, whereas the system manager can execute on a programmable hardware

processor, e.g., PowerPc. The additional resources are in the form of test con-

nections and the code to perform the analysis. In our scheme, no specialised

test hardware (e.g., TPGs and ORAs) are imported to FPGA logic plane. This

in turn, eliminates the spatiotemporal overheads that are required to place and

configure the test hardware on FPGA logic plane. However, towards down-

side, the software implementation of test is more constrained. Additionally,

the system manager has more work to do which can result in slower test.

In the next section we build the motivation behind using these parameters for

our technique.

3.5.2 Motivation

For motivation purpose, we consider SoC that comprises 2 applications, Fig-

ure 3.8A. Figure 3.8B shows the binding of these applications on the logi-

cal regions of an FPGA. IPs of both the applications communicate with each

other by using a functional interconnect (e.g., bus or NoC). In other words, in

conventional test schemes application IPs and the associated functional inter-

connect both coexist in the same reconfigurable plane [38, 142], as shown in

Figure 3.8B. To build the motivation of our scheme, we examine the possible

shortcomings that can arise while testing the SoC by using the conventional

test schemes, such as [38, 142].

A region under test (RUT) in existing schemes, e.g., [142] can be considered

1A logic block or wire is said to experience a stuck-at fault when its logic value always stays

at 1 or 0 and can not be reversed.

3.5. TECHNIQUE: ONLINE TESTING 79

NoC

IP2

IP4IP3

NoC

IP1

(B) (C)

A2

(A)

Free
Region

NoC

IP2

IP4IP3

NoC

IP1RUT1

NoC

IP2

IP4IP3

NoC

IP1Tested1

(D)

IP3

IP4

Stop
NoC

Stop
IP2

IP4IP3

Stop
NoC

IP1Tested1

(E)

(F)

NoC

IP2

IP4IP3

NoC

IP1Replicate
IP2 + NoC

RUT2

RUT2

NoC IP4IP3

NoC

IP1IP2
+ NoC

RUT2

(G)

Test A2

Test A1 Configure A1

Conventional

Our Scheme

Interleaved Test + Configure
Operations

Test A2

Test A1
No

Operation

(H)

A1

IP1

IP2

Figure 3.8: (A) Applications, (B) Application to FPGA binding, (C) Testing of an

FPGA region, i.e., RUT1, (D) Start to Test another region of FPGA, i.e., RUT2, (E)

Stopping IP and Functional Interconnect that is affected by RUT2, (F) Replicate IP

and Functional Interconnect in a Previously Tested Region, (G) Start Test for RUT2

and Execution for IP2 and Functional Interconnect in New Region, (H) Abstract Com-

parison of our Scheme with Existing Conventional Schemes.

80 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

as a set of wires and CLBs. A region under test can be a free region, i.e., not in

use by any application as shown with RUT1, or an RUT can belong to IP plus

interconnection as shown with RUT2. The conventional schemes scan through

the FPGA to find out faults [38]. This means testing is performed by roving an

RUT across the chip. RUT1 in Figure 3.8C and RUT2 in Figure 3.8D indicate

two such roving instances. In Figure 3.8D, Tested1 indicates the region that

was earlier tested by RUT1.

Conventionally, the region under test is taken off-line, while allowing the rest

of FPGA to continue its normal operation. However, in case an application is

already executing on such a region. Then the application is first stopped before

being replicated to already tested region. Additionally, the FPGA interconnec-

tion is en-routed accordingly for intra-application execution.

For instance, Figure 3.8D shows that RUT2 test the region that is taken by

IP2 of A1 and NoC. This means, before performing the test, the IP2 and NoC

both are stopped as shown in Figure 3.8E. Then, IP2 and the respective por-

tion of NoC are replicated in region that is free and previously passed test,

e.g., Tested1 is one such regions as shown in Figure 3.8F. After the replica-

tion process, IP2 and associated NoC start working and the test process for

RUT2 starts as well, as shown in Figure 3.8G. The above discussion motivates

us to trigger the online test at an application startup time. By doing so, we

can avoid intrusiveness by ensuring that an application always executes at the

pretested regions.

More importantly, application A2, whose area is not under test, stops execut-

ing because the NoC does not transport any data during the stop and replication

process. In Figure 3.8E and Figure 3.8F, this is shown be removing the blue ar-

rows that indicate the communication between the IPs of both the application,

i.e., A1 and A2. Hence it motivates us to have applications and the functional

interconnect in disjoint planes, which is ensured by hardwiring the communi-

cation architecture (i.e., HWNoC) in FPGA.

Additionally, the existing approaches [6, 38] use boundary scan infrastructure

(BSI) [64], which occupies the FPGA configuration circuit while testing. This

means the inherent nature of the TAM in these schemes does not allow the

configuration (of another application) in parallel with the ongoing test pro-

cess. Therefore, restricting the parallel operations of test and configuration

for multiple applications. For instance in Figure 3.8H, the parallel operations

of A1 testing and A2 configuration (on a pretested region) are not possible

with existing schemes, such as [6, 38]. Hence imposing a delay on either, test

or configuration, process. This motivates us for a TAM which does not inter-

3.5. TECHNIQUE: ONLINE TESTING 81

fere with the bitstream loading of an application, because it is implemented by

HWNOC that is parallel, i.e., has greater than one connection.

Moreover, FPGA based SOCs can comprise multiple time-multiplexed appli-

cations, where developing and exercising a test suit for each application is

prohibitive due to economic and time constraints. Therefore, it motivates us to

perform the structural test, which not only posses an application independent

nature but also ensures maximum percentage of fault detection.

In the following sections, first we describe the related work, then we classify

and compare our our work with respect to the related work.

3.5.3 Related Work

In the literature, a number of online test schemes [1,6,32,37,38,115,129,142]

have been proposed to detect faults in FPGA architecture. In the following

discussion, we explain each of these individually.

In [1], the authors introduce the concept of roving STARs, where a STAR is a

self testing area that is comprised of TPG, ORA, and circuit under test. The

online testing is structural which roves the STARs periodically to test every

section (that can comprise multiple CLB columns) of the FPGA architecture.

The TAM mechanism used by the scheme is the conventional boundary scan

infrastructure [64].

The authors in [6] make use of built in self test (BIST) to detect operational

faults in the system. The scheme in [6] applies the test sequence periodically

to the circuit under test (CUT), and checks the CUT responses to detect the

existence of operational faults. The online testing is functional, which can test

multiple CLBs simultaneously. The authors, however, have not mentioned the

TAM mechanism for the proposed method.

In [37, 38], the authors apply the concept of active replication for the online

testing of CLBs. This active replication method enables the relocation of each

CLB functionality without halting the system, even if the CLB is part of an

executing application. In [38] the authors have applied the structural testing,

whereas in [37] the authors have performed functional testing of the target

FPGA. However, in both the schemes the test is performed at a single CLB

level by making use of the conventional boundary scan infrastructure [64].

The authors in [115] propose a new CLB architecture for FPGAs and asso-

ciated online testing, and reconfiguration techniques that detect configuration

faults in the CLBs of FPGAs. The test scheme is structural, which can detect

82 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

single or multiple faults in an FPGA. The authors, however, have not men-

tioned the TAM mechanism for the proposed method.

The authors in [86] provide an error mitigation technique that is based on

modular redundancy and time redundancy. It uses duplication with compar-

ison (DWC) and concurrent error detection (CED). The test scheme is func-

tional, i.e. application dependent, which requires suitable encoding and de-

coding functions to test the CLBs. The authors, however, have not provided

any details about the TAM.

The testing in [129], like the conventional online test schemes, is based on

fault-scanning method. The scheme is applicable to bus-based FPGA archi-

tectures, and it assumes that certain parts of the FPGA are fault-free. The

online testing is structural, which is performed at the granularity of multiple

CLBs. The authors, however, have not provided any details about the TAM.

The authors in [142] claim to provide a faster online test scheme as compared

to [1]. The scheme is based on roving tester (ROTE), which tests parts of the

circuit by duplication and comparison manner. The testing is intended to detect

possible circuit functions (applications) with a test granularity that can range

from single CLB column to multiple CLB columns. The authors, however, do

not specify the TAM for their approach.

3.5.4 Positioning with the State of the Art

From the above discussion, we can conclude that the existing schemes scan

through the FPGA chip to find out the perspective faults [1,6,37,38,115,129,

142]. In these schemes, a relatively small portion of FPGA chip is taken off-

line, while allowing the rest of FPGA to continue its normal operation. The

region to be tested is replicated on an already verified portion of the device, be-

fore being taken off-line and tested. Testing in these schemes is accomplished

by roving the test functions, i.e., test pattern generator, output analyser, and

region under test bitstream, across the entire FPGA. These schemes, as il-

lustrated through Table 3.6, use a conventional boundary scan infrastructure

(BSI) as their TAM [1, 37, 38]. The nature of online testing can be struc-

tural [1, 37, 38] or functional [6, 32, 38, 142]. The schemes can have different

levels of test granularity, ranging from a single CLB [37, 38, 86] to multiple

CLB columns [1,129,142]. The main focus of the existing online test schemes

has been to maximise the percentage of fault detection with the minimum fault

detection latency. Additionally, none of these schemes, due to the limitations

of the existing TAM architecture, can achieve the interleaved test and configu-

3.5. TECHNIQUE: ONLINE TESTING 83

Table 3.6: Our Work Positioning with respect to Existing Online Schemes. Abbre-

viations, NA = Not Applicable, Col: Column, St: Structural, Fu: Functional, P/C:

Partial/Complete.

Scheme TAM Test Test Gra- Test& Intrusive-

Type nularity Load ness Level

Abramovici [1] BSI St CLB Col No (P/C) App.

Al-Asaad [6] NA Fu CLB Col No (P/C) App.

Gericota [37] BSI St CLB No (P/C) App.

Gericota [38] BSI Fu CLB No P. App.

Lima [86] NA St CLB No (P/C) App.

Reddy [115] NA St CLB No (P/C) App.

Shnidman [129] NA St CLB Col No (P/C) App.

Dutt [32] NA Fu CLB Col No (P/C) App.

Verma [142] NA Fu CLB Col No P. App.

Our Online Test HW- St TCFR Yes None

Methodology NoC

ration operations for multiple applications, Table 3.6 (Column 4). This means

that each one of these induces a level of intrusiveness, which could be a partial

or a complete application, Table 3.6 (Column 5).

In contrast, our proposed methodology uses a hardwired network on chip as

test access mechanism, and conducts tests on a region-wise basis, see Chap-

ter 7. A region in our methodology is termed as test configuration functional

region (TCFR), as we shall explain in Section 4.3. The proposed test method-

ology exhibits a non-intrusive behavior, which means it allows the test process

in parallel with the configuration, programming, and execution of applications

in regions that are not under test. Moreover, our online test methodology per-

forms test when an application is invoked, which ensures that application al-

ways execute on a reliable architecture. The nature of the test is structural,

which ensures a high percentage of fault detection for the target FPGA archi-

tecture. In addition, the proposed scheme has reduced spatiotemporal over-

heads, because it does not make use of TPGs and ORAs to generate and anal-

yse the test sequences. Instead, the proposed scheme uses the connections

through the hardwired NoC to access and analyse the architecture of a partic-

ular region in FPGA.

84 CHAPTER 3. PROPOSED SOLUTION AND RELATED WORK

3.6 Conclusions

In this chapter, we explained the architecture and the design flow of the pro-

posed solution (Section 3.1). Afterwards, we explained the techniques that

use the architecture and the design flow of the proposed solution to fulfill the

requirements, as mentioned earlier in Section 1.3 and Table 1.1. For each

technique (i.e., hardwiredNoC, PUMA, 3-tier reconfiguration model, and on-

line testing), we provided the methodology, motivation, related work, and po-

sitioning with the state of the art. (1) We provided hardwired NoC to ful-

fill the requirements of scalable IP integration, and separate communication

and computation (Section 3.2). (2) We provided PUMA scheme to fulfill the

requirement of automation to overcome the problem of high time to market

(Section 3.3). (3) We provided the 3-tier reconfiguration model to fulfill the

requirements of composable and persistent-state dynamic reconfiguration to

overcome the problems of interference and data-loss during dynamic run time

reconfiguration (Section 3.4). (4) We provided the online test scheme to fulfill

the requirement of reliable architecture to overcome the problem of run time

faults in an FPGA architecture (Section 3.5).

4
FPGA Architecture with a Hardwired

Network on Chip

In this chapter, we provide the details of the proposed FPGA architecture. Ini-

tially, we present the overview of our FPGA architecture in Section 4.1. Af-

terwards, we explain the architecture of the hardwired NoC that serves as the

communication plane in the proposed FPGA, Section 4.2. We then illustrate

the architecture of test, configuration, and logic plane of the proposed FPGA

in Section 4.3. Thereafter, we elaborate the control processor architecture that

uses the HWNOC to transport data to the test, configuration, and logic plane

of our FPGA, Section 4.4. We continue to elaborate the reasoning of hard

and soft partitioning of components in the proposed architecture, Section 4.5.

Thereafter, we provide the implementation details of the proposed architec-

ture in Section 4.6. We then discuss the possible extensions of hardwired

NoC in Section 4.7. The architectural limitations are provided afterwards in

Section 4.8. Thereafter, we present the results and evaluation in Section 4.9.

Lastly, we end this chapter with conclusions in Section 4.10.

4.1 Overview

Our proposed FPGA architecture consists of a control processor and multiple

test configuration functional regions (TCFRs) that are connected to a hard-

wired NoC, as shown in Figure 4.1. The control processor uses the HWNOC

to transport test, configuration, functional, and control data to a TCFR, where

each TCFR represents the unified test, configuration, and logic region. In other

words, application IPs are tested, configured, and executed on TCFRs.

Each TCFR consists of an array of minimum test configuration regions

(MTCR), where each MTCR defines the minimum region that can be tested or

85

86

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

Bus
Ma-
cros

Clock / Reset

Bitstream

MTCR MTCR MTCR MTCR MTCR MTCR MTCR MTCR

MTCR MTCR MTCR MTCR MTCR MTCR MTCR MTCR

MTCR MTCR MTCR MTCR MTCR MTCR MTCR MTCR

MTCR MTCR MTCR MTCR MTCR MTCR MTCR MTCR

Bitstream
Manager

CDC

CDC

CDC

Control
Proce-
ssor

Clock / Reset
Manager

Config-
uration
Memory

NI
Shell1 DCT

Data
Path

din

dout
NI

Shell2

Bus Macros

HWNoC

CDC

One TCFR

Figure 4.1: Overview Diagram of the Proposed FPGA Architecture.

configured to load a specific application1. A TCFR connects to the HWNOC

by using clock domain crossing (CDC) FIFOs and Bus Macros, as shown

in Figure 4.1. The CDC FIFOs and Bus Macros are used to implement the

transportation of (configuration, test, functional, and control) data between the

HWNOC and a TCFR. A TCFR has its own bitstream manager that operates

on the received test and configuration bitstreams and loads it to the respective

MTCR. There is a local clock / reset manager that is memory-mapped. This

means programmable clock frequency and set / reset signals can be generated

for the required MTCR by writing to the registers of clock / reset manager that

are accessible through the HWNOC.

The control processor makes use of the hardwired NoC to test, configure,

program, and execute application IPs on a TCFR. The control processor

uses streaming ports to test and configure a TCFR, and memory-mapped IO

(MMIO) ports to program and execute IPs on a TCFR2.

From a high-level perspective, to start a single soft IP operating, the control

processor takes following steps. (1) Read the bitstream packets (of IP) from

the bitstream memory. (2) Send the bitstream frames to the respective TCFR,

where each frame programs an MTCR. The control processor uses NoC normal

1The detailed architecture of MTCR is explained in Section 4.3.
2The control processor to TCFR communication is detailed later in Section 4.4.

4.1. OVERVIEW 87

P
O
R
T

P
O
R
T

P
O
R
T

P
O
R
T

NI Kernel

QoS &
packetisation

FSM

TDM Table

Path table

Credit Table

L2

L1

Functional Data Connection

Configuration Connection

Programming Connection

P
O
R
T

P
O
R
T

resp

req

PPSD

P
O
R
T

P
O
R
T

m
aster

data port
S

lave
prog. port

T
C

F
R

config. port

resp

req

Soft NI Shell

Soft IP

encoder

encoder

decoder

decoder

TCFR

PPSD

PPSD

CDC

CDC

CDC

Figure 4.2: IP with one Master and one Slave Port, without Reprogramming and

Reconfiguration Privileges, and its NI Shell and Kernel.

connections to stream the bitstreams. It does so by first setting up a connec-

tion from a port on its NI to the configuration port on the NI of a TCFR. This

entails programming the HWNOC using memory-mapped IO (MMIO), as de-

scribed in detail in [41, 46]. For our purposes, this is performed by an abstract

open connection function. After the bitstream has been sent to the TCFR, the

bitstream connection is removed. The control processor then (3) switches on

the clock of the IP and (4) resets the IP. (3) and (4) also use connections from

control processor to MMIO port on the clock / reset manager of the TCFR.

88

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

4.2 Hardwired NoC Architecture

A hardwired Network on Chip (HWNoC) [41] is used for the transportation

of unified (test, configuration, functional, and control) data in between the

test configuration functional regions. It is a system level interconnect that is

embedded in the proposed FPGA architecture, and consists of routers (R) and

network interfaces (NIs).

A router in our design is used to send / receive data from / to a network inter-

face. We do not propose any changes in the router for our HWNoC, and details

of the router architecture can be found in Section 2.2.1. However, we propose

a new port (used to load bitstreams) for our HWNoC network interfaces, as

shown in Figure 4.2. We will explain the nature of the port later in this section.

The NIs in our HWNoC, like NIs in a conventional soft NoC, are split into two

parts: the kernel (performing network layer functions) and the shell (for trans-

port layer functions) [121]. Two IPs communicate by using the connections

to transport data from a source NI to a destination NI. A connection consists

of two channels, i.e., a request channel and a response channel. Each channel

has its own quality of service (QoS), i.e., the allocated bandwidth and latency.

An NI kernel is responsible to receive packets from the router on link L1 and

depacketise them, Figure 4.2. Conversely, it packetises data and sends them

to the router on link L2, according to the channel’s QoS. Our example NOC,

ÆTHEREAL [43] uses a virtual-circuit TDMA scheme to offer strict guarantees

on bandwidth and latency requirements. The kernel therefore, contains a pro-

grammable TDMA table, credit counters for end-to-end flow control, and per

channel programmable path that its packets take through the NOC, Figure 4.2.

The ports on the NI kernel are point to point streaming data ports (PPSD),

i.e., a fixed word-width with valid / ready handshake, a CDC (not shown in

Figure 4.2) is used to cross from NOC to IP clock domains. Streaming IP

can connect directly to these ports. The encoder and decoder in an NI shell,

implement the valid / ready handshakes per command, read / write data groups

of, e.g., AXI and DTL, and their serialisation to / from the NI kernel ports, etc.

The soft IP resides on a test configuration functional region (TCFR), as shown

in Figure 4.2. The IP can have a master data port on which it sends read

/ write requests to a slave somewhere on the HWNOC, and a slave MMIO

programming port over which read / write requests are received.

The configuration port on a TCFR is the new addition, proposed in this thesis.

Because configuration data is streaming data and not shared memory com-

munication, the configuration port of a TCFR is connected directly to the NI

4.3. TEST CONFIGURATION FUNCTIONAL REGION ARCHITECTURE 89

kernel. From the HWNOC perspective, it is just another port, over which data

is communicated. This is achieved by programming sufficient bandwidth allo-

cation in the kernel’s TDMA slot table, and sizing the buffers in the NI kernel

to absorb any jitter from unevenly-spaced TDMA slots [26].

An IP is placed in the reconfigurable logic plane of our FPGA, as shown in

Figure 4.2. The reconfigurable plane is comprised of multiple test configura-

tion functional regions (TCFRs), whose architecture is explained in the next

Section 4.3.

4.3 Test Configuration Functional Region Architec-

ture

The architecture of a test configuration functional region [145] is illustrated

with Figure 4.1. It shows that each TCFR constitutes a number of minimum

test configuration regions (MTCRs), Bus Macros, clock domain crossing FI-

FOs, a local bitstream manager, and a clock / reset manager. Importantly, a

TCFR is split in more than one MTCR to amortise the cost of the bitstream

and clock / reset managers. In the following discussion, we provide the details

of each architectural component that is part of a TCFR.

4.3.1 Minimum Test Configuration Regions

A minimum test configuration region (MTCR) in our TCFR architecture is

comprised of 16 configurable logic tiles, as shown in Figure 4.3. Each logic tile

consists of a configurable logic block (CLB) and a configurable switch matrix

(SM) [158]. The CLBs3 are connected to each other by using the associated

switch matrix. For this purpose, the switch matrices use the routing wires,

which surround each logic tile and are used to connect two tiles with each

other. Moreover, the tiles in each MTCR exhibit column-wise organisation, as

shown in Figure 4.3.

Importantly, a TCFR is not isolated at functional level. This means that the

logic plane of an FPGA is not divided into multiple disjoint regions. This

means a soft IP can be placed in MTCRs that belong to different TCFRs, and

hence removes the restrictions on an IP placement, although, for dynamic par-

tial reconfiguration, some restrictions persist. However, the span of an IP in

3The architecture of a CLB is presented earlier in Section 2.1.1.

90

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

CLB

CLB

CLB

CLB

CLB

CLB

0

1

1
5

CLB

CLB

CLB

MTCR 0 MTCR 1 MTCR 31

Routing Channels
Comprising Wires Of

Different Lengths

Switch Box

Slice

Slice

Slice

Slice

Figure 4.3: Detailed Functional Architecture of a Minimum Test Configuration Re-

gion.

multiple TCFRs is achieved by making use of BUS Macro units as explained

in the following section.

4.3.2 Bus Macros

The connection between the HWNoC and TCFRs is persistent. This means that

the physical link in a TCFR, which is made up of multiple wire-segments and

connects to the hard link coming out of an NI, is not altered during dynamic

application reconfiguration. To have persistent connections we make use of

Bus Macros [61] at the boundary of a TCFR, where a Bus Macro is a relatively

placed and routed IP core that provides a dedicated communication point. We

4.3. TEST CONFIGURATION FUNCTIONAL REGION ARCHITECTURE 91

call it relative because all components within the IP core are placed and routed

with reference to each other, but the IP core itself can be placed at different

places on the FPGA without affecting the IP-core internal composition.

In our architecture the Bus Macros provide fixed point connections in between

an NI kernel (for hard links) and a TCFR. In other words Bus Macros serve

to isolate the HWNOC links from glitches or invalid data when the TCFR is

being reconfigured. Moreover, Bus Macros are used at the boundaries of each

TCFR, so as to connect multiple TCFRs. In our architecture, the Bus Macros

that connect two TCFRs provide the interface for intra-IP communication for

an IP that spans multiple TCFRs. By using BUS Macros, an application IP

and its protocol shell, synthesized individually or together, that is placed in a

TCFR can be connected to a HWNoC, Figure 4.1 and 4.9.

4.3.3 Clock Domain Crossing FIFOs

In our architecture, we make use of bi-synchronous FIFOs [150] to provide the

clock domain crossings (CDC), as shown in Figure 4.1. The reason of using

CDC FIFOs is that hardwired NoC (that provide inter-IP communication) and

application IPs that execute on TCFRs can operate at different frequencies. In

this case, due to the different clock frequencies of HWNOC and IPs, data loss

can occur during inter-IP communication. The clock domain crossing FIFOs

provide a mechanism to ensure reliable data transportation across the HWNOC

boundary, i.e., where TCFRs connect to the HWNOC. Note that each IP uses

a single clock, and all inter-IP communication takes place via the HWNOC.

Hence no other clock domain crossing FIFOs (in a TCFR) are required.

The CDC FIFOs are gray-coded and pointer-based, which is compatible with

standard CAD tools. Each bi-synchronous FIFO is connected to the HWNoC

clock at one end, and at the other end to the local clock manager of a TCFR.

This way the FIFOs provide clock domain crossings and let the IPs (or shells)

robustly interface with the HWNoC. In our architecture these FIFOs used for

clock domain crossings, provide one read / write transfer per clock cycle and

possess a small latency overhead of two cycles.

4.3.4 Bitstream Manager

The architecture of a bitstream manager that processes the incoming test and

configuration bitstreams in a TCFR is shown in Figure 4.4. The bitstream man-

ager comprises a newly introduced port and logic, e.g., address decoder, dedi-

92

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

.

.

.

MTCR

Strea-
ming

Port
De-
Mux

Start Addr +
Total Frames

1 Word Wide
41 Words Deep

Frame Data Register

Header Register

MTCR

MTCR

MTCR

.

.

.

.

.

.

.

.

.

1 Word wide DATA Bus

A
D
D
R
.

D
E
C
O
D
E
R

Controller

Figure 4.4: Bitstream Manager to Write Bitstreams in a TCFR.

cated registers and a 1 word wide data bus to write the incoming bitstream in

the desired minimum test configuration region (MTCR). We use the HWNOC

to send a bitstream to this port and for this purpose, a real-time connection

with fixed latency and guaranteed bandwidth is used. A header register is used

to store the bitstream header, whereas the frame data register is used to store

the bitstream frames, as shown in Figure 4.4. The frame data register is large

enough to store a bitstream frame of 41 words [154]. The job of the address

decoder, which is connected to all MTCRs, is to enable the respective MTCR

to receive the bitstream. The controller is a finite state machine, and controls

the specific operations of: (i) bitstream reception from the streaming port, (ii)

activation of the demultiplexer to direct the received data either to the header

register or to the frame data register, and (iii) word-by-word right shifting of

data in the frame register to load words in the data bus. Further details of the

bitstream writing process are explained in Chapter 6.

4.3.5 Clock / Reset Manager

In our architecture, a programmable clock tree is used to distribute the clock

signals in a TCFR, see Figure 4.5. The clock distribution is performed in

spine-and-branch manner, which resembles Xilinx Virtex-4 and Xilinx Virtex-

5 FPGA distribution [126,160]. However, in our architecture the clock signals

of a TCFR clock tree are driven from the output of the clock / reset manager,

which is memory-mapped. This means the programmable clock frequency for

4.3. TEST CONFIGURATION FUNCTIONAL REGION ARCHITECTURE 93

Bitstream

Clock / Reset Clock Tree Signals

MTCR MTCR MTCR MTCR MTCR MTCR MTCR MTCR

MTCR MTCR MTCR MTCR

MTCR MTCR MTCR MTCR

MTCR MTCR MTCR MTCR

MTCR MTCR MTCR MTCR

MTCR MTCR MTCR MTCR

MTCR MTCR MTCR MTCR

Bitstream
Manager

Clock / Reset
Manager

Figure 4.5: Clock Tree in a Test Configuration Functional Region.

the required MTCR is generated by writing to the specific register of clock

/ reset manager that is accessible over the HWNOC. In our architecture, we

have a single clock per TCFR that goes to all the MTCRs.

Similarly the clock / reset manager can enable and disable the soft MTCRs

from processing the input data. For this purpose, it uses a 32-bit register,whose

each bit line connects to an MTCR. In other words, each MTCR has a separate

reset signal. However, in our architecture the reset is performed on an IP basis

that resides on top of MTCRs. This means when a soft IP must be reset, then

the resets of the associated MTCRs are triggered accordingly.

There must be at least one IP that can program the system. This can be a CPU

that bootstraps the system by programming the NoC, or a hard (secure) boot

module [31, 145]. In our FPGA system, we make use of a control processor

to bootstrap the system. The details of the control processor architecture are

explained in the next Section 4.4.

94

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

Configuration
/ Test Port

Clock / Reset
Port

Programming
Port

Functional
Port

Configuration
/ Test Port

Clock / Rest
Port

Programming
Port

Functional
Port

Configuration
Port

Test Port

Clock / Reset
Port

Programming
Port

Functional
Port

B
U
S

Control Processor

TCFR

PO
RT

PO
RT

PO
RT

PO
RT

PO
RT

PO
RT

PO
RT

TCFR

B
U
S

Program
HWNoC Port

PO
RT

PO
RT

PO
RT

PO
RT

PORT

PO
RT

PO
RT

PO
RT

PO
RT

NI

NI

HWNoC

NI

*

*

*

Figure 4.6: Control Processor Communication with TCFRs.

4.4 Control Processor Architecture

An FPGA can be used by multiple applications that have diverse resource re-

quirements from both the FPGA planes, i.e., the HWNoC and TCFRs. Addi-

tionally, these applications can start and stop dynamically at run time. There-

fore, we make use of a control processor that not only bootstraps the system,

but (as we shall see in Chapter 6 and Chapter 7) tests, configures, and pro-

grams an FPGA system at run time. The control processor uses different ports

and registers to to transport test, configuration, functional and control data, as

shown in Figure 4.6 and Figure 4.7.

Figure 4.6 shows a situation where the control processor has connections to

two test configuration functional regions (TCFRs). The control processor uses

a streaming port to configure a TCFR. The streaming port connects directly to

the HWNoC without needing a network interface shell, see Figure 4.7. We

make use of a single streaming port for configuration purpose, as our de-

sign choice. This means, the configuration of only one TCFR is possible at

one point in time, i.e., either the configuration port is connected to TCFR1 or

TCFR2 as indicated by (*) in Figure 4.6, and the same applied for test port. Im-

4.4. CONTROL PROCESSOR ARCHITECTURE 95

Bitst-
ream
Port

QoS & Packetisation
FSM

L2

L1

Configuration

P
O
R
T

Progra
mming

Port

P
O
R
T

req

P
O
R
T

resp

req

resp

Clock /
Reset
Port

Test
Port

Test

Clock / Reset

Programming

Functional

PPSD

PPSD

TDM Table

Path table

Credit Table

PPSD P
O
R
T

P
O
R
T

P
O
R
T

P
O
R
T

P
O
R
T

P
O
R
T

P
O
R
T

PPSD
P
O
R
T

P
O
R
T

resp

req

PPSDP
O
R
T

P
O
R
T

resp

req

P
O
R
T

P
O
R
T

P O R T

Functi
onal
Port

P
O
R
T

req

P
O
R
T

resp

req

resp

PPSDP
O
R
T

P
O
R
T

P
O
R
T

PPSDP
O
R
T

P
O
R
T

resp

req

HWNoC
Programming

port

MMIO

NI Shell

BUS

Control Processor NI Kernel

Figure 4.7: Details Architecture of the Control Processor.

96

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

portantly, the HWNOC is (re)programmed for each connection that is setup in

between the control processor and the destination TCFR. Same is the case with

testing, which also makes use of a streaming port to test a particular TCFR.

Figure 4.7 shows that in addition to two streaming ports, the control processor

has three memory mapped input output (MMIO) ports that are used to clock /

reset, program, and execute application IPs on TCFRs by using the hardwired

NoC. However, the control processor first establishes connections, through

the hardwired NoC, to the required TCFR. The setting up of a connection is

achieved by using a MMIO port, which is the HWNoC programming port in

Figure 4.6 and 4.7, with a loop-back connection to program the slot, path, and

credit tables of the network interface of the control processor. Note that the

control processor can program any network interface of the HWNOC by writ-

ing to its slots, path, and credit tables. However, the HWNOC is programmed

in a similar way as explained in [48]. Therefore, in Figure 4.6 and 4.7, we limit

ourself to show the architectural details that are required to configure, test, and

program the TCFRs.

The control processor clocks and resets one TCFR at a time. Therefore, it

makes use of a single MMIO port (i.e., the Clock / Reset port in Figure 4.6

and 4.7) that connects to the HWNOC by using a protocol shell. The HWNOC

is reprogrammed each time whenever a TCFR is clocked / reset.

However, due to multiple (sub)applications running concurrently, the control

processor requires multiple concurrent programming connections. Therefore,

the master bus is attached to the programming port that connects the initiator

Programming port (on the control processor) to the target MMIO ports of both

the TCFRs, see Figure 4.6 and 4.7). The bus attached to the initiator Program-

ming port of the control processor directs the request to the appropriate target

port, based on the address of the request. For this purpose, the local bus makes

use of a demultiplexer that based on the address (received from the sending IP)

selects the appropriate network interface shell.

Similarly, the control processor can receive requests from multiple

(sub)applications, e.g., request of data from a specific memory location or no-

tification about the completion of an application execution. In this case, the

control processor makes use of a slave bus that has multiple ports to receive

data from multiple initiators. For instance, the slave bus that is attached to the

Functional port of the control processor in Figure 4.6 and 4.7), can receive

requests from two TCFRs simultaneously.

4.5. HARD SOFT PARTITIONING 97

4.5 Hard Soft Partitioning

In this section, we discuss which parts of the proposed FPGA should be hard

and which should be soft, see Table 4.1.

4.5.1 Hardwired NoC Partitioning

In the following discussion, we provide the hard soft partitioning of different

components of a hardwired NoC.

Local Buses of Control Processor

The architecture of (master and slave) local buses of the control processor,

as shown in Figure 4.7, is not dependent on applications that execute on an

FPGA. In our architecture a local bus connects one memory-mapped initiator

/ target port to multiple target / initiator ports. A local bus is not configurable

because its architecture / dimensions are fixed at design time. However, the lo-

cal buses are programmable to access any target / initiator port in the network.

For this reason, a local bus is hardwired in the proposed architecture.

Network Interface Kernel

The architecture of our HWNoC NI kernel is explained in Section 2.2.1. As

far as an NI kernel is concerned, it can have a mix of hard and soft blocks.

The hard soft partitioning is performed with respect to NI kernel FIFOs and

NI kernel control as explained below.

NI kernel FIFOs are the request / response channel FIFOs in the input and

output sections. The FIFOs are dependent on the nature of an application

and are configurable. The channel FIFOs should be big enough to support the

maximum throughput demands that can be required by an application of a sys-

tem. However, at design time of a HWNoC, it is hard to predict the worst-case

throughput values. The reason is that an FPGA can be used for a number of

SoC applications, which can not be determined at an FPGA fabrication time.

Hence the channel FIFOs position themselves as a soft candidate, i.e., to be

built by using FPGA logic resources. However, as we shall explain in Sec-

tion 4.9.6, the cost of look up table (LUT) based FIFOs is prohibitive, com-

pared to hardwired FIFO. Hence given that the ratio of soft to hard is a quite

high 35 [84]. Therefore, we can reasonably over-dimensioned the channel FI-

98

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

Table 4.1: Hard Soft Partitioning of FPGA with Hardwired NoC.

Abbreviations: Ap = Application, In = Independent, De = Dependent, Mgr = Manager.

FPGA Module Nature of Config- Progra- Implem-

Architecture Function urable mmable entation

HWNoC

Local Buses Ap In No Yes Hard

NI Kernel Ap De Yes No Hard at

FIFO Hard IP

NI Kernel Ap In No Yes Hard

Control

NI Ap De Yes No Hard at

Shell Hard IP

NI Ap De Yes No Soft at

Shell TCFR

Router Ap In No No Hard

TCFR

MTCR Ap In Yes No Hard

Bus Macro Ap In Yes No Hard

CDC FIFO Ap In No No Hard

Bitstream Mgr Ap In No Yes Hard

Clock / Reset Ap In No Yes Hard

Mgr

Control - Ap In No Yes Hard

Processor -

FOs, after considering a worst-case value for them. In an exceptional case

where an over-dimensioned channel FIFO still proves insufficient, the remain-

der of the channel FIFO can be implemented in the corresponding network

interface shell, which is explained in the following section.

Next comes the NI kernel control that exhibits an application independent na-

ture. The NI kernel control is not configurable, but programmable at run time.

More specifically, the (de)packetisation unit in an NI control can be hardwired

because of a fixed and predetermined packet format. The scheduler unit takes

inputs from a fixed number of control tables and, therefore can also be hard-

wired. The channel table and the space table, both of which have one entry per

network interface kernel port, are dimensioned equal to the number of ports

of an NI kernel. Hence both of these can also be hardwired, provided the NI

kernel has a fixed number of ports. For these reasons, the control of an NI

kernel is implemented as hard.

4.5. HARD SOFT PARTITIONING 99

Network Interface Shell

The NI shell, however, is soft for the following reasons. First, the port protocol

depends on the IP and a single system often contains a number of different port

protocols. Second, the depth of a channel FIFO depends on the required band-

width and latency, which depends on an application. The channel FIFO is for

a small part in the NI kernel, where it has a fixed size, and for the remainder in

the NI shell. Figure 4.8 shows an example of soft NI shells that are connected

to DCT and IDCT IPs, and exist in the FPGA reconfigurable plane.

The only NI shells that are hard are the following. First, the NI shells that con-

nect to the MMIO programming port of NI kernels, because it always requires

and uses a fixed protocol. Those NI shells that connect to hard IPs (whose

protocol is design time specific) such as the control processor as shown in

Figure 4.7.

Router

The function of a router is to forward a packet, received at its input, to a spe-

cific output port. A router in our architecture has nothing to do with appli-

cations that have variable QoS requirements. In other words, a router has an

application independent nature. Therefore a router is neither configured nor

programmed at run time. A router in our proposed architecture is best imple-

mented as hard.

4.5.2 TCFR Partitioning

In the following discussion, we provide the hard soft partitioning of each TCFR

component.

MTCR

Starting with the minimum test configuration region, we see that it has ap-

plication independent nature. An MTCR is configurable to configure a new

functionality on an FPGA, and is not programmable. The architecture of an

MTCR is implemented as hard by the FPGA manufacturers.

100

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

Bus Macro

Similarly, a Bus Macro exhibits an application independent nature. A Bus

Macro can be configured on minimum test configuration regions, because it

can be placed at different locations of a TCFR. In our architecture, as Bus

Macro is placed at the boundaries of a TCFR, which are fixed. For this reason,

a Bus Macro is hardwired in our architecture.

CDC FIFO

The clock domain crossing FIFOs exhibit an application independent nature,

because these are meant for data synchronisation across the HWNoC and

TCFR boundary. In other words, unlike the channel FIFO, the CDC FIFOs

have nothing to do with fulfilling the throughput demands of an application.

The CDC FIFOs are not configurable, and for this reason the CDC FIFOs are

hardwired in our architecture.

Bitstream Manager

The bitstream manager exhibits an application independent nature. The rea-

son is that for a specific FPGA architecture the bitstream structure, to config-

ure and test the logic block and the programmable interconnect, is always the

same. Therefore, the bitstream manager is not configurable. However, the bit-

stream manager is programmable to write the bitstreams in different parts of

a test configuration functional region. In short, we can say that the bitstream

manager is best implemented as hardwired.

Clock / Reset Manager

Similarly, the clock / reset manager is not dependent on the nature of applica-

tions that execute on an FPGA chip, therefore, is not configurable. However,

clock and reset manager is programmable to program the clock of an IP or

set / reset an IP that reside on a TCFR. For these reasons, each clock / reset

manager is implemented as hard.

4.6. IMPLEMENTATION VERSUS MODELING 101

4.5.3 Control Processor Partitioning

The control processor architecture is application independent, because it is

used to test, configure, and program multiple applications on test configura-

tion functional regions of the proposed FPGA architecture. In the proposed

architecture it is a hardwired IP that is programmable and not configurable.

Here, we feel it important to describe the partitioning of the system manager

and application managers of our 3-tier model, as described earlier in Sec-

tion 3.4. The system manager is mapped to the control processor since it is

always there; and there exists only one system manager in our architecture.

The application managers, of which there are as many as there are applica-

tions, could be mapped to the control processor. However, this would introduce

composability and scalability issues. Therefore, we map application managers

(comprising memories, address generations units, and DMAs, etc.) as soft IPs.

We next explain the implementation details of the proposed FPGA architec-

ture.

4.6 Implementation versus Modeling

In this section, we explain the implementation and modeling details of our

proposed architecture. In the following discussion, we will explain how the

components of our FPGA architecture (HWNOC, TCFRs, and the control

processor) are implemented, see Table 4.2.

4.6.1 Hardwired NoC Implementation versus Modeling

The HWNoC architecture is comprised of multiple network interfaces and

routers [43, 44, 48]. Each network interface is further subdivided into a net-

work interface kernel, and a network interface shell.

The network interface kernel architecture is implemented both in systemC

and VHDL languages [48, 121]. It is a cycle-accurate implementation, which

means in each cycle, we can keep track of the NI kernel functionality. A

network interface shell is implemented both in systemC and VHDL lan-

guages [48]. The router architecture is implemented both in systemC and

VHDL languages [48]. The NI kernel, NI shell and router have a cycle-

accurate implementation, which means in each cycle, we can keep track of

their functionality.

102

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

Table 4.2: Modeling Vs Implementation of the Proposed Architecture.

FPGA Module Modeled Implemented

Architecture

HWNoC

Local Buses System C VHDL

(Cycle-Accurate)

NI Kernel System C VHDL

FIFO (Cycle-Accurate)

NI Kernel System C VHDL

Control (Cycle-Accurate)

NI l System C VHDL

Shel (Cycle-Accurate)

Router System C VHDL

(Cycle-Accurate)

TCFR

MTCR - -

Bus Macro - -

CDC FIFO - -

Soft IPs System C VHDL

(Trans-Accurate) -

Bitstream System C -

Manager (Cycle-Accurate) -

Clock / Reset System C -

Manager (Trans-Accurate) -

Control - System C -

Processor - (Trans-Accurate) -

4.6.2 TCFR Implementation versus Modeling

The test configuration functional region (TCFR) architecture comprises multi-

ple minimum test configuration regions (MTCRs), Bus Macros, CDC FIFOs,

a bitstream manager, and clock / reset manager. The TCFR architecture is

modeled in a cycle-accurate SystemC model4, and is shown in Figure 4.8.

The minimum test configuration regions (MTCRs) of a TCFR are configured

to implement a certain functionality / IP. Therefore, instead of modeling the

architecture of an MTCR, we model the functional model of a soft IP that is

configured on the MTCRs. This is done by modeling the loading of bitstreams,

inspecting the bitstream, and based on this selecting the behavioral model of

4The modeling of a TCFR is not performed at a bit-accurate SystemC level.

4.6. IMPLEMENTATION VERSUS MODELING 103

Clock / Reset
Manager

Bitstream
Manager

Clock / Reset

Bitstream

Data
Forwa
rder

B

NI
Shell1

DCT DataPath

din

dout

Data
Forwa
rder

A

NI
Shell3

IDCT DataPath

din

dout

CtrlA

CtrlB

dout1

dout2

din1

din2

C
P

C
lk

NI
Shell2

NI
Shell4

Bus
Mac
ros

O
U
T

I
N

32 MTCRs

Figure 4.8: Data Forwarders in the SystemC Model of a Test Configuration Func-

tional Region.

the soft IP that has been configured [145]. It is important that multiple applica-

tion IPs can be dynamically swapped in or swapped out of a TCFR at run time.

In our systemC simulation, we make use of data forwarders to decide which

IP is swapped in / out. The control inputs of data forwarders are triggered by

the bitstream manager. The bitstream manager after loading the bitstream of

an IP (e.g. DCT IP in Figure 4.8), sends the control signal to data forwarders

to enable a a specific IP (in this case DCT) to send / receive data to / from

the HWNOC. In our architecture data forwarders and the TCFR controlling

logic are the modeling artifacts. The BUS Macros are are part of the proposed

architecture. However, these are yet to be implemented, which means the cost

of Bus Macro in terms of timing is not known, and therefore is not part of

our calculations. Similarly, clock domain crossing FIFOs are also part of the

proposed architecture, but yet to be implemented.

The architecture of the bitstream manager is modeled in cycle-accurate Sys-

temC, which means in each cycle we can keep track of: i) receiving of a bit-

stream, ii) inspecting the bitstream, and (iii) storing of the bitstream in the

respective MTCR memories. The architecture of the clock / reset manager is

modeled in transaction-accurate SystemC language.

104

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

4.6.3 Control Processor Implementation versus Modeling

The control processor architecture is a programmable hardwired IP that is con-

nected to the first network interface of the HWNoC. A functional model of the

control processor is implemented in transaction-accurate SystemC language.

This means, like TCFR, the functional model of the control processor does

not have any instruction set. The functionality of control processor is modeled

that include: i) bootstrapping of the FPGA system, ii) programming of the

HWNoC, iii) configuration, testing, and programming of the required func-

tionality into TCFR(s) [145].

We next explain the possible extensions of hardwired network on chip in the

proposed FPGA architecture.

4.7 Hardwired NoC Extensions

The proposed hardwired NoC in FPGA has the flexibility to be extended from

the architecture point of view as well as from its applicability point of view. It

is explained in the following sections.

4.7.1 Soft & Multi FPGA NoC

The architectural extension is to allow the hard NoC to be expanded by soft

routers and NIs, as shown in Figure 4.9. This is useful when functional regions

are large and more NI kernel ports are required than are present on the hard

NI kernels near the region. However, because the hard NOC will be running at

higher frequencies than can be achieved with a soft NoC, it passes through the

clock domain crossing FIFOs that serve as the bridge between hard NoC and

the soft NoC.

A related extension is the use of the functional IO to connect the NoCs on

multiple FPGAs, to create a multi-FPGA NoC [24, 103, 109, 134]. The NI

kernel on one NoC converts packets to streaming data, which is transported

over the functional IO to the other FPGA, where it is re-packetised by the NI

kernel on the other NoC, which can be soft or hard.

4.7. HARDWIRED NOC EXTENSIONS 105

B
u
s

M
a-
c
r
o
s

N
I K

er
ne

lR

R

Bus Macros

N
I K

er
ne

l

IP1

IP2

Hard NoC
Soft NoC TCFR

CDC

CDC

NI
k

NI
k

NI
k R

R NI
k

NI
Sh

NI
Sh

Functional IOs

Minimum Test Configuration Regions (MTCRs)
in a TCFR

B
u
s

M
a-
c
r
o
s

N
I K

er
ne

l

R

R

Bus Macros

CDC

CDC

Functional IOs

N
I K

er
ne

l

CDC

CDC

FPGA2

FPGA1

Figure 4.9: Architectural Extensions of the Hardwired NoC.

4.7.2 Applicability Extensions

In addition to using a hardwired NoC to provide inter-IP communication traffic

for multiple on-FPGA applications, the hardwired NoC applicability can be

extended for the following purposes:

1. Secured communication: The use of a functional interconnect for de-

crypted bitstreams is in general not safe, because it allows a malicious

IP to capture secret information. However, first note that a HWNoC is

a (virtual) point-to-point and not a broadcast interconnect. The con-

nection between the two IPs is programmed at run time. Moreover,

HWNoC with guaranteed communication services also decouples the

106

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

temporal behaviors of communicating IP [135]. This removes the possi-

bility to obtain secret information either from the timing of communica-

tion (events), or from a malfunctioning system after injecting spurious

data.

2. Functional operations on bitstreams:

(a) By using the hardwired NoC and the ability to program connec-

tions between FPGA regions, the bitstreams can be dynamically

reloaded and / or relocated at run time.

(b) Functionally operating on bitstreams can be used to check, if IP

configurations have been tampered with since they were installed.

This can be achieved by streaming the bitstream to a (hard) en-

cryption or cyclic redundancy check (CRC) IP and comparing the

output with the original encrypted bitstream or a smaller check-

sum.

4.8 Architectural Limitations

Following are the limitations in our proposed architecture:

1. Test Configuration Functional Region: The test configuration functional

regions in our FPGA architecture are equal sized, and poses identical

number of logic resources. Hence currently we limit ourself to a rather

homogenous distribution of logic resources. However, this might be an

issue with a domain specific FPGA, where the distribution of resources

can be uneven. Our TCFR architecture does not support a configura-

tion granularity that is less than an MTCR unit, i.e., 16 configurable

logic blocks or 128 LUTs. In our current implementation, a single clock

is delivered to all the MTCRs of a TCFR. This means all the IPs in a

TCFR are bound to run at a single frequency. Additionally, the memory-

mapped set / reset register has 32 signal lines, where each signal is used

to set / reset an IP block. This may limit the number of IPs in a TCFR to

a maximum of 32. Currently, we make use of conventional BUS Macros

at the boundaries of a TCFR. This in turn, is useful for intra-IP commu-

nication that spans multiple TCFR.

2. Network Interface: The architecture of our HWNOC NI has a design

time fixed slot table size, number of ports, and FIFO depths. This means

the resource dimensioning is not application-specific. This can give rise

4.9. RESULTS AND ANALYSIS 107

to; (a) under-utilization of resources when the on-FPGA applications

require less than the available ones, and (b) shortage of resources when

on-FPGA application require more than the available ones.

3. Single Host for Control Infrastructure: We can add more hosts. How-

ever, we limit ourself to a single host for our programming the control

infrastructure. This might impose scalability problem; (a) as the num-

ber of applications increases, (b) (re)configuration and programming is

performed at a frequent basis.

4.9 Results and Analysis

We model our HWNOC architecture in SystemC using the design flow

of [42, 45]. The flow output also provides us with the technology-independent

RTL VHDL of the HWNoC components, which include network interfaces

and routers. We synthesize, place, and route (to the pads) different instances of

these HWNOC components onto a Virtex-4 XC4VLX200ff1513-11, for which

we use Xilinx ISE 10.1. The Virtex-4 chip contains 178176 LUTs, and is

fabricated in CMOS technology with a 90 nm Copper CMOS process [158].

The synthesis numbers give us the soft area overhead for the hardwired NoC

components. At the moment, our proposed HWNoC is not implemented on

an FPGA. Therefore, we use [84] to compute hard area in terms of LUT-

equivalent from the synthesised soft area5. The authors in [84] report area

cost ratio of 35 between ASIC and FPGA, which means we compute the area

of hard router after dividing the area of soft router by a factor of 35. The rea-

son to show the area of the hard components in LUT-equivalent rather than

mm2 is 1) to compare more easily and 2) conversely converting area in LUT

to mm2 is hard because the FPGA vendors do not provide any information (in

the specifications) about the area of an LUTs in mm2.

In the remaining section, for the new FPGA architecture, we will find out

the area overheads for HWNoC and TCFR. To calculate the area overhead,

we used different instances of NI (Section 4.9.1), router (Section 4.9.2), and

TCFR (Section 4.9.3). Afterwards, we explore the design space for different

dimensions of HWNoC and TCFR, (Section 4.9.4). At the end we compare

our hardwired NoC with its soft variant, in terms of the area and functional

performance (Section 4.9.6).

5For our convenience and due to the lack of tools, we do not synthesise the hard blocks and

instead use the work of [84] to extract the area of hard blocks in terms of LUT-equivalent.

108

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

2683

3942

4829

77 113 138
0

1000

2000

3000

4000

5000

16 32 41

FIFO Depth (Words)

N
IK

 A
re

a
(L

U
T

s)

SOFT HARD

Figure 4.10: NI Kernel with Variable FIFO Depths (Slot Table = 166 time-slots, and

Ports = 2).

4392 4497 4599 4701 4829

125 128 131 134 138

0

1000

2000

3000

4000

5000

32 64 96 128 166

Time Slots

N
IK

 A
re

a
(L

U
T

s)

SOFT HARD

Figure 4.11: NI Kernel with Variable Time-Slots (Ports = 2, and FIFO depth = 41

words).

4.9.1 Network Interface Variations

A network interface is sub-divided into a network interface kernel, and multi-

ple protocol shells that are attached to NI kernel ports. Therefore, we evaluate

their area cost, independently.

We synthesize different instances of an NI kernel after varying (a) the depth

of its FIFOs, (b) slot table size, and (b) the number of ports. The reason to

perform the evaluation is because, as explained earlier in Section 4.5.1 that

the slot table and FIFO depths should be dimensioned accordingly to fulfill the

throughput requirements of an application. In addition, the number of ports are

also varied because each port is associated with two channel FIFOs that incurs

a significant area overhead. This means, an increase or decrease in the count

of ports can significantly affect the area of an NI kernel. In our experiments,

we vary one parameter (i.e., FIFO depth, slot table size, or port number) at one

4.9. RESULTS AND ANALYSIS 109

4829
7015

8945
10904

20926

138 200 256 312 598

0

5000

10000

15000

20000

25000

2 3 4 5 10

Number of Ports

N
IK

 A
re

a
(L

U
T

s)

SOFT HARD

Figure 4.12: NI Kernel with Variable Ports (Slot Table = 166 time-slots, and FIFO

depth = 41 words).

time to perform the evaluation.

First, we vary the depth of channel FIFOs, but keep the slot table size and NI

kernel ports constant at 166 time-slots and 2 ports respectively. Figure 4.10,

shows that by increasing the FIFO size by 16 words, the area of hard NI kernel

increases by 36 LUT-equivalent.

Similarly, we changed the slot table size to analyse its impact on the area of an

NI kernel. Figure 4.11 shows that the area of a hard NI kernel is increased by

approximately 4 LUT-equivalent, when the slot table size is increased by 32

time-slots.

Next, we vary the number of ports in the NI kernel. However, we keep the

slot table constant at a maximum of 166 slots, and the FIFOs are deep enough

(i.e., 41 words) to store a bitstream frame. Figure 4.12 illustrates the impact

of variable number of ports on the area of a hard NI kernel. It shows that the

area increases linearly as we increase the number of ports. Figure 4.12 also

shows that each additive port in a hard NI kernel induces an area overhead of

60 LUT-equivalent.

We make use of soft NI shells. However, hard NI shells might be required

for some embedded processing units, e.g., PowerPC, an encryption unit, an

embedded memory controller, etc. Therefore, we evaluate the cost of hard

and soft NI shells. In our architecture, we limit our self to NI shells for DTL

protocol, the area cost of which is found to be 90 LUTs for a soft shell and 3

LUT-equivalent for a hard NI shell.

110

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

146

338

548

761

4 10 16 22

0

200

400

600

800

2 3 4 5

Number of Router Ports

R
ou

te
r

A
re

a
(L

U
T

)

SOFT HARD

Figure 4.13: Router Area Overhead with Variable Number of Ports.

4.9.2 Router Variations

To determine the area of a hard router, we synthesized a soft router with 32

bit data width. We then varied the router ports to evaluate its area overhead.

Figure 4.13 illustrates that as we add a port to a hard router, its area is in-

creased by 6 LUT-equivalent. In our experiments, we use mesh topology for

the HWNOC that can have a router with 5 ports in maximum. As shown in

Figure 4.13, the area of a hard router with 5 ports is 22 LUT-equivalent.

4.9.3 Test Configuration Functional Region Variations

The logic plane in our architecture is comprised of multiple TCFRs, each

of which holds an isolated bitstream manager and configuration architecture.

Therefore, in contrast to the conventional FPGA that contains a single bit-

stream manager, our proposed FPGA has multiple ones. Hence we need to

evaluate the area overhead that could be incurred by multiple instances of these

bitstream managers. To find out the area overhead of the configuration archi-

tecture in a TCFR, we synthesized its components, individually. This accounts

for the frame header register, frame data registers, the address decoder, associ-

ated streaming port, and the de-multiplexer unit.

Figure 4.14 illustrates the cost of the bitstream manager for different TCFR

areas that can be found in our FPGA. For our experiments, we change the

size of a TCFR from 1 k LUTs to 32 k LUTs. Note that an MTCR in our

architecture equals to 128 LUTs. As shown in Figure 4.14, the area of the

bitstream manager changes by approximately 10 LUT-equivalent when the size

of a TCFR is changed from 1 k LUTs to 32 k LUTs. The change in area is

mainly due to the address decoder, whereas the remaining hardware, i.e., frame

4.9. RESULTS AND ANALYSIS 111

2730 2765 2800 2835 2905 3010

78 79 80 81 83 86

0

1000

2000

3000

4000

1 2 4 8 16 32

TCFR Size (k LUT)

T
C

F
R

 B
its

tr
ea

m
 M

an
ag

er
 A

re
a

(L
U

T
)

SOFT HARD

Figure 4.14: Bitstream Manager Area Overhead with Variable Sizes of a TCFR.

registers, de-multiplexer are not affected by changing the TCFR size.

4.9.4 Design Space Exploration with Constant TCFR Size

In this section, we explore the design space for the proposed FPGA architec-

ture, and evaluate the cost and benefit of HWNoC for the given FPGA chip.

We first present the specifications of the target architecture in Table 4.3 that

are used to explore the design space.

Table 4.3: Specifications of the Target FPGA Architecture.

1 FPGA Area in LUTs = 178176

2 TCFR Size = 32 MTCR ≃ 4000 LUTs

3 NI kernel with 2 ports, 166 time-slots, and 41 word FIFOs

4 Router with 5 ports

6 1 NI per Router

7 1 NI-Router pair per TCFR

8 Bandwidth per Hard NI = 2 GB/s

9 Bandwidth per Soft NI ≃ 0.5 GB/s

For the convenience of the reader, we present the (soft & hard) area numbers of

above-mentioned NoC modules, and TCFR bitstream manager area overhead

in Table 4.4 that have earlier been discussed in the previous Sections. However,

the last two rows of the Table are not explained earlier, as we will describe

these later in Section 4.9.6, that hard NoC run at 500 MHz and soft NoC run at

118 MHz. This means, the bandwidth that is available per hard NI is 32 bits x

500 MHz = 16000 Mb/s or 2 GB/s. Similarly, the bandwidth available for the

112

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

soft NI is 32 bits x 118 MHz = 3776 Mb/s or approximately 0.5 GB/s.

Table 4.4: Soft and Hard Values of Different Components in FPGA.

Module Soft Hard Figure

(LUTs) (LUTs Equivalents) Reference

NI kernel (2 ports) 4829 138 Figure 4.12

Router (5 ports) 761 22 Figure 4.13

TCFR Overhead - 80 Figure 4.14

TCFRs per FPGA with Soft & Hard NoC

In this section, we find out the maximum number of TCFRs that are present

in an FPGA with soft NoC and hard NoC. A TCFR in an FPGA with soft

NoC represents a partial reconfiguration region without a bitstream manager

and configuration architecture, which the HWNOC FPGA does have.

When a soft NoC is used, then we can calculate the maximum number of

TCFRs by using Equation 4.1 and Equation 4.2. Similarly with a HWNOC,

we can calculate the maximum number of TCFRs by using Equation 4.3 and

Equation 4.4.

of TCFRs per FPGA = FPGA LUTs /(TCFR size + Soft Cost per TCFR)

(4.1)

Soft Cost per TCFR = Soft Cost of NoC per TCFR

= Soft (Area) Cost of NI kernels and Routers per TCFR
(4.2)

of TCFRs per FPGA = FPGA LUTs / (TCFR size + Hard Cost per TCFR)

(4.3)

Hard Cost per TCFR = (Cost of R + NI + bitstream manager per TCFR) /35
(4.4)

For instance, to calculate the number of TCFRs in an FPGA with soft NoC,

we obtain the soft cost per TCFR by using Equation 4.2, and Table 4.3 and

4.9. RESULTS AND ANALYSIS 113

Table 4.4, which is found to be 4829 + 761 = 5590 LUTs. Afterwards, the soft

cost per TCFR is used in Equation 4.1 to obtain the total number of TCFRs in

an FPGA, which is found to be 178176 / (4096 + 5590) = 18 TCFRs. Here

4096 represents the size of a single TCFR in LUTs.

When a HWNOC is used, a maximum of 41 TCFRs are possible for an FPGA

with specifications of Table 4.3 and Table 4.4. The cost per TCFR is obtained

by dividing the soft cost of a TCFR by 35, where 35 is the area cost area of soft

to hard [84]. In addition, we take into account the area cost of the bitstream

manager which is found to be 80 LUT-equivalent for a TCFR of 4 k LUTs.

Hence the hard cost of TCFR is (5590 / 35) + 80 = 240 LUT-equivalent. This

accounts for a total of 178176 / (4096 + 240) = 41 TCFRs.

Cost and Benefit of Soft & Hard NoC per FPGA

In this section, we obtain the (area) cost and (bandwidth) benefit that is in-

curred by soft and hard NoC in an FPGA. We use Equation 4.5 to calculate

the area cost, where Cost represents the soft cost and hard cost for soft and

hard NoC respectively. Similarly, we calculate the benefit in terms of band-

width that is available to FPGA application due to the presence of soft and

hard NoC. This is obtained by using Equation 4.6 and Equation 4.7. This in-

volves multiplication of total number of TCFRs with the bandwidth available

per TCFR, i.e., 2 GB/s (see Table 4.3).

Cost per FPGA = # of TCFRs ∗ Cost per TCFR (4.5)

Bandwidth per FPGA = # of TCFRs ∗ Bandwidth per TCFR (4.6)

Bandwidth per TCFR = # of NIs per TCFR ∗ Bandwidth per NI (4.7)

For instance, when we have TCFRs of 4 k LUTs in the FPGA chip of Ta-

ble 4.3, then the area cost of soft NoC is approximately 18 * 5590 = 101 k

LUTs. An FPGA with soft NoC can support a maximum bandwidth of 18 *

0.5 = 9 GB/s. However, an FPGA with HWNOC incurs an area cost of ap-

proximately 41 * 240 = 10 k LUTs and provides a bandwidth benefit of 41 *

2 = 82 GB/s.

114

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

1225
37

56
69

81

145

123

100

67

45

22

0

20

40

60

80

100

1 2 4 8 16 32

TCFR Size (k LUTs)

S
of

t N
oC

 C
os

t (
 %

 o
f V

-4
)

0

40

80

120

160

S
of

t N
oC

 C
os

t (
 k

 L
U

T
s

)

Cost as % of Virtex-4

Cost in k LUTs

Figure 4.15: Soft NoC Cost for a Virtex-4 FPGA with Variable TCFR Sizes.

4.9.5 Design Space Exploration with Variable TCFR Size

In this section, we explore the design space for the proposed FPGA architec-

ture, by varying the sizes of TCFRs. The specifications of Table 4.3 are still

valid except that a particular FPGA chip can have TCFRs, whose size can

range from 1 k LUTs to 32 k LUTs. The evaluation is performed to see the

impact of TCFR size on 1) the number of TCFRs per FPGA, b) the cost and

benefit of soft & hard NoC per FPGA, and c) the impact on area and band-

width of an IP in an FPGA.

The cost of the soft NoC is approximately 150 k LUTs when an FPGA con-

sists of TCFRs of 1 k LUTs, see Figure 4.15. At this point the cost of the

soft NoC accounts to approximately 80% of Virtex-4 chip area. Importantly,

in contrast to an exponential increase in the area of a TCFR, the cost of soft

NoC per FPGA decreases in a linear fashion, as shown in Figure 4.15. The

reason can be found by observing the pattern of values in Col 4 and 5 of Ta-

ble 4.5, as the size of a TCFR increases. For each row, the combined values

of Col 4 and 5 of Table 4.5 is approximated to FPGA total area. Though, the

size of a TCFR is increased in an exponential fashion, the aggregated area of

all the FPGA TCFRs increases linearly by approximately 30 k LUTs, and at

the same time the total area cost of soft NoC decreases linearly by the same

proportion, i.e., decreases by 30 k LUTs, see Col 5 of Table 4.5.

4.9. RESULTS AND ANALYSIS 115

Table 4.5: Results of Design Space Exploration with Variable TCFR Size. Total LUTs

in V4 FPGA = 178 k LUTs, Soft NoC Cost per TCFR = 5.8 k LUTs.

TCFR Size # of TCFRs Total TCFR Area Soft NoC Cost

k LUTs k LUTs k LUTs %V4 Area

1 26 26 147 84

2 22 44 125 71.2

4 18 72 101 58.2

8 12 96 68 38.8

16 8 128 45 25.9

32 4 128 22 12.9

As far as throughput benefit of soft NoC is considered, this also varies by

changing the size of TCFRs in an FPGA. An FPGA with TCFRs of 1 k LUTs

and specifications of Table 4.3 (i.e., one NI-Router pair per TCFR) can have a

maximum of 26 TCFRs. This in turn makes it possible to provide a maximum

bandwidth of 13 GB/s for an FPGA applications, see Figure 4.16.

The area cost of soft NoC can be reduced to a reasonable 12% of Virtex-4, if

we use TCFRs of 32 k LUTs. However, it reduces the throughput achieved to

4 GB/s, as shown in Figure 4.16.

The cost of the HWNOC is approximately 34.4 k LUT-equivalent when an

FPGA consists of TCFRs of 1 k LUTs, see Figure 4.17. Moreover, at this

point the cost of the HWNOC accounts to approximately 20% of Virtex-4

chip area.

As far as throughput benefit of HWNOC is considered, this varies by changing

the size of TCFRs in an FPGA. An FPGA with TCFRs of 1 k LUTs and

specifications of Table 4.3 (i.e., one NI-Router pair per TCFR) can have a

maximum of 140 TCFRs, see Figure 4.18. This in turn makes it possible to

provide a maximum bandwidth of 280 GB/s for an FPGA applications.

The area cost of HWNoC can be reduced to a reasonable 10% of Virtex-4, if

we use TCFRs of 4 k LUTs. Consequently, the benefit also fall to 82 GB/s, as

shown in Figure 4.18. However, this is approximately 21 times (82 / 4) higher

than the throughput of an FPGA with soft NoC, which costs approximately

10% of FPGA chip.

From these trends we draw the following conclusions. A soft NoC is feasible

(defined as ≤ 10% area cost) only for a small number (4) of large (32 k LUTs)

IP, exactly when it is not required. A hard NoC is feasible for small IPs (≥ 4 k

LUTs), allowing a maximum of 41 such IPs on a Virtex-4.

116

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

4

8

12

18

22

26

13

11

9

6

4

2

0

5

10

15

20

25

30

1 2 4 8 16 32

TCFR Size (k LUTs)

of

 T
C

F
R

s

0

2

4

6

8

10

12

S
of

t N
oC

 T
hr

ou
gh

pu
t (

G
 B

/s
)

FPGA TCFRs

Soft NoC Throughput

Figure 4.16: Soft NoC Benefit for a Virtex-4 FPGA with Variable TCFR Sizes.

4.9.6 Area & Functional Performance Comparison of Soft &

Hard NoC

In this section we compare the area in mm2, and functional performance of soft

and hard NoC.

Area

We synthesised and mapped a NoC onto a Virtex-4 4vlx200ff1513-11, for

which we used Xilinx ISE 10.1. The Virtex-4 contains 178176 LUTs. It is

fabricated in CMOS technology with a 90 nm Copper CMOS process.

Table 4.6 shows the area results for soft and hard modules for the example

NoC. The router and NI instances have been implemented to timing back-

annotated layout (including scan chains) [43, 120, 121]. Based on these in-

stances the design flow accurately estimates the area of any generated module

(i.e., network interface, router) instance in 130 nm CMOS technology (Ta-

ble 4.6 Column 4). Note that for Column 5, we refer to the work of [48] that

has synthesis results for different instances of routers and network interfaces

4.9. RESULTS AND ANALYSIS 117

1.22.35.1
10

18.8

34.4

0

20

40

60

80

100

1 2 4 8 16 32

TCFR Size (k LUTs)

H
ar

dN
oC

 L
U

T
 e

qu
iv

al
en

t
C

os
t (

 %
 o

f V
-4

)

0

10

20

30

40

50

H
ar

dN
oC

 C
os

t (
 k

 L
U

T

eq
ui

va
le

nt
)

Cost as % of Virtex-4

Cost in k LUT equivalent

Figure 4.17: HWNoC Cost for a Virtex-4 FPGA with Variable TCFR Sizes.

Table 4.6: Area of Network on Chip Components.

Module Module # LUTs mm2 mm2 mm2

Nature Name (130 nm) (90 nm) (90 nm)

Hard NI - 0.13 0.064 -

Router - 0.33 0.016 -

Soft NI Kernel 4392 - 2.24 5.7

NI Shell 180 - - 0.234

Router 761 - 0.56 0.99

of our example NoC in 90 nm CMOS technology (Table 4.6 Column 5).

In Table 4.6, the bold numbers are used to derive the remaining data in the

following manner. For the fifth column, we derive the area of soft components

from the 90nm-equivalent hard components [48]. For instance, the area (in

mm2) of a soft router is computed by multiplying the area of the hard router

by a factor 35, reported to be the cost ratio between ASIC and FPGA in [84].

This means the soft variant of a hard router, which occupies 0.016mm2 in 90 nm ,

would occupy 0.56 mm2 area in a 90 nm FPGA. The hard NI area is similarly

scaled and divided over the soft NI kernel and shell in the ratio of their number

of LUTs.

We ensured that all calculations, here and below, are conservative, i.e. under-

estimate cost of the soft NOCs, and overestimate cost of hard NOCs. As an

example, an alternative calculation of router and NI area, shown in italics in

the right-most column of Table 4.6, uses the area per LUT. The area is com-

118

CHAPTER 4. FPGA ARCHITECTURE WITH A HARDWIRED NETWORK ON

CHIP

42
20

10

82

280

154

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32

TCFR Size (k LUTs)

of

 T
C

F
R

s

0

50

100

150

200

250

300

H
W

N
oC

 T
hr

ou
gh

pu
t

(G
 B

/s
)

of TCFRs in FPGA
Hard NoC Benefit

Figure 4.18: HWNoC Benefit for a Virtex-4 FPGA with Variable TCFR Sizes.

puted by dividing the number of required LUTs by the die size of the Virtex-4

device (735 mm2, estimated from www.fpga-faq.org). We divide the die size

by 3, considering that the device contains embedded blocks (such as I/O pins,

DSP, memories). In this case, the area ratio of soft:hard is approximately 70.

Our analyses remain within the same order of magnitude.

Functional Performance

We now turn our attention to the speed of the NoCs. The ASIC 130 nm hard

implementation of ÆTHEREAL operates at 500 MHz (worst-case military) [43].

The example soft NoC described above operates at 118 MHz (NI) and 124

MHz (router) in the Virtex-4 (90 nm technology). We provide a conservative

estimate of functional performance, because we ignore the speed increase of

hard NoC from ASIC 130 nm to FPGA 90 nm . For a fair benchmark of soft and

hard NOCs, the performance:cost ratio (bit/sec/mm2
) should be compared

in 90 nm technology. With equal topologies and architectures, we compare the

raw link bandwidths (operating frequency times 32 bits) per area (of R+NI):

soft 32 bit ∗ 118 MHz/2.8 mm2 = 1348.5 1

hard 32 bit ∗ 500 MHz/0.08 mm2 = 200000 148

4.10. CONCLUSIONS 119

Thus, the performance of a hard NOC is 148 times times better than a soft

NOC.

4.10 Conclusions

In this chapter we presented the architecture of an FPGA that was comprised of

two planes, a communication plane and a logic plane. The HWNoC served as

the communication plane to transport the unified data, i.e., test, configuration,

functional, and control in between the test configuration functional regions

(TCFR). The TCFRs, on the contrary, served as the logic plane to provide the

computing and storage resources for application IPs.

The HWNoC provided scalable IP integration by taking no share from the

logic plane. Hence leaving the full FPGA logic plane (i.e. TCFRs) for an

application IPs. Each TCFR had its own test and configuration architecture.

However, the TCFR of the proposed FPGA architecture were not isolated at

functional level. This means that the logic plane of an FPGA was not divided

into multiple disjoint regions. Therefore, a soft IP can be placed in MTCRs

that belong to different test configuration functional regions. The interaction

between the HWNOC and a TCFR was made possible by using clock domain

crossing FIFOs and BUS Macros. The CDC FIFOs ensured that data is not

lost at the boundary of HWNOC and a TCFR, which could operate at different

frequencies. The BUS Macros, on the other hand, provided persistent connec-

tions between the HWNOC and a TCFR, even during the dynamic run time

reconfiguration.

Our results and analysis show that for a Virtex-4 chip, we had 140 TCFR of

1 k LUT each and a HWNOC that costed approximately 19.6% of the Virtex-

4 chip. However, the HWNOC benefit came in the form of 280 GBytes/sec

bandwidth that could be used to transport test, configuration, functional, and

control data in between the TCFRs. Moreover, when the performance of our

HWNOC was compared to a soft NoC (normalised to equivalent area), it was

found to be 148 times better.

5
Preparing the FPGA System at Compile

Time

In this chapter, first we provide architecture and application specifications in

terms of definitions in Section 5.1. Then, we apply our PUMA scheme to

perform the binding of input applications on the target FPGA architecture,

see Section 5.2. PUMA limitations are provided afterwards in Section 5.3.

Thereafter, we present the results and evaluations of the proposed PUMA

scheme in Section 5.4. In this section, the performance and scalability of our

PUMA scheme is evaluated for multiple combinations of applications and tar-

get FPGA architecture. Lastly, we end this chapter with conclusions in Sec-

tion 5.5.

5.1 Architecture and Application Specifications

In this section, we provide the specifications of the target FPGA architecture

and input applications. Then, we define the objectives that are required to

achieve a successful binding of input applications on the target architecture.

5.1.1 Architecture Specifications

An FPGA with a hardwired NoC [41] is shown in Figure 5.1A. An FPGA con-

sists of multiple FPGA nodes (Fnodes), and physical links that FPGA nodes

use to transport data.

Each Fnode is further decomposed into three nodes, i.e., a test configuration

functional region (TCFR), router, and network interface (NI). A test config-

uration functional region (TCFR) is used to place application computational

resources (i.e., IPs). A TCFR consists of multiple configurable logic blocks

121

122 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

TCFR3

TCFR0

CFG
+

Clock

(A)

TCFR1

CFG
+

Clock

Fnode
2

Fnode
0

Fnode
3

Fnode
1

0 1 2 3 40
1

2
3

4

0
1

2
3

40 1 2 3 4

p0

p1
TCFR0R0 NI0

0 1 2 3 4

p0

p1

R3NI3
p0

p1

p0

p1
TCFR3

0 1 2 3 4

(B)
NI0 Egress

Link

NI3 Ingress Link

CFG
+

Clock

N
I

N
I

R
2

R
0

R
1

R
3 N

I

N
I

TCFR2

CFG
+

Clock

512 CLB or
4 MTCR

Figure 5.1: FPGA with Hardwired NoC: (A) High level Architecture, (B) Architec-

ture Resource Details.

(CLBs), as described earlier in Section 4.3. The remaining two nodes of an

Fnode, i.e., a router and a network interface are used to provide communica-

tion among an application IPs.

Each physical link has a slot table of fixed number of time-slots. The router and

network interface are connected through exactly one egress and one ingress

link. Two Fnodes share data by using their routers.

We illustrate the above discussion by using an example architecture, Fig-

ure 5.1B. It shows an FPGA with 4 Fnodes. Here Fnode0 and Fnode3 are

expanded for the illustration. Each Fnode comprises a TCFR with 512 CLBs,

an NI with 2 ports, and a router. Figure 5.1B shows that each FPGA link has

a slot table 5 time-slots, where the allocated slots are shown with dark col-

ors. Moreover, Figure 5.1B shows the empty slot tables for the egress link of

NI0 and ingress link of NI3. We have not shown all the links in between the

Fnodes to keep the things simple, e.g., Fnode1 to Fnode0 link is missing in

Figure 5.1B.

5.1.2 Application Specifications

An application task graph is a directed graph, which consists of IP cores that

compute and store functional data of an application, and the communication

5.1. ARCHITECTURE AND APPLICATION SPECIFICATIONS 123

Fnode
2

Fnode
0

Fnode
3

Fnode
1

0 1 2 3 4

0
1

2
3

4

0
1

2
3

40 1 2 3 4

p0

p1
R0 NI0

0 1 2 3 4

p0

p1

R3NI3
p0

p1

0 1 2 3 4

LNI0-R0

LR3-NI3

LR0-R1

L
R

1-
R

3

IPa

IPb

p0

p1

Connection
Path

Figure 5.2: An Example Instance of Two IPs on FPGA Nodes and Connection Path

in Between Them.

connections to transport data among the IPs. The nature of our application

is streaming, i.e., it is throughput sensitive and does not have strict latency

constraints.

Each IP is annotated by its area and ports. An application connection has a

minimum throughput demand that can be converted into discretised time-slots.

Additionally, each connection requires a path to exchange data in between

the IPs that belong to it. The connection path from source IP to destination

IP is defined as the nonempty sequence of links in between the source and

destination Fnodes.

5.1.3 Required Objectives

The successful application binding on the target FPGA architecture ensures

that for each of its IPs there exist at least one FPGA node that can fulfill the

placement, mapping, and allocation requirements as explained below.

124 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

1. An IP is said to be placed on a FPGA node if its area constraint is

met. IP area must be less than or equal to a single TCFR area. In other

words, the available area of an Fnode TCFR is greater than or equal to

the required area of IP.

2. An IP is said to be mapped to FPGA node, when the port, ingress con-

nection, and egress connection constraints of IP are met. The Fnode NI,

at the time of mapping decision of an IP, has: (a) at least the required

number of ports, (b) enough bandwidth (without taking time-slots into

account) at its ingress link to meet the aggregated bandwidth require-

ment of all the input connections of IP, and (c) enough bandwidth at

its egress link to meet the aggregated bandwidth requirement of all the

output connections of IP.

3. An IP is said to be allocated, when the connections of IP are allocated

according to its QoS constraints. For instance, if IPa and IPb are two IPs

that are placed on Fnode0 and Fnode3 respectively, see Figure 5.2. Then,

for IPa to IPb connection that requires 3 time-slots as its throughput QoS

constraint, and follows the path that consists of LNI0-R0, LR0-R1, LR1-R3,

LR3-NI3 links, as shown in Figure 5.2. The allocation of the connection

is successful, if and only if, all the links that are part of the path from

IPa to IPb have at least 2 time-slots that can be reserved in a pipelined

fashion.

In the next section, we explain our PUMA scheme that performs the binding

of an application on the target FPGA architecture.

5.2 PUMA: (Road to) Unified Placement, Mapping,

and Allocation

Figure 5.3 illustrates the working principle of our PUMA scheme. Initially, a

database is created that reflects the availability of FPGA residual resources on

both the logic and communication nodes, see Section 5.2.1. The database is

updated during the binding process of an application. The PUMA flow per-

forms a cluster-wise binding of an application (Section 5.2.2), where each

cluster represents the inter-communication dependencies among a group of

IPs, e.g., CL0 represents one such cluster in Figure 5.4C. Then, based on the

area and communication demands of a cluster, the solution space of a cluster

is obtained, see Section 5.2.3. The solution space is obtained to figure out

5.2. PUMA: (ROAD TO) UNIFIED PLACEMENT, MAPPING, AND

ALLOCATION 125

Pre-Processing: Create Database Input: Application

Create
Clusters

Extract
Solution Space

Find CandidatesConstruct
Solution

Request Cluster

Some Clusters Are Still Left

request

cluster

Reserve Cluster
Resources

cluster

Cluster with
Solution Space

Candidates

No Cluster Is Left Out
No

Candidate

Solution

Legend: Start State Finish State

Figure 5.3: High Level Flow of our PUMA Scheme.

the possible candidate solutions, Section 5.2.4. The construction of the best

possible solution comes next, which is evaluated in accordance with a design

time specified cost matrix, see Section 5.2.5. The cost matrix takes into ac-

count the impact of binding of an application on the target FPGA architecture

in terms of area fragmentation, allocation of communication resources (i.e.,

time-slots), and contention produced. In case of a successfully constructed so-

lution, the cluster binding is performed by reserving the (constructed solution)

resources on both the FPGA planes, Section 5.2.6. Our PUMA flow then, de-

pending upon the remaining clusters, either requests the next cluster of current

application, or starts the binding process for the next application.

Our PUMA scheme performs the binding of applications on a one-by-one ba-

sis. This means, when there are multi-applications present in a system, our

PUMA scheme selects one application and tries to bind it on the target FPGA,

and then goes for the next application in the queue. At run time when there

are multiple applications running they do not interfere with each other and

each application gets resources as per required to meet its QoS constraints1.

This is due to: 1) PUMA scheme that makes sure that an application becomes

candidate for execution only if its QoS constraints are fulfilled, and 2) the

3-tier reconfiguration model that makes use of the system manager and com-

posable HWNOC to avoid interference among the running applications (see

Section 6.2).

We now explain the different steps of our PUMA scheme, individually.

1Note that we do not take into account the reconfiguration time when we schedule and bind

the application.

126 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

Algorithm 5.1: Calculation of Effective Throughput between two FPGA

Nodes.
Input: All Fnodes

Output: Effective PathSlots in between any two Fnodes

for All Fnodes do1

Select an Fnode and name it as srcFnode;2

Select netFnodes of srcFnode;3

for All netFnodes do4

Select a netFnode;5

Find the path between srcFnode and netFnode;6

Select first path-link;7

Find out all the available / free time-slots on the first path-link;8

for (i = 0; i ≤ free time-slots; i++) do9

Set FreeSlot = i;10

while all path-links are not traversed do11

Select a path-link;12

Set NextSlot = FreeSlot % SlotTableSize;13

if NextSlot is not free in the selected path-link then14

Exit the while loop because the selected FreeSlot can not be15

allocated to the path-links in pipelined fashion;

end16

end17

if all path-links are traversed then18

Push FreeSlot in the PathSlots vector;19

end20

end21

Map PathSlots with the path that is in between the srcFnode and netFnode;22

end23

end24

5.2.1 Preprocessing: Database Creation

In our PUMA scheme, initially a database for the available FPGA resources

is constructed. To explain the database creation process, Figure 5.1B is used

as the reference example. Initially, the available resources on all the FPGA

nodes (Fnodes) are extracted. For each Fnode, this accounts for the available:

(i) CLBs in its TCFR, (ii) ports in its NI, and (iii) bandwidth on the ingress and

egress links of the NI. Afterwards, the paths among the Fnodes are constructed.

Currently, PUMA constructs the possible shortest path after applying XY rout-

ing in between the two Fnodes. PUMA then evaluates the effective throughput

(in terms of time-slots) on each path that is used to determine the allocation

5.2. PUMA: (ROAD TO) UNIFIED PLACEMENT, MAPPING, AND

ALLOCATION 127

of a cluster connections in Section 5.2.4. The effective throughput of a path

is a term used to represent the number of time-slots that can be assigned in a

pipelined fashion on the path. For instance, the effective throughput for con-

nection path that exists in between Fnode0 and Fnode3 in Figure 5.2 equals to

3 time-slots.

Algorithm 5.1 shows the process to obtain effective number of time-slots that

are available on the path between two FPGA nodes. Prior to explaining the

process, we explain the data structures that are used as inputs, i.e., FPGANodes

and PathSlots. FPGANodes represent all the FPGA nodes, where each FPGA

node is a structure to store the details as follows: (i) TCFR id, area, and the

record of IPs that reside on it, (ii) the number of NIs and their Ids, and for each

NI the number of free ports, bandwidth at its ingress and egress links, (iii) the

paths to remaining FPGA nodes. The PathSlots is a vector to store times-slots,

where each time-slot is an integer number.

The first for loop iterates over all the FPGA nodes of the target FPGA, line

1 - 24 of Algorithm 5.1. In each iteration a srcFnode (i.e., the first / start

Fnode of the path) is selected and its network Fnodes (i.e., all the Fnodes

except the srcFnode) are obtained, line 2 - 3 of Algorithm 5.1. To obtain the

effective number of time-slots on the path in between srcFnode and netFnode,

the following procedure is used.

First, the path from the srcFnode to netFnode is obtained, line 6 of Algo-

rithm 5.1. Afterwards, the time-slots that are not allocated to any connection

are obtained on the first link of the path that exist in between the srcFnode and

netFnode, line 8 of Algorithm 5.1. Then, each of the free time-slot on the first

link is selected to find out its availability in the following links in a pipelined

fashion, line 9 - 21 of Algorithm 5.1. In case of success the selected time-slot

is pushed into the effective PathSlot database against that specific path.

After creating the database, the clusters of the input application are created, as

explained below.

5.2.2 Traversing the Application and Creating Clusters

The applications are becoming increasingly complex. Therefore, picking an

application and an FPGA as a whole, and try every possible binding pos-

sibility would be highly time consuming. Alternatively, there are different

schemes [112], which can allow cluster or level-based traversal of an applica-

tion task graph. Our PUMA scheme, performs the binding of an application

on a cluster-wise basis. As we shall explain in the following discussion, while

128 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

IPc

15 MTCRs

l1

(A)

IPa

5 MTCRs

IPb

10 MTCRs

IPe

25 MTCRs
IPf

30 MTCRs

IPd

20 MTCRs

l0

l2

(C)
Cluster 0 (CL0) Cluster 1 (CL1)

4 slots

IPc

IPa

IPb

IPe IPf

IPd

IPc

IPa

IPb IPd

IPbIPc

IPf IPe

(B)

3 slots

3 slots

2
sl

ot
s

1 hop

3 hops

2 hops

4
ho

p

4
sl

ot
s

5
sl

ot
s

2
ho

ps

2
sl

ot
s

4
ho

ps

2
ho

ps

Figure 5.4: (A) Application Task Graph with Communication Requirements in Terms

of Time-Slots, (B) Communication Levels, and (C) Clusters.

binding a cluster, its inter-cluster dependencies are taken care of. The clus-

ters are created by exploiting inter-IP communication dependencies, because

inputs of an IP can be dependent on the output of some other IP(s). To ex-

plain the cluster creation process, we use an application in Figure 5.4A, which

exhibits all types of inter-IP communication, i.e., single IP to single IP, single

IP to many IPs, and many IPs to single IP communication. For example in

Figure 5.4A, IPa communication with IPb, IPc, IPd stands for the single IP to

many IPs situation. The numbers in Figure 5.4A indicate inter-IP communica-

tion demands in terms of number of time-slots. PUMA creates clusters based

on the following rules:

Rule 0: Pick a start IP, i.e., (IPa).

Rule 1: Identify the communication levels (hereinafter termed as levels) among

application IPs. For this purpose, we place IPa in the zeroth level (l0), see

Figure 5.4B. As the inputs of IPb, IPc, and IPd, are driven by IPa outputs,

5.2. PUMA: (ROAD TO) UNIFIED PLACEMENT, MAPPING, AND

ALLOCATION 129

Algorithm 5.2: Cluster Creation Process.

Input: Application IPs

Output: Clusters of Application

while IPList is not empty do1

if First IP of Application then2

Mark First IP as srcIP;3

Get ConnectedIPs of the srcIP;4

Map srcIP and ConnectedIPs and Push in CurCluster;5

end6

else7

Clear ConnectedIPs;8

for all NextLevelIPs do9

Select an IP and Mark it as srcIP;10

Get ConnectedIPs of the srcIP;11

Map srcIP and ConnectedIPs and Push in CurCluster;12

end13

end14

Clear NextLevelIPs;15

Push CurCluster in AppClusters;16

Push ConnectedIPs in NextLevelIPs;17

Update IPList by Removing NextLevelIPs;18

end19

these are placed in the next level, i.e., l1. This process is repeated until all IPs

are placed in a level hierarchical way.

Rule 2: A cluster indicates communication among the IPs that belong to adja-

cent levels. For example, if there are three levels, say li , li+1, and li+2. Then,

the first cluster (i.e., cluster i) includes all IPs in level li that communicate to

IPs in level li+1. Similarly, the second cluster, (i.e, cluster i+1) includes IPs

in level li+1 that communicate to IPs in level li+2. For instance, Figure 5.4C

shows a cluster (CL0) that indicates communication between l1 and l2 IPs.

Rule 3: The inputs of an IP can be driven by multiple IPs, which exist in

different hierarchies. For instance, IPd inputs are driven by IPa and IPf, which

are placed in l0 and l2 respectively. The placement of IPd is performed as part

of CL0 binding, which is the first application cluster. However, at the time of

placing IPd care must be taken that the resultant placement of IPd should not

block the allocation of a future IPf-IPd connection. This inter-dependency is

detailed in Section 5.2.5.

Algorithm 5.2 shows the process to create application clusters. In Algo-

130 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

rithm 5.2 we use different data structures where: (i) srcIP represents the ref-

erence IP to create a (partial) cluster, (ii) IPList is the vector of application

IPs, (iii) ConnectedPs is the vector of IPs that are connected to a srcIP and

are placed in the next communication level to a srcIP, (iv) NextLevelIPs is the

vector to store the ConnectedIPs of all the srcIPs that are part of a specific

cluster, and (v) CurCluster is the vector to store the maps of all the srcIPs and

their associated ConnectedPs in the two adjacent hierarchies, (vi) AppClusters

is the vector to store all the clusters of an application.

Initially, the first IP of an application is selected as the srcIP and the IPs that are

connected (i.e., ConnectedPs) to it are obtained, line 2 - 4 of Algorithm 5.2.

As a next step, the srcIP and the ConnectedIPs are mapped and marked as

the first cluster. The CurCluster and ConnectedIPs are then pushed in Ap-

pClusters and NextLevelIPs respectively and IPList is updated by removing

the NextLevelIPs, line 16 - 18 of Algorithm 5.2. Next time the same process

repeats for the IPs that are placed in NextLevelIPs vector, but with the dif-

ference that now multiple srcIPs can be the part of a cluster, line 9 - 13 of

Algorithm 5.2.

After creating a cluster, PUMA extracts the solution space for it as explained

in Section 5.2.3.

5.2.3 Solution Space Extraction

After a cluster is created, its solution space is extracted. The solution space

of a cluster is the set of FPGA nodes that can fulfill the combined logic and

communication demands of the cluster. A cluster can have more than one

source IP that communicates with IPs in the next level, e.g., CL1 in Figure 5.4C

is one such example.

Algorithm 5.3 shows the process to extract the solution space for a cluster.

Initially, for each source IP (srcIP) the ConnectedIPs and Connections are ob-

tained, line 2 - 4 of Algorithm 5.3. Next, if a srcIP is already placed on FPGA

(i.e., on any of the Fnodes) then its Fnode is obtained and the solution space is

constructed by calling CreateSolSpace function, line 15 - 18 of Algorithm 5.3.

The Fnode of a srcIP determines the starting point to create the solution space.

However, when a srcIP is not present on the FPGA logic plane, then the search

for a suitable Fnode that can place the srcIP, is made by calling the PlaceSr-

cIP function, line 6 of Algorithm 5.3. In case the PlaceSrcIP function finds a

suitable Fnode to place the srcIP then the CreateSolSpace function is called,

line 7 - 10 of Algorithm 5.3. Otherwise, a failed binding instance for the input

5.2. PUMA: (ROAD TO) UNIFIED PLACEMENT, MAPPING, AND

ALLOCATION 131

Algorithm 5.3: Finding the Solution Space for a Cluster.

Input: An application cluster

Output: Solution space for an application cluster

for All srcIPs do1

Pick a srcIP;2

Get ConnectedIPs of srcIP;3

Get Connections of srcIP;4

if srcIP is not already placed on FPGA then5

Call PlaceSrcIP Function;6

if PlaceSrcIP Succeeded then7

Get FPGA Node of srcIP;8

Call CreateSolutionSpace Function;9

end10

else11

Announce Failed Binding and Exit;12

end13

end14

else15

Get FPGA Node of srcIP;16

Call CreateSolutionSpace Function;17

end18

end19

application is announced back, line 11 - 13 of Algorithm 5.3. In the following

discussion, we explain the PlaceSrcIP and CreateSolSpace functions.

Algorithm 5.4 shows the process to place a source IP on a suitable FPGA node.

Initially, the current FPGA node is obtained, which can be the first Fnode, i.e.,

Fnode0, or the FPGA node where the last IP of the previous cluster was bound.

The srcIP resources are obtained afterwards, line 3 of Algorithm 5.4. These

include the area and ports of a srcIP, and the required time-slots of connections

that are input and output to / from a srcIP. Similarly, the available resources of

the selected FPGA node are obtained, line 4 of Algorithm 5.4. These include

the available area at its TCFR, available ports at its NI, and available time-

slots at its ingress and egress links. The resources of srcIP and FPGA node

are compared afterwards. If the selected FPGA node fails to meet the srcIP

requirements then the next FPGA node is chosen as the current FPGA node,

line 6 - 8 of Algorithm 5.4. The process repeats until the srcIP is placed or all

the FPGA nodes are traversed.

After the FPGA node of srcIP is obtained the CreateSolSpace function is

called. To extract the solution space for the selected cluster, the source Fn-

132 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

Algorithm 5.4: Determining the Placement of Source IP of a Cluster.

Input: srcIP

Output: FPGA Node on which srcIP is Placed

while (srcIP is not placed) OR (All FPGA nodes are not traversed) do1

Pick current FPGA node;2

Get srcIP resources;3

Get FPGA node resources;4

Compare FPGA node and srcIP resources;5

if current FPGA node fails to place srcIP then6

Mark next FPGA node as the current FPGA node;7

end8

else9

Mark srcIP as placed;10

Update current FPGA node resources;11

end12

end13

ode (where the source IP is placed) is obtained. Then, the most strict QoS

constraints of the cluster are obtained, i.e., area, throughput, and latency re-

quirements. This means the cluster task graph is traversed to find out: (a) its IP

with maximum area requirement, (b) connection with maximum throughput,

and (c) connection with minimum latency requirements. The information is

then input to Algorithm 5.5.

Algorithm 5.5 then finds out the Fnodes that are in the network of source Fn-

odes2, Algorithm 5.5 (line 1). Then, the residual area of a network Fnode is

obtained, Algorithm 5.5 (line 3). Afterwards, the path slots and hop delay are

also obtained between the source Fnode and a network Fnode, Algorithm 5.5

(line 4-5). In Algorithm 5.5, 0.006 indicates a per hop delay in µs . The ob-

tained information is then evaluated against the inputs of the Algorithm 5.5,

i.e., the maximum area demand, the maximum required throughput, and the

minimum permitted latency, Algorithm 5.5 (line 7). In case of success, the

selected network Fnode is added in the solution space of the source Fnode.

Example

For example, in our application of Figure 5.4A, IPa is the source IP of the first

cluster, i.e., CL0 . PUMA first looks for the feasible Fnode that can fulfill area,

2The network Fnodes of a source Fnode accounts for all the Fnodes of FPGA minus the

source Fnode.

5.2. PUMA: (ROAD TO) UNIFIED PLACEMENT, MAPPING, AND

ALLOCATION 133

Algorithm 5.5: Determining the Solution Space for an IP of a Cluster.

Input: minlatency, maxslots, maxarea, srcFnode

Output: SolSpace for srcFnode

dstFnodes = getDstFnodes(srcFnode);1

while ALL dstFnodes are not traversed do2

Pick a dstFnode;3

Get dstFnodearea;4

Get Pathslots between the srcFnode and destFnode;5

Get hop count between the srcFnode and destFnode;6

Calculate Hopdelay;7

if (Hopdelay < minlatency) and (Pathslots > maxslots) and (dstFnodearea <8

maxarea) then

Push dstFnode in the solution space of srcFnode;9

end10

end11

ports, and communication demands for IPa. Once such an Fnode is obtained,

the process to extract the solution space is started. If IPa of CL0 (shown in

Figure 5.5A) is placed in Fnode0, then the dotted rectangle in Figure 5.5B

stands for the solution space of CL0.

According to the most relaxed conditions, IPb has the least area requirements,

i.e., 5 MTCRs , see Figure 5.4A. Connection IPa-IPd requires the least number

of time-slots, i.e., 3 time-slots. Connection IPa-IPc has the maximum permis-

sible latency, i.e., 3 hops. On the other hand Figure 5.5B shows that no IP

is placed on any of the FPGA nodes, and therefore the available area of each

Fnode stays at a maximum of 32 MTCRs. This means, all the Fnodes meet the

area requirement. Next comes in the throughput requirements, which include

all the Fnodes except Fnode2 and Fnode5. The reason is that one of the link to

both the Fnodes contain 1 time-slot which is less than the required number of

3 time-slots. As the next step, Fnode8 is taken away from the earlier selected

set of Fnodes. The reason is that the hop count from Fnode0 where is placed to

Fnode8 is more than 3 hops, which is the maximum permissible latency con-

straint. As a result, the solution space of CL0 is the one which is marked with

dotted rectangle in Figure 5.5B.

5.2.4 Candidate Solution Finding

The extracted solution space is now used to obtain the candidate solutions to

bind the input cluster, as shown in Figure 5.6. PUMA generates a number

134 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

(A)

IPa

IPb, IPc

IPd

8

3

5
8

7
1

1

Fn 2

Fn 5

Fn 8

8

8

Fn 1

Fn 4

Fn 7

1

1

1

(B)

(C)

(E)

(D)

(F)

A Sequence to Bind CL1 IPs

IPb / Fn 3 +
IPc / Fn 1 +
IPe / Fn 4 +

IPf / Fn 7

IPa

IPb

IPd

8

3

5
8

2
6

1

Fn 2

Fn 5

Fn 8

8

8

IPc

Fn 4

Fn 7

1

1

1

Fn 0

Fn 3

Fn 6

8

3

5
8

7
13

4

Fn 2

Fn 5

Fn 8

8

8

Fn 1

Fn 4

Fn 7

1

1

1

Cluster 0
(CL0)

Cluster 1
(CL1)

IPc

IPa

IPb IPd

IPc IPb

IPeIPf

4
5

3
24

2 3

IPa

IPb

IPd

4

1

3
1

2
6

1

Fn 2

Fn 5

Fn 8

8

8

IPc

IPe

IPf

1

1

1

After Allocation, the
remaining link slots

Figure 5.5: Example that Shows the Binding of Clusters on our FPGA. (A) CL0 and

CL1 IPs with Time-Slot Requirements, (B) FPGA Architecture with Available Time-

Slots. Rectangle Indicates CL0 Solution Space, (C) Failed Binding for CL0 IPs, (D)

Successful Binding of CL0 IPs, (E) A sequence for CL1, (F) Binding of CL1 IPs in

Accordance with the Sequence.

5.2. PUMA: (ROAD TO) UNIFIED PLACEMENT, MAPPING, AND

ALLOCATION 135

Create Sequence
(IPs / Fnode Pairs)

Update Candidate
Solutions

create required
sequences

All IP / Fnode pairs in
a sequence found valid

Send Sequence

Not
valid

Not the last one in sequence database Last In The
Sequence database

Cluster, and Its Solution Space Legend: Inputs: Finish StateStart State

Placement Pruning

Mapping Pruning

Allocation Pruning

Restore all the resources that were
Marked Reserved

during the 3-tier Pruning Process

Figure 5.6: Finding the Candidates Solutions.

of sequences to find out the solution candidates of a cluster, Figure 5.6. A

sequence consists of all the cluster IPs that are paired with some / all Fnodes

of the solution space. Figure 5.5E shows one such generated sequence, where

each term represents an IP /Fnode pair.

Algorithm 5.6 shows the process to find the candidate solutions of a cluster.

Initially, a total number of sequences are created after obtaining the IPs and

Fnodes of the cluster, line 1 - 3 of Algorithm 5.6. Then for each selected se-

quence, PUMA examines its validity by using the 3-tier pruning process, line 5

- 12 of Algorithm 5.6. First place and map pruning is performed, which if suc-

cessful then triggers the allocation pruning process for the selected sequence.

The 3-tier pruning process is performed for all the IP / Fnode pairs, and com-

pares the residual resources of an Fnode against the required resources of the

paired IP(s). In case of success of allocation pruning the selected sequence is

pushed in the database of candidate solutions, line 10 of Algorithm 5.6. How-

ever, in case of failure the selected sequence is marked as failure and the next

appropriate sequence is selected, line 16 - 18 of Algorithm 5.6. Once, the va-

lidity / failure of a sequence is concluded. The resources that were marked

reserved, during the sequence evaluation process, are restored back, line 19 -

20 of Algorithm 5.6. This way the remaining sequences are examined to cre-

ate a set of possible candidate solutions. We next explain the 3-tier pruning

process that decides the validity of a sequence.

136 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

Algorithm 5.6: The Process to Find Candidate Solutions.

Input: Cluster, Cluster Solution Space

Output: Candidate Solutions for the Cluster

Get IPs in the cluster;1

Get FPGA Nodes in the solution space;2

Create Total sequences;3

while Last sequence is not reached do4

Select a sequence;5

Perform Place and Map Prune for the sequence;6

if Place and Map Prune is succeeded then7

Perform Allocation Prune for the sequence;8

if Allocation Prune is succeeded then9

Add sequence in the CandSolutions database;10

end11

else12

Mark current sequence as failed;13

end14

end15

else16

Mark current sequence as failed;17

end18

Restore the resources on FPGA Nodes and path-links to values that were at the19

start of sequence 3-tier pruning process;

Jump to the next sequence;20

end21

Placement Pruning

A successful placement pruning requires that objective 1 in Section 5.1.3 is

satisfied for all the IP / Fnode pairs of the input sequence. In other words the

placement pruning ensures that an Fnode TCFR in the selected sequence meets

the area requirements of all the IPs that are associated with it.

For example, in Figure 5.5E the generated sequence creates the pair of IPf

and Fnode7. In this case Fnode7 passes placement pruning for IPf, if and only

if, the residual area of TCFR (of Fnode7) is less than the required area of

IPf. In this way, the placement pruning process is conducted for the remaining

IP / Fnode pairs of the sequence. After a successful placement pruning, the

mapping of a sequence is evaluated as explained below.

5.2. PUMA: (ROAD TO) UNIFIED PLACEMENT, MAPPING, AND

ALLOCATION 137

Mapping Pruning

A successful mapping pruning process requires that the objective 2 in Sec-

tion 5.1.3 is satisfied for all the IP / Fnode pairs of the input sequence. In other

words a successful IP to Fnode mapping ensures that the respective NI (in the

Fnode) has enough ports to connect the IP ports. In addition, the NI should

have enough bandwidth on its ingress and egress links to fulfill the throughput

demands of incoming and outgoing connections of the mapped IP, respectively.

For example, for the sequence in Figure 5.5E, the IPf / Fnode7 passes mapping

pruning, if and only if, Fnode7 associated NI meets the following conditions.

(1) The NI has at least 3 ports that are required to connect the IPf ports. (2)

The ingress link of the NI has at least 7 time-slots that are required by the input

connections of IPf, i.e., connection IPc-IPf and connection IPe-IPf, as shown

in Figure 5.5A. (3) The egress link of the NI should have a minimum of 2 time-

slots that are required by the output connection of IPf, i.e., connection IPf-IPd,

as shown in Figure 5.5A.

Once the mapping pruning process is passed for an IP / Fnode pair of the input

sequence, the Fnode resources are updated and the mapping pruning process

is repeated for the next IP / Fnode pair. Note that PUMA, during the mapping

pruning process, takes into accounts the sum of time-slots that are available on

the NI ingress and egress links, but that the positioning of the time-slots is not

taken into account during the mapping pruning process. However, the actual

positioning of the time-slots on the links is evaluated during the allocation

pruning process, which is explained below.

Allocation Pruning

During the allocation pruning, it is ensured that the paths between the sequence

Fnodes have sufficient time-slots to allocate the connections that exist among

the IPs in the sequence. In other words, a (cluster) sequence passes allocation

pruning, if and only if, objective 3 in Section 5.1.3 is satisfied for the cluster

connections.

We explain the allocation pruning by using our example application in Fig-

ure 5.4. We assume that at the time of CL1 allocation pruning, CL0 IPs IPa,

IPb IPc and IPd are bound to Fnode0, Fnode3, Fnode1, and Fnode6, respec-

tively (Figure 5.5D). Now, if the generated sequence in Figure 5.5E binds CL1

cluster IPs, i.e., IPe and IPf to Fnode4 and Fnode7, respectively. Then, the

allocation pruning ensures that this sequence is valid, if and only if, all its four

138 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

Algorithm 5.7: Allocation Pruning Process.

Input: Cluster Connections

Output: Allocation Prune Result

while (Allocation Prune is not Failed) AND (All Connections are not traversed) do1

Select a connection;2

Get source IP (srcIP) and its FPGA node (srcFnode);3

Get destination IP (dstIP) and its FPGA node (dstFnode);4

Get time-slots and permissible latency of the connection;5

Get xyPath between srcFnode and dstFnode;6

Get time-slots (i.e., effective throughput) and hop-delay of the xyPath;7

if (xyPath time-slots > connection time-slots) AND (xyPath hop-dalay <8

connection latency) then

Subtract connection time-slots from the time-slots of links that are part of9

xyPath;

end10

else11

Allocation Prune is Failed;12

end13

end14

if (Allocation Prune is not Failed) AND (All Connections are traversed) then15

Allocation Prune is succeeded;16

end17

connections, i.e., IPb-IPe, IPc-IPf, IPe-IPf, and IPf-IPd are allocated according

to their QoS constraints3.

This means: (i) Fnode3-Fnode4 path has at least 2 effective time-slots4 to allo-

cate the IPb-IPe connection, (ii) the Fnode1-Fnode7 path has at least 4 effective

time-slots to allocate the IPc-IPf connection, (iii) the Fnode4-Fnode7 path has

at least 3 effective time-slots to allocate the IPe-IPf connection, and (iv) the

Fnode7-Fnode6 path has at least 2 effective time-slots to allocate the IPf-IPd

connection.

Algorithm 5.7 explains the process of allocation pruning, which receives all the

connections of the cluster as input. For each selected connection, the source

IP and source Fnode, and destination IP and destination Fnode are obtained,

line 3 - 4 of Algorithm 5.7. Then, the Quality-of-Service (QoS) constraints

of each connection, which are provided in terms of minimum required time-

3For the convenience of the reader, in our example we are using time-slots / throughput as

the only QoS constraint and latency is not included in the example to keep things simpler.
4As stated earlier in Section 5.2.1, we term effective throughput or effective time-slots as

the number of time-slots that can be assigned to path-links in a pipelined fashion.

5.2. PUMA: (ROAD TO) UNIFIED PLACEMENT, MAPPING, AND

ALLOCATION 139

slots and maximum permissible latency demands, are obtained. It is followed

by obtaining the xy path between the source and destination Fnode, line 6 -

7 of Algorithm 5.7. As a next step, the available time-slots on the xy path,

and hop delay of the xy path are obtained. The hop delay is calculated by

multiplying the number of hops in xy path and delay per hop. Afterwards,

the comparison between the connection resources and xy path resources is

performed, line 8 of Algorithm 5.7. In case of a successful comparison, the

resources of appropriate links are updated, line 9 of Algorithm 5.7. However,

in case of failure the 3-tier process announces its failure for the input sequence,

line 11 - 13 of Algorithm 5.7.

Our PUMA scheme, after a successful 3-tier pruning, marks the current se-

quence as a possible candidate solution. Then, depending upon the sequence

generation logic, either apply the 3-tier pruning on the next generated sequence

or start the construction of the best possible solution as explained below.

5.2.5 Solution Construction

After obtaining the candidate solutions where each solution binds the cluster

with guarantees on placement, mapping, and allocation, PUMA starts con-

structing the best possible solution, for which it takes into account two impor-

tant factors as discussed below.

Inter-Cluster Dependencies

First, in the constructed solution an IP (now associated with an Fnode), which

has dependencies with IPs in the clusters that are still to be bound, should not

be blocked at the router of its Fnode.

For example, Figure 5.4C shows that CL0 IPs IPb and IPc have dependencies

with yet to be bound CL1 cluster. Now, if IPb and IPc are paired to the same

Fnode3, as shown in Figure 5.5C, then from Figure 5.5C we can conclude that

the throughput requirements (5 time-slots) of connection IPa-IPb and through-

put requirements (4 time-slots) of connection IPa-IPc are fulfilled. Meanwhile,

the produced logic fragmentation is at minimum. So, from the current cluster

point of view, IPb / Fnode3 and IPc / Fnode3 pairs are valid.

However, in this case, IPb or IPc gets blocked at Fnode3 router, as shown in

Figure 5.5C. Because the maximum sum of time-slots that are available on one

of the outgoing links of Fnode3 router is 5. This is less than the required 6 time-

slots by IPb and IPc output connections. This in turn can block either IPb or IPc

140 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

Algorithm 5.8: Construction of the Best Solution.

Input: Candidate solutions of the cluster

Output: Best solution of the cluster

Set BestCost equals to a very high value;1

while All candidates solutions are not traversed do2

Select a solution and name it as TempSolution;3

Evaluate AreaCost of TempoSolution;4

Evaluate CommunicationCost of TempoSolution;5

Evaluate CongestionCost of TempoSolution;6

Add AreaCost, CommunicationCost, and CongestionCost and name it as7

TempCost;

if TempCost < the BestCost then8

Set TempCost as BestCost;9

Set TempSolution as BestSolution;10

end11

end12

from sending data into the network. Figure 5.5D shows the alternative solution.

Here, IPb / Fnode3 and IPc / Fnode1 pairs not only fulfill CL0 allocation, but

the result binding also does not block the connection IPb and IPc from sending

data into the network.

The Optimisation Criteria

Next, the optimisation criteria is used that decides the overall cost of the con-

structed solution. It consists of three factors as described below:

cost = λ ∗ LogicI + β ∗ CommI + θ ∗ ContI (5.1)

Here LogicI indicates the fragmentation produced in Fnodes by the selected

candidate solution. For example, if a candidate solution IPs are placed in two

TCFRs (e.g., TCFR0 and TCFR1), then the remaining area of both the TCFRs,

after placing indicates the fragmented area. It is designed such that the best so-

lution opts for the candidate solution with minimum fragmentation in the least

number of Fnodes. This not only reduces the number of fragmented Fnodes,

but also increases the (untouched) Fnodes for the remaining clusters / applica-

tions.

The second part of Equation 5.1 accounts for the network allocation, which

is caused by the selected candidate solution. It is designed such that the best

5.2. PUMA: (ROAD TO) UNIFIED PLACEMENT, MAPPING, AND

ALLOCATION 141

Algorithm 5.9: Calculating Area Cost Matrix to Determine the Best Solution.

Input: Candidate solution of the cluster

Output: Area cost of a solution of the cluster

Initialize TCFRVector;1

Initialize TotalTCFRs to Zero;2

Initialize FragmentedArea to Zero;3

while All IP / Fnode pairs are not traversed do4

Select an IP / Fnode pair;5

Get IP area;6

Get TCFR of the respective Fnode;7

Subtract IP area from TCFR area;8

Update TCFR area after subtracting IP area;9

end10

while All IP / Fnode pairs are not traversed do11

Get TCFR of the respective Fnode and name it as TempTCFR;12

if TempTCFR is not present in TCFRVector then13

Get FreeArea of TempTCFR;14

Add FreeArea in the FragmentedArea;15

Push TempTCFR in TCFRVector;16

Increase TotalTCFRs by 1;17

end18

end19

AreaCost = FragmentedArea / TotalTCFRs;20

PercentAreaCost = (AreaCost / DesignTimeTCFRArea) * 100;21

solution opts for the candidate solution with minimum allocated resources over

the network. The third part of Equation 5.1 accounts for the mean of contention

over the network links. It is calculated by averaging the residual slots across

the links of the selected paths in the candidate solution.

Algorithm 5.8 shows the process to obtain the best solution, which iterates over

all the candidate solutions. The best solution is the one with minimum cost.

For each candidate solution its area, communication, and congestion costs are

evaluated, line 3 - 6 of Algorithm 5.8. Next the total cost of solution is obtained

by adding all the three costs multiplied by appropriate constant values, line 7

of Algorithm 5.8. If the solution cost is less than the current best cost then the

current solution is set as the best solution, line 8 - 11 of Algorithm 5.8.

Algorithm 5.9 shows the process to calculate the area cost, which is obtained

by looping over all the IP / Fnode pairs of the selected candidate solution. For

each IP / Fnode pair, the area of IP is subtracted from the area of Fnode TCFR,

line 4 - 10 of Algorithm 5.9. The TCFR area is then updated afterwards. The

142 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

Algorithm 5.10: Resource Reservation Process for the Best Solution.

Input: Solution, CurClstrCon, PrvClstCon

Output: For all Cluster IPs: place, map , allocate

Get all IP / Fnode pairs of Solution;1

while All IP Fnode pairs are not traversed do2

Select an IP / Fnode pair;3

Get TCFR of IP / Fnode pair;4

Get NI of IP / Fnode pair;5

Get Ingress link of IP / Fnode pair;6

Get Egress link of IP / Fnode pair;7

Get Connections of IP and Insert it in ClusterConArray;8

Place IP in TCFR;9

Map all ports of IP to NI port;10

Map all input connection of IP to Ingress link;11

Map all output connection of IP to Egress link;12

end13

while All Connections in ClusterConArray are not allocated do14

Pick a Connection;15

Get source NI of connection;16

Get destination NI of connection;17

Find path between source NI and destination NI;18

Allocate Connection on the path;19

end20

second loop that iterates over IP / Fnode pairs is used to obtain the total number

of TCFRs, line 11 - 19 of Algorithm 5.9. The area cost is then calculated as

the aggregated fragmentation that is produced by the candidate solution in all

the TCFRs, line 20 of Algorithm 5.9.

In Equation 5.1 λ, β and θ are constant that vary from 0 to 1.0, and indicate

the importance of the decision with respect to logic and / or communication re-

source optimisation. It is because the Si ∈ Sl can belong to an application with

variable area and communication demands with respect to the available area

and communication resources of FPGA. Therefore, the optimisation criterion

are not the same every time. For example, an application with low area and

high communication demands can require a solution, which comprises shorter

paths and (possibly) uniform contention. On the contrary, an application with

high area and low communication demands would prefer a solution with low

logic fragmentation. Note that values of λ, β and θ are selected at design time.

However, the selection of λ, β and θ constant values is part of future work.

After constructing the best solution, resources are reserved for the solution as

5.3. LIMITATIONS 143

explained below.

5.2.6 Cluster Resource Reservation

Once the best solution is obtained, the resource reservation is performed. Ini-

tially, all the IP / Fnode pairs of the solution are extracted, Algorithm 5.10 (line

1). Then, necessary information for each IP / Fnode pair is obtained that in-

clude: (i) the IP and its ports, (ii) TCFR and NI of the Fnode, (iii) ingress and

egress NI links, and (iv) the connections that the IP uses to communicate with

IPs in the existing and already bound clusters, Algorithm 5.10 (line 3-8). After

placing an IP in the TCFR, the IP is mapped to the respective Fnode NI. This is

achieved by connecting the IP ports to the NI ports. Then reserving time-slots

of input and output connections of the IP on the NI links, Algorithm 5.10 (line

9-12).

Allocation comes next to placement and mapping. The connections, which

need to be allocated, represent the communication of cluster IPs in the ex-

isting and previously bound clusters. The allocation process is executed by

first extracting the required paths in between the Fnodes. Then, reserving

the resources across the paths, Algorithm 5.10 (line 14-20). Meanwhile, the

database is updated to reflect the new residual resources of the respective Fn-

odes, and new slot tables of the paths that were used during the allocation of

the best solution.

5.3 Limitations

Following are the limitations with the proposed PUMA scheme:

1. Input Application: The nature of the application is streaming. The task

graph of our input application is connected. Moreover, during the cluster

creation process, our PUMA assume that there is always one IP that

serves as the starting point to traverse through the application task graph.

2. Placement: The placement of an IP is restricted to a single TCFR. This

means, PUMA does not accounts the span of an IP in multiple TCFRs.

The placement decision is based on the required area value of an IP and

the residual area of TCFR, i.e., our PUMA scheme does not account

the xy dimensions of an IP, while deciding the placement of an IP. In

other words the residual area of a TCFR is the metric to compute the

fragmentation in our proposed PUMA scheme.

144 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

3. Mapping: PUMA scheme assumes a single NI per TCFR, where each

NI can provide a maximum of 2 GB/s throughput. This means, an IP

that has connections with more 2 GB/s can not be bound by using the

current implementation of our PUMA scheme.

4. Allocation: Our PUMA scheme only takes into account the hop count

as the metrics for latency calculations. We also assume that NI buffers

are large enough to not lose bandwidth due to flow control. The mea-

sures, e.g., FIFO depths at network interfaces, and slot table sizes are

not taken into account while verifying the maximum latency constraints

for a yet to be allocated connection. This means the latency calculations

are rather optimistic. As our input applications are not latency criti-

cal, an optimistically allowed latency value for a connection, might not

be problematic in fulfilling its Quality-of-Service constraints. However,

with latency critical applications, PUMA needs to account for all the

three metrics (i.e., hop count, FIFO depths at NIs, and slot table size)

while allocating a connection.

5.4 Results And Analysis

We implemented the PUMA scheme in SystemC using the design flow of [42].

We evaluated the performance, and scalability of our PUMA scheme, as de-

scribed in the following sections.

0

15

30

45

60

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of Applications

C
om

m
 &

 A
re

a
as

%

 o
f T

ot
al

-1

0

1

A
pp

 B
in

di
ng

 S
uc

ce
ss

% Comm %Area

Result

Success for 30% Comm.
& 45% Area

Failure for 60% Comm.
& 45% Area

Figure 5.7: PUMA Success Rate with Variable Communication and Area Demands.

5.4. RESULTS AND ANALYSIS 145

5.4.1 Performance: Success Rate

PUMA success rate, i.e., binding of application with QoS guarantees, was

evaluated by generating a number of synthetic applications generated using

SDF3 [136]. We discuss our results in terms of success-rate to evaluate that

how good the PUMA scheme is in providing a binding solution over a range

of applications that can vary in terms of area communication requirements.

In Figure 5.7, Figure 5.8, and Figure 5.9, we indicate a successful binding

instance with 1, and a failed binding instance with 0.

Figure 5.7 illustrates PUMA binding results for 20 applications, each of which

comprises 15 IP cores, but contained different area and communication re-

quirements against the target FPGA architecture. Meanwhile, for a selected

application all the connections were kept at the same throughput demand, i.e.,

there was no deviation as far as throughput demands of an application connec-

tions are considered.

0

15

30

45

1 11 21 31 41 51

Application Number

S
ta

da
rd

 D
ev

ia
tio

nS
ta

n

-1

0

1

Standard Deviation
App Binding Result

App Binding Success & Failure with Standard
Deviation 15 in Throughput Requirements

60

Figure 5.8: Binding Results of Applications with Variable Standard Deviations w.r.t.

the Communication Throughput Demands.

Next for the same set of 20 applications of Figure 5.7, we introduced random-

ness in the throughput demands by changing the standard deviation by 0, 15,

and 30, as shown in Figure 5.8.

Once the throughput requirements reach 60% of the FPGA resources, the failed

binding instances are prominent with 0 SD as compared to 15 SD or 30 SD.

This is because the throughput demand of each application connection stands

at a higher 900 MB/s, when the communication requirement of an applica-

tion is 60% of the FPGA communication resources and connection values

deviates with each other by 0 value. In this situation, any two connections

that share a link can induce a failed binding instance. Because the combined

146 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

App Binding Success & Failure with IP
Branching 3, and

Standard Deviation 30 in Throughput demands

0

5

10

15

20

25

30

35

1 11 21 31 41 51 61 71 81 91 101 111

Application Number

S
ta

nd
ar

d
D

ev
ia

tio
n

-1

0

1

2

3

A
pp

 S
uc

ce
ss

 /
 I

P
 B

ra
nc

hi
ng

Standard Deviation Branching App Binding Result

App Binding Success & Failure with IP
Branching 2, and

Standard Deviation 15 in Throughput demands

Figure 5.9: Impact on the Binding Success of Applications by Increasing Inter-IP

Dependencies.

(raw) throughput demand of any two connections (with standard deviation 0

and 60% communication) is approximately 1800 MB/s, which approaches the

maximum throughput capacity of a link in our HWNoC architecture. In other

words, PUMA fails to fit two connections (with standard deviation 0 and 60%

communication) on the same link. However, PUMA success-rate (for the same

60% communication) increases as the standard deviation between the connec-

tions reaches to 15 or 30, as shown in Figure 5.8.

Next for the same set of 60 applications of Figure 5.8, we changed IP branch-

ing, i.e., average number of connections per IP. This means an IP can now

communicate with more IPs. Therefore, interdependencies among the applica-

tion IPs increases. Figure 5.9 shows application success rate with an average

branching of 2 and 3. Interestingly, the results for each branch hold a similar

pattern, mainly due to the assurance of enough resources on the NIs of Fnodes

at the time of IP mapping. This enables the future connections for that IP to

get allocated.

Next we averaged the success rate for a particular area / communication com-

bination that exists in 120 applications of Figure 5.9. Figure 5.10 reflects suc-

cess rate with high area (i.e., 50% and 70% area requirement of the available

FPGA area) requirement and variable communication requirements. How-

ever, Figure 5.11 reflects success rate with low area (i.e., less than 50% area

requirement of the available FPGA area) requirement and variable commu-

5.4. RESULTS AND ANALYSIS 147

0

20

40

60

80

100

10% Comm. 20% Comm. 30% Comm. 40% Comm. 50% Comm. 60% Comm.

% Communication Requirements

%
 S

uc
ce

ss
 R

at
e

50% Area
70% Area

Figure 5.10: PUMA Success Rate with High Area (i.e., 50% and 70% Area of FPGA)

and Variable Communication Requirements.

nication demands. The figures Figure 5.10 and Figure 5.11 indicate approx-

imately 50% success rate when the communication requirements are 30% of

the available communication resources of the target FPGA. However, as the

communication requirement reaches the 60% mark, the success rate decreases

to a low 20% value.

In Figure 5.10, this is mainly due to the increased randomness in the demands

of area and communication requirements, which makes it difficult to achieve

successful binding. Though PUMA takes into account the inter-cluster de-

pendencies, i.e, while binding a cluster PUMA makes sure that IPs that have

connections with IPs in yet to be bound clusters do not get blocked at their

respective network interfaces. However, the calculations take into account the

availability of required number of time-slots at network interface links, and not

the exact positioning of time-slots that can only be known when the remaining

IPs are bound in the following clusters. For low area and variable communi-

cation situation as shown in Figure 5.11, the decreased success rate is due to

the area saving objective that concentrates the resources in a smaller number

of Fnodes. Here, the objective is to reduce the cost that is paid over QoS guar-

antees, i.e., to avoid producing high fragmentation over the logic plane, which

can prohibit the binding of future applications.

5.4.2 PUMA Scalability

To find out the the scalability of our PUMA scheme, we varied the number of

application / architecture combinations as shown in Table 5.1. For instance, the

first row of Table 5.1 shows an FPGA with 9 TCFRs and hops that are arranged

3x3 dimensions. During the binding process we: (a) pick up an application

task graph and an FPGA architecture, (b) change the application area demands

148 CHAPTER 5. PREPARING THE FPGA SYSTEM AT COMPILE TIME

0

20

40

60

80

100

10% Comm. 20% Comm. 30% Comm. 40% Comm. 50% Comm. 60% Comm.

% Communication Requirements

%
 S

uc
ce

ss
 R

at
e

15% Area
30% Area

Figure 5.11: PUMA Success Rate with Low Area (i.e., 15% and 30% Area of FPGA)

and Variable Communication Requirements.

Table 5.1: Success Rate over Multiple Applications and FPGA Dimensions.

FPGA Dimensions App IPs App Connections %Success Rate

3x3 5 6 68

7 8 60

9 14 56

4x3 11 18 65

13 21 53

from 15% to 60% of the target FPGA architecture, (c) for each area percentage,

we change the throughput demands of the application from 10% to 60% of

the available throughput, (d) record the result for each combination, and (e)

average out the results to find out the success rate of the application binding on

the architecture. As could be seen in Table 5.1, PUMA scheme holds a success

rate in between 70% and 50%.

5.5 Conclusions

In this chapter, we presented a scheme to bind applications on FPGA architec-

ture, which unifies all the three processes of placement, mapping, and alloca-

tion. The PUMA scheme ensures the QoS guarantees, whenever the binding

of an application is successful. In the end, we presented the mechanism to

traverse through the application to perform the binding, evaluated the success

rate and scalability over multiple synthetic applications.

6
Run-Time FPGA System Adaptation

Earlier we explained the proposed FPGA architecture, which comprises multi-

ple TCFRs, a hardwired NoC, and a control processor, Chapter 4. In this chap-

ter, we make use of the HWNoC to transport functional communication (data

and control) as well as configuration (bitstreams for soft IP). We start with list-

ing the sequence of steps that are required to configure and program an FPGA

system, Section 6.1. These will be discussed for the conventional as well as the

newly proposed FPGA architecture. Next, we discuss a 3-tier model that we

proposed for the dynamic run time reconfiguration of applications, Section 6.2.

The 3-tier reconfiguration model performs composable inter-application and

persistent-state intra-application dynamic reconfiguration. Afterwards, we list

the limitations of the 3-tier model in Section 6.3. Thereafter, we present the

results and evaluation of the run time reconfiguration process, Section 6.4. We

end this chapter with conclusions in Section 6.5.

6.1 System Configuration & Programming: Overview

The control processor, as explained earlier in Chapter 4, is used to bootstrap,

configure, and program the FPGA system. It does so by using its local NI to

transport configuration and programming data over the HWNOC to TCFRs.

First, the local NI is programmed with a channel to a remote NI. The new

channel is used to program the remote NI. In this manner the whole HWNOC

can be programmed, i.e. programming and data channels are set up. Con-

ventionally in an ASIC [45, 46, 121], following this, the IPs are programmed

(initialized and started) on their MMIO ports. However, in an FPGA, load-

ing of bitstream is required first. At this point, the application is running. We

now explain the configuration and programming of an FPGA with soft (con-

ventional) and hard (our) interconnects.

149

150 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION

(A)

(B)

Control
Processor

NoC

IP

Bitstream
Memory Pervasive Configuration Interconnect

Control
Processor

Programmable Soft
Functional

Interconnect (NoC)

IP

1:
Configure

proc.,
NoC & IP

2:
Program

NoC

3:
Program

IP

4:
Application

1:
Reconfigure

new IPs

2:
Program

NoC

3:
Program

IP

4:
Application

reset all
Reset

new IPs

1

1 1 1

2, 3 3

Control
Processor

Bus / xbar /
point-to-point

IP

Bitstream
Memory Pervasive Configuration Interconnect

Control
Processor

IP

1:
Configure

proc.,
P-to-P & IP

2:

Program
IP

3:

Application

1:
Reconfigure
P-to-P and

new IPs

2:
Program

IP

3:

Application

reset all Reset
P-to-P and new IPs

1

1 1 1

2 2Non-Programmable Soft
Functional Interconnect

(Point-to-Point)

Figure 6.1: Conventional Configuration and Programming with (A) Non-

Programmable Soft Functional Interconnect, and (B) Programmable Soft Functional

Interconnect.

Note that in Figure 6.1, we use different types of lines to indicate different processes,

i.e., configuration, programming, and execution. A dashed line indicates the configu-

ration process, a dot-dashed line that it is being programmed, and a solid line indicates

that the component is executing (i.e., functionally active). In addition, the labels on

the lines show the sequence in which the processes take place.

6.1. SYSTEM CONFIGURATION & PROGRAMMING: OVERVIEW 151

6.1.1 FPGA With Soft Interconnect

For chips with configurable components (FPGAs, but also ASICs with em-

bedded FPGA) a configuration phase is required. Figure 6.1 shows how an

FPGA application without HWNOC is bootstrapped conventionally by using

a non-programmable functional interconnect, and by using a programmable

NoC functional interconnect.

To bootstrap an application on a conventional FPGA, first (shown by dashed

lines and label 1 in Figure 6.1), the control processor (if not a hard processor,

such as a PowerPC), interconnect (e.g., not programmable such as crossbar

or point-to-point, or programmable such as NoC), and IP are all configured

by copying a bitstream from a configuration memory (e.g., flash) using the

conventional configuration IO (e.g., ICAP). After a functional reset, the con-

trol processor programs the IP only when non-programmable functional in-

terconnect is in place, as shown with label 2 in Figure 6.1A. However, with

programmable functional interconnect (e.g., NoC), the control processor pro-

grams the NoC and then the IP, as shown with labels 2 and 3 in Figure 6.1B

respectively. Finally, the application is executing, i.e., processor, functional

interconnect (NoC and point-to-point), and IP are all in functional mode, as

shown with label 3 in Figure 6.1A and label 4 in Figure 6.1B.

(Partial) reconfiguration of the system, shown after the vertical bar, operates

identically. However, care must be taken that those parts of the system that

continue to operate are shielded from parts that are reconfigured [111]. As

shown in the grey text and circle in Figure 6.1A, when IPs are reconfigured the

non-programmable interconnect must probably be reconfigured too. If both

non-programmable interconnect and IPs are reconfigured they are allowed to

store the same (partial) reconfiguration regions, i.e., CLB columns. However,

it is beneficial to leave the interconnect in place and not reconfigure it when

reconfiguring the IPs. This is accomplished by making it programmable and

placing it in separate CLB columns from the soft IP. It can then be left in place

while IPs are reconfigured, and it is reprogrammed afterwards. The configu-

ration interconnect is marked as pervasive because it reaches all configurable

elements in the FPGA from the configuration IO connected to the (off-chip)

bitstream memory. (As in conventional FPGAs.)

6.1.2 FPGA With Hard Interconnect

Although a soft programmable interconnect has advantage over a non-

programmable soft interconnect; our proposed programmable hard NoC has

152 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION

Control
Processor

HWNoC

IP

Bitstream
Memory

Control
Processor

Hardwired Configuration and
Functional Interconnect (HWNoC)

IP

1:
Configure

Proc.

2:
Program

NoC

3:
Configure

IP

5:
Application

4:
Program

IP

2:
Program

NoC

3:
Configure

IP

4:
Program

IP

5:
Application

Reset Control
Proc & NoC

Reset IP Reset new IP

1 2

3b3a 3a’

4

Figure 6.2: New Configuration and Programming with Programmable Hardwired

Network on Chip.

Note that in Figure 6.2, we use different types of lines to indicate different processes,

i.e., configuration, programming, and execution. A dashed line indicates the configu-

ration process, a dot-dashed line that it is being programmed, and a solid line indicates

that the component is executing (i.e., functionally active). In addition, the labels on

the lines show the sequence in which the processes take place.

more advantages. Figure 6.2 shows how to configure a system when a hard

NoC is used as the configuration interconnect. First, notice that the NoC is no

longer configured (no dashed line for NoC). Second, IPs are configured only

after the NoC has been programmed (dot-dashed line and label 2) because the

bitstreams are transported using the HWNOC in the functional mode.

The configuration interconnect is now split in two parts 3a’ and 3b, and Fig-

ure 4.1. First, the minimal top-level part that connects the configuration IO

(with a DMA engine) to a master configuration port on an NI kernel, as shown

with label 3a and 3a’ in Figure 6.2. This is comparable to a streaming re-

quest channel from the control processor to the configuration port of an FPGA

TCFR. Second, once the bitstream arrives on the other side of the NI (e.g., the

IP of Figure 4.2) it enters the local (conventional) configuration interconnect

of a TCFR to configure a specific IP, as shown with label 3b in Figure 6.2.

For a (partial) reconfiguration, the following steps are required. First, the IPs /

TCFRs to be reconfigured are stopped by programming their MMIO ports.

Then, via the HWNOC they receive new bitstreams and are reset on their

MMIO ports. The HWNOC may be reprogrammed with the new application

mode as well. Recall that bitstreams are streaming data and are not interrupted

during their transport from bitstream memory to the IP (reconfiguration re-

gion). The original ICAP achieved this by transporting a single bitstream at a

time. But a NoC transports many streams (data, control, bitstream at the same

time), and communication in general does not achieve this. But the fixed-

6.2. 3-TIER MODEL FOR COMPOSABLE & PERSISTENT-STATE

RUN-TIME RECONFIGURATION 153

latency GS communication service of the HWNOC is essential to avoid any

(temporal) interference, because during the partial reconfiguration other IPs

continue to operate and communicate using the HWNOC. Thus, our hard NoC

offers two indispensable qualities: reprogramming instead of reconfiguration,

and guaranteed (fixed-latency) communication.

6.1.3 Summary

We explained the sequence of steps that are required for a running FPGA sys-

tem. The steps illustrated the configuration and programming of an FPGA sys-

tem with a soft interconnect, and a hard interconnect e.g. a HWNoC. It shows

that our HWNoC needs to be programmed, in contrast to a (conventional) soft

functional interconnect configuration and at higher frequency. As we see later

programming involves less data and it is faster than an ICAP. Therefore, with

our architecture the pervasive configuration architecture can be replaced by a

hardwired NoC.

6.2 3-Tier Model for Composable & Persistent-State

Run-Time Reconfiguration

In this section we introduce the three tiers of the reconfiguration model in Sec-

tion 6.2.1. We discuss the steps to enforce composability at inter-application

level, while an application is dynamically reconfigured, Section 6.2.2. After-

wards, the dynamic reconfiguration process of an application is explained in

Section 6.2.3. In the next section, we explain how persistent state is ensured at

intra-application level, Section 6.2.4. Lastly, we provide the summary of the

complete discussion in Section 6.2.5.

6.2.1 Responsibilities Across the 3 Tiers

In this section we explain the responsibility of each tier of our dynamic recon-

figuration model, as shown in Figure 6.3.

System Manager

The system manager is executed on the control processor and executes always.

The role of the system manager is to manage (allocate, deallocate) resources

154 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION
S

pa
ce

IP1 IP2

Configure
IPs &
Pgm.

Conns

Pgm
AM

Reconfig
-uration
Request

Application

Time

System Manager

Terminate
IPs & Conns

Application Manager

Executes the input data.
Sends output data to application manager.
Requires flow Control between the IPs.
Requires guaranteed QoS Between The IPs.

Configured before the client (sub) application.
Stays alive during the client application
execution.
Manages application related resources, i.e.,
programs IPs, provides I/O, and storage
services.
Ensures persistent-state data during sub
application swapping.

Stays alive until the system is switched-off.
Record running applications and their
TCFRs.
Configures (sub) applications.
Configures and programs application
managers.
Ensures QoS guarantees for application.
Enforces no resource conflict among the
running applications.

1
st Tier

3
rd Tier

2
nd Tier

Figure 6.3: 3-Tier Reconfiguration Model with an Overview of Responsibilities of

each Tier.

of applications. Applications have no access to resource budgets, schedulers,

etc. to avoid interference, and to make the system more robust.

For each application, the system manager records the application identifier, ap-

plication manager, configuration region and use-cases of the application, etc.

The system manager also keeps record of resource budget (obtained at com-

pile time) for all the applications. This includes the reservation of the paths

for application IPs to communicate with each other, number and positioning

of time-slots on the paths, and credit counter (over the network) between the

source and destination application IPs [49] and TCFR regions.

Application Manager

Each application has its own application manager is deployed on per applica-

tion basis. An application manager is a soft IP using FPGA resources, and

that manages the resources of an application, i.e., programs IPs, loads / stores

RAM data from / to IPs, saving application persistent-state (see Section 6.2.4)

etc. As the system manager is unaware of an application’s execution status,

6.2. 3-TIER MODEL FOR COMPOSABLE & PERSISTENT-STATE

RUN-TIME RECONFIGURATION 155

an application manager is the one who notifies the system manager about its

client application termination. An application manager must be stopped, if its

application no longer exists

Application IPs operate on streaming data that arrives in a FIFO channel. At

the start and end of the pipeline the data is sent / received by an application

manager. The data comes from / goes to (e.g., a file in) memory or hardwired

peripherals (e.g., ADC, DAC, USB, UART). This may take place through a

direct connection from IP to peripheral, or via the application manager that

adds addresses to receive / store data at appropriate memory location. How-

ever, an entire application might be too large to completely fit in an FPGA

(or the part of FPGA that is reserved for it). In this case, an application is

split into multiple sub-applications that are dynamically swapped in and out,

as data flows through the system. This in turn requires that the state between

the sub-applications is not lost during the reconfiguration process. An appli-

cation manager, as discussed later in Section 6.2.4, provides a mechanism for

dynamic swapping of sub-applications, taking care of persistent-state.

Application

An application forms the third tier of our reconfiguration model. The nature

of our application is streaming and it consists of a number of soft IPs. The

application IPs operate, i.e., consume and produce addressless data. The exe-

cution of application IPs on data is performed in a pipelined fashion, and the

data is distributed in spatial and temporal domains. The (soft) IPs of an appli-

cation are configured before being initialised, programmed, and executed, as

explained in Section 6.2.3.

The 3-tier reconfiguration model enforces; (a) composability across the appli-

cations while they are configured and while they run, and (b) at the end of

(sub)application execution, ensures persistent-state transitions while swapping

a (sub)applications in / out of the system. We will expound on each of these

functions in the following sub sections.

6.2.2 Enforcing the Inter-Application Composability

In a real scenario, each use-case represents a different combination of applica-

tion(s). Therefore, each application will have its own QoS requirements, e.g.,

bandwidth and latency constraints that the communication infrastructure must

efficiently fulfill to meet the required performance constraints.

156 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION

Composable starting / stopping of applications ensures that the other running

applications are not disrupted running. This means the composable swapping

of an application avoids any conflict of resources on both the FPGA planes, i.e.,

the logic and communication planes. The logic plane resources include min-

imum configuration regions in a TCFR. The communication plane resources

include; data connections and resources associated with each data connection,

e.g., FIFO, and time division multiplex (TDM) slots.

To cope with the above challenges, the proposed methodology allocates a vir-

tual platform for each application [5]. In this way the swapping of applications

does not interfere with existing applications. To implement such a platform,

the dynamic reconfiguration methodology calculates the communication plane

resources (at compile time) for each application in accordance with its QoS

requirements [147]. In case of multiple use-cases the principles of [45] are

followed as well. The authors in [45] propose to consider all the use-cases and

allocate for each application the required resources for its connections, such

that not only its QoS requirements are fulfilled but also the use-case transitions

do not impact its execution.

At run time, the reconfiguration methodology: 1) checks if new applications

can be started, i.e., enough resources are available, 2) starts applications (as

explained in Section 6.2.3 and Figure 6.2.).

6.2.3 Run Time Application Reconfiguration

Run time reconfiguration of an application is illustrated in Figure 6.4, which

shows that the system manager instantiates (configures and programs) all the

IPs of an application and the NoC. Figure 6.5 illustrates the process of instan-

tiating a soft IP in its TCFR.

The system manager manages all resources in the system, i.e., keeps track of

NoC connection, TCFR regions, and frames, etc. It ensures that an application

is only started when all its required resources are available.

The system manager loads the bitstreams of an IP from the bitstream memory

to the appropriate TCFRs. It does so by first setting up a connection from a port

on its NI to the configuration port on the NI of the TCFR. This entails program-

ming the HWNOC using memory-mapped IO (MMIO), as described in detail

in [41,46]. For our purposes, this is performed by an abstract open connection

function. After the bitstream has been sent to the TCFR, the bitstream con-

nection is removed. Bitstreams are modeled accurately, with registers such as

system frame length (FLR), start frame address (SFAR), total bitstream frames

6.2. 3-TIER MODEL FOR COMPOSABLE & PERSISTENT-STATE

RUN-TIME RECONFIGURATION 157

Configure And Program IP

Last IP of Application

System Manager

Setup Application Data Connections

Program Application Manager

Get Notification and Ensure Persistent State

N
ex

t I
P

Start

No

Yes

To Application
Manager

From Application
Manager

Figure 6.4: Application Configuration by Using the System Manager.

(TFR) and data frame register (DFR).

Initially, the system manager retrieves the bitstream for an IP from external

configuration memory. The bitstream is a combination of frame headers and

data. The header contains information about the location of the start frame,

number of frames, and TCFR identifier. By keeping track of all the frames

of other running applications in the system, the system manager can spot if

an active frame would be overwritten. After this check, the respective TCFR

is informed of the start frame location (SFAR), the number of frames (TFR),

and the actual bitstream frames. Afterwards the bitstream frames are stored in

the data frame registers, and are transported to the TCFR. The process repeats

until the last set of configuration frames of an IP bitstream is transported to the

destination TCFR.

At the destination TCFR, the configuration controller (see Figure 4.1) han-

dles the incoming bitstream headers and frames. The configuration controller

places the incoming bitstream at the correct locations as elaborated in Sec-

tion 4.5.2. This way an IP is configured and the bitstream loading process iter-

ates for all the IPs that can be placed in a TCFR. Afterwards, the initialisation

158 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION

memory
System
Manager

App Manager / IPTCFR

initialize
read bitstream

bitstream

bitstream header

bitstream

set
address
decoder

load
bitstream enable clock

using MMIO

reset AM / IP
using MMIO

program AM / IP
using MMIO

functional
mode

running
time

Figure 6.5: Starting a Soft IP.

is carried out per IP, i.e., setting up the clock and reset of an IP. The clock of

an IP can be programmed and switched on/off by writing to memory-mapped

(MMIO) registers via the NoC. Similarly, the soft IP can be reset by MMIO.

On the TCFR end, there the clock and reset managers are used to enable /

disable the clock and reset signals, respectively. At the end, the initialisation

connection is closed and the network resources are released. This way a soft

IP is physically placed on the reconfigurable plane of a TCFR.

As the next step, i.e., after placing the IPs on TCFRs, the system manager

establishes the communication connections among the IPs, see Figure 6.4. It

uses the resource allocation that is computed at compile time.

After the connections are established the system manager programs an appli-

cation manager that interacts with an application during its execution time. An

application manager plays a critical role to assure the persistent-state of ap-

plication data while the (sub)applications are swapped in and out. In the next

section, we illustrate the mechanism by using which an application manager

ensure the persistent-state during dynamic reconfiguration.

6.2. 3-TIER MODEL FOR COMPOSABLE & PERSISTENT-STATE

RUN-TIME RECONFIGURATION 159

Address
Generation

Unit
DMA

DATA
MEMORY

DCT

Q
ua

nt

IDCT

Application Manager

Controller

Residue

Reconstruct IQuant

Application IPs With Different Data
Processing Pipelines

Figure 6.6: Interaction between an Application Manager and its Application.

6.2.4 Assuring the Intra-Application Persistent-State Transition

In this section, we explain the architecture of an application manager, and the

procedure an application manager uses to ensure persistent-state transition of

sub-applications. We also provide the details of the protocol that the system

manager uses to program an application manager.

Application Manager Architectural Description

The architecture of an application manager is illustrated in Figure 6.6. It con-

sists of a direct memory access (DMA) unit, a memory unit, address generation

unit (AGU), and a controller. The DMA engine uses an address generator unit,

which is programmed by the controller to generate input / output memory ad-

dresses. The input/output address are then used to fetch / store application data

from / to data memory. An application manager in our 3-tier reconfiguration

model is a soft IP. However, we have implemented an application manager

in SystemC, where the different architecture blocks, e.g., DMA and memory

unit interact by using function calls instead of using the ports. However, in a

real architecture the communication between a DMA and memory unit can be

performed by using the memory-mapped ports.

An application manager has a number of responsibilities. First, it acts as a

source and sink for the processing pipeline, i.e., supplies the first IP in the

pipeline with data, and receives the results from the final IP in the pipeline,

160 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION

Re
sid
ue

D
C
T

Qu
ant

D
M
A

D
M
A

Reconfigure Sub Application 1
to Sub Application 2

Persistent State

(B)
Me
mo
ry

Me
mo
ry

IQ
ua
nt

I
D
C
T

Rec
onst
ruct

D
M
A

D
M
A

Me
mo
ry

Me
mo
ry

DMA +
AGU +

Controller

Persistent Application
Manager

Residue DCT Quant

Recons-
truct

IDCT

Memory

IQuant

Sub Application 1

Sub Application 2

(C)

Re
sid
ue

D
C
T

Qu
ant

Me
mo
ry

Me
mo
ry

IQ
ua
nt

I
D
C
T

Rec
onst
ruct

Logical View

Actual View

Subapp 1 Until Time t Subapp 2 After Time t

(A)

Not Persistent / Swapped in/out

Figure 6.7: (A) Logical View of an Application, (B) Actual View after the application

is divided into Two Sub Applications, (C) Interaction of Application Manager with

Both the Sub Applications and Persistent-State Data during Reconfiguration.

6.2. 3-TIER MODEL FOR COMPOSABLE & PERSISTENT-STATE

RUN-TIME RECONFIGURATION 161

see Figure 6.6. The DMA of an application manager sends / receives data to

/ from the client application by using the streaming ports. This data is read

from and stored in memory, which can be internal or external to an application

manager. In our experiments, it is internal as shown in see Figure 6.6. In a

real system, the input / output data could come from the FPGA I/O, and would

be handled in the same manner. Second, an application manager is aware of

the progress of the pipeline, i.e., knows when all the source data has been

processed (if ever), and when all the result data has been received (and hence

if the pipeline is empty). As mentioned, an application manager contains one

or more memories that act as sources and sinks to the rest of the pipeline.

Similarly, the address generation of output data from the respective memory

locations is performed by using the address generation unit. Importantly, the

controller has information about the application pipeline such as the number

of input/output channels of the application, where the data of these channels is

stored in the memories, and how much information must be sent or received.

This information is stored in the local memory and has been received from the

system manager as explain later. It also allows an application manager to know

when the application pipeline is empty and hence finished.

An application that is dynamically swapped in and out can be split into mul-

tiple sub-applications, as the data flows through the system, as shown in Fig-

ure 6.7A, B. It incorporates that the state between the sub-applications is not

lost during reconfiguration, i.e., the state of data persists during the swapping

of applications, as shown in Figure 6.7 C. An application manager achieves this

by keeping the record memory addresses of output data of previously swapped

application. An application manager then can extract the data from there and

provide as input to the next sub-application in the loop. The procedure by using

which an application manager ensures a persistent-state during sub-application

swapping is explained below.

Procedure to Assure Persistent State

Figure 6.8 explains a series of actions that an application manager performs

to provide input to an application or after getting an output from an applica-

tion. The numbers on the arrows provide the sequence in which the different

functions are performed in an application manager.

On the input path (comprised of light blue rectangles in Figure 6.8), (1) an ap-

plication manager receives application information from the system manager.

(2) Based on the received application information, an application manager se-

162 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION

Receive Application
Information in Local

Memories

Fetch Data
From Memory

Transport
It On App.

Data Conns

Required
No. of Execs
Performed

Required
Output Data

Rcvd

Store Data
In Memory

Notify System
Manager

Receive
Input
Data

Process
Received

Data

Forward
Output to
Next IP

Controller (Sub) Application

Select a Processing
Block

(e.g., 4x4 MB)

AGU

From System
Manager

1
2

6

4

5

Last IP
in the

pipeline

Forward
Output to

Application
Manager

1

2

3

7

3

No

4

No

Yes

DMA

Yes

Generate
Addresses

Receive Data
From App.

Figure 6.8: Procedural Description to Assure Persistent State by Using Application

Manager.

6.2. 3-TIER MODEL FOR COMPOSABLE & PERSISTENT-STATE

RUN-TIME RECONFIGURATION 163

lects the required processing block, and sends its information to the address

generation unit. (3) An address generation unit then generates the required

input and output memory addresses for the processing block, and sends the

memory addresses to the DMA unit. (4) The DMA unit contacts memory and

uses input memory addresses to fetch the required data. (5) Afterwards, the

DMA unit transports data on a connection that connects the DMA to first IP

of an application, as shown in Figure 6.7A. (6) The DMA unit then informs

the controller about the transportation of data. (7) In case the required num-

ber of executions are not performed, the controller selects the next processing

block and sends its information to the address generation unit. Alternatively,

the controller stops sending the information of processing block to AGU, and

waits for the required output data to receive.

On the output path (comprised of dark green rectangles in Figure 6.8), (1) the

DMA unit receives processed data for the block whose data was earlier input

to the first IP. The DMA receives the processed data from the last IP of the ap-

plication, as shown in Figure 6.7A. (2) Afterwards, the DMA unit contacts the

memory and stores the data on the required output addresses that were earlier

received from the address generation unit. (3) The DMA unit then informs the

controller about receiving the data for a particular execution. The controller

verifies if data for the required number of executions has been received. (4) If

so, the controller of an application manager notifies the system manager that

the application has completed the execution of the required data. This means

that at the end of a sub-application execution, the application manager triggers

the reconfiguration request for the next sub-application by sending a notifica-

tion to the system manager. The system manager then ensures that transition

from one sub-application to another sub-application is performed as explained

below.

Persistent-state reconfiguration of sub-applications is achieved first by tearing

down the application data connections by using a systematic procedure, pro-

posed in [46]. Disabling the application computational resources comes next,

which starts with opening a reset connection to NI(s) associated with applica-

tion IPs and afterwards sending a 32-bit reset signal to disable IPs from pro-

cessing further. The system manager then configures the next sub-application

and programs an application manager with the number of executions to per-

formed. However, the system manager does not send the information about

the memory locations to load and store the data. The reason is that the sys-

tem manager is unaware of the memory locations, i.e., where the output of the

previously executed sub-application was stored. It is the responsibility of the

respective application manager to provide input data that is saved as persistent-

164 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION

3 words

of Input Arrays
* 5 words

of output
Arrays

* 5 words

2 words

App Id

of Input Arrays

of Output Arrays

of Input Arrays

iBase

iRows

iStrides

iWidth

iHeight

of Output Arrays

oBase

oRows

oStrides

oWidth

oHeight

iExecs

oExecs

1 word wide

Figure 6.9: Programming Protocol Structure.

storage, to the next sub-application.

Notably during the swapping of a sub-application all the existing soft IPs

of an application are reconfigured, except its application manager, see Fig-

ure 6.7. The reason as explained before that, an application manager sees

consistent view over multiple sub-applications through persistent storage in its

local memory. The next sub-application that is scheduled then operates on this

data.

Programming an Application Manager

The system manager programs an application manager with the (1) identifica-

tion of (sub) application, (2) number of different places from where data needs

to be fetched from or to be stored (we call these arrays), (3) the pattern in

which data should be fetched / stored for each array, and (4) the number of

executions to be performed on the data.

6.2. 3-TIER MODEL FOR COMPOSABLE & PERSISTENT-STATE

RUN-TIME RECONFIGURATION 165

The data structure by using which the programming information is sent is

shown in Figure 6.9. The first three words of the data structure are used to

represent the (sub)application id, the number of arrays to fetch the input data,

and the number of arrays to store the output data respectively. Afterwards for

each input array a 5 word information is embedded in the data structure in the

following sequence. (i) The base address, i.e., the start location to pick up the

input data. (ii) The number of rows, i.e., the rows that are going to be traversed

each time data is picked up for the respective input array. (iii) The strides, i.e.,

the range of data to be picked in each row. (iv) The x-axis width of input array.

(v) The y-axis height of input array, see Figure 6.9. Similarly, the information

of each output arrays is embedded in the data structure, as shown in Figure 6.9.

The last two words in the data structure indicate the (a) input executions, i.e.,

the number of times data is sent to an IP that receives input from an application

manager, (ii) output execution, i.e., the number of times an application man-

ager receives data from an IP that sends data to an application manager. It is

important that in our experiments an IP that receives data from an application

manager is the first IP of a (sub) application, and the one that sends data to an

application manager is the last IP of a (sub) application as shown in Figure 6.6

where they are Residue and Reconstruction respectively.

It is important that the system manager is provided with the above information

at design time, and it sends the programming information after the IPs of an

application are configured and programmed to the application manager. After

getting the programming information an application manager interacts with

its (sub)application and ensures that a sub-application is replaced only when

it finishes the required execution. Meanwhile, an application manager keeps

the data in a persistent state while swapping in / out the sub applications. The

architecture and procedure that are used to hold persistent-state data during the

swapping of sub-applications is explained in the following discussion.

Example

In this example, we explain the process of generating input addresses for a sin-

gle array. Figure 6.10A shows an example array, i.e., a frame with dimensions

of 32x16 pixels, and that consists of two 16x16 macroblocks (MBs). Fig-

ure 6.10B shows the programming information that is input from the system

manager to an application manager. This programming information is for the

input data that is processed by the application. To keep things simple, we omit

the process to store the output data that follows the similar procedure.

Figure 6.10B indicates the base address in a frame, i.e., the start execution

166 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION

256

32

0 1

2 3

4 5

6 7

16 17

18 19

20 21

22 23

0
4 8 12 16 20 24 28

8 9

10 11

12 13

14 15

24 25

26 27

4 29

30 31

(B)

iBase = 0,
iWidth = 32,
iHeight = 16,
iRows = 4,
iStrides = 4,
iExecs = 32

0

256

32

16

31

(A)

128

384

16

Firs
t

16
x1

6 M
B

Sec
ond

16
x1

6 M
B

48

64

(F)

16

16

8

4

1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

04

0

8

(C) (D) (E)

Figure 6.10: An Example Case Study of Application Manager Operating on Input

Data.

6.2. 3-TIER MODEL FOR COMPOSABLE & PERSISTENT-STATE

RUN-TIME RECONFIGURATION 167

point for an application manager. In this case it is the address of first 16x16

MB in a frame. Similarly, iExec = 32, iRows = 4, and iStrides = 4 indicate that

an application manager will perform 32 executions on the input data, and in

each execution an application manager will pick data from 4 rows, and from

each row strides through 4 data units (or pixels).

Figure 6.10C shows a 16x16 Macroblock (MB), where each 16x16 MB con-

sists of 16x16 = 256 pixels. Each 16x16 MB is then divided into 4 8x8 MBs.

The order in which each 8x8 MB is picked-up for processing in a 16x16 MB

is shown in Figure 6.10C. Similarly, each 8x8 MB is further subdivided into 4

4x4 MBs, where each 4x4 MB is the smallest execution unit of an application

manager. This means, an application manager requires 16 executions to pro-

cess a 16x16 MB, the order of executions of 4x4 blocks at 16x16 MB level is

shown in Figure 6.10D.

Figure 6.10F shows the order of 32 executions, i.e., an application manager

first goes through the first MB and then to the next one. Figure 6.10F also

shows that to perform the 0th execution of first 16x16 MB, the row data is

picked up from the logical frame addresses 0, 32, 48, and 64. The mapping of

logical frame addresses to physical memory addresses is an internal function

of address generation unit and is not the focus of the discussion.

6.2.5 Summary

Our reconfiguration model uses three tiers: system manager, application man-

ager, and application to enforce composable and persistent-state dynamic re-

configuration. At run time, the system manager checks and configures the

resources globally allocated (at compile time) to an application. Resources in-

clude the reconfigurable resources of TCFRs that are used to implement the

soft IPs of an application, connections on the HWNoC that are used for com-

munication between the soft IPs, and the memories used by the application.

While there is only one persistent system manager, each application is accom-

panied by its own application manager that exist only for the duration of the

application. It programs an application, and manages the application’s IO and

(persistent) storage. The application itself is unaware of these aspects and fo-

cuses on computation with IPs consuming and producing data on FIFOs. How-

ever, application IO and large FIFOs are implemented by RAMs with DMAs

and address generators that are programmed by the application manager.

If an application is too large to fit then it is split up in sub-applications that are

loaded by the system manager, but started / stopped by the application man-

168 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION

ager. The application manager also ensures that data between sub-application

reconfiguration is properly stored (persistent). In short, services which are

related to application loading and resource allocation (i.e., HWNOC program-

ming) are always provided by the system manager to ensure that one appli-

cation can never affect another. On the other hand, an application manager

provides intra-applications services which include I/O and storage to clients

and enforcement of data integrity between the sub-applications that are dy-

namically swapped in and swapped out.

6.3 Limitations

Following are the limitations for run time application reconfiguration in the

proposed FPGA architecture:

1. System and Application Managers: In our calculations we do not take

into account the area of the system manager and of an application man-

ager. Also no calculations are performed to indicate the power compu-

tation required by the system manager and an application manager.

2. Composability Enforcement: The resource allocation for applications is

fixed, i.e., an application always receives the same resources indepen-

dent of other applications it could be running with. Only one system

manager is used, for all the applications of an FPGA, to ensure starting

and stopping of applications in a composable way. This in turn can be a

performance bottleneck as the number of application increases.

3. Persistent State: Our current implementation to achieve persistent state

during intra-application swapping is rather limited. We allow no cycles

in the application, and completely empty the sub-application’s pipeline

before starting the next sub-application. Thus soft IPs may be pipelined,

but must be able to empty their pipeline when no new data arrives.

6.4 Evaluation and Results

In the result section, we provide the timings for system configuration and pro-

gramming, by using conventional and proposed FPGA architectures.

6.4. EVALUATION AND RESULTS 169

6.4.1 Configuration, Programming, & Functional: Comparison

In the following discussion, we compare the configuration, programming, and

functional phases of conventional FPGA and proposed FPGA.

Configuration

We first provide the details of the conventional configuration process. The

configuration unit of a Virtex-4 device is a frame, containing 41 32-bit config-

uration words [154]. Our Virtex-4 device contains 39120 configuration frames.

SelectMAP provides the fastest configuration, at a rate of 1.9 Gb/s (32-bit in-

terface at 60 MHz). Therefore, the entire FPGA can ideally be configured in

(39120 x 41 x 32 / (32 x 60 x 106)) = 26 ms or 0.7 µs per frame. A CLB col-

umn is the smallest coherent reconfiguration unit that contains 22 frames [132]

and takes 15 µs to configure.

In the conventional FPGA the control processor, soft NoC, and IP are all con-

figured, as shown earlier in Figure 6.1. In our experiments we do not perform

configuration of the control processor. Therefore, only the timings of soft NoC

and IP are obtained for analysis purpose. Note that for our experiments, we

have taken an IP of 1000 LUT or 176 configuration frames. The number of

configuration frames are estimated by using the following equation 6.1.

(IP LUTs ∗ frames per column)/(LUTs per CLB ∗ CLB per column)

(6.1)

In the conventional FPGA, the soft NoC requires 8100 LUTs per router-NI

pair (Table 6.1). Here, the router consists of 5 ports, whereas the NI contains

consists of 4 ports, 166 slots, and FIFOs of 41 words. To configure a single

router-NI pair, at least (8100 LUTs x 22 frames per column) / (8 LUTs per

CLB x 16 CLBs per column) = 1392 frames are required. This is equivalent

to a bitstream of 1392 frames x 41 words x 32 b = 1.8 Mb. It takes at least

1392 frames x 0.7 µs = 975 µs to configure a single router-NI pair. More-

over, the soft NoC is distributed over the FPGA and is likely to occupy more

frames. In addition, the soft NoC frames must be disjoint from soft IP frames,

otherwise they cannot be reconfigured independently. Both increase the NoC

configuration time. Therefore, both the configuration time and bitstream size

are optimistic estimates. Similarly, an IP of 1000 LUTs is configured by using

the same configuration interconnect and it takes 176 frames x 0.7 µs = 123

µs .

170 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION

po
rt

po
rt

System
Manager

TDMA
Table

Paths

Credits

TDMA
Table

Paths

Credits

po
rt

M
M

IO

TDMA
Table

Paths

Credits

po
rt

po
rt1, 4

2

5

Data Connection

Router Network

M
M

IO

M
M

IO

po
rt

po
rt

Residue

in
pu

t
ou

tp
ut

Application
Manager

ou
tp

ut
in

pu
t

F
P

1

F
P

1

3
66

3

po
rt

Figure 6.11: Procedure to Program NoC Connection.

In the proposed FPGA, the NoC is not configured due to its hardwired nature.

However, the control processor and soft IP are configured both, as shown ear-

lier in Figure 6.2 (Step 1 and Step 3). As stated earlier, we do not perform

the configuration of the control processor in our experiments. However, an

IP is configured by using the hardwired NoC that runs at 500 MHz, as earlier

explained in Section 4.9.6. Note that we assume a 30% packetisation over-

head, which reduces the efficiency of NoC to 70%. We have reserved 50% of

NoC resources for the configuration connection, which means (176 frames x

41 words x 32 bits) / (0.7 x 0.5 x 32 bits x 500 x 106) = 40.4 µs to configure

an IP (of 1000 LUTs or 176 frames) to the required FPGA region.

Programming

In the conventional and proposed architectures, the programming of NoC and

IP is performed. In other words an NoC, whether soft or hard, must be pro-

grammed, as described in Section 6.1 and [46]. An NoC is programmed to

setup data connections for an application, so that IPs can communicate with

each other. The programming of a connection requires a systematic procedure

as proposed in [46] and shown in Figure 6.11.

6.4. EVALUATION AND RESULTS 171

Figure 6.11 explains the procedure that the system manager uses to set up

a connection between an application manager and Residue IP. A connection

consists of request and response channels. The system manager programs

the NI of application manager and NI at Residue each contains information

(e.g., TDM slots, path, and credits) to set up a connection between application

manager and Residue. Each connection (a pair of request-response channels)

requires between 832 and 2096 bits. It takes 2.5 µs to program a single con-

nection [46] assuming a hardwired NoC running at 500 MHz. The system

manager uses MMIO read and write transactions to configure the NIs (routers

are not programmed). The boot time of the control processor is not taken into

account here.

In the proposed FPGA architecture, an IP is programmed via hardwired NoC.

Programming of IP entails changing / resetting the state of its registers, when-

ever required. However to program an IP, the hardwired NoC must be pro-

grammed so as to reach the specific IP. This means for each IP, two connections

must be programmed; first to program the NI for setting up data connection be-

tween IPs, and then to program an IP itself. This means 2 x 2.5 = 5 µs are

required to program an IP.

In the conventional FPGA architecture, the soft NoC takes 2.5 µs x 500 MHz

/ 118 MHz = 10.6 µs to program a data connection between the two IPs. Here,

500 MHz and 118 MHz stand for hard NoC frequency and soft NoC frequency,

respectively. These frequencies were obtained earlier in Section 4.9.6. Note

that an IP itself needs to be programmed as well, and a separate connection is

required to program an IP that also takes 10.6 µs .

Functional Mode

In the conventional architecture, the soft NoC runs at 118 MHz, which means

an NI can provide a raw bandwidth of (32 bits x 118 x 106) = 3.8 Gb/s. On the

contrary the hard NoC that provides a raw bandwidth of (32 bits x 500 x 106)

= 16 Gb/s is a factor 4 faster than the conventional FPGA. The IPs in both the

conventional and proposed architecture are configured in the reconfigurable

logic plane. Therefore execute at the same frequency in both the cases.

However, as discussed above with 30% packetisation overhead the efficiency

of NoC to transport actual data reduces to 70% of the raw bandwidth. This

means, the soft NoC to provide a net bandwidth of (3.8 Gb/s) x 0.7 = 2.6 Gb/s,

and hard NoC to provide a net bandwidth of (16 Gb/s) x 0.7 = 11.2 Gb/s.

172 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION

Table 6.1: Configuration, Programming, and Functional Comparison of Conventional

and Proposed Architectures.

Phases Modules Conventional Proposed

Soft Hard

Configuration

Ctrl Proc. - -

NoC (per R-NI pair) 975 µs 0

IP (1000 LUTs) 123 µs 40.4 µs
Overall (IP+R+NI) 1098 µs 40.4 µs

Programming

NoC (1 Conn.) 10.6 µs 2.5 µs
IP (1 Conn.) 10.6 µs 2.5 µs
Overall 21.2 µs 5 µs

Functional
NoC (Raw) 3.8 Gb/s 16 Gb/s

NoC (Net) 2.6 Gb/s 11.2 Gb/s

Overall

Recall Figures 6.1 and 6.2 where the phases of booting a system were de-

scribed. The Table 6.1 shows the time that is spent on each of following phases

for each of the two scenarios: configuring the functional interconnect, pro-

gramming the functional interconnect, and configuring and programming the

IP.

A hard NoC requires programming per NI, and the soft NoC requires configu-

ration per NI. The programming requires fewer bits and is faster too, a system

with a hard NoC is ready for functional operation 1098 µs / 40.4 µs = 27.1

times faster. The additional gain of (21.2-5) µs to program each functional

connection does not significantly improve this number.

Note that our analysis is mostly independent of particular NoC because it es-

sentially depends on three factors: the ASIC:FPGA area ratio for LUTs, the

ASIC:FPGA operating frequency ratio, and the configuration:programming

footprint (bitstream versus number of MMIO bits) ratio.

6.4.2 Conventional and Proposed Architecture Comparison for

Larger Systems

The analysis in the previous section is based on unit values, i.e., single IP, sin-

gle router-NI pair, and single connection / IP. We extend our configuration, pro-

gramming, and functional comparison to larger systems (i.e., larger networks,

more IPs, and more connections), as shown in Figure 6.12 and Figure 6.13

6.4. EVALUATION AND RESULTS 173

Configuration Comparison

4392

9882

17568

161.6 363.6 646.4

0

5000

10000

15000

20000

2x2 NoC +4 IPs 3x3 NoC +9 IPs 4x4 NoC +16 IPs

T
im

e
(M

ic
ro

 S
ec

) Conventional (Soft)

Proposed (Hard)

Figure 6.12: Configuration Time Comparison Between the Soft and Hard Architec-

tures.

respectively.

For instance, Figure 6.12 shows that the conventional FPGA architecture takes

9882 µs to configure a system with 3x3 NoC and 9 IPs of 1000 LUTs each.

However, the same system is configured in 363.6 µs by using the proposed

FPGA with hard NoC.

Similarly, the programming of 9 connections, assuming one connection / IP,

requires 190.8 µs in a conventional FPGA with a soft programmable NoC,

see Figure 6.13. However, the proposed FPGA can program the same number

of connections in less time (45 µs).

Programming Comparison

85

190.8

339.2

20
45

80

0

50

100

150

200

250

300

350

400

4 Connections 9 Connections 16 Connections

T
im

e
(M

ic
ro

 S
ec

)

Conventional (Soft)

Proposed (Hard)

Figure 6.13: Programming Time Comparison Between the Soft and Hard Architec-

tures.

174 CHAPTER 6. RUN-TIME FPGA SYSTEM ADAPTATION

6.5 Conclusions

In this chapter, we modeled a FPGA architecture that uses a hardwired NoC

(HWNOC) to transport configuration (bitstream) and functional data. We de-

scribe the run-time procedures to configure, program, and run soft IPs. We

modeled the platform in cycle-accurate transaction-level SystemC, together

with soft IP blocks. In particular, we model bitstream loading and frame place-

ment of soft IPs, soft IP clock management and reset, the programming of

HWNOC and IPs, and their functional operation. We compared the perfor-

mance of a conventional FPGA with a soft NoC and dedicated configuration

interconnect with our HWNOC platform. Bitstream loading is faster in our

platform.

This basic infrastructure is then used to dynamically start and stop entire ap-

plications, and also sub-applications. The latter is useful when an application

does not fit in the resources (configuration regions) allocated to it. Dynami-

cally swapping sub-applications then enables the entire application to execute

anyway, although at a lower speed. Our platform is composable, which means

that starting and stopping of applications does not affect concurrently operat-

ing applications (and vice versa).

7
Online Testing of FPGA Architecture

In Chapter 6, we unified the transport of bitstream and functional data by us-

ing the proposed HWNOC architecture. In this chapter, we make use of Hard-

wired Network on Chip (HWNoC) to transport test data. We propose to use the

HWNoC as Test Access Mechanism (TAM) and conduct test on a region-wise

basis. A region in our methodology stands for a test configuration functional

region (TCFR), as explained earlier in Section 4.3. Our online test scheme is

non-intrusive, because our test scheme allows an interleaved test process in

parallel with configuration, programming, and execution of other applications.

This means the testing of a TCFR is not stopped / delayed because of on-

going configuration, programming, and execution processes in the remaining

TCFRs of FPGA. Moreover, our online test process is triggered at an applica-

tion startup time, so as to make sure that an application always executes on a

tested region. However, the nature of testing is application independent, i.e.,

it is structural. This means the test process evaluates the structure of FPGA

to find out the prospective faults. A structural test ensures a high percentage

of fault detection for the target FPGA architecture. In addition, the proposed

scheme has reduced spatiotemporal overheads, because it does not make use of

FPGA reconfigurable resources for creating test pattern generators (TPGs) and

output response analysers (ORAs) that generate and analyse test sequences, re-

spectively. Instead, the proposed scheme uses the system manager that makes

use of connections through the hardwired NoC to provide test stimulai and

analyse the architecture of a particular region in FPGA.

To ensure a non-intrusive test behavior, we take into account design, compile,

and run time phases described earlier in Section 3.1.2. At design time we pro-

vide FPGA architecture and application specifications as shown in Figure 3.4.

From the architecture point of view, the specifications are (i) the dimensions

and architecture of hardwired NoC and test configuration functional regions

(TCFRs), and (ii) the control processor, which is a programmable hardwired IP.

175

176 CHAPTER 7. ONLINE TESTING OF FPGA ARCHITECTURE

Program Ap TCFR Write Test Bitstream

Stream Read-Back TriggerEvaluate The Write And Readback
Bitstreaams

Functional Cycle
is Executed

Receive Readback Bitstream

Not The Last TCFR

Last TCFR

Not Successful

Application TCFRs Legend:
Start State

Finish State
Inputs:

Select Ist Test Bitstream

Select 2nd Test BitstreamSuccessful And Ist
Bitstreaam

Successful And 2nd
Bitstreaam

Mark TCFR As Faulty

Mark TCFR As Operational Last TCFR

Figure 7.1: Run Time Flow for the Test Process.

From the application point of view, the specifications about the system appli-

cation are provided. The system application performs the online testing of the

target FPGA architecture and, also the configuration of the user-application

in the desired FPGA region(s). The system application consists of the sys-

tem manager that is mapped to programmable control processor, and TCFRs

of FPGA. A test connection is used to transport test data between the system

manager and a TCFR. The test connections are allocated at compile time, but

are created and terminated at run time. The PUMA scheme, as discussed in

Chapter 5, is used to reserve the resources of connections at compile time.

In the following discussion, we explain the run time behavior of our test

methodology in Section 7.1. We provide the limitations of our test approach

in Section 7.2. Afterwards, we evaluate the non-intrusive nature of the test

scheme, and present timings details to test an application TCFRs, see Sec-

tion 7.3. We end this chapter with conclusions in Section 7.4.

7.1 The Test Methodology

In this section we provide the details of testing test configuration functional

regions (TCFRs) in Section 7.1.1. Although the testing of TCFRs is the focus

of the chapter, we also provide the details to test HWNOC in Section 7.1.2.

7.1. THE TEST METHODOLOGY 177

7.1.1 TCFR Testing

At run time, the online testing of an application TCFRs is performed. How-

ever, before explaining the process we discuss the nature of faults that our

methodology targets.

A TCFR, as detailed earlier in Section 4.3, consists of multiple configurable

logic blocks (CLBs) (in our case it is 512 CLBs). The online test methodology

targets stuck-at faults that can occur in the combinational part a CLB (i.e.,

look-up-tables (LUTs)), and configuration memory of a CLB. Note that the

configuration memory cells of a CLB contain the bits that are related to the: (i)

combinational part of a CLB, (ii) sequential part of a CLB, and (iii) associated

interconnection network1.

In a faulty FPGA, the configuration memory cell can stuck-at a particular

value, i.e., 0 or 1. To find out stuck-at faults in the configuration memory, we

make use of two complementary test bitstreams. One test bitstream, configures

each LUT as exclusive-OR (XOR) gate. The other test bitstream configures the

LUTs as exclusive-NOR (XNOR) gate [117–119].

Similarly, the functional input(s) of an LUT can get short circuited. The output

of LUT can then permanently point (i.e., stuck-at) to the same configuration

memory address irrespective of the input patterns applied to an LUT. To fig-

ure out a defective input port to configuration memory address mapping, we

provide an exhaustive set of 24 = 16 test vectors of 4-bit each at the functional

inputs of an LUT. This way we can verify that the output of an LUT is as per

desired or not, i.e., the output is not stuck-at a particular configuration memory

address.

A 5 phase (program, write, execute functional cycle, read, and evaluate) test

process is carried out for each test bitstream, (i.e., XOR and XNOR configura-

tions), see Figure 7.1. The test process starts with programming a test connec-

tion for the required TCFR. This is followed by writing the test bitstream to

the TCFR. Once writing is finished, a functional cycle phase is executed to find

out the prospective defects in the combinational part of CLBs. Afterwards, a

read-trigger is sent to the TCFR to read-back the test bitstream. To find out the

faults in the configuration memory, the read-back bitstream is then evaluated

against the originally written test bitstream. In the following discussion, we

explain each of the phases.

1Each of 8 LUTs in a CLB has 16 1-bit configuration memory cells, but the configuration

memory that is associated wit a complete CLB is approximately 1800 bits [125, 154].

178 CHAPTER 7. ONLINE TESTING OF FPGA ARCHITECTURE

Program

Programming requires the usual open-connection sequence (e.g., see Chap-

ter 6). Two bidirectional connections are required: (1) for writing test bit-

stream and the other is for writing functional data from the system manager to

TCFR. The system manager programs its NI and the NI of the required TCFR

to setup a test connection.

Write

The system manager after programming a connection retrieves the test bit-

stream from an off-chip memory. The bitstream is a combination of packet

headers and frame data to configure a complete TCFR. The test bitstream is

sent in the frame-wise manner over an established test connection. A frame

of 41 words arrives over the NI and is received by a TCFR2. Then it is shifted

byte by byte into the address decoder and to the appropriate MTCR. This is

repeated for the appropriate number of frames. The bitstream loads a test IP

(XOR, or XNOR).

Execute Functional Cycle

At the end of the bitstream writing process, an XOR or XNOR test IP has been

placed on the logic plane of a TCFR. The logic circuit of test IP spans complete

TCFR, i.e., the bitstream of test IP is loaded in all the minimum test configu-

ration regions (MTCRs) of a TCFR, as shown in Figure 7.2A. It is important

that each MTCR unit in a TCFR is configured as a set of four chains of CLBs,

as shown in Figure 7.2B. Moreover, each of the eight (4-bit input to 1-bit out-

put) look-up-tables in a CLB is configured as an independent exclusive-OR or

exclusive-NOR circuit, as shown in Figure 7.2D and Figure 7.2E respectively.

Hence 32 bits are required to derive the inputs of all the LUTs in a CLB, which

in turn produces an 8-bit output, see Figure 7.2B.

Figure 7.2B shows that for each CLB chain, the 32-bit inputs of the first CLB

are derived from a 32-bit register. This can be a hardwired (Block RAM) regis-

ter, which is programmed through the system manager. The 8-bit output of the

first CLB is then input to the next cascaded CLB and so on, see Figure 7.2B.

As a result of the arrangement, each CLB chains has an 8-bit output that is fed

into a 32-bit programmable register. The data is then read back by the system

2We refer to Figure 4.4 while explaining the write process.

7.1. THE TEST METHODOLOGY 179

MCR

MCR

MCR

MCR

32-Bit
Register

CLB CLB CLB CLB
32-Bit

Register

32-bit

24-bit

8-bit 8-bit 8-bit 8-bit

CLB CLB CLB CLB
32-Bit

Register

32-bit

24-bit

8-bit 8-bit 8-bit 8-bit

CLB CLB CLB CLB
32-Bit

Register

32-bit

24-bit

8-bit 8-bit 8-bit 8-bit

CLB CLB CLB CLB
32-Bit

Register

32-bit

24-bit

8-bit 8-bit 8-bit 8-bit

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(A) (B)

(C) (D) (E)

Figure 7.2: Test IP placed in our FPGA with Different Abstract Level Details. (A)

Test IP Circuit in terms of MTCRs, (B) An MTCR Configured as a Set of Multiple

CLB chains, (C) 8 LUTs in a CLB that are not cascaded within a CLB, (D,E) An LUT

Configured as XOR and XNOR Gate Respectively.

180 CHAPTER 7. ONLINE TESTING OF FPGA ARCHITECTURE

manager to analyze the response of an MTCR for a particular set of input data.

At this point it is important to mention that the use of hardwired registers for

input and output of CLB chains is a design time choice. The hardwired regis-

ters are used, because it eliminates the need to configure additional hardware

on the reconfigurable plane that is already under test.

Once the test IP is placed, the system manager executes the test application for

multiple functional cycles to find out the defects in the mapping of functional

ports of an LUT. The system manager generates and transports test vectors for

all the CLB chains by using the HWNOC. To test each CLB chain the system

manager sends 16 test vectors of 32-bit each. Each test vector is then further

decomposed into 8 groups of 4-bit each that changes from 0000 to 1111. The

reason is that each of the eight (4-bit input to 1-bit output) look-up-tables in a

CLB is configured as an independent exclusive-OR or exclusive-NOR circuit.

It is important that the whole process is pipelined and it takes 4 cycles to reach

from the input to output of a CLB chain.

After evaluating defects in the combinational part of a TCFR, the system man-

ager triggers the read-back bitstream process. This is performed to evaluate

defects in the configuration memory of a TCFR.

Read-back

After executing the test application, the bitstream is read back for comparison

to the original bitstream that was uploaded. This checks for stuck-at faults in

the bitstream registers. The system manager sends a read command with start

address and size (Number of frames). The TCFR performs the reverse actions

of what is required for writing the bitstream.

Evaluate

In this phase the system manager evaluates the read-back bitstream by com-

paring it with the originally written bitstream. As stated before, two comple-

mentary bitstreams are required to identify possible stuck-at 0 and stuck-at 1

faults in a TCFR. However, the second bitstream is sent only if the evaluation

process is successful for the first test bitstream, Figure 7.1. The reason is that

we currently focuses on fault detection, and no fault tolerance mechanism is

applied to replace the faulty portion of a TCFR. This allows us to save the time

that can be spent in testing a TCFR, which has already been detected faulty.

7.2. LIMITATIONS 181

7.1.2 Perform HWNoC Test

The HWNOC testing is associated with testing of network interfaces and

routers. We do not perform the testing of hardwired NoC as it is not the fo-

cus of thesis. However, the network interfaces can be functionally tested by

using the IP cores attached with them as suggested in [93]. The method pro-

posed in [93] tests the functionality of NIs, because a fault-free NI can then

produce the expected functionality for the attached core. The routers can be

tested online by using the approaches of [57] and [36].

Once the test is finished, the dynamic configuration of the application is started,

see Section 6.2.3. Additionally, to allow interleaved test and configure opera-

tions, we impose a restriction that no two applications share the same TCFR(s)

simultaneously.

7.2 Limitations

Following are the limitations of our online test methodology:

1. In the combinatorial part of a TCFR, the contents of LUTs are tested and

the testing of flip flops is not aimed.

2. The testing of HWNoC and other hardwired components, e.g., control

processor is not targeted.

3. The clock tree of the architecture is also not part of the proposed test

scheme.

4. The test scheme target only the stuck-at permanent faults and other types

of faults, e.g., transient faults, coupling faults etc. are not meant to be

tested.

7.3 Results And Analysis

We exercise our online test methodology in SystemC, and use ÆTHEREAL [44,

48] NoC as the hardwired NoC. The HWNOC platform runs at 500 MHz,

and consists of routers and NI kernels with FIFO sizes of 3 and 41 words,

respectively. We use Virtex-4 XC4VLX200 chip to synthesis the applications,

and then embed the synthesis results in the SystemC model of our FPGA.

182 CHAPTER 7. ONLINE TESTING OF FPGA ARCHITECTURE

Table 7.1: IP Synthesized Area, Frequency, and Bitstream Frames.

IP Area Frequency Bitstream

(kLUTs) (MHz) (Frames)

Residue 1.68 100 285

DCT 2.36 66 396

Quantizer 2.21 75 370

The FPGA architecture consists of multiple TCFRs, whose combined area

is equivalent to 178176 LUTs, i.e., equals to the Virtex-4 XC4VLX200 chip.

We use two complementary test bitstreams to verify a TCFR for stuck-at fault

model. The size of the each test bitstream is estimated from the following

equation:

(IPLUT ∗ MTCRframe)/(CLBLUT ∗ MTCRCLB) (7.1)

In equation 7.1 the first term, i.e., IPLUT refers to LUT area of an IP, CLBLUT

refers to LUTs in a single CLB, and MTCRframe and MTCRCLB stand for

frames and CLBs in a single MTCR respectively. Each CLB consists of 8

LUTs, and an MTCR consists of 16 CLB units3. This means that our FPGA

architecture consists of (178176 / 8) = 22272 CLBs and 1392 MTCRs. More-

over, an MTCR is configured by using 23 41-words frames [154].

For our online test methodology, we (i) provide an evidence of its non-intrusive

nature (Section 7.3.1), (ii) evaluate the performance in terms of fault detection

latency (Section 7.3.2), (iii) evaluate the cost in terms of spatiotemporal over-

heads (Section 7.3.3), (iv) analyse the impact of TCFR area on the performance

and cost of our methodology (Section 7.3.4), and (v) compare the performance

and cost with the two state of the art schemes [37, 142] (Section 7.3.5).

7.3.1 A Non-Intrusive Test Methodology

In this section we analyse the non-intrusive nature of our test methodology.

First, we describe the experimental setup in the following discussion.

Experimental Setup Discussion

We use the behavioral models of H.264 IPs, i.e., (Residue, DCT, and Quan-

tiser). Synthesis of the VHDL implementations of these IPs, on a Virtex-4

3In Virtex-4 the minimum test configuration region, i.e., an MTCR consists of a column of

16 CLBs and the associated programmable interconnect [154].

7.3. RESULTS AND ANALYSIS 183

XC4VLX200 chip using Xilinx ISE 10.1, provide their MHz frequencies that

are used in the SystemC simulations, Table 7.1. The size of their bitstreams is

estimated from their kLUT areas by using the Equation 7.1.

To verify the non-intrusive nature of our online test methodology, we use a

system with three applications, i.e., A0 (Residue + DCT), A1 (DCT only),

and A2 (Quantiser only) that execute in two use-cases. A0 and A1 execute

in parallel and belong to use-case 0 (UC0), whereas A1 and A2 execute in

parallel and belong to use-case 1 (UC1). Importantly, A0 and A2 are the sub-

applications of one larger application, and are time-multiplexed on the same

set of TCFRs, i.e., TCFR0 and TCFR1. A1 executes on TCFR3, as shown in

Figure 7.3.

System
Man-
ager

A1
Test

in
TCFR3

R1 R0

R2R3

A0 and A2 in TCFR0 and TCFR1

Figure 7.3: Applications in Different TCFRs.

Non-Intrusive Behavior Analysis

To evaluate the non-intrusive nature of our online test methodology, we analyse

the system in different modes. This means that while testing the system goes

through different operations, i.e., execution, configuration, programming, and

use-case transitions. For this purpose, we (a) start the test of A1 while A0

is executing, and (b) start loading of A2 (at the end of A0) while A1 is test-

ing. By doing so, we evaluate (i) the impact of (if any) dynamic configuration

(A2) on the online testing (A1), and (ii) the ability to test and configure at the

same time. Figure 7.4A shows the timing details of test, load, and execution

operations of the system applications in different use-cases.

We analyse the behavior of our methodology for above two scenarios, and

show a small time window of 300 µs as illustrated with Figure 7.4B. The time

interval shows the presence of all the three operations of different applications,

i.e., execute (A0), test (A1), and load (A2). Important observations can be

drawn from the above scenarios. For instance, as shown in Figure 7.4A, the

loading of A2 triggers the use-case transition, which should be transparent to

184 CHAPTER 7. ONLINE TESTING OF FPGA ARCHITECTURE

A0

TIME (Micro Sec)

Apps Test

5800 460

355 401

A1

A2

Load

2900

Execute

UseCase 0 UseCase 1

650

0

30

60

90

120

20 60 100 140 180 220 260 300

Time At Source (Micro S)

0

100

200

300

400

A0 Execution A1 Test A2 Load

E
nc

od
ed

 M
ac

ro
-B

lo
ck

s

F
ra

m
es

 A
t D

es
tin

at
io

n

(A) (B)

Test Unaffected By
UseCase Transition

Interleaved Test And
Load Operations

Figure 7.4: (A) Application Timing Details in Different Phases, and (B) Interleaved

Test and Load for A1 and A2. MB encoded for A0, frames arrived for A1 and A2.

the ongoing test process of A1. In Figure 7.4B, the first rectangle highlights

the unaffected behavior of A1 test, while the use-case transition is made due

to the A2 invocation. Importantly, as shown in Figure 7.4B, our methodology

supports the interleaved test and load operations of multiple applications. It is

important that A1 test and A0 execution both share a network path (R0-R1), as

shown in Figure 7.3. The shared path can lead to intrusiveness in between the

test and execution operations. However, the composable HWNOC takes care

of this.

7.3.2 Performance: Fault Detection Latency

We determine the fault detection latency of the whole FPGA, which contains

1392 MTCRs (i.e. equivalent to Virtex-4 XC4VLX200). For experiment pur-

pose, we divide the FPGA into 4 TCFRs of 348 MTCRs each. First, we deter-

mine the fault detection latency of a TCFR, and then scale the calculations to

the whole FPGA chip.

The following discussion illustrates the latency to detect a fault in a TCFR

that could belong to any application. The process to detect a faults in a TCFR

is explained earlier in Section 7.1.1, and initiates with programming the test

connection in 21 µs . Afterwards, the writing of the test bitstream, which

consists of 8004 frames (348 MTCR x 23 frames / MTCR), starts.

Each HWNOC link can transport data at a maximum of 16 Gb/s. However,

to test a TCFR, we reserve approx. 10% of link resources of the HWNoC

7.3. RESULTS AND ANALYSIS 185

architecture4. This means, test data is allocated a maximum of 16 x 0.1 = 1.6

Gb/s on a link, out of which we assume a 30% packet overhead. In other words

each link provides an effective bandwidth of 1.1 Gb/s to transport test data. A

TCFR requires 10.5 Mb (i.e., 8004 frames x 41 words / frames x 32 bits /

word). This means that it takes 9.5 ms or 9500 µs to write a test bitstream in

a TCFR of 348 MTCRs.

Read-back process is the inverse of the writing process. It takes approximately

9500 µs to read-back the complete test bitstream. It is important that the

evaluation process is performed on a frame-wise basis, and in parallel with the

read-back process. The system manager, after receiving a test bitstream frame,

evaluates a test frame for the possible stuck-at faults. However, the evaluation

process does not add to the fault detection latency, because it is performed in

parallel with the read-back process. This means, while reading the next frame,

the previous frame is evaluated for the possible faults.

In short the total fault detection latency of a single test bitstream, for a TCFR

of 348 MTCRs, equals to 2.5 + 9500 + 9500 = 19002.5 µs . With two test

bitstreams, the worst case fault detection latency of a TCFR is approx. 2 x

19002 = 38005 µs or approximately 38 ms. For an application that uses the

complete FPGA chip, which consists of 4 TCFRs of 348 MTCRs each, the

worst-case fault detection latency accounts to 4 x 38005 = 152020 µs or 152

ms.

Next, we discuss the cost in terms of spatiotemporal overhead to test a TCFR

in the current FPGA architecture.

7.3.3 Spatiotemporal Cost

We use a test connection to write and read-back the test data. Therefore, the

resources acquired by the connection are accounted as the spatiotemporal over-

heads of our methodology. The temporal overhead of the test connection is

found to be approx. 21µs , which is the time required to setup a connection.

The spatial overhead of a test connection, between the source SM and destina-

tion TCFR, accounts for a number of hardware resources. (1) Two NI-Shells

to serialise and deserialise the test frame in between the SM and the destina-

tion TCFR. (2) Two 41 words FIFOs at the NI kernels of the system manager

and destination TCFR to send and receive a test frame, respectively. (3) Addi-

tionally, the FIFOs (3 words deep) of each router that are used during the con-

4Reserving more than 10% of resources for test purpose can significantly affect the success

rate of applications to FPGA binding. For details see Chapter 6.

186 CHAPTER 7. ONLINE TESTING OF FPGA ARCHITECTURE

Table 7.2: Cost Evaluated for the Complete FPGA after Varying TCFR Area

TCFR Area Temporal Spatial

(MTCRs) Overhead Overhead

µs CLB Equivalent

NISh NIK Routers TCFR Overall % FPGA

348 84 4 68 4 51 127 0.57

174 168 7 123 8 51 189 0.85

88 336 13 232 16 51 312 1.4

44 672 25 451 32 51 559 2.5

nection time also contribute towards the spatial overhead. Note that the router

resources are reserved only 10% of the time as test connection is allocated

10% of time-slots. The test connection, at worst-case, can utilize the FIFOs of

all the 4 routers of the HWNOC architecture. The connection resources are

hardwired, and to obtain the (ASIC) area numbers, we refer to [84].

The authors in [84], illustrate that an ASIC implementation can take approxi-

mately 35 times lower area than its equivalent FPGA implementation. There-

fore, we first synthesis (on Virtex-4 XC4VLX200 chip and by using Xilinx ISE

10.1) the connection resources, then reduce these by (conservative) 30 times

to obtain the ASIC equivalents. The synthesis numbers for each component

are: (1) 23 CLBs for an NI-Shell, (2) 390 CLBs for a 41-word FIFO, and (3)

29 CLBs for a 3-word FIFO. The total spatial overhead of a synthesised test

connection then accounts to 2 x 23 + 2 x 390 + 4 x 29 = 952 CLBs. After hard-

wiring the connection resources, the actual spatial overhead to test a TCFR is

approximately 32 CLB equivalent.

7.3.4 TCFR Area Impact on Performance & Cost

In this section, we analyse the impact of TCFR area on the performance and

cost of our test methodology. For this purpose, we select 4 different archtiec-

tures of the FPGA, each of which has a different TCFR area as shown in

Figure 7.5. For instance T-174 in Figure 7.5 represents an FPGA architecture

with 8 TCFRs of 174 MTCRs each. Figure 7.5 also shows that the worst-case

fault detection latency per TCFR decreases from approximately 38 ms to 4.8

ms when TCFR area is varied from 348 MTCRs to 44 MTCRs respectively.

The high performance, in terms of reduced fault-detection latency, induces

high costs in terms of spatiotemporal overheads. The second and third columns

7.3. RESULTS AND ANALYSIS 187

38

19.2

9.6
4.8

0

10

20

30

40

T-348 T-174 T-88 T-44

FPGA Models with Different TCFRs

T
im

e
in

 M
ic

ro
 S

ec

0

10

20

30

40

Fault Detection Latency / TCFR
TCFR Count

Figure 7.5: Different FPGA Architectures with Variable TCFR Area and Count. Also

Showing Fault Detection Latency Per TCFR.

of Table 7.2 illustrate the temporal and spatial overheads of each FPGA ar-

chitecture, respectively. For instance, the spatial overhead of T-174 FPGA

architecture is found to be 138 CLB equivalent. In T-174, the test connection

can access any of the 8 TCFRs. Therefore, the worst-case spatial overhead is

obtained by accounting the area costs of all the 8 NI-Shell, 41 words FIFOs

(one in each NI kernel), and 3 words FIFOs in the routers. In addition, the

area cost of hardware registers, which are used for input and output of test IP

CLB chains, in a TCFR is also included. The area cost of hardwired register is

found to be 51 CLB equivalent.

For the whole FPGA, decreasing the TCFR area from 348 MTCRs to 44

MTCRs, the temporal overhead increases from approx. 84 to 672 µs , whereas

spatial overhead increases from approximately 76 to 508 CLB equivalent.

7.3.5 Comparison with the State of the Art

We compare the performance and cost of our methodology with the existing

state-of-the-arts [37, 142]. The comparison is made for the compile and run

time phases, and as a fairness of the comparison, we use the same platform of

Virtex-4 for each of these schemes.

It is important that the range of faults that we cover in the paper closely

matches with the ones that authors in [37, 142] have addressed. For instance,

the work of [37] performs the online test at the granularity of a single CLB.

Similarly, the authors in [142] test CLBs in group of 4. The nature of faults

that are covered in [37, 142] is stuck-at faults in the sequential and combina-

tional logic of CLBs. In comparison, we perform the test at the granularity

188 CHAPTER 7. ONLINE TESTING OF FPGA ARCHITECTURE

Performance Comparison

38946

44544

0

10000

20000

30000

40000

50000

Gericota-02-OLTW Verma04DAC Our

Scheme

T
im

e
m

ill
i S

ec
on

ds
Fault Detection Latency

Figure 7.6: Per TCFR: Fault Detection Latency (mili sec).

of a TCFR, i.e., 512 CLBs or 32 MCRs. However, we test the combinational

part of CLBs (i.e., LUTs), but in addition we perform the test for configuration

memory cells as well.

At the same time it is important to mention that our test scheme ensures a non-

intrusive nature of online testing with respect to already running applications.

In comparison, though the approach of [37] also ensures un-disrupted applica-

tion execution by using active replication method, but no such claim is found

for the other state-of-the-art, i.e. [142].

Run Time (Fault Detection Latency)

The authors in [37] first replicate a CLB, which is to be tested, on an earlier

tested CLB. The test-access-mechanism runs at 20 MHz to replicate and test

a CLB in 24000 µs . However, as a fairness of the comparison, we use the

same Virtex-4 features for [37], which runs BSI TAM at 66 MHz. Therefore

in [37], the fault detection latency of a single CLB reduces from 24000 µs
to 8000 µs . On a scaled level of TCFR with 348 MTCRs (i.e., 5568 CLBs),

the fault detection latency of the scheme [37] is approximately 5568 x 8000 =

44544000 µs or 44544 ms, as shown in Figure 7.6.

The scheme [142], on the contrary, tests 4 CLBs at one time and uses 6 test

sessions to test the CLBs. In each test session 2 out of 4 CLBs serve as test-

stimuli and response analysis blocks. This means, to find the fault in the set of

4 CLBs, the authors configure 4 x 6 = 24 CLBs. We calculate the optimistic

fault detection latency by simply accounting the time to configure the CLBs.

For this purpose, we use equation 7.1 that gives 59 words or 236 bytes of

data to configure 1 CLB. This means 236 x 24 = 5664 bytes are required to

configure 24 CLBs. The one-bit wide BSI TAM, running at 66 MHz, takes

7.3. RESULTS AND ANALYSIS 189

Cost Comparison

82.4

16704

5568

20.04

0.21
6.68

0

6000

12000

18000

Gericota-02-
OLTW

Verma04DAC Our

Scheme

C
LB

s

0

5

10

15

20

25

T
im

e
m

ill
i S

ec
on

ds

Spatial
Overhead

Temporal
Overhead

Figure 7.7: Per TCFR: Spatiotemporal Overheads.

approximately 680 µs to detect a fault in the set of 4 CLBs. On a scaled

level of TCFR with 348 MTCRs, the fault detection latency of the scheme [37]

accounts to 680 x (5568 / 4) = 946560 µs or 946.5 ms.

Similarly, we obtain the fault detection latencies of [37] and [142] for the

smallest TCFR area that we have used for our architecture, i.e., TCFR with

44 MTCRs. The fault detection latencies for [37] and [142] are found to be

approximtely 5568 ms and 118.3 ms respectively.

Run Time (Spatiotemporal Overheads)

The work of [37] requires 1 additional CLB to replicate the CLB that is going

to be tested. This accounts for 100% spatial overhead, i.e., additional 5568

CLBs are required to test a TCFR of 348 MTCRs. The one-bit wide BSI

TAM, running at 66 MHz, takes 28.3 µs to configure 236 bytes of CLB. The

temporal overhead, i.e., time to configure the spatial overhead of 5568 CLB is

5568 x 28.3 = 157574.4 µs or 157.6 ms, as shown in Figure 7.7.

The scheme [142], on the contrary, tests 4 CLBs at one time and uses 6 test

sessions for their verification. Each test incurs a spatial overhead of 2 CLBs,

because 2 out of 4 CLBs serve as test-stimuli and response analysis blocks.

This means, an overhead of 12 CLBs is incurred in 6 test sessions to test 4

CLBs. This is 3 times the CLBs that are going to be tested. On a scaled level,

i.e., for the TCFR of 348 MTCRs, the total spatial overhead then accounts to 3

x 5568 = 16704 CLBs. The temporal overhead is, therefore, approx. 16704 x

28.3 = 472723.2 µs or 472.7 ms, as shown in Figure 7.6.

Similarly, we obtain the spatiotemporal overheads of [37] and [142] for the

smallest TCFR area that we have used for our architecture, i.e., TCFR with 44

190 CHAPTER 7. ONLINE TESTING OF FPGA ARCHITECTURE

MTCRs. For scheme [37], the spatial overhead is 704 CLBs and the temporal

overhead is approximately 19.7 ms. For the scheme [142], the spatial overhead

is 2088 CLBs and the temporal overhead is 59 ms.

Compile Time (Impact on User Application)

From a compile time perspective, we can qualitatively compare our method-

ology with [37, 142] in a sense, that an additional time is required to reserve

and allocate the test resources across the HWNoC. In addition, as explained

earlier in Section 7.3.2, we reserved approx. 10% of our HWNoC resources to

conduct the online test. Therefore, a user application would be allocated from

the remaining 90% resources.

7.4 Conclusion

We presented an online test methodology for FPGAs that used a HWNoC as

the test access mechanism. Our online test scheme ensured the non-intrusive

behavior by: (a) invoking test at application startup time, (b) allowing un-

disrupted execution for already existing applications, and (c) not restricting

the parallel operations of dynamic reconfiguration and test for multiple ap-

plications. To achieve the objectives, our methodology took into account the

design, compile, and run time phases.

We analysed the performance and cost of our test methodology for different

test functional regions (TCFRs) of an FPGA architecture. The largest TCFR

area was 348 MTCRs (5568 CLBs) and the smallest one was with 44 MTCRs

(704 CLBs). Our methodology detected faults in the largest TCFR in 38 ms at

the cost of temporal overhead of 0.021 ms and spatial overhead of 82.4 CLBs.

Similarly, for the smallest TCFR, the fault detection latency was found to be

4.8 ms and at the cost of temporal overhead of 0.21 ms and spatial overhead of

65 CLBs.

We then compared the performance and cost of our scheme with two other

schemes [37] and [142] for the same set of TCFRs. For the smallest TCFR

(44 MTCRs), the fault detection latency of [37] was approximately 5568 ms

with the spatiotemporal overheads of 5568 CLBs and 157.6 ms respectively.

Similarly, for [142], the fault detection latency was approximately 118.3 ms

and at the spatial cost of 2088 CLBs and temporal cost of 59 ms. Our scheme,

therefore, in comparison to [142] possess approximately 24.8 times better fault

7.4. CONCLUSION 191

detection latency. Moreover, it comes at lower spatiotemporal costs which are

found to be 67 and 280 times lower, respectively.

8
H.264 Encoder Case Study

We selected the state of the art H.264 encoder as the case study. Through

this case study, we provide the complete picture of our system, i.e., (1) design

time specifications to (2) compile time binding to (3) run time (composable

and persistent-state) dynamic reconfiguration of H.264 on the target FPGA

architecture.

We start with the design time specifications that include application (H.264)

and architecture (our FPGA model) specifications, see Section 8.1. After-

wards, we explain the H.264 binding process on the given FPGA platform,

see Section 8.2. It is followed by illustrating the run time composable and

persistent-state reconfiguration process (for a simplified H.264 encoder), see

Section 8.3. In Section 8.4, we provide the concluding remarks for the chapter.

8.1 Design Time Specifications

In this section, we provide application and architecture specifications that are

used for the case study.

8.1.1 H.264 Specifications

The task graph of H.264 encoder application (excluding CAVLC) is shown in

Figure 8.1. We synthesized RES, (I)DCT, (I)QT, and Reconstruction blocks

on a Virtex-4 XC4VLX200 chip using Xilinx ISE 10.1, whereas the area of

remaining IPs is estimated from [127]. Table 8.1 illustrates the area and fre-

quencies for H.264 IPs. The Column 2 of Table 8.1 lists the area in k LUTs,

whereas the Column 3 of Table 8.1, shows the area in terms of MTCRs. The

throughput requirements as shown in Figure 8.1 were calculated for Quarter

193

194 CHAPTER 8. H.264 ENCODER CASE STUDY

ME0

MC

IPRED

RES QT

HT
4X4

IHT
4X4

RCT

IDCT

IQT

DCT

ME1 MD

70 70

70

70

46

46

62 94

94

94

62

4

4 4

Figure 8.1: H.264 Task Graph with Communication Demands.

Table 8.1: Application IP Synthesized Area, Frequency and Reconfiguration Time

IP Area Area

(k LUTs) (MCR)

ME 7.8 60

IPRED 1.4 11

MC 2.2 17

RES 1.6 13

(I)DCT 2.3 19

(I)Quant 2.2 18

(I)HT 2.3 18

RCT 1.6 13

Common Intermediate Format (QCIF) resolution video frames.

8.1.2 FPGA Specifications

To perform H.264 binding, our selected FPGA model comprises 9 TCFRs,

that are attached in 3x3 dimensions. Each TCFR consists of 4 k LUTs or 32

minimum test configuration regions (MTCRs). Figure 8.2 illustrates that there

are two links for a TCFR pair, and each link consists of 10 time-multiplexed

slots. We assume that at the time of H.264 application binding all the resources

of target FPGA are available, i.e., our application is the first application that is

going to execute on FPGA platform.

8.2. COMPILE TIME BINDING OF H.264 TO FPGA 195

TCFR
3

TCFR
4

TCFR
5

TCFR
6

TCFR
7

TCFR
8

TCFR
0

TCFR
1

TCFR
2

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

0
1
2
3
4
5
6
7

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

Figure 8.2: Specification of the Target FPGA Architecture.

8.2 Compile Time Binding of H.264 to FPGA

In the following sections we provide the details about the binding of H.264 on

the target FPGA architecture.

8.2.1 Cluster Creation

The binding of H.264 encoder on the target architecture was performed after

creating its clusters. Our PUMA scheme created 9 clusters for the input H.264

application, see Figure 8.3. The H.264 IPs have different types of inter-IP

dependencies, i.e., an IP input is dependent on a single but another IP out-

put (we call it one-to-one), etc. This is shown in Figure 8.3, where cluster 0

shows one-to-one inter-IP communication, cluster 2 shows one-to-many inter-

IP communication, cluster 3 shows many-to-one inter-IP communication, and

196 CHAPTER 8. H.264 ENCODER CASE STUDY

ME0

ME1

ME1

MD

MD

MC IPRED

IPREDMC

RES

DCT

HT
4X4

QT

HT
4X4

QT

IHT
4X4

IQT

IHT
4X4 IQT

IDCT

IDCT

RCT

RES

DCT

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 5 Cluster 6 Cluster 7 Cluster 8

Figure 8.3: Showing H264 Clusters Created by using PUMA.

cluster 6 shows multiple one-to-one inter-IP communication.

8.2.2 QoS Ensured Cluster Binding

Figure 8.4 shows the resultant binding of all the clusters (of H.264) on the

target FPGA architecture. In Figure 8.4, the necessary links and their allocated

resources are shown. As an example, the connection between MD and MC,

requires 2 slots, and traverses the path that consists of TCFR2, TCFR1, and

TCFR4. In Figure 8.4, the respective time-slots for the MD-MC connection are

shown, i.e., slots 3,4 on TCFR2-TCFR1 link, and slots 4, 5 on TCFR1-TCFR4

link. Similarly, the TCFR and network resources are assigned. The slots are

allocated in a pipelined fashion, across the links of a connection. Additionally,

as shown in the Figure 8.4, the slots are allocated in such a way that these are

used to transport contention-free data over the network.

8.2. COMPILE TIME BINDING OF H.264 TO FPGA 197

ME0

ME1
MD

MC

IQT

IPRED

IHT

RES

DCT RCT

HT

IDCT

QT

2 3 3 5

ME0 -ME1 ME1 -MD

M
D

-I
P

R
E

D

1
2

MC-MD

M
D

-M
C

4 3

4
5

IPRED-RESIPRED-RESMC-RES
2 13 25 4

3
4

R
E

S
-D

C
T

DCT-QT DCT-QT
2 31 2

DCT-HT

4 5
Q

T
-IQ

T5
4

HT-IHT

H
T

-IH
T

6 5

6
7

IQT-IDCT

6 5

6
7

IQ
T

-I
D

C
T

7 8

IHT-IDCT

8
9

IH
T

-I
D

C
T

IDCT-RCT

3 4

Figure 8.4: Compile Time Binding of H.264 to the Target FPGA Architecture.

8.2.3 Cost of QoS Guarantees

After performing the successful binding for our case study application. We

evaluated the PUMA cost that was paid to fulfill the QoS guarantees for our

H.264 video encoder application. The reason is that ensuring QoS guarantees

is important but it should not be at the cost of too high resource reservation.

As shown in Figure 8.5, our PUMA fulfills the QoS requirements for each of

the H.264 connection. Importantly, the allocated throughput is kept around

1.2 times of the required ones. The allocation is always more than the asked

bandwidth by application only due to distribution TDM slots. However, the al-

located slots remain within a reasonable 20% extra of the required one. More-

198 CHAPTER 8. H.264 ENCODER CASE STUDY

0

20

40

60

80

100

120

140

ME0-
ME1

ME1-
MD

MD-IP
RED

MD-M
C

MC-R
ES

IP
RED-R

ES

RES-D
CT

DCT-Q
T

DCT-H
T

HT-IH
T

QT-IQ
T

IH
T-ID

CT

IQ
T-ID

CT

ID
CT-R

CT

Requested (MB/s)

Allocated (MB/s)

Figure 8.5: Showing Communication Cost that is Paid for the H.264 Binding.

over, the average hop count among the communicating IPs is fairly reasonable

as shown in Figure 8.6.

In the next section, we provide we perform run time dynamic reconfiguration

for H.264 application IPs, and evaluate the composable and persistent-state

behavior of the system.

8.3 Run Time H.264 Dynamic Reconfiguration

We exercise the dynamic reconfiguration in SystemC using the 3-tier recon-

figuration model, as explained in Chapter 6. Additionally, the dynamic re-

configuration is performed by using the proposed design flow of Section 3.1.

To evaluate composable and persistent-state dynamic run-time reconfiguration,

we used a system with two applications that constitute the IPs of H.2641. For

this purpose, three IPs (Residue, DCT, and Quantiser) were used. Our im-

plementation not only take into account the communication requirement of

applications, (e.g.. QCIF resolution for our case study), but the computational

requirements as well. For calculating the computational requirements, we syn-

thesise the VHDL implementations of the Residue, DCT, and Quantiser IPs

on a Virtex-4 XC4VLX200 chip using Xilinx ISE 10.1 provide their MHz fre-

quencies, which were used in SystemC, Table 8.1. The bitstream size for all

1Note that in this case the cost of implementing dynamic reconfiguration by using our 3-tier

reconfiguration model can come in the form of an application manager per application.

8.3. RUN TIME H.264 DYNAMIC RECONFIGURATION 199

0

0.5

1

1.5

2

2.5

3

ME0-
ME1

MD-
IPRED

MC-
RES

RES-
DCT

DCT-
HT

QT-
IQT

IQT-
IDCT

Figure 8.6: Showing Hop Count between the IP that Communicate with Each Other.

Table 8.2: Application IP Frequency and Reconfiguration Time

IP Frequency Bitstream (Re)config Time

(MHz) (Frames) (µs)

RESIDUE 100 285 273.6

DCT 66 396 380.16

Quantizer 75 370 355.2

the three IPs is estimated from their kLUT areas using Equation 8.1.

(IP LUTs ∗ frames per column)/(LUTs per CLB ∗ CLB per column)

(8.1)

The two applications that consists of H.264 IPs are A1 (Residue + DCT

+Quant), and A2 (DCT only). Additionally, both the application execute in

parallel. However, it is assumed that A1 does not meet the required area con-

straints, and is therefore sub-divided into two SubApps (SA1 and SA2), which

are configured and executed in separate use-cases. In addition, each use-case

comprises the system manager and an application manager per application.

8.3.1 Temporal Analysis of Application Binding

In this section, we provide the temporal analysis for the application A2, which

comprises two sub-applications (SA1 and SA2). In Figure 8.7 both SA1 and

200 CHAPTER 8. H.264 ENCODER CASE STUDY

SA2 go through load, program, execute, and stop phases, as shown with steps

(3, 5, 7 , 9) for SA1 and with steps (10, 12, 14, 16) for SA2 respectively.

Each phase is preceded by programming the NoC, as illustrated in [46]. It

takes approx. 2.5µs , to program an NI. This additional phase delay has been

included in the preceding discussions.

SA1 comprises 681 frames, where each frame accounts for 41 words. The sys-

tem manager uses a fixed and low latency connection to load the SA1 bitstream

in 653 µs , as shown in Figure 8.7 (step 3). Figure 8.8 shows the fixed latency

bitstream transportation from the control processor to destination TCFR. To

load the bitstream for SA1 IPs, the system manager follows the procedure of

Section 6.2.3. After loading the SA1 IP bitstreams, the system manager ini-

tializes the IPs in 0.63 µs by programming memory mapped reset and clock

generator in the destination TCFR, as shown in Figure 8.7 (step 4). It is fol-

lowed by setting-up of three data connections for the SA1 IPs in approximately

2.9 µs , Figure 8.7 (step 5a, 5b). Once data connections are programmed and

SA1 IPs are ready to receive input data, the system manager programs the re-

spective application manager. It takes 0.97 µs to program the respective appli-

cation manager with application parameters, which include full application’s

I/O addresses and ranges, Figure 8.7 (step 6). Afterwards, the SA1 executes to

process 1 QCIF (99 Macro Blocks) video frame. The SA1 IPs process one 4x4

pixel block in a single execution, where 16 such 4x4 pixel blocks constitute

a Macro Block (MB). This means, the SA1 IPs execute for 99 x 16 = 1584

times to process a single QCIF frame, which takes 460.3 µs in peer to peer

streaming communication fashion, Figure 8.7 (step 7).

Sub-application 2 goes through the same phases but after achieving a

persistent-state intra-application swapping, as shown in Figure 8.7 (step 8 to

step 16). The persistent-state procedure by using which sub-application 2 is

swapped is explained in the next section.

8.3.2 Persistent State Intra-Application

To achieve the persistent-state transition from SA1 to SA2 the application man-

ager of SA1, notifies the system manager about that the SA1 has completed its

execution, and needs to be reconfigured. Afterwards, the system manage shuts

down the SA1 data connections from processing further input data, but after

confirming that there are no ongoing transactions that are using those data con-

nections. The clocks of SA1 IPs are lowered down as well, so as to prevent the

IPs to compute data. In short the persistent-state transitional delay involve the

factors, as mentioned in equation 8.2.

8.3. RUN TIME H.264 DYNAMIC RECONFIGURATION 201

System Manager

1
No Data

Connections
5
a

2 6
1
2
a

1
3

1
7

R
E
S

D
C
T

4

3

5
b

R
E
S

D
C
T

9

7

8

Q
N
T

1
1

10

1
2
b

QNT
1
6

14

15

Persistent
Storage

S
pa

ce

%
 S

ystem
 R

esources

25.5 6.8 23.4 13.6 25.5

6.8

15.5 13.6

T
C

F
R

0
T

C
F

R
1

Complete SA1 Configuration
resources allocated to SA2

Partial SA1 Execution resources allocated to SA2

Time

Sub-Application 1

Steps Details
Time

(µ sec)

3 Bitstream Loading 653

5a, 5b Data Connection Setup 2.9

7 Execution 460.3

9 Shutdown 5.6

Steps Details
Time

(µ sec)

10 Bitstream Loading 355

12a, 12b Data Connection Setup 1.02

14 Execution 401.5

16 Shutdown 3.9

Sub-Application 2

Steps Details Time (µ sec)

2, 4, 11 IP Initialization In TCFRs 0.63

6, 13 Application Manager Programming 0.97

8, 15 Application Manager Notification 0.24

17 Application Manager Shutdown 1.25

Application Manager and Initialization Timings

(A)

(B)

Figure 8.7: Showing: Temporal Analysis for SA1 and SA2

202 CHAPTER 8. H.264 ENCODER CASE STUDY

���������	
��������	���	�����	�������

�

����

����

����

�����

��� ��	� �	�
 	��
 	���
��� �	
� ���� ���� ��
�

����������������������������������

���������	
��������
�

Figure 8.8: Bitstream Loading with Fixed Latency with Departure Time at Control

Processor (X-axis) and Arrival Time at TCFR (Y-axis).

2 2 2 2 2 2 2

0.24 0.632.9 3552.7 2.9 0.97

Time Slots

AM Notify
Shut

SA1 Data Conns
Shut

SA1 IPs
SA2 Bitstream

Initialize
SA2 IPs

Set
SA2 Data

Conns

Prog.
AM

2 3 2 5 2 3 2

Hop Count

Time
(micro s)

Figure 8.9: Persistent State Intra-Application Analysis.

TAMNotify + TSMResp + #ConnsxTConnShut + #CFRsxTCFRShut (8.2)

To implement the above persistent-state transition, the application manager of

SA1 notifies the system manager in 0.24 µs on an already established connec-

tion, Figure 8.7 (step 8). For our case, the system manager response time is

negligible, because it is sitting idle and ready to serve at the time of an appli-

cation manager notification. Achieving persistent-state is advanced by tearing

down all the three SA1 connections in 2.9 µs , and followed by disabling the

SA1 IPs in 2.7 µs . Figure 8.9 illustrates the resources reserved during safe

switch from SA1 to SA2 with a transitional delay of 5.84 µs .

8.4. CONCLUSIONS 203

2
3
4
5
6
7
8
9

1

RES DCT QNT

S
lo

t P
os

iti
on

(B)

SA1 SA2

(A)

0

90

180

270

360

93 18
6

27
9

37
2

46
1

55
8

65
1

74
4

83
7

93
0

10
23

11
16

11
45

Time (Micro Sec)

P
ro

ce
ss

ed
 M

ac
ro

 B
lo

ck
s

Sub-App1

Application 1

Sub-App2

App1 Composable Behavior
During App2 Swapping

(A)

Figure 8.10: Showing: (A) Composable Inter-Application Reconfiguration, (B) Allo-

cated Time Slots

8.3.3 Composable Inter-Application

This section provides the evidence of composable inter-application behavior

by using the 3-tier reconfiguration model, see Figure 8.10A. In Figure 8.10A,

an application1 execution is not affected when an existing application is: a)

stopped (SA1 after processing the 99 MBs), b) or configured (SA2). This is

achieved by our PUMA scheme [147], which reserves TDM slots over the

communication channels in such a way that no two channel contend for net-

work resources at the same point in time. The properly allocated TDM slots

therefore, help in transporting interleaved yet non-interfering traffics for bit-

stream loading and execution over the same network path. The resources,

which are freed after the removal of an application (SA1) are reallocated fully

or partially Figure 8.7, as per required to the incoming application (SA2). Dur-

ing resource reallocation, the system manager takes into account the magnitude

and positioning of the resources. For instance in Figure 8.10B, Quantiser is al-

located with the resources that are released by Residue and DCT IP cores.

8.4 Conclusions

In this chapter, we expounded the binding of the case study application (H.264

video encoder) on the target FPGA platform. As a first step application and

architecture specifications were provided. The application specifications in-

cluded: a) H.264 task graph with communication demands for Common Inter-

mediate Format resolution, b) area values of H.264 IPs (excluding CAVLC),

204 CHAPTER 8. H.264 ENCODER CASE STUDY

that were either synthesised or taken from [127]. The target FPGA architec-

ture specifications included: a) the number and dimensions of FPGA-nodes,

b) and the residual resources that are available at and across the FPGA-nodes.

Afterwards, the binding of H.264 on the target FPGA was performed by us-

ing PUMA scheme. Importantly, PUMA ensured that the QoS constraints of

H.264 are fulfilled as a result of the successful binding. At the same time,

PUMA ensured that the cost of QoS guarantees should not exceed a reason-

able value.

At run time, we evaluated the composable and persistent-state behavior of

the system while the IPs of H.264 are dynamically reconfigured. To evaluate

the composable and persistent-state reconfiguration, two multiple applications

(i.e., A1 and A2) were created from the simplified H.264 vide encoder. We

provided the temporal analysis for one of the application 2 (i.e., A2), which

comprised two sub-applications (SA1 and SA2). Both the SA1 and SA2 went

through load, program, execute, and stop phases. The persistent-state between

SA1 and SA2, i.e., during intra-application reconfiguration was achieved in

approximately 5.84 µs . On the other hand the composable inter-application

reconfiguration was implemented by reallocating the resources (TDM slots and

CFRs) of SA1 to SA2.

9
Conclusions

In this chapter we first provide the summary of the thesis in Section 9.1. After-

wards, we list the contributions of the thesis in Section 9.2. Lastly, we discuss

the open issues and future directions in Section 9.3.

9.1 Thesis Summary

The summary of the thesis can be summarized as follows.

In Chapter 1 described the the trends of SOCs from architecture and applica-

tion points of view. We discussed the problems that have emerged due to the

trends, and elaborated the key requirements to overcome the problems. We

then presented the techniques to fulfill the requirements. In the end we gave

the problem statement that has been addressed in the thesis.

In Chapter 2, we provided the preliminary background information about the

architecture and design flow of FPGAs and networks on chip.

In Chapter 3, we explained the architecture and the design flow of the pro-

posed solution. We then explained the techniques (i.e., HWNOC, application

to FPGA binding, composable and persistent-state dynamic run time recon-

figuration, and online testing) that make up the proposed solution to fulfill the

requirements of Chapter 1. For each technique, we provided the overview,

motivation, related work, and positioning with respect to the state of the art.

In Chapter 4, we explained the architecture of the proposed FPGA that com-

prises HWNOC, test configuration functional regions (TCFRs), and a control

processor. Initially, we provide the overview of the proposed architecture. Af-

terwards, we explained the architecture of the hardwired NoC that consists of

local buses, network interfaces, and routers. A HWNOC is used to transport

the unified (test, configuration, functional, and control) data in between the

205

206 CHAPTER 9. CONCLUSIONS

test configuration functional regions (TCFRs). In other words, applications

are tested, configured, and execute on the TCFRs, and a hardwired NoC pro-

vides a unified place to transport data between the TCFRs. The architecture

of a TCFR consists of a number of components that include minimum test

configuration regions (MTCRs), Bus Macros, clock domain crossing FIFOs, a

local bitstream manager, and a clock / reset manager. We also explained the

architecture of the control processor that uses the HWNOC to transport the

unified data to any TCFR in the proposed FPGA architecture. Thereafter, we

discussed which parts of the proposed FPGA should be hard and which should

be soft. We then explored the possible extensions of a hardwired NoC in our

proposed FPGA architecture. In the end we provided the results and analysis

for the proposed architecture.

In Chapter 5, we presented a PUMA scheme to bind applications on the tar-

get FPGA architecture. The PUMA scheme unified all the three processes

of placement, mapping, and allocation while binding application. Moreover,

the proposed PUMA scheme ensured the QoS guarantees, whenever an appli-

cation binding was successful. We presented the mechanism to perform the

unification. The PUMA flow performed an application binding after creating

multiple clusters out of it, where each cluster represented inter-communication

dependencies across a group of IPs. PUMA limitations were provided after-

wards. Thereafter, we presented the results and evaluations of the proposed

PUMA scheme, where the performance and scalability of our PUMA scheme

was evaluated for multiple combinations of applications and target FPGA ar-

chitecture.

In Chapter 6, we described the run time procedures to configure, program, and

run soft IPs. This basic infrastructure was then used to dynamically start and

stop entire applications, and also sub-applications. The latter was useful when

an application did not fit in the resources (configuration regions) allocated to

it. Dynamically swapping sub-applications then enabled the entire application

to execute anyway, although at a lower speed. Our platform was composable,

which means that starting and stopping of applications did not affect concur-

rently operating applications (and vice versa). We modeled the platform in

cycle-accurate transaction-level SystemC, together with soft IP blocks. In par-

ticular, we modeled bitstream loading and frame placement of soft IPs, soft IP

clock management and reset, the programming of HWNOC and IPs, and their

functional operation. We simulated the concurrent configuration and execu-

tion of two small applications, one of which was split in two sub-applications.

We compared the performance of a conventional FPGA with a soft NOC and

dedicated configuration interconnect with our HWNOC platform. Bitstream

9.2. THESIS CONTRIBUTIONS 207

loading was faster in our platform. In the end, we compared the performance

of a conventional FPGA with a soft NOC and dedicated configuration inter-

connect with our HWNOC platform.

In Chapter 7, we presented an online test scheme for FPGAs that used a

HWNoC as test access mechanism. Our online test scheme ensured a non-

intrusive behavior to other communication traffic. In particular the proposed

online test scheme ensured a non-intrusive behavior by: (a) invoking the test at

an application startup time, (b) allowing undisrupted execution for already ex-

isting applications, and (c) implementing parallel operations of reconfiguration

and test for multiple applications. To achieve these objectives, we took appro-

priate measures during the design, compile, and run time phases. We then

provided results and analysis to verify the non-intrusive nature and presented

the timings details to test a test configuration functional region.

In Chapter 8, we used a case study H.264 encoder application, and evaluated

the compile and run time behavior of the system. PUMA was used to perform

the compile time binding of the H.264 encoder, and the 3-tier model was used

to perform composable and persistent-state dynamic reconfiguration of H.264

IPs at run time.

In the next section we provide the contributions of the thesis.

9.2 Thesis Contributions

The main contributions of this dissertation can be summarized as follows.

1. We presented the architecture of an FPGA with a hardwired NoC and

multiple test configuration functional regions (TCFRs), where each

TCFR is a unified test, configuration, and logic plane. The HWNoC

was used as a system level interconnect to provide inter-IP communi-

cation. In our proposed FPGA architecture, a number of features were

investigated that included: (a) concept and implementation of TCFRs,

(b) the definition of the boundary that provided interaction between the

HWNOC and TCFRs, and (c) the control architecture in the proposed

FPGA.

2. We presented the concept of data unification by using the HWNoC. This

means the same HWNoC architecture was used to transport all kinds of

application data, i.e., bitstreams, test, functional, and control data. For

208 CHAPTER 9. CONCLUSIONS

that we developed the FPGA architecture and the design flow that could

ensure the unified data transportation by using the same hardwired NoC.

3. We presented a a binding scheme that unified the process of placement,

mapping, and allocation while binding application to FPGA architec-

ture.

4. We also presented a 3-tier model to perform composable and persistent-

state dynamic run time reconfiguration for applications.

5. We presented an online test scheme that used a HWNoC as the test ac-

cess mechanism. Our online test scheme performed real-time streaming

of test data, and importantly without causing any intrusiveness to the

other communication traffic.

9.3 Open Issues and Future Directions

In this section we explain the open issues for future research directions that are

explained below.

The topology of our architecture is mesh, i.e., the way test configuration func-

tional regions are connected to each other. The architecture can be extended

to different types of regular (e.g., ring, hypercubes, and fat-trees) and irregular

topologies. Test Configuration Functional Regions with soft (i.e., reconfig-

urable) resources are used for the thesis. Though different clock domains can

exist at inter-TCFR level, but we considered a single clock domain at intra-

TCFR level that means all the IPs in a TCFR were running at the same fre-

quency. Extending TCFR architecture to a mix of soft and hard resources,

e.g., hardwired memory units, and providing multiple clock domains can be a

candidate for the future research.

We have evaluated the proposed solution for streaming applications with

address-less communication. Latency critical applications, and address-based

communication can be a good candidate for the future research and to extend

the solution. Our solution makes off-line (i.e., at compile time) calculation

of resources to ensures QoS constrains for applications. This means, the ap-

plications are served from their fixed quota of resources (reserved during the

compile time) while they are executing. The proposed solution can be extended

to make online (i.e. at run time) calculation of the resources for applications.

Bibliography

[1] M. Abramovici, J. Emmert, and C. Stroud. Roving STARs: An Inte-

grated Approach to On-Line Testing, Diagnosis, and Fault Tolerance

for FPGAs in Adaptive Computing Systems. In NASA/DoD Workshop

on Evolvable Hardware, pages 73–92, 2001.

[2] M. Abramovici, C. Stroud, C. Hamilton, S. Wijesuriya, and V. Verma.

Using Roving STARs for On-Line Testing and Diagnosis of FPGAs

in Fault-Tolerant Applications. In IEEE International Test Conference

(ITC), pages 973–982, 1999.

[3] Actel. Incredible shrinking medical devices. White paper, 2008.

[4] T. Ahonen, D. A. Sigüenza-Tortosa, H. Bin, and J. Nurmi. Topology op-

timization for application-specific networks-on-chip. In ACM Workshop

on System Level Interconnect Prediction (SLIP), pages 53–60, 2004.

[5] B. Akesson, A. Molnos, A. Hansson, J. A. Angelo, and K. Goossens.

Composability and predictability for independent application develop-

ment, verification, and execution. In M. Huebner and J. Becker, editors,

Multiprocessor System-on-Chip — Hardware Design and Tool Integra-

tion, Circuits and Systems, chapter 2, pages 25–56. Springer, 2010.

[6] Al-Asaad. On-line built-in self-test for operational faults. In IEEE AU-

TOTESTCON, pages 168–174, 2000.

[7] Altera Corporation. FPGAs Power High-Performance Computing.

White Paper, 2007.

[8] Altera Inc. Stratix V Data Sheet, 2010.

[9] ARM Limited. AMBA AXI Protocol Specification.

[10] A. Artieri, V. DAlto, R. Chesson, M. Hopkins, and M. C. Rossi. No-

madik Open Multimedia Platform for Next Generation Mobile Devices.

In Proc. Industrial Electronics Society (IECON), 2003. Technical Arti-

cle TA305.

[11] L. Bauer, M. Shafique, and J. Henkel. Efficient Resource Utilization for

an Extensible Processor through Dynamic Instruction Set Adaptation.

IEE Transactions on Very Large Scale Integration Systems (TVLSI),

16(10):1295–1308, 2008.

209

210 BIBLIOGRAPHY

[12] M. Bekooij, A. Moonen, and J. van Meerbergen. Predictable and Com-

posable Multiprocessor System Design: A Constructive Approach. In

Bits & Chips Symposium on Embedded Systems and Software, 2007.

[13] L. Benini and G. D. Micheli. Networks on Chips: A New SoC

Paradigm. IEEE Computer, 35(1):70–80, 2002.

[14] R. Bittner, P. Athanas, and M. Musgrove. Colt: An Experiment

in Wormhole Run-Time Reconfiguration. In High-Speed Computing,

Digital Signal Processing, and Filtering Using Reconfigurable Logic

(SPIE), pages 187–194, 1996.

[15] C. Bobda and A. Ahmadinia. Dynamic interconnection of reconfig-

urable modules on reconfigurable devices. volume 22, pages 443–451,

2005.

[16] C. Bobda, A. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Te-

ich. The Erlangen Slot Machine: Increasing Flexibility in FPGA-

based Reconfigurable Platforms. In Proc. Int’l Conference on Field-

Programmable Technology (FPT), 2005.

[17] C. Bobda, M. Majera, D. Koch, A. Ahmadinia, and J. Teich. A dy-

namic NOC approach for communication in reconfigurable devices. In

Proc. Int’l Conference on Field Programmable Logic, Reconfigurable

Computing, and Applications (FPL), pages 1032–1036, 2004.

[18] S. Borkar. Thousand core chips: a technology perspective. In Proc.

Design Automation Conference (DAC), pages 746–749, 2007.

[19] G. Borriello, C. Ebeling, S. Hauck, and S. Burns. The Triptych FPGA

Architecture. IEE Transactions on Very Large Scale Integration Systems

(TVLSI), 3(4):473–582, 1995.

[20] G. Brebner. The Swappable Logic Unit: a Paradigm for Virtual Hard-

ware. In Proc. Int’l Conference on Field-Programmable Custom Com-

puting Machines (FCCM), pages 77–86, 1997.

[21] G. Brebner and D. Levi. Networking on chip with platform FPGAs.

In Proc. Int’l Conference on Field-Programmable Technology (FPT),

pages 13–20, 2003.

[22] B. Burke. Re-Configurable SoC with Embedded FPGA: ”Application

Independent Standard Part”. In Samsung Electronics, Embedded Sys-

tems Conference, 2006.

BIBLIOGRAPHY 211

[23] Business Dictionary. Product life cycle. See http://

www.businessdictionary.com/definition/product-life-cycle.html.

[24] C. Chang, J. Wawrzynek, and R. Brodersen. BEE2: a high-end re-

configurable computing system. IEEE Design & Test of Computers,

22(2):114–125, 2005.

[25] I. Cidon and K. Goossens. Network and transport layers in networks

on chip. In G. De Micheli and L. Benini, editors, Networks on Chips:

Technology and Tools, The Morgan Kaufmann Series in Systems on

Silicon, chapter 5, pages 147–202. Morgan Kaufmann, 2006.

[26] M. Coenen, S. Murali, A. Rădulescu, K. Goossens, and G. De Micheli.

A buffer-sizing Algorithm for Networks on Chip using TDMA and

credit-based end-to-end Flow Control. In Int’l Conf. on Hardware/Soft-

ware Codesign and System Synthesis (CODES+ISSS), pages 130–135,

2006.

[27] J. Collins, G. Kent, and J. Yardley. Using the Starbridge Systems FPGA-

based Hypercomputer for Cancer Research. In International Confer-

ence on Military and Aerospace Programmable Logic Devices, pages

684–689, 2004.

[28] S. D. Craven and P. Athanas. Examining the Viability of FPGA Super-

computing. EURASIP Journal on Embedded Systems, 2007(1):1–24,

2007.

[29] L. Devaux, S. B. Sassi, S. Pillement, D. Chillet, and D. Demigny.

DRAFT: Flexible interconnection network for dynamically reconfig-

urable architectures. In Proc. Int’l Conference on Field-Programmable

Technology (FPT), 2009.

[30] L. Devaux, S. B. Sassi, S. Pillement, D. Chillet, and D. Demigny. Flex-

ible Interconnection Network for Dynamically and Partially Reconfig-

urable Architectures. International Journal of Reconfigurable Comput-

ing (IJRC), 2010:15, 2010.

[31] J.-P. Diguet, G. Gogniat, S. Evain, R. Vaslin, and E. Juin. NOC-centric

security of reconfigurable SoC. In Proc. Int’l Symposium on Networks

on Chip (NOCS), May 2007.

212 BIBLIOGRAPHY

[32] S. Dutt, V. Verma, and V. Suthar. Built-in-Self-Test of FPGAs With

Provable Diagnosabilities and High Diagnostic Coverage With Appli-

cation to Online Testing. IEEE Trans. on CAD of Integrated Circuits

and Systems, 27(2):309–326, 2008.

[33] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multiprocessor SOC

for advanced set-top box and digital TV systems. IEEE Design & Test

of Computers, (5):21–31, 2001.

[34] EE Times. Altera’s new 40nm FPGAs - 2.5 billion transistors, 2008.

[35] C. Foudas, R. Bainbridge, D. Ballard, I. Church, E. Corrin, J. Cough-

lan, C. Day, E. Freeman, J. Fulcher, W. Gannon, G. Hall, R. Halsall,

G. Iles, J. Jones, J. Leaver, M. Noy, M. Pearson, M. Raymond, I. Reid,

G. Rogers, J. Salisbury, S. Taghavi, I. Tomalin, and O. Zorba. The CMS

tracker readout front end driver. IEEE Transactions on Nuclear Science,

52(6):2836–2840, 2005.

[36] Gazaleh Nazarian. On line Testing of Routers in Networks-on-Chips.

Master thesis, Computer Engineering Department, Technical University

of Delft (TUDelft), The Netherlands, 2008.

[37] M. G. Gericota, G. R. Alves, M. L. Silva, and J. M. Ferreira. Active

Replication: Towards a Truly SRAM-based FPGA On-Line Concurrent

Testing. In IEEE On-Line Testing Workshop, pages 165 – 169, 2002.

[38] M. G. Gericota, G. R. Alves, M. L. Silva, and J. M. Ferreira. AR2T:

Implementing a Truly SRAM-based FPGA On-Line Concurrent Test-

ing. In IEEE European Test Workshop, pages 61 – 66, 2002.

[39] R. Gindin, I. Cidon, and I. Keidar. NoC-Based FPGA: Architecture and

Routing. In Proc. Int’l Symposium on Networks on Chip (NOCS), pages

253–264, 2007.

[40] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. R. Tay-

lor, and R. Reed. PipeRench: A Reconfigurable Architecture and Com-

piler. IEEE Computer, 33(4):70–77, 2000.

[41] K. Goossens, M. Bennebroek, J. Y. Hur, and M. A. Wahlah. Hardwired

networks on chip in FPGAs to unify data and configuration intercon-

nects. In Proc. Int’l Symposium on Networks on Chip (NOCS), pages

45–54, 2008.

BIBLIOGRAPHY 213

[42] K. Goossens, J. Dielissen, O. P. Gangwal, S. González Pestana,

A. Rădulescu, and E. Rijpkema. A Design Flow for Application-

Specific Networks on Chip with Guaranteed Performance to Accelerate

SOC Design and Verification. In Proc. Design, Automation and Test in

Europe Conference and Exhibition (DATE), pages 1182–1187, 2005.

[43] K. Goossens, J. Dielissen, and A. Rădulescu. The Æthereal Network on

Chip: Concepts, Architectures, and Implementations. IEEE Design and

Test of Computers, 22(5):414–421, 2005.

[44] K. Goossens and A. Hansson. The Aethereal Network on Chip after

Ten Years: Goals, Evolution, Lessons, and Future. In Proc. Design

Automation Conference (DAC), 2010.

[45] A. Hansson, M. Coenen, and K. Goossens. Undisrupted Quality-Of-

Service during Reconfiguration of Multiple Applications in Networks

on Chip. In Proc. Design, Automation and Test in Europe Conference

and Exhibition (DATE), pages 954–959, 2007.

[46] A. Hansson and K. Goossens. Trade-offs in the Configuration of a Net-

work on Chip for Multiple Use-Cases. In Proc. Int’l Symposium on

Networks on Chip (NOCS), pages 233–242, 2007.

[47] A. Hansson and K. Goossens. An on-chip interconnect and protocol

stack for multiple communication paradigms and programming models.

In Int’l Conf. on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pages 99–108, 2009.

[48] A. Hansson and K. Goossens. On-Chip Interconnect with aelite: Com-

posable and Predictable Systems. In Embedded Systems. Springer,

2009.

[49] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. CoMPSoC:

A template for composable and predictable multi-processor system on

chips. ACM Transactions on Design Automation of Electronic Systems,

14(1):1–24, 2009.

[50] A. Hansson, K. Goossens, and A. Rădulescu. A Unified Approach to

Mapping and Routing on a Network on Chip for both Best-Effort and

Guaranteed Service Traffic. VLSI Design, 2007:Article ID 68432, 16

pages, 2007. Hindawi Publishing Corporation.

214 BIBLIOGRAPHY

[51] A. Hansson, K. Goossens, and A. Rădulescu. Avoiding message-

dependent deadlock in network-based systems on chip. VLSI Design,

2007:Article ID 95859, 10 pages, 2007. Hindawi Publishing Corpora-

tion.

[52] J. R. Hauser and J. Wawrzynek. Garp: a MIPS Processor with

a Reconfigurable Coprocessor. In Proc. Int’l Conference on Field-

Programmable Custom Computing Machines (FCCM), pages 12 – 21,

1997.

[53] R. Hecht, S. Kubisch, A. Herrholtz, and D. Timmermann. Dynamic

Reconfiguration with hardwired Networks-on-Chip on future FPGAs.

In Proc. Int’l Conference on Field Programmable Logic, Reconfigurable

Computing, and Applications (FPL), pages 527–530, 2005.

[54] J. Henkel. Closing the SoC design gap. IEEE Transactions on Comput-

ers, 36(9):119–121, 2003.

[55] J. Henkel, W. Wolf, and S. Chakradhar. On-chip networks: A scalable,

communication-centric embedded system design paradigm. In VLSI De-

sign, pages 845–851, 2004.

[56] C. Hilton and B. Nelson. PNoC: A flexible circuit-switched NoC for

FPGA-based systems. IEE Proceedings on Computers and Digital

Techniques, 153(3):181–188, 2006.

[57] M. Hosseinabadi, A. Banaiyan, M. N. Bojnordi, and Z. Navabi. A Con-

current Testing Method for NoC Switches. In Proc. Design, Automation

and Test in Europe Conference and Exhibition (DATE), Apr. 2006.

[58] J. Hu and R. Marculescu. Energy-aware mapping for tile based NoC ar-

chitectures under performance constraints. In Proc. Design Automation

Conference. Asia and South Pacific (ASPDAC), pages 233–239, 2003.

[59] Y. W. Huang, B. Y. Hsieh, T. C. Chen, and L. G. Chen. Analysis,

fast algorithm, and VLSI architecture design for H.264/AVC intra frame

coder. IEEE Transaction on Circuit and Systems for Video Technology

(TCSVT), 15(3):378–401, 2005.

[60] M. Huebner, C. Schuck, M. Kihnle, and J. Becker. New 2-dimensional

partial dynamic reconfiguration techniques for real-time adaptive micro-

electronic circuits. In IEEE Symposium on Emerging VLSI Technologies

and Architectures, 2006.

BIBLIOGRAPHY 215

[61] M. Huebner, M. Ullmann, L. Braun, A. Klausmann, and J. Becker. Scal-

able Application-Dependent Network on Chip Adaptivity for Dynami-

cal Reconfigurable Real-Time Systems. In Field Programmable Logic

and Application, volume 3203 of Lecture notes in computer science,

pages 1037–1041, 2004.

[62] J. Hur, T. Stefanov, S. Wong, and S. Vassiliadis. Customizing Reconfig-

urable On-Chip Crossbar Scheduler. In Proc. Int’l Conf. on Application-

Specific Systems, Architectures, and Processors (ASAP), pages 210 –

215, 2007.

[63] J. Hur, S. Wong, and S. Vassiliadis. Partially Reconfigurable Point-to-

Point Interconnects in Virtex-II Pro FPGAs. In Proc. of Int’l Workshop

on Applied Reconfigurable Computing (ARC), 2007.

[64] IEEE Computer Society. IEEE Standard Test Access Port and

Boundary-Scan Architecture. IEEE Press, 1990.

[65] Intel Inc. Microprocessor Quick Reference Guide, 2009.

[66] H. Ito, K. Oguri, K. Nagami, R. Konishi, and T. Shiozawa. The Plastic

Cell Architecture for Dynamic Reconfigurable Computing. In Proc.

Int’l Workshop on Rapid System Prototyping (RSP), pages 39 – 44,

1998.

[67] ITRS. The International Technology Roadmap for Semiconductors, In-

terconnect. 2005.

[68] ITRS. The International Technology Roadmap for Semiconductors, De-

sign. 2009.

[69] ITRS. The International Technology Roadmap for Semiconductors, Sys-

tem Drivers. 2009.

[70] W. Jang and D. Z. Pan. A3MAP: Architecture-Aware Analytic Mapping

for Networks-on-Chip. In Proc. Design Automation Conference. Asia

and South Pacific (ASPDAC), pages 523–528, 2010.

[71] J. Jean, K. Tomko, V. Yavagal, J. Shah, and R. Cook. Dynamic Recon-

figuration to Support Concurrent Applications. In IEEE Transactions

on Computers, volume 48, pages 591 – 602.

[72] Jeffrey Burt. Tilera Talks 100-Core Processor, 2009.

216 BIBLIOGRAPHY

[73] E. Jhonsa. FPGAs, ASICs, and the Xilinx-Altera Duopoly. The Digital

Pathfinder, 1, 2004.

[74] Joint Photographic Experts Group. Motion JPEG, 2000.

[75] Joint Video Team (JVT). H.264 : Advanced video coding for generic

audiovisual services, 2007.

[76] R. Joost and R. Salomon. Advantages of FPGA-based multiprocessor

systems in industrial applications. In Proc. Industrial Electronics Soci-

ety (IECON), 2005.

[77] H. Kalte and M. Porrmann. Context saving and restoring for multitask-

ing in reconfigurable systems. In Proc. Int’l Conference on Field Pro-

grammable Logic, Reconfigurable Computing, and Applications (FPL),

pages 223 – 228, 2005.

[78] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wil-

son, M. Wrighton, and A. DeHon. Packet switched vs time multi-

plexed FPGA overlay networks. In Proc. Int’l Conference on Field-

Programmable Custom Computing Machines (FCCM), pages 205–216,

2006.

[79] J.-G. Kim and Y.-D. Kim. A linear programming-based algorithm for

floorplanning in VLSI design. IEEE Transaction on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), 22(5):584–592,

2003.

[80] H. Kopetz, C. E. Salloum, B. Huber, R. Obermaisser, and C. Paukovits.

Composability in the time-triggered system-on-chip architecture. In

Proc. Int’l SOC Conference (SoCC), pages 87 – 90, 2008.

[81] J. Kramer and J. Magee. The evolving philosophers problem: Dy-

namic change management. IEEE Transactions on Software Engineer-

ing, 16(11):1293–1306, 1990.

[82] M. Krstic, E. Grass, F. K. Grkaynak, and P. Vivet. Globally asyn-

chronous, locally synchronous circuits: Overview and outlook. IEEE

Design and Test of Computers, 24(5):430–441, 2007.

[83] A. Kumar, A. Hansson, J. Huisken, and H. Corporaal. An FPGA de-

sign flow for reconfigurable network-based multi-processor systems on

chip. In Proc. Design, Automation and Test in Europe Conference and

Exhibition (DATE), pages 1–6, 2007.

BIBLIOGRAPHY 217

[84] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs.

IEEE Transaction on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), 26(2):203–215, 2007.

[85] P. H. Leong. Recent Trends in FPGA Architectures and Applications. In

International Symposium on Electronic Design, Test and Applications,

pages 137 – 141, 2008.

[86] F. Lima, L. Carro, and R. Reis. Designing Fault Tolerant Systems into

SRAM-based FPGAs. In Proc. Design Automation Conference (DAC),

pages 650 – 655, 2003.

[87] S. Lukovic and L. Fiorin. An Automated Design Flow for NoC-based

MPSoCs on FPGA. In Proc. Int’l Workshop on Rapid System Prototyp-

ing (RSP), pages 58 – 64, 2008.

[88] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins.

Interconnection Networks Enable Fine-Grain Dynamic Multitasking on

FPGAs. In Proc. Int’l Conference on Field Programmable Logic, Re-

configurable Computing, and Applications (FPL), 2002.

[89] T. Marescaux, J.-Y. Mignolet, A. Bartic, W. Moffat, D. Verkest, S. Ver-

nalde, and R. Lauwereins. Networks on Chip as Hardware Components

of an OS for Reconfigurable Systems. In Proc. Int’l Conference on

Field Programmable Logic, Reconfigurable Computing, and Applica-

tions (FPL), 2003.

[90] T. Marescaux, V. Nollet, J.-Y. Mignolet, A. B. W. Moffat, P. Avasare,

P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins. Run-time Sup-

port for Heterogeneous Multitasking on Reconfigurable SoCs. Integra-

tion, The VLSI Journal, 38(1):107–130, 2004.

[91] D. Marpe, V. George, H. L. Cycon, and K. U. Barthel. Performance

evaluation of Motion-JPEG2000 in comparison with H.264/AVC oper-

ated in pure intra coding mode. In SPIE Conference on Wavelet Appli-

cations in Industrial Processing, 2003.

[92] A. Mello, L. Tedesco, N. Calazans, and F. Moraes. Virtual Channels

in Networks on Chip: Implementation and Evaluation on Hermes NoC.

In Proc. Symposium Integrated Circuits and Systems Design (SBCCI),

2005.

218 BIBLIOGRAPHY

[93] G. D. Micheli, P. Pande, A. Ivanov, C. Grecu, and R. Saleh. Design,

Synthesis, and Test of Networks on Chips. IEEE Design & Test of Com-

puters, 22(5):404–413, 2005.

[94] J.-Y. Mignolet, V. Nollet, P. Coene, D.Verkest, S. Vernalde, and

R. Lauwereins. Infrastructure for design and management of relocat-

able tasks in a heterogeneous reconfigurable system-on-chip. In Proc.

Design, Automation and Test in Europe Conference and Exhibition

(DATE), Mar. 2003.

[95] A. Molnos, J. A. Ambrose, A. Nelson, R. Stefan, S. Cotofana, and

K. Goossens. A Composable, Energy-Managed, Real-Time MPSOC

Platform. In In Proc. Int’l Conference on Optimization of Electrical

and Electronic Equipment (OPTIM), 2010.

[96] G. Moore. Progress in digital integrated electronics. Electron Devices

Meeting, 21:11–13.

[97] G. Moore. Cramming more components onto integrated circuits. Elec-

tronics Magazine, 38:114–117, 1965.

[98] O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple indepen-

dent hard real-time jobs on a heterogeneous multiprocessor. In Proc.

Int’l Conference on Embedded software (EMSOFT), 2007.

[99] S. Murali, L. Benini, and G. de Micheli. Mapping and Physical Planning

of Networks on Chip Architectures with Quality of Service Guarantees.

In Proc. Design Automation Conference. Asia and South Pacific (ASP-

DAC), pages 27 – 32, 2005.

[100] S. Murali, M. Coenen, A. Rădulescu, K. Goossens, and G. De Micheli.

A methodology for mapping multiple use-cases on to networks on chip.

In Proc. Design, Automation and Test in Europe Conference and Exhi-

bition (DATE), pages 1–6, 2006.

[101] S. Murali and G. De Micheli. SUNMAP: A tool for automatic topol-

ogy selection and generation for NOCs. In Proc. Design Automation

Conference (DAC), pages 914 – 919, 2003.

[102] S. Murali and G. De Micheli. Bandwidth-constrained mapping of cores

onto NoC architectures. In Proc. Design, Automation and Test in Europe

Conference and Exhibition (DATE), pages 896–901, 2004.

BIBLIOGRAPHY 219

[103] A. B. Nejad, M. E. Martinez, and K. Goossens. An FPGA Bridge Pre-

serving Traffic Quality of Service for On-Chip Network-Based Systems.

In Proc. Design, Automation and Test in Europe Conference and Exhi-

bition (DATE), pages 1 – 6, 2011.

[104] H. N. Nguyen, V.-D. Ngo, Y. Bae, H. Cho, and H.-W. Choi. An QoS

Aware Mapping of Cores Onto NoC Architectures. pages 278–288,

2007.

[105] A. Nieuwland, J. Kang, O. P. Gangwal, R. Sethuraman, N. Busá,

K. Goossens, R. Peset Llopis, and P. Lippens. C-HEAP: A heteroge-

neous multi-processor architecture template and scalable and flexible

protocol for the design of embedded signal processing systems. ACM

Tansactions on Design Automation for Embedded Systems, 7(3):233–

270, 2002.

[106] H. Nikolov, T. Stefanov, and E. F. Deprettere. Efficient automated syn-

thesis, programming, and implementation of multi-processor platforms

on FPGA chips. In Proc. Int’l Conference on Field Programmable

Logic, Reconfigurable Computing, and Applications (FPL), pages 1–6,

2006.

[107] V. Nollet, T. Marescaux, P. Avasare, D. Verkest, and J.-Y. Mignolet.

Centralized run-time resource management in a network-on-chip con-

taining reconfigurable hardware tiles. In Proc. Design, Automation

and Test in Europe Conference and Exhibition (DATE), pages 234–239,

2005.

[108] R. Obermaisser, C. E. Salloum, B. Huber, and H. Kopetz. From a fed-

erated to an integrated automotive architecture. IEEE Transaction on

Computer-Aided Design of Integrated Circuits and Systems (TCAD),

28(7):956 – 965, 2009.

[109] A. Patel, C. Madill, M. Saldana, C. Comis, R. Pomes, and P. Chow.

A Scalable FPGA-based Multiprocessor. In Proc. Int’l Conference

on Field-Programmable Custom Computing Machines (FCCM), pages

111–120, 2006.

[110] Philips Semiconductors. Device Transaction Level (DTL) Protocol

Specification. Version 2.2, July 2002.

220 BIBLIOGRAPHY

[111] T. Pionteck, R. Koch, and C. Albrecht. Applying Partial Reconfigu-

ration to Networks-on-Chips. In Proc. Int’l Conference on Field Pro-

grammable Logic, Reconfigurable Computing, and Applications (FPL),

pages 1–6, 2006.

[112] K. Purna and D. Bhatia. Temporal Partitioning and Scheduling Data

Flow Graphs for Reconfigurable Computers. In IEEE Transactions On

Computers, volume 48, pages 579 – 590, 1999.

[113] J. Rabaey. System-on-Chip-Challenges in the Deep-Sub-Micron Era

A case for the network-on-a-Chip. In INTERCONNECT-CENTRIC

DESIGN FOR ADVANCED SOC AND NOC, chapter 1, pages 3–24.

Springer, 2005.

[114] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer. An FPGA-based soft

multiprocessor system for ipv4 packet forwarding. In Proc. Int’l Con-

ference on Field Programmable Logic, Reconfigurable Computing, and

Applications (FPL), pages 487 – 492, 2005.

[115] E. S. Reddy, V. Chandrasekhar, M. Sashikanth, V. Kamakoti, and N. Vi-

jaykrishnan. Online Detection and Diagnosis of Multiple Configuration

Upsets in LUTs of SRAM-based FPGAs. In Proc. Int’l Parallel and

Distributed Processing Symposium (IPDPS), 2005.

[116] Reference Dictionary. Scalability.

http://dictionary.reference.com/browse/scalability.

[117] M. Renovell, J. M. Portal, J. Figueras, and Y. Zorian. Test Pattern and

Test Configuration Generation Methodology for the Logic of RAM-

Based FPGA. In Proceedings of the 6th Asian Test Symposium, 1997.

[118] M. Renovell, J. M. Portal, J. Figueras, and Y. Zorian. RAM-based

FPGA’s: a test approach for the configurable logic. In Proc. Design, Au-

tomation and Test in Europe Conference and Exhibition (DATE), 1998.

[119] M. Renovell, J. M. Portal, J. Figueras, and Y. Zorian. Testing the

configurable interconnect/logic interface of SRAM-based FPGA’s. In

Proc. Design, Automation and Test in Europe Conference and Exhibi-

tion (DATE), 1999.

[120] E. Rijpkema, K. Goossens, A. Rădulescu, J. Dielissen, J. van Meerber-

gen, P. Wielage, and E. Waterlander. Trade-offs in the design of a router

with both guaranteed and best-effort services for networks on chip.

BIBLIOGRAPHY 221

IEE Proceedings: Computers and Digital Techniques, 150(5):294–302,

2003.

[121] A. Rădulescu, J. Dielissen, S. González Pestana, O. P. Gangwal, E. Ri-

jpkema, P. Wielage, and K. Goossens. An efficient on-chip network

interface offering guaranteed services, shared-memory abstraction, and

flexible network programming. IEEE Transaction on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), 24(1):4–17, 2005.

[122] S. H. Russ, J. Robinson, M. Gleeson, and J. Figueroa. Dynamic Com-

munication Mechanism Switching in Hector. In Mississippi State Uni-

versity, 1997.

[123] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux,

P. Pande, C. Grecu, and A. Ivanov. System-on-chip: Reuse and integra-

tion. Proceedings of the IEEE, 94(6):1050–1069, 2006.

[124] D. P. Schultz, S. P. Young, and L. C. Hung. Method and structure for

reading, modifying and writing selected configuration memory cells of

an FPGA. Xilinx, Inc., Aug. 1999. Patent US 6255848.

[125] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght. Mod-

ular dynamic reconfiguration in Virtex FPGAs. IEE Proceedings on

Computers and Digital Techniques, 153(3):157–164, 2006.

[126] P. Sedcole, J. S. Wong, and P. Y. K. Cheung. Characterisation of FPGA

Clock Variability. In Proc. Symposium on VLSI, pages 322 – 328, 2008.

[127] M. Shafique, L. Bauer, and J. Henkel. Optimizing the H.264/AVC Video

Encoder Application Structure for Reconfigurable and Application-

Specific Platforms. Proc. Journal of Signal Processing Systems (JSPS),

60(2):183–210, 2010.

[128] W.-T. Shen, C.-H. Chao, Y.-K. Lien, and A.-Y. A. Wu. A new bi-

nomial mapping and optimization algorithm for reduced-complexity

mesh-based on-chip network. In Proc. Int’l Symposium on Networks

on Chip (NOCS), pages 317 – 322, 2007.

[129] N. R. Shnidman, W. H. Mangione-Smith, and M. Potkonjak. On-

line Fault Detection for Bus-Based Field Programmable Gate Arrays.

TVLSI, 6(4):656 – 666, 1998.

222 BIBLIOGRAPHY

[130] H. Simmler, L. Levinson, and R. Mnner. Multitasking on FPGA Co-

processors. In Proc. Int’l Conference on Field Programmable Logic,

Reconfigurable Computing, and Applications (FPL), pages 121–130,

2000.

[131] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C.

Filho. Morphosys: an integrated reconfigurable system for data-parallel

and computation-intensive applications. In IEEE Transactions on Com-

puters, volume 49, pages 465–481, 2000.

[132] L. Singhal and E. Bozorgzadeh. Physically-aware Exploitation of Com-

ponent Reuse in a Partially Reconfigurable Architecture. In Proc. Int’l

Parallel and Distributed Processing Symposium (IPDPS), 2006.

[133] K. Srinivasan, K. S. Chatha, and G. Konjevod. An automated technique

for topology and route generation of application specific on-chip inter-

connection networks. In Proc. of Int’l Conference on Computer Aided

Design (ICCAD), pages 231 – 237, 2005.

[134] F. Steenhof, H. Duque, B. Nilsson, K. Goossens, and R. Peset Llopis.

Networks on Chips for High-End Consumer-Electronics TV System Ar-

chitectures. In Proc. Design, Automation and Test in Europe Conference

and Exhibition (DATE), pages 1–6, 2006.

[135] R. Stefan and K. Goossens. Enhancing the security of time-division-

multiplexing networks-on-chip through the use of multipath routing. In

Int’l Workshop on Network on Chip Architectures (NOCARC), 2011.

[136] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal. Multipro-

cessor Resource Allocation for Throughput-Constrained Synchronous

Dataflow Graphs. In Proc. Design Automation Conference (DAC), pages

777 – 782, 2007.

[137] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald,

H. Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,

V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. Evaluation

of the Raw Microprocessor: An Exposed-Wire-Delay Architecture for

ILP and Streams. In Int’l Symposium on Computer Architecture, pages

2–13, 2004.

[138] Texas Instruments Inc. OMAP5912 Multimedia Processor Device

Overview and Architecture Reference Guide, 2004.

BIBLIOGRAPHY 223

[139] Tilera Corporation. Tilera: The cloud computer has arrived, 2011.

[140] Tom R. Halfhill. Tabulas Time machine: Rapidly Reconfigurable Chips

Will Challenge Conventional FPGAs, 2010.

[141] M. Ullmann, M. Huebner, B. Grimm, and J. Becker. An FPGA run-time

system for dynamical on-demand reconfiguration. In Proc. Int’l Parallel

and Distributed Processing Symposium (IPDPS), april 2004.

[142] V. Verma, S. Dutt, and V. Suthar. Efficient on-line testing of FPGAs

with provable diagnosabilities. In Proc. Design Automation Conference

(DAC), 2004.

[143] M. A. Wahlah and K. Goossens. 3-Tier Reconfiguration Model For

FPGAs Using Hardwired Network on Chip. In Proc. Int’l Conference

on Field-Programmable Technology (FPT), Dec. 2009.

[144] M. A. Wahlah and K. Goossens. Composable And Persistent-State Ap-

plication Swapping On FPGAs Using Hardwired Network on Chip. In

Proc. Reconfigurable Computing and FPGAs (ReConFig), 2009.

[145] M. A. Wahlah and K. Goossens. Modeling Reconfiguration in a FPGA

with a Hardwired Network on Chip. In Proc. Reconfigurable Architec-

ture Workshop (RAW), May 2009.

[146] M. A. Wahlah and K. Goossens. A Non-Intrusive Online FPGA Test

Scheme Using A Hardwired Network on Chip. In Proc. Euromicro Sym-

posium on Digital System Design (DSD), 2011.

[147] M. A. Wahlah and K. Goossens. PUMA: Placement Unification with

Mapping and guaranteed throughput Allocation on an FPGA Using A

Hardwired NoC. In Proc. Euromicro Symposium on Digital System De-

sign (DSD), 2011.

[148] P. Z. Waleed M. Meleis, Miriam Leeser and M. M. Vai. Architectural

design of a three dimensional FPGA. In Advanced Research in VLSI,

pages 256–268, 1997.

[149] S. Wee, J. Casper, N. Njoroge, Y. Tesylar, D. Kozyrakis, and K. Oluko-

tun. A Practical FPGA based Framework for Novel CMP Research. In

Proc. Int’l International Symposium on Field Programmable Gate Ar-

rays (FPGA), 2007.

224 BIBLIOGRAPHY

[150] P. Wielage, E. J. Marinissen, M. Altheimer, and C. Wouters. Design and

DFT of a high-speed area-efficient embedded asynchronous FIFO. In

Proc. Design, Automation and Test in Europe Conference and Exhibi-

tion (DATE), 2007.

[151] P. Wijetunga. High-performance crossbar design for system-on-chip. In

System-on-Chip for Real-Time Applications, 2003.

[152] W. Wolf. The Future of Multiprocessor Systems-on-Chips. In Proc.

Design Automation Conference (DAC), 2004.

[153] Xilinx Inc. Development System Reference Guide.

[154] Xilinx Inc. Virtex-4 Configuration Guide.

[155] Xilinx Inc. Virtex and Virtex-E FPGA Data Sheets, 2000.

[156] Xilinx Inc. Virtex-2 and Virtex-2 Pro FPGA Data Sheets, 2002.

[157] Xilinx Inc. Processor Local Bus (PLB) v3.4, 2003.

[158] Xilinx Inc. Virtex-4 Data Sheets, 2005.

[159] Xilinx Inc. Virtex-4 User Guide, 2005.

[160] Xilinx Inc. Virtex-5 User Guide, 2007.

[161] Xilinx Inc. Virtex-5 Data Sheets, 2008.

[162] Xilinx Inc. Virtex-6 Data Sheets, 2009.

[163] Xilinx Inc. Virtex-7 Data Sheets, 2012.

[164] S. Young, P. Alfke, C. Fewer, S. McMillan, B. Blodget, and D. Levi. A

HIGH I/O Reconfigurable Crossbar Switch. In Proc. Int’l Conference

on Field-Programmable Custom Computing Machines (FCCM), pages

3–10, Apr. 2003.

A
Glossary

This chapter provides a guide to the language used in this thesis. Section A.1

contains the list of abbreviations, Section A.2 contains the list of terminology,

and Section A.3 provides the list of legends that are used in the thesis.

A.1 List of Abbreviations

The list of abbreviations explains the most commonly used abbreviations in

this thesis.

AM Application Manager

AGU Address Generation Unit

ASIC Application Specific Integrated Circuit

AXI Advanced eXtensible Interface

BIST built in self test

BSI boundary scan infrastructure

CDC Clock Domain Crossing

CLB Configurable logic block

DMA Direct Memory Access

DSM Deep Sub-Micron

DTL Device Transaction Level

225

226 APPENDIX A. GLOSSARY

FIFO First In, First Out

Fnode FPGA node

FPGA Field Programmable Gate Array

FSM Finite State Machine

GALS Globally Asynchronous Locally Synchronous

GT Guaranteed throughput

HDL Hardware Description Language

HPU header parsing unit

HWNoC Hardwired Network on Chip

ICAP Internal Configuration Port

(I)DCT (Inverse) Discrete Cosine Transform

IOB Input Output Block

IP Intellectual Property

ITRS International Technology Roadmap for Semiconductors

LUT Lookup Table

MB Macro Block

MMIO Memory Mapped Input Output

MPSoC Multi-processor System-on-Chip

MTCR Minimum Test Configuration Region

NI Network Interface

NoC Network on Chip

NRE Non-Recurring Engineering

ORA Output Response Analyser

OS Operating System

A.2. LIST OF TERMINOLOGY 227

PE Processing Element

PPSD Point-to-Point Streaming Data

PUMA Placement Unification with Mapping and Allocation

QoS Quality of Service

RNUT Region Not Under Test

RTR Run Time Reconfiguration

RUT Region Under Test

SDR Software-Defined Radio

SM System Manager

SoC System-on-Chip

TAM Test Access Mechanism

TCFR Test Configuration Functional Region

TDM Time-division Multiplexing

TPG Test Pattern Generator

TTM Time To Market

UCF User Constraint File

In the following discussion we explain the terminology (along with the respec-

tive page number) that is used in our thesis.

A.2 List of Terminology

A hardwired or hard IP is directly implemented in silicon, page 1.

A soft IP is mapped on the reconfigurable resources (e.g. CLBs) of FPGA,

page 1.

An application can be defined as a program that is designed to perform a spe-

cific function, page 2.

228 APPENDIX A. GLOSSARY

Functional data (or simply data) stands for the data that is computed or stored

by the IPs, page 2.

Control data is used to program the IPs by writing to their memory-mapped

input output (MMIO) registers, page 2.

A use-case is defined as the set of applications that execute in parallel at a

given time, page 3.

Run time is defined as the time during which an application executes, page 51.

Throughput is the average data transfer rate that is required over a communi-

cation connection, page 3.

Latency stands for the amount of time data takes to traverse the communication

connection, page 4.

(Re)configuration is the installation of new functionality in the FPGA by send-

ing a bitstream to a reconfiguration region, page 7.

Dynamic partial reconfiguration allows the reconfiguration of selected area

of FPGA without shutting down the applications that run on rest of FPGA,

page 12.

Configuring an IP means loading its bitstream in the configuration plane,

page 14.

Programming an IP means changing the state of its registers, page 14.

An application is said to be: (i) placed when its IPs are placed on FPGA logic

plane, (ii) mapped when its IP ports are connected to the functional intercon-

nect, and (iii) allocated when its IPs can communicate (after programming the

NoC) with each other as per QoS constraints. We term the whole process of

placing, mapping, and allocation as binding, page 124.

Compile time is defined as the time during which the user specifications are

being translated into the executable code (for hardware and software), page 51.

Online testing verifies the FPGA chip while the system is operational, page 22.

Stuck-at fault defines the state of a logic block or wire when it always stays at

1 or 0 and can not be reversed, page 78.

Minimum test configuration region, i.e., an MTCR is the minimum region that

can be tested or configured. In Virtex-4 it consists of a column of 16 CLBs and

the associated programmable interconnect [154], page 182.

In the following discussion we will explain the legends that are used in our

thesis.

A.3. LIST OF LEGENDS 229

Soft IP

Hard IP

Defines a
Boundary

Tool

Input / Ouput
File

Connection

(1)

(2)

(3)

(4)

(5)

(6)

Figure A.1: Showing Different Figures that are Used in the Thesis.

A.3 List of Legends

In this section we provide the list of legends that are used in the thesis as shown

in Figure A.1. For example a hard IP is represented with a rectangular box with

multiple line patterns, as shown in Figure A.1. However, the box with multiple

line patterns can have different colors depending upon the type of the hard IP,

e.g., a BRAM, DSP block, and PowerPc, etc., all can be categorised as hard

but with different types. Similarly, a soft IP is represented with a rectangular

box with shaded color pattern, as shown in Figure A.1. However, the box

with shaded color pattern can have different colors depending upon the type

of the soft IP, e.g., an NI shell, BUS Macro units, CLB units , etc., all can be

categorised as soft but with different types.

B
System XML specification

This chapter shows the XML specifications that are used as input to the design

flow, presented in Chapter 3. First, we look at the architecture specification in

Section B.1, followed by the application specification in Section B.2.

B.1 Architecture specification

The architecture specification lists a number of Intellectual Property (IP) com-

ponents, each a number of ports. In addition the area (MTCRs) and bitstream

address of each IP is also specified. For each port, type, protocol and other

relevant architecture parameters are specified.

<architecture id="thesis">

<!---HWNoC Specifications--->

<parameter id="clk" type="int" value="500" />

<parameter id="slotsize" type="int" value="3" />

<parameter id="slots" type="int" value="166" />

<ip id="AM" type="IP" size="31" bitaddr="0">

<port id="A1" type="Initiator" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32"/>

<parameter id="blocksize" type="int" value="32"/>

</port>

<port id="A2" type="Target" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />

</port>

</ip>

<ip id="Residue" type="IP" size="13" bitaddr="3781">

<port id="B1" type="Initiator" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32"/>

230

B.1. ARCHITECTURE SPECIFICATION 231

<parameter id="blocksize" type="int" value="32"/>

</port>

<port id="B2" type="Target" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />

</port>

</ip>

<ip id="DCT" type="IP" size="18" bitaddr="49044">

<port id="C1" type="Initiator" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32"/>

<parameter id="blocksize" type="int" value="32"/>

</port>

<port id="C2" type="Target" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />

</port>

</ip>

<ip id="QNT" type="IP" size="19" bitaddr="116948">

<port id="D1" type="Initiator" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32"/>

<parameter id="blocksize" type="int" value="32"/>

</port>

<port id="D2" type="Target" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />

</port>

</ip>

<ip id="AM2" type="IP" size="31" bitaddr="400000">

<port id="E1" type="Initiator" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32"/>

<parameter id="blocksize" type="int" value="32"/>

</port>

<port id="E2" type="Target" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />

</port>

</ip>

<ip id="Residue2" type="IP" size="13" bitaddr="3781">

<port id="F1" type="Initiator" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32"/>

<parameter id="blocksize" type="int" value="32"/>

</port>

<port id="F2" type="Target" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />

</port>

</ip>

<ip id="DCT2" type="IP" size="18" bitaddr="49044">

<port id="G1" type="Initiator" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32"/>

232 APPENDIX B. SYSTEM XML SPECIFICATION

<parameter id="blocksize" type="int" value="32"/>

</port>

<port id="G2" type="Target" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />

</port>

</ip>

<ip id="IQNT" type="IP" size="19" bitaddr="188624">

<port id="B1" type="Initiator" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32"/>

<parameter id="blocksize" type="int" value="32"/>

</port>

<port id="B2" type="Target" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />

</port>

</ip>

<ip id="IDCT" type="IP" size="18" bitaddr="256528">

<port id="C1" type="Initiator" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32"/>

<parameter id="blocksize" type="int" value="32"/>

</port>

<port id="C2" type="Target" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />

</port>

</ip>

<ip id="Reconstruct" type="IP" size="13" bitaddr="305572">

<port id="D1" type="Initiator" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32"/>

<parameter id="blocksize" type="int" value="32"/>

</port>

<port id="D2" type="Target" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />

</port>

</ip>

</architecture>

B.2 Application Specification

The specifications below correspond to the running example in Chapter 6. It

consists of 3 applications and two use-cases that allow app0 and app1, and

app1 and app2 to execute in parallel. Each application specification consists of

a number of connections, where each connection corresponds to a requestor.

For each requestor, the write type is specified, along with burst sizes, required

B.2. APPLICATION SPECIFICATION 233

bandwidth and latency requirements.

<communication>

<application id="app0">

<connection id="0" qos="GT">

<initiator ip="AM" port="A1" />

<target ip="Residue" port="B2" />

<write bw="92" burstsize="32" latency="1000" />

</connection>

<connection id="1" qos="GT">

<initiator ip="Residue" port="B1" />

<target ip="DCT" port="C2" />

<write bw="62" burstsize="32" latency="1000" />

</connection>

<connection id="2" qos="GT">

<initiator ip="DCT" port="C1" />

<target ip="QNT" port="D2" />

<write bw="94" burstsize="32" latency="1000" />

</connection>

<connection id="3" qos="GT">

<initiator ip="QNT" port="D1" />

<target ip="AM" port="A2" />

<write bw="94" burstsize="32" latency="1000" />

</connection>

</application>

<application id="app1">

<connection id="0" qos="GT">

<initiator ip="AM2" port="E1" />

<target ip="Residue2" port="F2" />

<write bw="46" burstsize="32" latency="1000" />

</connection>

<connection id="1" qos="GT">

<initiator ip="Residue2" port="F1" />

<target ip="DCT2" port="G2" />

<write bw="31" burstsize="32" latency="1000" />

</connection>

<connection id="2" qos="GT">

<initiator ip="DCT2" port="G1" />

<target ip="AM2" port="E2" />

<write bw="47" burstsize="32" latency="1000" />

</connection>

</application>

<application id="app2">

<connection id="0" qos="GT">

<initiator ip="AM" port="A1" />

234 APPENDIX B. SYSTEM XML SPECIFICATION

<target ip="IQNT" port="B2" />

<write bw="94" burstsize="32" latency="1000" />

</connection>

<connection id="1" qos="GT">

<initiator ip="IQNT" port="B1" />

<target ip="IDCT" port="C2" />

<write bw="62" burstsize="32" latency="1000" />

</connection>

<connection id="2" qos="GT">

<initiator ip="IDCT" port="C1" />

<target ip="Reconstruct" port="D2" />

<write bw="94" burstsize="32" latency="1000" />

</connection>

<connection id="3" qos="GT">

<initiator ip="Reconstruct" port="D1" />

<target ip="AM2" port="A2" />

<write bw="92" burstsize="32" latency="1000" />

</connection>

</application>

<constraint type="allow" appl="app0" with="app1" />

<constraint type="allow" appl="app1" with="app2" />

</communication>

List of Publications

International Journals

1. M. A. Wahlah and K. Goossens, TeMNOT: A Test Methodology for

the Non-Intrusive Online Testing of FPGA with Hardwired Network

on Chip, In Microprocessors and Microsystems (MICPRO), Elsevier,

http://dx.doi.org/10.1016/j.micpro.2012.05.011, 2012.

2. J. Y. Hur, K. Goossens, L. Mhamdi, M. A. Wahlah, Comparative Anal-

ysis of Soft and Hard On-Chip Interconnects for FPGAs, IET Com-

puters and Digital Techniques (IET CDT), (to appear), 2012.

International Conferences

1. M. A. Wahlah and K. Goossens, A Non-Intrusive Online FPGA Test

Scheme using a hardwired network on chip, In Proc. Euromicro Sym-

posium on Digital System Design (DSD), 2011

2. M. A. Wahlah and K. Goossens, PUMA: Placement Unification with

Mapping and guaranteed throughput Allocation on an FPGA us-

ing a hardwired network on chip, In Proc. Euromicro Symposium on

Digital System Design (DSD), 2011

3. M. A. Wahlah and K. Goossens, Modeling reconfiguration in a FPGA

with a hardwired network on chip, Reconfigurable Architecture Work-

shop (RAW), 2009

4. M. A. Wahlah and K. Goossens, 3-Tier Reconfiguration Model For

FPGAs Using Hardwired Network on Chip, Proceedings of the Inter-

national Conference on Field-Programmable Technology (FPT), 2009

5. M. A. Wahlah and K. Goossens, Composable And Persistent-State

Application Swapping On FPGAs Using Hardwired Network on

Chip, Proceedings of the International Conference on ReConFigurable

Computing and FPGAs (ReConFig), 2009

6. K. Goossens, M. Bennebroek, J. Y. Hur, and M. A. Wahlah, Hardwired

Networks on Chip in FPGAs to unify Data and Configuration Inter-

connects, Network on Chip Symposium (NOCS), 2008

235

236 LIST OF PUBLICATIONS

National Conferences

1. M. A. Wahlah and K. Goossens, Run-Time FPGA Testing Using

Hardwired Network on Chip, In Proc. Annual Workshop on Circuits,

Systems and Signal Processing (ProRisc), 2009

2. M. A. Wahlah and K. Goossens, Hardwired NOC Infrastructure with

Integrated Configuration and Functional Architecture, In Proc. An-

nual Workshop on Circuits, Systems and Signal Processing (ProRisc),

2008

Samenvatting

De bovengenoemde applicatie en architectuur trends hebben tot een aantal

problemen geleid. (1) Een toenemend aantal toepassingen op een FPGA

vereist vaak dynamische herconfiguratie van een toepassing die interferentie

kan veroorzaken met andere actieve toepassingen. (2) De toenemende com-

plexiteit van een applicatie kan mogelijk niet toegekend worden aan de FPGA,

wat verlies van data gedurende dynamische partile herconfiguratie tot mogeli-

jke gevolg kan hebben. (3) De van natuur diverse toepassingen maken het

moeilijk om aan Quality-of-Service eisen van een applicatie te voldoen. (4)

Ook is het moeilijk om (fysieke) timing haalbaarheid in een SoC te bereiken,

als gevolg van het toenemende aantal en verscheidenheid van de IP cores. (5)

Het neerwaarts schalen van de technologie leidt tot FPGA architecturen die

meer vatbaar zijn voor fouten, bv. geconfigureerde geheugens en logische el-

ementen in een FPGA kunnen op een bepaalde waarde vast zitten. (6) Omdat

de communicatie architectuur en IPs beide toegekend worden als soft IPs in

dezelfde logische vlak van de FPGA legt hun plaatsing vele beperkingen op,

om dynamische gedeeltelijke herconfiguratie mogelijk te maken.

In dit proefschrift willen we de bovengenoemde problemen aanpakken door de

architectuur en design flow van een nieuw FPGA voorstellen.

De belangrijkste bijdrage van dit proefschrift is het voorstellen van de FPGA

architectuur met een hardwired network on chip (HWNoC), en meerdere

testen, configuratie en functionele regio’s (TCFRs). Wij noemen het hard-

wired, omdat de NoC in een FPGA uit silicium is gebouwd en niet door

herconfigureerbare delen te gebruiken. Met een HWNoC kunnen we een

globaal asynchrone lokaal synchroon (GALS) omgeving hebben, die op zijn

beurt ervoor zorgt dat data niet verloren gaat tijdens inter-IP-communicatie.

De HWNoC scheidt de communicatie en de berekening in twee disjuncte

vlakken dat beperkingen op de plaatsing van IP cores verlicht. De tweede

bijdrage van dit proefschrift is het laten zien hoe we de HWNoC kunnen

gebruiken om uniform testen, configuratie, en functionele gegevens te trans-

porteren naar TCFRs, voor testen, sneller configureren, en storingsvrije com-

municatie tijdens de uitvoering van applicaties. De derde bijdrage van het

proefschrift is het laten zien dat de voorgestelde design flow voorspelbaar ap-

plicatie gedrag garandeert door te voldoen aan de QoS eisen. We presenteren

ook een 3-tier herconfiguratie model dat gebruik maakt van de HWNoC die

contention-free communicatie garandeert op architectuur niveau, om de prob-

237

238 SAMENVATTING

lemen van interferentie en toestand verlies te overwinnen, respectievelijk tij-

dens inter-applicatie en intra-applicatie herconfiguratie. Nog een bijdrage van

dit proefschrift is het voorstellen van een niet-intrusieve testmethodologie dat

de HWNoC gebruikt als een test toegang mechanisme om de aanwezigheid van

fouten van FPGA architectuur te testen. Met andere woorden, de voorgestelde

methodologie zorgt ervoor dat applicaties altijd herconfigureerd en uitgevoerd

worden in een betrouwbaar gebied van een FPGA en zonder het benvloeden

van de andere applicaties.

Curriculum Vitae

Muhammad Aqeel Wahlah was born on December 21,

1978 in Lahore, Pakistan. From 1996 to 2000 he studied

in the University Of Engineering and Technology (UET)

Lahore. He received Bachelor of Science degree in Elec-

trical engineering with specialization in communications.

He completed his Master of Science in Information Tech-

nology from Pakistan Institute of Engineering and Applied

Sciences (PIEAS), Islamabad.

In November 2006, he joined the Computer Engineering

laboratory of Delft University of Technology in the Netherlands, and, under

the advisory of Professor Kees Goossens, he started his PhD study, working

on hardwired networks on chip for Field Programmable Gate Arrays. The

research work was funded by the Higher Education Commission (HEC) of

Pakistan. The results of this work are presented in the current dissertation.

Muhammad Aqeel Wahlah’s research interests include Embedded Systems,

Reconfigurable Computing, Networks on Chip, and Field Programmable Gate

Arrays.

239

