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Field spectroscopy for weed detection in wheat and chickpea fields
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Weed control is commonly performed by applying selective herbicides homogeneously
over entire agricultural fields. However, applying herbicide only where needed could
have economical and environmental benefits. The objective of this study was to apply
remote sensing to the detection of grasses and broadleaf weeds among cereal and
broadleaf crops. Spectral relative reflectance values at both leaf and canopy scales were
obtained by field spectroscopy for four plant categories: wheat, chickpea, grass weeds,
and broadleaf weeds. Total reflectance spectra of leaf tissues for botanical genera were
successfully classified by general discriminant analysis (GDA). The total canopy spec-
tral classification by GDA for specific narrow bands was 95 ± 4.19% for wheat and
94 ± 5.13% for chickpea. The total canopy spectral classification by GDA for future
Vegetation and Environmental Monitoring on a New Micro-Satellite (VENµS) bands
was 77 ± 8.09% for wheat and 88 ± 6.94% for chickpea, and for the operative satellite
Advanced Land Imager (ALI) bands was 78 ± 7.97% for wheat and 82 ± 8.22% for
chickpea. Within the critical period for weed control, an overall classification accuracy
of 87 ± 5.57% was achieved for >5% vegetation coverage in a wheat field, thereby
providing potential for implementation of herbicide applications. Qualitative models
based on wheat, chickpea, grass weed, and broadleaf weed spectral properties have
high-quality classification and prediction potential that can be used for site-specific
weed management.

1. Introduction

Weeds are the most acute pest in agriculture, with an estimated annual global damage
of around 40 thousand million US dollars (USD) per year (Monaco, Weller, and Ashton
2002). Weeds reduce crop yield and quality by competing with crops for water, sunlight,
and minerals (Pinter et al. 2003; Slaughter, Giles, and Downey 2008); producing allelo-
pathic substances (Moran et al. 2004); hosting diseases and insects (Pikart et al. 2011;
Papayiannis, Kokkinos, and Alfaro-Fernandez 2012); and disturbing tilling and harvest-
ing (Monaco, Weller, and Ashton 2002). One increasing problem is weed resistance to
herbicides (Mallory-Smith, Thill, and Dial 1990; Jones et al. 2005; Marshall and Moss
2008). In Australia alone, herbicide resistance is estimated to impose an additional annual
cost of more than a thousand million USD (Gibson, Kingwell, and Doole 2008).
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More than 60% of the pesticides developed worldwide are herbicides (Monaco, Weller,
and Ashton 2002). Thus, it is not surprising that herbicides are also the most common
pesticide found in groundwater (Manh et al. 2001). Herbicides can be an environmen-
tal hazard to fauna as well as humans (Dhawan, Bajpayee, and Parmar 2009; Brent and
Schaeffer 2011). Consequently, the amount of herbicide that can be applied per unit area
unit is restricted in some countries (Biller 1998; Timmermann, Gerhards, and Kuehbauch
2003; Slaughter, Giles, and Downey 2008). Herbicide-use regulations, consumer concerns,
and growing interest in organically produced foods limit the long-term acceptability of
herbicide application (Slaughter, Giles, and Downey 2008).

Weed distribution in fields is non-uniform and confined to patches of varying size along
field borders (Gerhards et al. 1997; Lamb and Brown 2001; Vrindts, De Baerdemaeker,
and Ramon 2002; Gerhards and Christensen 2003; Moran et al. 2004; Slaughter, Giles, and
Downey 2008; Weis et al. 2008). Application of herbicides on a field is often based on
the previous year’s weed problems and information obtained from field scouting (Manh
et al. 2001; Moran et al. 2004). By significantly reducing the quantity of herbicide
applied (Gerhards et al. 1997; Gerhards and Christensen 2003; Timmermann, Gerhards,
and Kuehbauch 2003; Eddy et al. 2006; Slaughter, Giles, and Downey 2008; Weis et al.
2008), site-specific weed control and management could economically benefit farmers and
consumers, as well as the environment, without diminishing weed control efficacy (Pinter
et al. 2003; Slaughter, Giles, and Downey 2008; Weis et al. 2008). Reducing the amount of
herbicide applied should reduce the probability of weeds building resistance to herbicides
and increase herbicide effectiveness.

According to Lindquist et al. (1998), it is possible to reduce the quantity of herbicide
applied by applying herbicides only where weeds are located. Site-specific weed manage-
ment has reduced herbicide use by 11–90% without affecting crop yield (Brown, Steckler,
and Anderson 1994; Brown and Steckler 1995; Johnson et al. 1995; Lindquist et al. 1998;
Feyaerts and van Gool 2001; Gerhards and Christensen 2003). Weed distribution and com-
petition with crops are influenced by spatial variability in topography, drainage, soil type,
and microclimate. There is significant variation in weeds within and between different fields
(Moran et al. 2004), emphasizing the need for site-specific weed management.

Real-time (on-the-go) nonselective weed detection and control can be implemented by
means of tractor-mounted, optical sensors that trigger a spray nozzle valve to open briefly
upon detection of green vegetation (Bennett and Pannell 1998; Biller 1998; Blackshaw,
Molnar, and Lindwall 1998). This approach can be applied to entire fields before crop emer-
gence or between crop rows after emergence (Moran, Inoue, and Barnes 1997; Alchanatis
et al. 2005; Slaughter, Giles, and Downey 2008). Other ground-based, on-the-go sensing
methods are designed to detect the shape of weed leaves against a light-toned soil back-
ground, and can thus be applied only in the early growing stages (Gerhards and Christensen
2003; Weis et al. 2008). In addition, remote sensing from air or space has been used to
identify and map weeds prior to herbicide application (Gerhards et al. 1997; Weis et al.
2008). Remote-sensing techniques can provide fast and cost-effective mapping of weed
populations over large areas, which otherwise would be impractical to cover by manual
ground survey methods (Zwiggelaar 1998; Hamouz et al. 2008). Remote-sensing applica-
tions also allow early- and late-season, and spatial and spectral methods for site-specific
weed detection and management (Zwiggelaar 1998; Moran et al. 2004; Alchanatis et al.
2005).

Few studies have dealt with ground-level spectral classification of crops and weeds
over multiple growing seasons. Lopez-Granados et al. (2008) classified ground-level spec-
tral reflectance of wheat, four grass weeds (GW), and soil, and concluded that one sampling
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date per growth season, when phenological distinction is maximal, can provide high-quality
classification. However, relying upon phenology as a basis for spectral differences will
likely be ineffective if the optimal time for herbicide application precedes the date of maxi-
mal phenological variability among crops and weeds. In their extensive review, Gray, Shaw,
and Bruce (2009) determined that short-wave infrared (SWIR) bands are important for
classifying ground-level spectral reflectance of soybean, six broadleaf weeds (BLW), and
soil. Likewise, Slaughter, Giles, and Downey (2008) found many reports in the literature
in which studies were conducted in ideal conditions with no spatial overlap of crops and
weeds, and which resulted in classification accuracies of 65–95%. Zwiggelaar (1998) men-
tions in his review that the use of selected wavelengths for the discrimination between row
crops and weeds has not been demonstrated to date, and imaging using a limited number
of wavelengths might not be sufficient. The first step required to distinguish between crops
and weeds is to obtain continuous spectra of pure plants of each species, which can be done
by means of data with high spatial and spectral resolutions. Vrindts, De Baerdemaeker, and
Ramon (2002) employed such data and found that relative reflectance values were needed
to classify crops and weeds, and to minimize the effect of different lighting conditions
on spectral data. In addition, their use of several wavebands resulted in high classification
accuracy.

A dicotyledonous leaf has more air spaces within its spongy mesophyll tissue than a
monocotyledonous leaf (Raven, Everet, and Eichhorn 2005) of the same thickness and age,
resulting in higher reflectance in the NIR region (Gausman 1985). The red-edge region is
the slope connecting the red (R) and near infrared (NIR) regions in the reflectance spectra of
plants, and is an important element in spectral separation of different plant species, includ-
ing weeds and crops (Vrindts, De Baerdemaeker, and Ramon 2002; Smith and Blackshaw
2003; Herrmann et al. 2011).

The Advanced Land Imager (ALI) is a multispectral sensor with nine bands, including
two in the red-edge region, onboard the Earth Observing-1 (EO1) satellite that provides
spatial resolution of 30 m, a swath of 37 km, and revisit frequency of 16 days (Chander,
Markham, and Helder 2009). Vegetation and Environmental Monitoring on a New Micro-
Satellite (VENµS) is a future satellite with a super-spectral sensor (12 bands in visible,
red edge, and NIR regions). VENµS will provide excellent spatial resolution of 5.3 m, a
27.5 km swath, and revisit frequency of 2 days (Herrmann et al. 2011). These specifica-
tions of VENµS are highly suitable for site-specific weed management and other precision
agricultural applications.

In this research, remote sensing was used to detect annual grasses and BLW amongst
broadleaf and cereal crops. Specific objectives were twofold: (1) the use of leaf spectral
reflectance to distinguish between wheat, chickpea, GW, and BLW; and (2) to examine the
potential of using canopy spectral reflectance from the field and band-equivalent reflectance
of VENµS and ALI to predict categories of crops and weeds.

2. Methodology

2.1. Study sites

Field measurements and sampling were performed in both rainfed and irrigated wheat and
chickpea experimental plots in winter 2007 and 2008 at the Gilat Research Center (31◦ 20′
N, 34◦ 40′ E) and Kibbutz Saad (31◦ 28′ N, 34◦ 33′ E) in the northwestern Negev, Israel.
The climate is semi-arid with a short rainy season (November–April) that yields an average
annual precipitation of 230 mm at Gilat and 385 mm at Kibbutz Saad (Har Gil, Bonfil, and
Svoray 2011). Soils are Calcic Xerosols with sandy loam texture formed from alluvium and
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loess on shallow hills of average elevation 80–150 m above sea level (Kafkafi and Bonfil
2008).

2.2. Field measurements and sampling design

An Analytical Spectral Devices (ASD, Inc., Boulder, CO, USA) FieldSpec Pro FR spec-
trometer was used to measure the spectral reflectance from plants at leaf and canopy scales
in the early growth stages. The ASD instrument operates over a range of 400–2400 nm with
a spectral sampling resolution of 1.4 nm for 400–1000 nm and 2 nm for 1000–2400 nm.
Spectra were resampled to 5 nm bands by means of linear interpolation. Atmospheric water
absorption spectral regions (1350–1420 nm and 1800–1960 nm) were then eliminated from
the resampled spectra. This range of 400–2400 nm is defined hereafter as all wavebands.
Spectral measurements were taken at leaf and canopy scales. The high-intensity contact
probe of the ASD radiometer was used to obtain leaf-scale spectra as required to determine
the feasibility of spectral separation between crops and BLW or grasses. The total number
of leaf spectral samples obtained by the contact probe was 608, with the following dis-
tribution: wheat 63, chickpea 57, GW 136, and BLW 352. All leaf spectral samples were
acquired 30–40 days after emergence (DAE) of the crops.

The bare fibre adaptor of the ASD instrument was also used to collect canopy
reflectance data at solar noon ±1 h, under clear sky conditions with a bare fibre adaptor
that was levelled in a nadir angle. Reference measurements of spectral reflectance were
obtained periodically using a standard white reference panel (Spectralon Labsphere Inc.,
North Sutton, NH, USA). At a viewing angle of 25◦, the field of view (FOV) was a circle
with radius of ∼32 cm when the bare fibre optic adaptor was held 1.4 m above ground. This
radius was large enough to include a few plants in the FOV while being small enough to
select only one category of plants (e.g. wheat, chickpea, BLW, or GW). Since canopy spec-
tral measurements were obtained during the early growing stages of crops and weeds, and
the height of the probe was fixed, it was assumed that changes in the FOV between differ-
ent measurements were negligible. Wheat or chickpea crops, GW, and BLW were separately
measured as sole targets in the FOV against a soil background. Soil was also measured as
a sole target.

To explore the spectral feasibility and limitations of satellites, the ground spectral data
were resampled to VENµS bands by averaging these spectra in the range of each of the
bands (Herrmann et al. 2011) and to EO1-ALI bands by averaging with respect to the spec-
tral response in the range of each of the bands (Mendenhall, Lencioni, and Evans 2000).
At ground level, a pixel or FOV could be obtained containing one target (e.g. wheat, BLW,
GW, or soil) as opposed to airborne or spaceborne sensors, where it is likely that each pixel
will contain number of targets. Mixed pixels will be a combination of the spectra of the
targets they contain (Biewer et al. 2009). Spectral measurements of wheat with BLW, and
wheat with GW, both with soil background, were acquired to examine the effect of a mixed
pixel of crop and weeds on the classification quality for wheat fields.

The spectral data from each season were randomly divided into calibration (50%) and
validation (50%) data sets. Validation statistics were computed to assess the accuracy of
the calibration. The number of samples changed with crop, DAE, and relative coverage of
vegetation. Canopy spectral sampling sites were distributed in the crop fields based on the
presence or absence of weeds. The canopy spectral samples were acquired 8–57 DAE in
wheat fields and 10–79 DAE in chickpea fields.

Vegetation coverage (Deardorff 1978) was assessed at each spectral measurement.
To do this, a 50 × 60 cm rectangular frame (the same area as the FOV) was placed in
the centre of the FOV. The rectangular frame was then divided to 20 equal size squares.
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Assessment was done for each of the squares and accumulated, with 5% weight per square,
to include the entire area surrounded by the frame. All assessments were performed by the
same person. Since herbicides are intended to be applied before closure of the crop canopy
(Thorp and Tian 2004), the spectral samples were obtained in the early growth stages of
crops and weeds. The classification analysis was mainly limited to plots with >30% veg-
etation coverage in order to reduce the negative effect of soil background on crop canopy
reflectance, while classification of data with both 0–100% and >5% vegetation cover was
applied for specific cases, as shown in the results.

2.3. General discriminant analysis

Qualitative classification analysis was applied by the general discriminant analysis (GDA)
method (Wastell 1987; Baudat and Anouar 2000; Shen, Bai, and Fairhurst 2007). GDA
applies the general linear model to the discriminant function analysis problem. The general
linear model is a generalization of the linear regression model that tests for effects of cat-
egorical and continuous predictor variables, and accommodates experimental designs with
either a single dependent variable or multiple dependent variables. Discriminant function
analysis involves the prediction of a categorical dependent variable by one or more continu-
ous or binary independent variables, and is used to determine which variables discriminate
between two or more naturally occurring groups. There can be as many classification func-
tions as there are groups. For each group it is possible to determine the location of the
centroid. A case would be classified as belonging to a group in which the Mahalanobis
distance to the group’s centroid is the least (Mahalanobis, Bose, and Roy 1937). These
classifications are determined not only by the most influential wavelengths but also by
all the spectra. Therefore, to discriminate between different crops and weeds, as well as
to determine the most important wavelengths for the separation, GDA forward stepwise
models were created and validated by Statistica v. 9 software (StatSoft, Inc., Tulsa, OK,
USA).

The quality of classification of the validation data sets was assessed by Cohen’s Kappa
coefficient, overall accuracy, user’s accuracy, and producer’s accuracy for each confusion
matrix. Cohen’s Kappa, as defined by Cohen (1960), is a unitless value ranging from 1 for
perfect agreement to –1 for complete disagreement. Cohen’s Kappa is presented in the
following equation:

Kappa = d − q

N − q
, (1)

where d is the sum of ground truth pixels that were correctly classified, q is the product of
total ground truth and total classification values summed and divided by the total number
of samples, and N is the total number of samples. The 95% confidence limit (CL) was
calculated for overall accuracy as shown by Foody (2008):

CL = ±tN ,d−1

√
p (1 − p)

N − 1
, (2)

where p is the overall accuracy, tN,d–1 is the statistical value of 95% two-tailed testing for d
samples, N is the total number of samples, and d is the sum of ground truth pixels that were
correctly classified. The CL of total accuracy allows comparison between models based on
significance, and thus indicates whether there is any model that is significantly better or
worse than the others (Foody 2008).
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3. Results and discussion

Leaf spectra obtained by contact probe are pure, without any mixed-category spectra
(Figure 1(a)). Plant species differ in levels of reflectance, but otherwise have similar
spectral features. Differences in spectral reflectance can be observed in the NIR region
(700–1200 nm) and may be attributed to variation in internal leaf structure between cere-
als (GW and wheat) and broadleaf plants (BLW and chickpea). Conversely, plant canopy
spectra obtained by bare fibre probe (Figure 1(b)) are influenced by >60% vegetation cover
with soil as background. The various plant categories differ in regard to level of reflectance
and possess similar spectral features between 700 and 2400 nm. Besides soil background,
canopy spectra are influenced by canopy structure and thickness, as well as by other external
parameters (e.g. plant age, sun angle, and wind). These parameters can influence reflectance
values in the visible (400–700 nm), NIR, and SWIR (1200–2400 nm) regions. These dif-
ferences in the level of reflectance and features for both leaf and canopy scales form the
basis for the use of GDA to classify categories.

Very high overall accuracy for classification was obtained from the GDA model of pure
leaf spectra by general category (wheat, chickpea, BLW, and GW, Table 1), thus indicating
that GDA is capable of detecting features that consistently appear in pure leaf spectra of
general vegetation categories. The overall accuracy was excellent for classification by plant
species (Table 2), where 20 samples of unknown genera that could not be related to any of
the 13 weed species were excluded from the data set. These results indicate that classifica-
tion by genera would be as efficient as that by category. Using hyperspectral data, Smith
and Blackshaw (2003) obtained perfect results when classifying leaves but the quality of
classification was less when species of crops and weeds were classified. Gibson et al. (2004)
applied multispectral (i.e. yellow, red, and infrared wide bands) aerial imagery to identify
the presence of GW and BLW in soybean, but were unable to discriminate between weed
species. Therefore, this simple classification scheme is deemed suitable for discriminating
among these general plant categories.

General DA model results for samples with over 30% vegetation coverage are shown for
wheat in Table 3 and chickpea in Table 4. In both cases the user’s and producer’s accuracy
for each of the classes is >91% and >87%, respectively. The overall accuracies are 95%
and 94% for wheat and chickpea, respectively, with 95% CI that reduces total accuracy to
not less than 90% and 88%, respectively. In both cases, the BLW class has perfect user’s
accuracy and GW perfect user’s accuracy. The producer’s accuracy of wheat is greater than
for chickpea, which might be related to the biomass density of the crop (Thorp and Tian
2004), since the FOV of the fibre optic adaptor can cover five or six rows of wheat com-
pared with only one row of chickpea. In both cases the soil is classified with high success.
GDA-based classification results for wheat are based on 11 narrow bands: sorted in order
of importance, these are 675, 715, 705, 745, 690, 875, 850, 1090, 750, 760, and 1070 nm.
For chickpea, eight narrow bands are important: 675, 725, 705, 730, 690, 715, 685, and
680 nm. Included in each series are several highly ranked red-edge bands (e.g. 675, 715,
and 705 nm for wheat, and 675, 725, and 705 nm for chickpea). Therefore, optical sen-
sors with four or more red-edge bands might be required for implementing the proposed
GDA classification scheme. Another interesting result is that out of the five most important
bands, red-edge bands occupy the first, third, and fifth places in both models’ narrow-band
lists. These findings indicate that the NIR and red-edge regions contain information that
is important for detection of categories and species of vegetation, which is in agreement
with previous studies (Vrindts, De Baerdemaeker, and Ramon 2002; Jurado-Exposito et al.
2003; Smith and Blackshaw 2003). Thenkabail et al. (2004) presented a list of 22 nar-
row wavebands in the range 350–2500 nm ideal for discriminating natural and agricultural
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Figure 1. (a) Leaf reflectance spectra of wheat, chickpea, broadleaf weeds (BLW), and grass weeds
(GW) obtained in the field with the ASD radiometer’s contact probe by one layer of leaves with
100% cover of the field of view. (b) Canopy reflectance spectra of wheat, chickpea, BLW, GW, and
soil obtained in the field with the ASD bare fibre adaptor. The vegetation spectra were obtained when
the vegetation cover was >60%.

vegetation and weeds. The six red-edge bands (i.e. 675, 680, 685, 690,705, and 730 nm)
found to be important for classification in the current study were in accordance with this
list. Gray, Shaw, and Bruce (2009) reported that the most important bands for classification
of soybean, soil, and six BLWs are in the SWIR region. Reflectance in the SWIR region
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Table 1. Confusion matrix of the classification of pure leaf spectra by vegetation category using all
wavebands.

Ground truth classes

Wheat Chickpea BLW GW

Total # of
classified
samples

User’s
accuracy %

correct

Map classes
Wheat 32 0 0 1 33 97
Chickpea 0 28 0 0 28 100
Broadleaf weeds (BLW) 0 0 174 0 174 100
Grass weeds (GW) 0 0 0 66 66 100
Total # of ground truth samples 32 28 174 67
Producer’s accuracy % correct 100 100 100 99 99.7*

Note: *95% confidence interval = ±0.6% for the overall classification accuracy and Kappa = 0.99.

Table 2. Classification by GDA of pure leaf spectra by genus, all wavebands.

Genera % Correct
Number of

validation samples

Wheat 100 32
Chickpea 100 28
Hordeum 100 10
Hirschfeldia 100 20
Malva 100 40
Sinapis 96 24
Ipomoea 100 11
Avena 100 12
Solanum 100 11
Setaria 100 17
Silybum 100 11
Chrysanthemum 100 29
Sonchus 100 13
Lolium 100 9
Beta 100 14
Total 99.6 281

Table 3. Canopy classification model for wheat fields based on 11 narrow bands (sorted by impor-
tance: 675, 715, 705, 745, 690, 875, 850, 1090, 750, 760, and 1070 nm) and homogeneous sample
with vegetation cover >30%.

Ground truth classes

Wheat BLW GW Soil

Total # of
classified
samples

User’s
accuracy %

correct

Map classes
Wheat 36 0 1 1 38 95
Broadleaf weeds (BLW) 0 24 0 0 24 100
Grass weeds (GW) 0 2 22 0 24 92
Soil 1 0 0 20 21 95
Total # of ground truth samples 37 26 23 21
Producer’s accuracy % correct 97 92 96 95 95*

Note: *95% confidence interval = ±4.19% for the overall accuracy and Kappa = 0.94.
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6102 U. Shapira et al.

Table 4. Canopy classification model for chickpea fields, based on 8 narrow bands (sorted by impor-
tance: 675, 725, 705, 730, 690, 715, 685, and 680 nm) and homogeneous sample with vegetation
cover >30%.

Ground truth classes

Chickpea BLW GW Soil

Total # of
classified
samples

User’s
accuracy %

correct

Map classes
Chickpea 13 1 0 0 14 93
Broadleaf weeds (BLW) 0 24 0 0 24 100
Grass weeds (GW) 0 1 23 1 25 92
Soil 2 0 0 20 22 91
Total # of ground truth samples 15 26 23 21
Producer’s accuracy % correct 87 92 100 95 94*

Note: *95% confidence interval = ±5.13% for the overall classification accuracy and Kappa = 0.92.

is influenced by plant water content, whereas that in the visible region is influenced by
chlorophyll pigments (Gausman 1985).

Classification results based on resampled VENµS and ALI bands, for samples with
over 30% vegetation coverage, are shown in Table 5 for wheat and Table 6 for chickpea.
The BLW class has the highest user’s accuracy for wheat in VENµS data, and 3% greater
than soil in ALI data (Table 5). BLW has the highest user’s accuracy together with soil for
chickpea in VENµS data, and second after soil in ALI data (Table 6). Since chickpea is a
broadleaf and wheat is a grass, it may be that BLW could be classified with higher accuracy
against a crop that is not a broadleaf. By the same logic, the GW class obtained higher
user’s accuracy values in chickpea than in wheat, but as mentioned above the BLW class
user’s accuracy values are still greater than the GW class, even in chickpea. This relatively
high user’s accuracy of BLW agrees with Vrindts, De Baerdemaeker, and Ramon (2002),
who classified BLW against GW using three to nine selected bands. Red-edge narrow bands
were highly important for classification, as mentioned above. There is no advantage in four
red-edge bands (i.e. VENµS) over two (i.e. ALI), since both Cohen’s Kappa values and
user’s accuracies are similar and overall classification accuracies overlap when considering
confidence intervals. Nevertheless, VENµS would be better suited for site-specific weed
management than ALI due to its greater spatial resolution (5.3 m vs 30 m). The chickpea
models provided better classification results than the wheat models, but this advantage is
not significant based on 95% CI.

The total accuracy is 79 ± 6.74% for all ASD wavebands in wheat fields for six cate-
gories: wheat, BLW, and GW with soil as background, and soil and two categories of mixed
vegetation in the FOV (Table 7). To simulate a situation where the decision to spray or not is
to be made, the results of GDA classification for three options of herbicide application (no
spray, spray BLW, or spray GW) are presented in Table 8 for all wavebands. No herbicide
would be applied if only wheat and soil were detected in the FOV of the sensor, whereas
herbicide would be applied if BLW or GW with wheat, or only BLW or GW were detected.
This scenario is based on heterogeneous spectra with >5% vegetation cover 25–40 DAE of
wheat, which is the optimal time for herbicide application. Spectral data obtained at ground
level by Lopez-Granados et al. (2008) resulted in high classification, but no relation to an
optimal time for herbicide application was mentioned. For the application window in wheat
fields, the overall classification accuracy was 87 ± 5.57% for all ASD wavebands (Table 8).
The user’s accuracy for no herbicide application indicates that 79% of the decisions not to
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Table 7. Herbicide application model for wheat fields with vegetation cover of 0–100%, restricted
to 25–40 days after emergence, for all wavebands.

Ground truth classes

Wheat
Wheat &

BLW
Wheat &

GW BLW GW Soil

Total # of
classified
samples

User’s
accuracy %

correct

Map classes
Wheat 24 6 4 2 1 2 39 62
Wheat & broadleaf

weeds (BLW)
1 20 0 5 1 0 27 74

Wheat & grass weeds
(GW)

0 1 13 0 1 0 15 87

BLW 0 3 0 18 0 0 21 86
GW 0 0 1 0 11 0 12 92
Soil 0 0 0 1 0 26 27 96
Total # of ground truth

samples
25 30 18 26 14 28

Producer’s accuracy %
correct

96 67 72 69 79 93 79*

Note: *95% confidence interval = ±6.74% for the overall classification accuracy and Kappa = 0.75.

Table 8. Herbicide application model for wheat fields with vegetation cover >5%, restricted to
25–40 days after emergence, for all wavebands.

Ground truth classes

Herbicide application
Wheat &

soil

BLW &
wheat or

BLW

GW &
wheat or

GW

Total # of
classified
samples

User’s
accuracy %

correct

Map classes
Wheat & soil No 52 9 5 66 79
Broadleaf weeds

(BLW) & wheat
or BLW

Yes (spray BLW) 1 46 1 48 96

Grass Weeds
(GW) & wheat
or GW

Yes (spray GW) 0 1 26 27 96

Total # of ground truth
samples

53 56 32

Producer’s accuracy %
correct

98 82 81 87*

Note: *95% confidence interval = ±5.57% for the overall classification accuracy and Kappa = 0.81.

spray are indeed correct. Basing site-specific herbicide application on a map derived from
remote sensing and the GDA method would be highly effective, as indicated by the user’s
accuracy of 96% for spraying both BLW and GW.

4. Summary and conclusions

Classification of crops and weeds was applied by GDA models at both leaf and canopy
scale. The leaf scale resulted in almost perfect classification by both genus and category.
The canopy scale was applied for several spectral resolutions, hyperspectral and resampling
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to current and forthcoming satellites included, as well as different vegetation coverage per-
centage. GDA is negatively affected by a non-uniform number of samples among classes
(Fraley and Raftery 2002), and it has difficulty in separating classes that are spectrally sim-
ilar (Zhao and Maclean 2000). In the current study, the GDA results were influenced by an
unequal number of samples among classes. The classes were of different vegetation types
that may have included soil characteristics in many spectral samples, in addition to soil
as a class on its own. Nevertheless, the results of this study indicate that differentiation
between crops and weeds is possible using GDA, thus potentially contributing to practical
site-specific herbicide application. Specific conclusions are:

• the spectral characteristics of pure leaf spectra enable precise classification of
different plant categories and genera;

• the red-edge region is highly important for crop and weed classification; and
• spectral separation of crops and weeds is potentially useful for wheat fields, with

>5% vegetation cover in the critical period for weed control.

Ground-level sensors offer very high spatial resolution, and therefore the potential ability
to apply classification to classes comprising only one plant species. In contrast, satellite
sensors offer synoptic, map-like views that cover large regions at lower spatial resolution
and therefore the potential ability to apply classification to classes comprising only one
plant species is smaller. If a space platform is to be chosen, VENµS would be a better
option than ALI because of its greater spatial resolution and revisiting frequency. Ground
sensors are less affected by atmospheric effects on vegetation reflectance measurements.
Further research is needed to determine what level of ground truth data is needed to adjust
the GDA model to sensor spatial and spectral resolutions, and to determine the effect of
mixed pixels.
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