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Abstract

Research on scheduling problems is an evergreen challenge for industrial engineers. The growth of digital technologies opens

the possibility to collect and analyze great amount of field data in real-time, representing a precious opportunity for an

improved scheduling activity. Thus, scheduling under uncertain scenarios may benefit from the possibility to grasp the current

operating conditions of the industrial equipment in real-time and take them into account when elaborating the best production

schedules. To this end, the article proposes a proof-of-concept of a simheuristics framework for robust scheduling applied to

a Flow Shop Scheduling Problem. The framework is composed of genetic algorithms for schedule optimization and discrete

event simulation and is synchronized with the field through a Digital Twin (DT) that employs an Equipment Prognostics and

Health Management (EPHM) module. The contribution of the EPHM module inside the DT-based framework is the real time

computation of the failure probability of the equipment, with data-driven statistical models that take sensor data from the field

as input. The viability of the framework is demonstrated in a flow shop application in a laboratory environment.

Keywords Digital Twin · Equipment health · Fault detection · Simheuristics · Robust scheduling · PHM · FSSP

Introduction

Modern day industries need to compete for profitability and

customer satisfaction in a challenging environment with ris-
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ing costs, attention to performance and reliability, operations

safety, and others. Thus, industries are rapidly integrating

emerging digital technologies that have ushered companies

to a new era of industrial revolution called Industry 4.0 (Lee

et al. 2013, 2015a; Oztemel and Gursev 2020; Shi et al. 2011;

Wu et al. 2013; Xu et al. 2014; Yang et al. 2015; Zhang et al.

2014a, b).

Industry 4.0 encompasses multiple evolving technology

umbrellas, one of which is Cyber-Physical Systems (CPS).

Pervasive sensor technologies, open and standardized com-

munication protocols, and computational convenience have

led to its development (Baheti and Gill 2011; Lee et al.

2015b; Leitão et al. 2016). CPS can be defined as a syn-

ergetic integration of the physical assets and their Digital

Twin (DT), usually with feedback loops where the state of

the physical assets affects the computations in the DT and

vice versa (Lee 2008). Thus, integrating CPS with produc-

tion, logistics, maintenance, and other services in the current

industrial practice holds the potential to transform today’s

factories into Industry 4.0-based factories. This can foster

significant economic growth and high responsiveness to ever-

changing operating conditions, leading to major evolutions

in the decision-making processes. The present article focuses

on production scheduling. It is an activity which has sustained
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continuous research interest due to its complexities—primar-

ily, the scheduling problem being a NP-hard problem, where

complications may explode even for small scale instances

(Garey and Jonhson 1979; Liu 2016; Zhang et al. 2014a,

2019b).

CPS systematically integrate into the many levels of the

decision-aiding automation pyramid in an industry, from

high-level business to operations management (Fig. 1).

Therein, the operational decisions at production system level

are performed by software modules for planning, supervision

and control, working together to achieve the goals set by

the ERP (Rossit and Tohmé 2018). In the envisaged future,

the simultaneous view of the information contained in the

different levels of the automation pyramid defines the way

in which production is planned and controlled; besides, the

collaboration between several modules, with the exchange

of real-time information, becomes essential. To enable this

future, CPS are integrated to support different functionalities,

serving as the building block for the advanced operations in a

smart factory (Napoleone et al. 2020). This fosters a research

challenge directed towards architecting frameworks to elabo-

rate dynamic production schedules under uncertain scenarios

based on real-time industrial data.

The DT is what empowers CPS and is the focus of a

wide research stream. It has been defined as a synchronized

simulation of a physical asset with a real-time connection

with its operating environment or field. Therefore, it sup-

ports a number of functionalities such as system mirroring,

parameter optimization, behavior prediction, etc. (Lim et al.

2020; Lopes et al. 2019; Negri et al. 2017, 2019b; Uriarte

et al. 2018). This is recalled by Fig. 1, showing exam-

ples of DT-based functionalities for different application

domains (production, energy, quality, maintenance …) in

the industrial practice. Moreover, DT represents the virtual

counterpart of the physical asset along all its life cycle, then

it aids in the management of physical assets by support-

ing decision-making throughout the lifecycle (Macchi et al.

2018), also using the integration with an intelligence layer

(Negri et al. 2020). Essentially being a simulation, the DT is

persistent and exists even when disconnected from the phys-

ical counterpart (Borangiu et al. 2020). This includes cases

in which connection problems are experienced or there is the

need to elaborate data with temporary disconnection from the

physical asset, e.g. in the case of evaluating possible future

scenarios. Kritzinger proposes a clear categorization of the

relationship between the DT and its physical twin: (i) the

simulation model describing the systems features, rules and

relationships is the Digital Model, this is not connected to the

field; (ii) by setting up the communication from the physical

equipment to the Digital Model, a Digital Shadow is created;

this includes the update of sensors values into the digital

world in order to have a synchronized simulation; (iii) the

full potentialities of a DT are only reached when the com-

munication is bidirectional, feeding back data from the digital

to the physical world (Kritzinger et al. 2018). Literature on

DT is rich and, although a common vision on the topic is

still not achieved, many reviews provide an interpretation of

the concept and its potential applications in manufacturing

(Cimino et al. 2019; Enders and Hoßbach 2019; Kritzinger

et al. 2018; Marmolejo-Saucedo et al. 2019; Orozco-Romero

et al. 2019; Wardhani et al. 2018; Zhang et al. 2019a).

This article is directed at contributing to the research on

DT in manufacturing, by proposing a proof-of-concept of a

dynamic production scheduling framework based on a field-

synchronized DT that deals with uncertainty (represented by

failure probability) in real-time. It includes various elements,

such as genetic algorithms (GA) for optimization, discrete

event simulation (DES), the connection with the physical

equipment, the analysis of real time data with a statistical

model, etc. The focus of this work is on the joint use of

two functionalities supported by the DT, namely production

scheduling and health monitoring (as in Fig. 1). The innova-

tion lies also in the integration of knowledge from various

research fields into a unique framework, namely the efficient

and robust production scheduling, the Digital Twin develop-

ment, and the Prognostics and Health Management (PHM).

The article is correspondingly organized. The literature

review, to set the background on scheduling problems, is

presented in “Literature review” section. The research objec-

tive and proposed contributions are defined in “Research

objective and proposed contributions” section. The proposed

framework is then described in “Proposed framework” sec-

tion, and it is implemented through a case study in “Case

study” section. The results of the case study are discussed

in “Results and discussion” section. The article makes con-

cluding remarks in “Conclusions and future works” section,

also envisioning possible future research directions.

Literature review

In the last fifty years there has been a growing interest in

scheduling techniques due to the impelling need of indus-

trial companies to optimize an increasingly complex and

fragmented production scenario (Vieira et al. 2017). Manu-

facturing systems have become progressively more complex

and the market requires higher levels of adaptability and

customization, demanding for a more effective production

management. The traditional aim for industrial scheduling

applications was the minimization of the total makespan

(Allahverdi et al. 2018; Bagheri et al. 2010; Eddaly et al.

2016; Gonzalez-Neira et al. 2017; Hatami et al. 2018; Juan

et al. 2014; Pan and Wang 2012); however, more recently,

other performances have been taken into the optimization

objectives, leading to cost minimization, to total tardiness

minimization and others (Behnamian and Zandieh 2011;
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Fig. 1 Role of DT to support the control of manufacturing operations in cyber-physical production systems

Zhang et al. 2017). As the objective is today more com-

prehensive, the choice of scheduling techniques has become

even more crucial (Vieira et al. 2017). Along this evolution,

two main topics are of interest for this article: (i) the use

of metaheuristics for schedule optimization (“Metaheuristics

for schedule optimization” section), and (ii) the robustness of

scheduling solutions, in case of uncertain scenarios (“Robust-

ness of scheduling solutions” section).

Metaheuristics for schedule optimization

Until the 1960s research on scheduling was limited to small

sized problems (Gupta and Stafford 2006). This was mainly

due to the: (i) lack of computing power, (ii) inefficient com-

puter programs and (iii) complexity of most real industrial

problems. In particular, many authors classify the majority

of scheduling problems as NP-hard problems (Neufeld et al.

2016). This means that the computational effort required for

obtaining a solution increases exponentially with the prob-

lem size, and even small scale instances may require a long

time to converge to an optimal solution (Zhai et al. 2017).

This caused a change of direction in the search for methods

of resolution. There was in fact an opening towards explor-

ing metaheuristics methods and the development of specific

algorithms to solve scheduling problems by searching for

a ‘good’ near-optimal solution, instead of an absolute opti-

mum.

GA have been extremely popular amongst the metaheuris-

tics for production scheduling problems. In addition, more

recently simulation has been also proposed: (i) to predict

the effects of changes in existing systems without having to

reproduce them on the real system; (ii) to predict in advance

the performances of systems that have yet to be built. Dif-

ferent kinds of simulation methods can be then coupled with

optimization algorithms for production scheduling (Vieira

et al. 2017). When coupling simulation and optimization

algorithms, simulation results are fed to the optimization

algorithm for the computation of the objective function.

In literature, the union of a metaheuristic algorithm and

a simulation model is widely indicated as simheuristics

(Gonzalez-Neira et al. 2017; Hatami et al. 2018; Juan et al.

2014, 2015). A simheuristic model based on GA is chosen

to be used in the present work.

Robustness of scheduling solutions

As industrial contexts embed a certain degree of uncer-

tainty, random events may affect the actual adherence to an

established production schedule. For example, an increased

processing time in one machine can lead to the imposition

of delays in all subsequent production steps. Robustness has

been defined as the capability to handle small delays, resist

to imprecision, tolerate a certain degree of uncertainty, and

deal with unexpected disruptions without having to thor-

oughly modify the production schedule. Thus, a schedule

can be defined as robust when it minimizes the impact of

disruptions: not necessarily it is the best under a specific per-

formance, but it is the one that performs better in terms of

realistic implementation of operations (Vieira et al. 2017; Wu

et al. 2018; Zandieh et al. 2010). To cope with uncertainties,
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two approaches are widely explored (Dias and Ierapetritou

2016; Herroelen and Leus 2005).

• In Reactive approach, decisions at scheduling and control

level are taken using a model that does not consider uncer-

tainties. When an issue occurs, new information is fed

back to the scheduler to find a new solution. This assumes

that a continuous recalculation must take place whenever a

change in real production is registered and, consequently,

it turns out to be computationally expensive. Moreover,

feasibility is not guaranteed as decisions taken previously,

and already implemented, may compromise the viability

of future schedules.

• In Preventive approach, decisions at scheduling and con-

trol level are taken using a model that considers uncer-

tainties. This approach aims at finding robust solutions

that ensure feasibility and high performances even in pres-

ence of disruptions and is thus preferred over the reactive

approach.

A simheuristics approach enables to pursue a preventive

approach for robust scheduling. Numerous works in literature

implement it. (Wu et al. 2018) propose a GA coupled with

Monte Carlo simulation in order to optimize the schedule for

a Job Shop Scheduling Problem (JSSP) with random machine

breakdowns, evaluating the risk based on makespan delay.

(Aramon Bajestani and Beck 2015) design an iterative two-

stage algorithm to solve a Flow Shop Scheduling Problem

(FSSP), considering machine maintenance and minimizing

costs. (Gonzalez-Neira et al. 2017) solves a stochastic FSSP,

where processing and assembly times are random variables.

They couple biased randomization and simulation also using

metaheuristics and propose different alternatives to find the

final solution. Another solution for handling stochastic pro-

cessing times can be found in (Hatami et al. 2018) which

uses an Iterated Local Search (ILS) algorithm to generate a

sequence of solutions in an iterative way. It focuses on rec-

ommending starting time of operations, to complete all the

components of products on a given deadline with a certain

input probability. The assessment is made calculating pos-

sible deterministic solutions with Monte Carlo simulation

and, in this way, comparing and assessing the stochastic ones.

(Framinan et al. 2019) consider non-deterministic processing

times and aim at rescheduling the remaining jobs in a flow-

shop when production is already started, considering new

available information. In this work, the authors conclude that

an event-driven and heuristics-based rescheduling process

can improve performances only in case of low variability.

(Juan et al. 2014) propose an ILS and Monte Carlo-based

simheuristic approach to deal with the stochastic behavior

of the operations in a flowshop with stochastic processing

times. The authors assume that a correlation exists between

deterministic and stochastic solutions, meaning that a good

deterministic solution is likely to be also a good solution in

a stochastic scenario.

Table 1 reports a summary of the reviewed articles on

robust scheduling, evaluating the factors that are considered

in the articles in terms of (1) use of simulation; (2) modeling

of uncertainty—regarding stochasticity in processing times,

times between failures and times for maintenance activities;

and (3) chosen metaheuristics algorithm—GA or a different

algorithm. The table highlights that the use of simulation and

the modelling of uncertainty are common to many articles,

whereas most works do not consider all the three factors

simultaneously. Other gaps emerge from literature, worth of

a discussion in view of the aim of the present work.

1. The articles that consider simulation for robust schedul-

ing do not rely on a DT-based approach to simulation, but

only use non-synchronized data from historical datasets.

Considering also those works that model the maintenance

times stochasticity, they do not use real-time data from

field (which are necessary to build a DT-based approach).

The only authors who propose the use of real-time data

for robust scheduling are (Framinan et al. 2019). This is

a clear gap emerged from literature (Gap #1).

2. From the reviewed literature, it appears that right

techniques to properly model uncertainty for robust

scheduling—both considering production and mainte-

nance management requirements—are already available

and consolidated. This is a relevant background to switch

the focus on the outcomes: the interest now lies in

the robustness of the scheduling solution itself, and the

impact of uncertainty on the evolution of the optimization

algorithm searching for the solution. This is also stated

by (Lee 2018), who recognizes the need to investigate

the behavior of the GA fitness function in relation to the

stability and robustness of systems to uncertainties (Gap

#2).

3. From the reviewed literature, it also emerges that several

works consider uncertain events in production environ-

ments, even if they solve theoretical scenarios without

presenting implementations in real industrial cases or

laboratory demonstrations. Therefore, none of them pro-

poses a way to synchronize with field data in real time for

data-driven analytics, be it AI technologies and statistical

modelling (Gap #3).

Overall, from a practical point of view it can be noted that

there is an excess of attention in the rigor of mathematical

formulation of the proposed solutions at the cost of neglect-

ing the realism of the industrial problems addressed. This is

also witnessed by two of the analyzed articles that wish for

problems inspired by real life situations, rather than encoun-

tered in mathematical abstractions (Gupta and Stafford 2006;

Juan et al. 2015).
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Table 1 Literature review on

robust scheduling Article Sim Uncertainty Algorithm

Stoch PT Fail Maint GA Other

Abedinnia et al. (2017) X X

Allahverdi et al. (2018) X

Aramon Bajestani and Beck (2015) X X

Bagheri et al. (2010) X

Della Croce et al. (1995) X

Dias and Ierapetritou (2016) X X X X X

Eddaly et al. (2016) X

Falkenauer et al. (1991) X

Framinan et al. (2019) X X X

Framinan et al. (2014)

Gonzalez-Neira et al. (2017) X X X

Gupta and Stafford (2006) X X X

Hatami et al. (2018) X X X

Johnson (1954)

Juan et al. (2014) X X X

Juan et al. (2015) X X X X X

Krug et al. (2002) X X X

Lee (2018) X X X X X

Lolli et al. (2017) X

Neufeld et al. (2016) X X X

Nguyen and Bagajewicz (2008) X X X X

Pan and Wang (2012) X

Pessoa and Andrade (2018) X

Teschemacher and Reinhart (2016) X X X

Uslu et al. (2019) X X

Vieira et al. (2017) X X X X X

Wu et al. (2018) X X X X

Yu and Seif (2016) X X X

Sim � Simulation; Stoch PT � Stochastic Processing Times; Fail � Times between failures; Maint �

Maintenance activities times; GA � Genetic Algorithm; Other � Other algorithms

Research objective and proposed
contributions

Despite increasingly sophisticated algorithms have been pro-

posed with the capability to solve more and more complex

scheduling problems assisted by an always greater comput-

ing power, the availability of data and information from

the industrial equipment nowadays is not exploited to the

extent it could. The literature analysis in fact demonstrates

that the intersection between optimization algorithms and

available data and information from field is not thoroughly

explored. This work then aims at contributing to the DT

research in manufacturing by proposing a proof-of-concept

of a DT-based simheuristic framework for the flowshop

scheduling that considers the uncertainty detected in real-

time and related to the failure probability of equipment. The

framework is intended to support the decision makers in man-

ufacturing companies to evaluate and rank the most robust

schedules for flowshops.

The proposed framework copes with the found gaps in

literature, as follows:

• it is based on a field-synchronized DT that uses real-time

data coming from the industrial equipment to simulate the

alternative job sequences in the flowshop; it addresses Gap

#1, stating that most scheduling applications that consider

uncertainty in literature use historical data for the calcu-

lation of optimal solutions, and do not consider the use of

real-time data;

• it copes with the uncertainties of a real flowshop through

a data-driven analytical capability integrated in the DT to

address (1) health of the industrial equipment through an

EPHM module; (2) associated maintenance times upon

prediction of failure; (3) stochastic job processing times;
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besides Gap #1, it addresses Gap #3, stating that none of

analyzed works proposed a way to synchronize with field

data in real-time to use them in the data-driven analytics

supporting the scheduling activity;

• it optimizes the performance of the production system

through a GA, in which the optimization function also

ensures the robustness of the optimal solutions with uncer-

tain conditions due to failures; it addresses Gap #2, stating

that the research interest lies in searching the robustness

of the scheduling solution and the impact of uncertainty

on the evolution of the optimization algorithm.

Proposed framework

The proposed framework is composed of multiple mod-

ules that interact to find robust scheduling solutions, both

using historical and real-time data coming from the con-

nected industrial equipment. These modules are represented

in Fig. 2:

• Physical flowshop system, with the possibility to synchro-

nize the digital information with the physical equipment;

• Input data module, illustrated in “Input data” section;

• Optimization module based on GA, illustrated in “Opti-

mization module” section;

• Digital Twin module, composed of:

• Equipment PHM—or EPHM—module, illustrated in

“Equipment PHM module” section;

• Simulation model, illustrated in “Simulation model”

section;

• A human–machine interface, an example of which is

briefly discussed in the results section, “Human machine

interface” section.

The framework is in line with previous work presented

in (Fumagalli et al. 2018, 2017; Negri et al. 2019a). The

present article extends the framework description, the theo-

retical background, and the experimental results.

Input data

The input data for the scheduling of a production system

include: (i) the list of jobs to be produced; (ii) the list of oper-

ations needed for each job; (iii) the list of available resources

as physical assets capable to perform the operations; (iv)

any additional technological or managerial constraint to be

considered when scheduling. The production objectives of

the company for scheduling should be also declared here,

i.e. what performance indicators the company wants to opti-

mize. Finally, to be able to properly model the behavior of the

industrial equipment, historical equipment data needs to be

input to the framework at this point for statistical processing.

Optimizationmodule

The optimization module is based on GA, to provide dif-

ferent functionalities (according to well-known background

(Castelli et al. 2019; Falkenauer et al. 1991; Uslu et al. 2019)):

– at the beginning of the scheduling activity, the GA gener-

ates an initial population in a random way;

– then, the GA oversees the assessment of each individual

of the population according to a fitness function: with the

individual assessment, each individual is evaluated sepa-

rately through a fitness function; the data needed for this

function come from the interaction with the simulation

model within the DT module;

– if the optimal solution has been reached, a selection of the

best individuals is communicated to the human–machine

interface; otherwise, genetic operators are applied by the

GA to generate a new population, thus creating a new iter-

ation of the algorithm.

More details on the proposed GA, as implemented in the

case study, are described in “Proposed genetic algorithm”

section.

Digital Twinmodule

The DT module is composed by a DES model of the pro-

duction system to be scheduled, and an Equipment PHM

(EPHM) module. The EPHM module receives real-time data

from the physical equipment and elaborates them to feed pre-

dictive information to the simulation model of the production

system. Therefore, the DT synchronization with the field is

done through the EPHM module. Details on these two com-

ponents of the DT module are provided in this section.

Equipment PHMmodule

The EPHM module accounts for the uncertainty of equip-

ment failure. Although PHM primarily encompasses three

aspects—fault detection, fault diagnosis, and failure predic-

tion, the current work focuses only on integrating the fault

detection and failure probability quantification for produc-

tion scheduling. In a future work the fault diagnosis and the

failure prediction capabilities will be included. Two aspects

must be considered and identified to develop the EPHM mod-

ule: (i) the operating states of the industrial equipment as

physical twin; (ii) the critical components and failure modes

of the equipment.
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Fig. 2 Digital Twin-based simheuristics framework for robust scheduling

(i) An industrial equipment can exist either in a healthy

state, a degraded state, or a failed state. Mechanical

systems, especially rotating machinery and systems

involving friction, are more likely to show a gradual

trend towards failure, whereas other types of equipment,

especially electrical components, have a predominantly

immediate failure without an indicative trend. Thus, it

is important to note that not all equipment necessarily

exists in a degraded state. A system is said to be existing

in a healthy state if it is available to perform its intended

process and operates according to the designed normal

behavior. A system is said to be degraded when it still

has the capacity to perform the operation, however its

operation/outputs may lie beyond the expected normal

limits but are acceptable. A failed state of a system is

one where either the system has lost its capacity to per-

form the function or the outputs of the system are not

acceptable.

(ii) Monitoring an industrial equipment using data in real-

time can be costly in terms of sensors, data management,

data acquisition frequency, and personnel time. Industry

best practices call for the identification of critical com-

ponents within a system which not only justifies the

cost of monitoring, but also ensures the detectability of

failures. Additionally, appropriate signals either from

sensors or controllers and data acquisition parameters

need to be chosen for effective collection of useful data.

Moreover, a critical equipment can fail with multiple

failure modes, it is then necessary to identify the failure

modes of interest and their suitability for monitoring.

Maintenance logs, Failure Mode, Effects, and Critical-

ity Analysis (FMEA/FMECA) and Expert knowledge

play a key role in selecting the failure modes that qual-

ify to be monitored (Utne et al. 2012).

The overall architecture of the EPHM module for the

selected failure modes is given in Fig. 3.

In this work, supervised learning is used to develop a

model for fault detection and failure probability quantifica-

tion. This assumes that the signature of the failure in terms

of the signals collected is known and is a generalized PHM

approach of monitoring a physical asset in manufacturing.

The dataset comprises useful signals from healthy and failed

state of a critical component along with its labels as ‘healthy’

and ‘faulty’. The primary step before starting to build any

analytical model is data pre-processing. This includes data

cleaning, data segmentation, and any other operation as

needed. Further, predefined features are extracted from the

pre-processed dataset. Features can include time-domain

features such as mean, standard deviation, kurtosis, etc.
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Fig. 3 Schema of the EPHM module

and frequency domain features such as amplitude of fre-

quency spectrum at rotation frequency, at its first harmonic,

etc. for equipment of rotating nature. Advanced features in

time–frequency domain, using Short-time Fourier Transform

or Wavelets or specially designed features, can also be used.

A portion of samples from the healthy state feature-set is

selected as the baseline for forming the fault detection model.

The healthy feature samples are normalized to mean � 0,

and standard deviation � 1, and the obtained parameters are

saved as the normalization model. The remaining portion of

the healthy state feature-set and all the faulty state feature-

sets form the validation set for fault detection. The validation

feature-sets are normalized using the normalization model.

Feature selection/compression techniques are used to

reduce the dimensionality of the feature vectors for each

sample preserving the amount of information present in

the vectors. Fisher criteria or Principal Component Analy-

sis (PCA) is typically used for this purpose. Using the final

feature-set, a fault detection model can be built. Regression

models are a good choice for the current application as they

can allocate the output as ‘0’ for healthy samples, and ‘1’

for faulty samples. These models allow for a range of values

between 0 and 1, generally called as the failure conformance

value (CV) or equipment health index. A Logistic regression

model can be directly trained on the features to obtain the

equipment health index. In other approaches, an unsuper-

vised learning method can also be used to obtain deviation

metrics between baseline and faulty samples, such as PCA

with Hotelling T2 metric or Self-Organizing Map with Mini-

mum Quantization Error. These deviation metrics can then be

mapped between 0 and 1 using regression methods to obtain

the equipment health index.

Summarizing, every incoming test sample undergoes pre-

processing, validating the quality of data and performing

data segmentation. Predefined features are extracted from

the sample, followed by normalization, feature selection, and

application of the fault detection model to obtain the equip-

ment health index. This value serves as the quantified failure

probability and becomes an input to the simulation model.

Simulation model

The connection between the EPHM module and the simu-

lation model is based on the uncertainty coming from the

failure probability which is utilized based on a Monte Carlo

approach. Therefore, the simulation of the same production

schedule is repeated several times, where failures statistically

occur according to the quantified failure probability. In this

way, the higher the failure probability, the higher will be the

number of repetitions where failures occur.

The simulation model receives this parameter from the

EPHM in real-time when the scheduling is triggered, allow-

ing the synchronization of the digital and physical worlds.

This parameter throughout the scheduling optimization is

not updated during the scheduling activity since the process

of alternative schedules comparison should be done on the

same initial conditions. In those repetitions where the fail-

ure occurs, the processing times in the simulation model are

increased by the failure repair time. The simulation model

has therefore two input information sources:
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Fig. 4 Active elements of the

line at I4.0 Lab

• from the GA comes the single individual to be simulated,

i.e. the sequence of jobs. The simulator is fed with one job

sequence at a time for the simulation repetitions.

• from the EPHM module comes the failure probability of

each equipment, calculated in real-time just before start-

ing the optimization process, as explained in “Equipment

PHM module” section.

Overall, once the input data are received, the simulation

model runs a DES of the job sequence that reproduces the

behavior of the real production system under consideration.

After that, the simulation model outputs a set of performance

indicators designed in line with the production objectives and

the fitness function of the GA.

Case study

The application case used to validate the proposed frame-

work is the assembly line at the Industry 4.0 Laboratory

(I4.0 Lab) at the School of Management of Politecnico di

Milano. This is represented in Fig. 4 and can be considered

as a flowshop (Fumagalli et al. 2016). It is composed of seven

workstations: (i) Manual station, where the operator loads

the empty carriers at the beginning of the assembly process

and unloads the finished pieces at the end; (ii) Front Cover

station, where the front cover is positioned; (iii) Drilling

station, where holes are drilled; (iv) Robot station, where

Printed Circuit Boards (PCB) and fuses are assembled on the

cover; (v) Camera Inspection station, that checks their cor-

rect positioning; (vi) Back Cover station, which places the

back cover; (vii) Press station, where the back and front cov-

ers are pressed together and the assembly is completed. The

I4.0 Lab is equipped with the Open Platform Communica-

tion Unified Architecture (OPC UA), a machine-to-machine

communication protocol that is considered one of the con-

nectivity enablers of the Industry 4.0 (https://opcfoundation.

org/about/what-is-opc/). It was used in this case to connect

the physical assets with the DT.

Preliminary data gathering

The simulation model requires the processing and handling

times of each active element of the I4.0 Lab assembly line.

The considered active elements are represented in Fig. 4:

• 7 Workstations, which process the workpieces;

• 11 Conveyors, which transport the carriers through the

line;

• 2 Switches, which direct each carrier towards the right

direction.

A data gathering campaign has been performed on the

assembly line by recording the time of each process with a

centesimal stopwatch. 20 repetitions of each measure have

been performed.

Critical station data gathering

After performing a FMECA on the assembly line, the drilling

station was identified as the most critical station of the line. In

particular, the critical failure mode was identified as the tool

bearing failure, that leads to an imbalance of the drilling axis.

For this reason, it became the scope of the failure probability

quantification in the EPHM module of the proposed frame-

work. The drilling station has been equipped with additional

sensors, such as a set of accelerometers to perceive vibra-

tions along the three axes in order to have visibility on the

present state of rotatory elements (Heng et al. 2009). Fig-

ure 5 is a picture of the drilling station. During the drilling,

the accelerometer data are read by the single-board computer,

that sends them to a server available in I4.0 Lab in which a

Mongo Database is installed. Using this infrastructure, it is
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Fig. 5 Drilling station

possible to access previously recorded data as well as real-

time data.

For the academic purposes for which the laboratory has

been set up, abnormal vibrations were created through a

shaker attached to the drilling axis to recreate bad operating

conditions of the drilling station. The employed shaker con-

sists of a motor mounted on a PCB which rotates an eccentric

mass to produce vibrations along the working axis of the drill

and can be adjusted to reduce or amplify its effect.

Proposed genetic algorithm

The proposed GA follows a direct approach, i.e. the encoding

of each individual directly describes a sequence of jobs to

be performed. The encoding represents each workpiece as

a job with the corresponding processes to be performed on

the workstations in the right sequence. A single individual is

then represented by a sequence of different jobs expressed in

the form of a matrix where each row represents a job in the

sequence and the columns define the Job code, the sequencing

number and all the workstations that each job will encounter.

In this work, a mutation rate equal to 0.02 is adopted

and the mutation procedure is performed using a two-point

approach, i.e. swapping randomly two rows of the individ-

ual to create a new sequence. This is in line with literature,

where values used for mutation rate span from 0.01 to 0.3, but

the most suggested rates lie between 0.01 and 0.03 (Nguyen

and Bagajewicz 2008; Snaselova and Zboril 2015; Uslu et al.

2019; Wu et al. 2018).

Simulationmodel

According to (Fumagalli et al. 2019), the simulation model

has been developed using MATLAB/Simulink and its

toolbox for DES, “Simevents” (https://it.mathworks.com/

products/simevents.html).

Individual upload

The list of jobs that is input to the simulation model by the

GA in form of matrix is divided into individual jobs that are

separately considered. Each job is a row of the input matrix

from the GA and becomes an entity that flows within the

simulated production system. Therefore, the physical work-

pieces processed by the real workstations correspond to the

entities processed by the blocks of the virtual assembly line

in the DES model. Information about the operations to be

performed in each workstation on the job are uploaded into

the simulation model as attributes of the flowing entities that

represent the individual jobs.

Production simulation

The behavior of the real production system is virtually repro-

duced for each job sequence. The model reproduces both the

operations performed on the workpiece and the constraints

and rules of the I4.0 Lab production system. Indeed, the

model developed in DES replicates the behavior of the active

elements of the line:

• the 7 Workstations, capable to process one job (single

workpiece) at a time; each workstation will then operate

on each workpiece for a time that is established by the

corresponding attribute of the flowing entity representing

the job;

• the 11 Conveyors, that can accommodate a number of car-

riers on the basis of their physical lengths;

• the 2 Switches, that simulate the carrier’s waiting phase

during which the RFID is read to identify the right direc-

tion, and the action of addressing the carrier toward the

right direction.

In addition to the reproduction of the active elements of

the line, different logical constraints are modelled such as the

maximum number of simultaneous jobs in line; the maximum

number of carriers in the robot queue; the routing decision

before the Robot cell.

Performance extraction

The makespan of the whole sequence of jobs is the per-

formance on which the fitness function of the GA will be

elaborating. The simulation model is then used to extract
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Fig. 6 Function for performance extraction

this performance for each simulated individual. To this end,

a Function in the simulation model is responsible for the time

tracking and performance extraction, as shown in Fig. 6. In

particular:

• the Function records all exit times of all jobs in the

sequence;

• the inputs of the Function are: (i) the ID of each job; (ii)

its exit time;

• the exit time of the last job from the system is the makespan

of the sequence;

• this value is the one fed into the fitness function of the GA.

Modeling equipment failure probability

As described in “Critical station data gathering” section, tool

bearing failure in drilling station is selected to be monitored

for this study. Vibration signals are collected using the three-

axis accelerometer. Additionally, four signals—current, air

flow rate, power, and air pressure—are also collected from

the PLC using OPC-UA. 100 samples are collected in healthy

state of the drilling station and 20 samples are collected with

the shaker to simulate a faulty state of the tool. Figure 7 shows

the raw signal plots for all seven signals for both healthy and

faulty states.

Since the data are collected between the points where the

pallet enters and leaves the drilling station, a data segmen-

tation regimen is performed to extract the section where the

drilling tool is engaged. On these segmented data, a total

of 66 features are extracted. Frequency domain features are

used for accelerometer signals and features such as Shannon

entropy, kurtosis, skewness etc. are used for time domain sig-

nals. Figure 8 shows a sample of extracted features where the

first 20 samples represent healthy state and the last 20 samples

represent faulty state. Although it is possible to make mean-

ingful inference out of each feature, these features would

differ with each failure mode and equipment. Thus, more

importantly, it can be observed from the figure that not all

features show a discrepancy between the healthy and faulty

samples. Thus, selecting useful features is necessary to create

an effective model.

Features are normalized with respect to the health sam-

ples to mean � 0 and standard deviation � 1. Fisher criteria,

given by Eq. (1), is used to calculate the Fisher score for each

feature, as shown in Fig. 9. In Eq. (1), µA and σA define the

Fig. 7 Visualizing raw data collected from drilling station for modeling EPHM
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Fig. 8 Visualizing a sample of extracted features for the collected data

Fig. 9 Selecting features based on Fisher score

mean and standard deviation of feature values for healthy

samples, and µB and σB define the mean and standard devi-

ation of feature values for faulty samples. Six features with

the highest Fisher scores were selected based on Fig. 9. They

are: (1) maximum amplitude in the frequency domain of the

vibration signal in the X direction, the (2) mean value and

Fig. 10 Principal component 1 versus principal component 2

the (3) root mean square (RMS) value of the current signal in

the time domain, and (4) mean value, (5) RMS value, and (6)

maximum value of the power signal in the time domain. PCA

is implemented on the selected six features to observe the

presence of potential clusters for healthy and faulty samples.

Figure 10 plots the obtained principal component 1 versus
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Fig. 11 Failure conformance value modeling

principal component 2 to reveal the clusters, which validates

the effectiveness of features extracted and selected.

F �
|µA − µB |2

σ 2
A − σ 2

B

(1)

Multivariate logistic regression is further used to model

the selected features into a failure conformance value (CV)

between 0 and 1, where 0 indicates the absence of a fault and

1 indicates the presence of a fault. Essentially, the failure

CV is integrated as the failure probability for the produc-

tion simulation model. The multivariate logistic regression

is given by Eq. (2), where Yi is the output of the ith sample,

β j , j� 0 to m are coefficients of the model, m is the number

of input variables, and X j,i is the jth input variable for the ith

sample. In this problem, the value of j is equal to 6, as there

are six selected features as input variables for the model.

Figure 11 shows the output values of the collected samples

based on the trained logistic regression model whose coef-

ficients are obtained using Maximum Likelihood estimation

method. First principal component derived from the PCA is

used to visualize the approximate fitted curve of the model.

The curve represents the behavior of the failure probability

as the equipment moves from healthy state to a faulty state.

Data could be collected for different severities of fault and

the logistic regression model can be trained using labels cor-

responding to desired health index to further adjust the curve.

Yi �
1

1 + exp
[

−

(

β0 +
∑m

j�1 β j X j,i

)] + εi (2)

Integration of EPHM results into the simulation model

The output of the EPHM module is integrated into the sim-

ulation model, to embed it into the scheduling activity. It is

going to impact on the processing time of the drilling station.

In particular:

– the EPHM module provides a failure probability;

– this probability determines when the drilling station breaks

down and, in that case, the standard processing times of the

drilling station increase by an amount of time equal to the

Mean Time To Repair (MTTR), i.e. the required manual

repair intervention time.

Figure 12 shows the function determining the drilling pro-

cessing times, based on Monte Carlo approach (i.e. using a

random_num) to generate the failure occurrence.

Fitness function

The work was developed in two phases, each denoted by a

different fitness function.

(1) Fitness function1 only minimizes the makespan, given

by Eq. (3): it compares the average makespan of

the worst individual belonging to the first generation

(i.e. first generated population), makespanref, and the

average makespan of the other individuals that are con-

sidered one by one by the simulation runs. These values

are averaged from the different repetitions of simula-

tions of a single individual, to have statistical robustness

of results. The first population is randomly generated,

therefore, by taking the worst individual of this pop-

ulation as the reference point, it is reasonable that all

subsequent individuals generated will have a lower aver-

age makespan, thus maintaining the fitness value always

positive. The objective of the following generations is

to increase this difference.

f i tness f unction1 � makespanre f − makespan

(3)

(2) Fitness function2 leads to a balance between the average

makespan and its standard deviation; thus, it is com-

posed of two fitness functions with weighing factors λ

and (1 − λ), as in Eq. (4). The first fitness function in

Eq. (4) is relative to the makespan (same structure as

Eq. (3)); the second is relative to the standard deviation

of the makespan, introduced to measure the robustness

of the solutions (the negative sign denotes that the fitness

function rewards individuals that have a lower stan-

dard deviation). The best solutions will be those that

have a good balance between the average makespan and
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Fig. 12 Drilling station processing time function

its standard deviation. By changing λ, it is possible to

modify the behavior of the algorithm to favor solutions

with lower average makespan or better robustness of the

scheduling solutions.

f i tness f unction2 � λ

∗
(

makespanre f − makespan
)

+ (1 − λ) ∗ (−stddev)

(4)

Results and discussion

Due to the uncertainty about failures in the drilling station, its

processing times become stochastic. According to the Monte

Carlo approach, simulation of each individual is repeated

several times to evaluate the robustness of the results. The

number of repetitions was set to 30. In all repetitions, the

input sequence of jobs was the same to allow comparability

of results. Increasing the number of repetitions protracts the

time required to simulate them, even though the computa-

tional time is highly dependent on the performances of the

single computer used. Since the proposed application is for

real-time scheduling, it is of utmost importance to have a

quick response of the scheduling framework. The proposed

application used parallel computing to launch parallel simu-

lations, to reduce the time of the simulation repetitions within

minutes. This is possible because the sequence simulations

are independent.

This section reports and discusses the results of a series of

experiments that show the viability of the proposed frame-

work integrating scheduling, DT and PHM. Table 2 shows

the parameters of the GA and of the simulation for the exper-

iments done.

The results of experiments are correspondingly presented

in the next sections, that is: experiments with fitness function1

in “Results with fitness function1” section; experiments with

fitness function2 in “Results with fitness function2” section;

the three additional tests to analyze the effect of failures,

using fitness function2, in “Additional tests to analyze the

effect of failures” section; the experiments with 100 itera-

tions for the GA, using fitness function2, in “Results with

one hundred iterations for the genetic algorithm” section.

Finally, “Human machine interface” section introduces the

Human Machine Interface considered in the framework to

ease a decision-maker when choosing the best sequence,

while “Discussion” section discusses the general features of

the obtained results.

Results with fitness function1

Figure 13 shows the results of the experiments with the fit-

ness function1. In particular, it visualizes (i) the evolution of

the average makespan of the individuals of a generation (i.e.

green colored circle shown in the figure, indicating the aver-

age value computed across the individuals evaluated at each

generation) and (ii) the evolution of the average makespan

and standard deviation of the worst and best individuals (i.e.,

blue and red colored at each generation, indicating the aver-

age makespan—blue and red colored circle—inserted in the
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Table 2 Parameters of the

experiments Parameter Experiments

with fitness

function1

Experiments

with fitness

function2

Additional

Test 1

Additional

Test 2

Additional

Test 3

Experiments

with 100

iterations

Number of

jobs to be

scheduled

50 50 50 50 50 50

Population

dimension

10 10 10 10 10 10

Mutation

rate

0.02 0.02 0.02 0.02 0.02 0.02

Number of

children

for elitism

operator

1 1 1 1 1 1

Maximum

number of

iterations

100 100 100 100 100 100

Minimum

number of

iterations

10 10 10 10 10 100

Number of

iterations

for stall

criterion

20 10 10 10 10 10

Number of

repetitions

of each

simulation

30 30 30 30 30 30

Probability

of failure

from

EPHM

0.149 0.149 0.564 0.149 0.564 0.149

MTTR [s] 60 60 120 120 60 300

Weighing

factors λ

– 0.5 0.5 0.5 0.5 0.5

symmetric interval due to the standard deviation of the indi-

vidual repetitions run in the simulation; the interval is as wide

as twice the standard deviation). In this way it is possible to

have an idea of both average makespan and robustness of the

generated schedules.

It must be remembered that the use of a GA randomly

impacts the convergence of results reported in Figs. 13, 14,

and 15. As a result, according to fitness function1, the opti-

mization considers an individual better than another if it has

a lower average makespan, no matter how robust the solution

is. Indeed, in Fig. 13 it is possible to see that the optimization

direction prefers individuals with slightly lower makespan,

but with much higher standard deviation (best individuals),

than more robust individuals (worst individuals). It is also

worth observing that the standard deviation of the individu-

als significantly varies along the GA iterations, and no trend

can be recognized along the generations.

On the whole, the need to also consider the standard

deviation in the solution search process appears evident, inte-

Fig. 13 Evolution of makespan with fitness function1
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Fig. 14 Evolution of makespan with fitness function2

Fig. 15 Evolution of makespan in 100 iterations with fitness function2

grating its evaluation within the GA fitness function in order

to ensure a good balance between a good makespan and

robustness of the solution.

Results with fitness function2

Fitness function2 optimizes both the average makespan and

the standard deviation associated to the repetitions of the

simulation of each individual simultaneously. λ is set equal

to 0.5 to give the same importance to the two fitness func-

tions—makespan and robustness—so to obtain solutions that

behave well under both aspects. Other tests have been per-

formed with different values of λ but are not reported here

because they are not meaningful for the purposes of the paper.

As shown in Fig. 14, the generations of the GA lead to

the definition of increasingly more efficient solutions with

respect to both the performances (best individuals). Accord-

ingly, the comparison between Figs. 13 and 14 shows the

algorithm converges to an average makespan slightly higher

with fitness function2 than with fitness function1. The solu-

tions that strongly favor the makespan minimization are

discarded by the GA in favor of robust solutions with more

balanced performances, thus giving importance also to a

reduced standard deviation. This can better suit the practi-

cality of scheduling in industry.

Additional tests to analyze the effect of failures

To the reader a clear vision of the scheduling framework

behavior, three additional tests were performed using the fit-

ness function2, with different MTTR values and different sets

of vibrations (i.e. leading to different failure probabilities):

(i) test 1 raises both the MTTR and the failure probability; (ii)

test 2 keeps the initial failure probability as in the “Results

with fitness function2” section, but increases the MTTR; (iii)

test 3 keeps the initial MTTR, but increases the failure prob-

ability (see Table 2 for the value of these parameters).

Aggregated results are provided in Tables 3 and 4. They

respectively show the improvement of makespan and stan-

dard deviation obtained by the individual with the highest

fitness compared to the worst individual and the best indi-

vidual of the first generation. It is possible to get an overview

of how advantageous the proposed simheuristics framework

is, compared to the best and the worst schedules from to

a random population (like the first generation). The results

are logically justifiable: the best sequence is improving both

average makespan and standard deviation with respect to the

best and worst individuals of the first generation. In addition,

the results clearly show that the percentage of improve-

ment of the standard deviation are one order of magnitude

higher than the percentage of improvements in the average

makespan. This means that, with the fitness function2, the

best solutions show less dispersed performances against the

uncertainty due to failures. This is valid for all combinations

of the MTTR and failure probabilities.

It is possible to note that the makespan of the found solu-

tion does not offer a high percentage decrease with respect to

the best individual of the first generation (Table 4). A reason

for this is rooted in the fact that the testing facility has strict

constraints. Moreover, in both the comparisons (Tables 3 and

Table 3 Improvement of the proposed sequence compared to the worst

individual of the first generation

MTTR � 60 s MTTR � 120 s

Failure probability

� 0.149

Makespan � − 18.60%

Std dev � − 95.20%

Makespan � − 4.00%

Std dev � − 87.00%

Failure probability

� 0.564

Makespan � − 2.80%

Std dev � − 94.00%

Makespan � − 10.10%

Std dev � − 31.40%
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Table 4 Improvement of the proposed sequence compared to the best

individual of the first generation

MTTR � 60 s MTTR � 120 s

Failure probability

� 0.149

Makespan � − 4.00%

Std dev � − 93.80%

Makespan � − 0.30%

Std dev � − 16.30%

Failure probability

� 0.564

Makespan � − 0.40%

Std dev � − 63.00%

Makespan � − 1.60%

Std dev � − 11.60%

4), considering as reference the initial values of low MTTR

and low failure probability, the benefit obtainable in terms of

makespan decreases as the failure probability or the MTTR

increases. This is because the increase of one of the two

parameters leads to the addition of higher processing times,

which means a higher total makespan. Instead, the robust-

ness of the solution improves greatly, when the MTTR or the

failure probability decrease. This is explainable by the fact

that, increasing either the MTTR or the failure probability, it

is more difficult to find a robust solution that can absorb the

delays due to failures. Overall, the highly different behav-

iors of makespan and standard deviation confirm the need to

evaluate both in the fitness function.

Results with one hundred iterations for the genetic
algorithm

A final test has been carried out, with the peculiarity of being

forced to reach one hundred generations. A set of vibrations,

producing a lower failure probability, has been used together

with a higher MTTR with respect to the initial tests (see

Table 2 for the value of these parameters).

Similarly to Figs. 13, 14, and 15 shows the evolution

of the average makespan of the worst and best individuals

within the interval of twice their relative standard deviation.

Sometimes, the blue colored line (worst individuals) goes to

a higher makespan value than the previous generation, but

with a reduction of standard deviation. In general, both blue

and red colored lines (the worst and the best individuals) are

showing similar trends of convergence, always considering a

balanced reduction of both makespan and standard deviation

of the individuals. It confirms previous results in terms of

evolution of the optimization algorithm.

Humanmachine interface

The visualization in Figs. 13, 14, and 15 is not intuitive

when choosing the best sequence. Each generated sched-

ule has characteristics that make it different from the others.

However, all of them are the results of an optimization

search aimed at balancing both the performances related to

makespan and standard deviation. To simplify the choice,

the proposed framework implementation considers the visu-

alization of three best alternatives, each aimed at optimizing

a different characteristic. Figure 16 correspondingly shows a

set of three sequences output by the framework to the human

decision-maker, as a result of the last generated population:

• the best fitness value sequence, corresponding to the best

trade-off between good and robust makespan, according

to the input weights, based on Eq. (4);

• the lower average makespan sequence, minimizing the

makespan regardless of the robustness of the solution;

• the lower standard deviation sequence, corresponding to

the most robust solution, with the least fluctuation of

makespan; it may present a higher average makespan.

In Fig. 16, for each of the three individuals (three

sequences) the typical boxplot is displayed: the blue circle

indicates the average makespan and the red line indicates the

median. The rectangle includes values within the 25° and the

75° percentile and the whiskers reach the extreme values (the

isolated red cross indicates an outlier).

As Fig. 16 is drawn considering the experiments reported

in “Results with one hundred iterations for the genetic algo-

rithm” section, it is worth remarking that the individual with

the best fitness corresponds to the best individual for fitness

function2 shown in Fig. 15 in the last generation; the other

two best individuals—best makespan and best standard devi-

ation—provides additional choices for the decision-maker.

Generalizing, this human–machine interface is also part of

the proposed framework. Herein, the display of the best indi-

viduals is shown, to let the human decision-makers decide

which is the most appropriate schedule to apply according

to his/her expertise and contingent production needs. This

reflects a precise choice of the authors that preferred not to

fully automatize the re-scheduling driven by the proposed

DT-based framework. This leaves a degree of flexibility to

the human decision-makers that is reasonable in practice.

Discussion

The present article proposes the use of a DT-based frame-

work for real-time scheduling in a flowshop environment.

The converging results presented from “Results with fit-

ness function1” to “Results with one hundred iterations for

the genetic algorithm” sections demonstrate the viability of

the framework that integrates the DT module—embedding

a DES model and the real time data gathering and analy-

sis into the EPHM module—and the GA-based optimization

module. The applicability of the framework to flowshops is

demonstrated by the application case in the I4.0 Lab; how-

ever, by changing the simulation model and the GA encoding

it is possible to adapt the same framework also to other types

of production systems.
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Fig. 16 Human-machine

interface

Overall, the outcome of this article can be discussed with

concern to the Digital Twin development in manufacturing

and to the robust scheduling.

Looking at the Digital Twin development in manufactur-

ing, the proposed synchronized simulation can be inserted

in the classification by (Kritzinger et al. 2018) as a Dig-

ital Shadow, according to the capabilities shown by the

experiments and implementation presented in this article:

the proposed framework does not feedback into the field of

decision-making autonomously; the operator is instead asked

to manually choose the preferred schedule among the best

ones proposed by the human–machine interface. However,

the step forward to build a full DT is conceptually short: the

implementation of an automated passage here is not concep-

tually different, as the optimization module may be already

provided with the rules to choose the preferred schedules

autonomously, and the decision may be sent to the control

software module directly as a result of the schedule optimiza-

tion.

Regarding the robust scheduling, as outcome of interest to

industrial practice this work fosters a decision-making sup-

port with a preventive approach.

– According to the proposed framework, the use of real-time

data from accelerator sensors allows to compute the failure

probability of the equipment and to use it in the simula-

tion model, which is used to compute the performances

of the single production schedule. Besides, considering

the experimental evidence, the results show that, accord-

ing to the number of repetitions and according to the

magnitude of MTTR, the standard deviation of the perfor-

mances may highly change. On the whole, for an effective

decision-making support it is therefore advisable to define

the criteria for the selection of the best schedule: only con-

sidering the makespan is a too narrow perspective, the

standard deviation should be considered, finally leaving

the decision to the human decision-maker depending on

the contingencies.

– Concerning the time constraints to actionable informa-

tion, it must be considered that, although the proposed

framework fosters a real-time scheduling approach, it is

not purely reactive; conversely, the scheduling solutions

found need to be robust against uncertainty in a preventive

approach. This should be considered to justify the compu-

tational time of the proposed framework, which is not in

the order of seconds but may take a few minutes to run. It

is indeed true that the framework relies on the DES, which

requires a longer computational time than the use of pro-

gramming languages, such as C-based languages. Despite

this limit, the authors see in the use of DES the possibility

to accurately simulate - and therefore to elaborate produc-

tion schedules—of complex real manufacturing systems.

For this reason, the additional computational time required

by the DES is justified. This is particularly valid when

considering that scheduling is timely triggered to run the

preventive approach to robust scheduling, which means

feeding the real-time data to the data analytics and elabo-

rating the simheuristic in a time window of a few minutes

before achieving the preventive decision.

Conclusions and future works

The production scheduling remains an open challenge for

research and industry. The present article brings forward an

innovative framework for robust scheduling that embeds tra-

ditional instruments such as simulation and metaheuristics

(GA) with Industry 4.0 data-driven capabilities. Through

the synchronization of sensors data of the real system, it

is possible to consider the simulation and the simheuristics

implemented according to the DT paradigm.

The application in the I4.0 Lab demonstrates the integra-

tion of various knowledge backgrounds from the different

research areas—robust production scheduling, Digital Twin

development, and PHM—into a unique framework as an

initial proof-of-concept. The results reach the declared objec-
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tives of the paper: they show that it is possible to offer the

inclusion of uncertainty in the scheduling activity in a flow-

shop context, that is still mostly treated in a deterministic

way in literature. In addition, the uncertainty is not modelled

according to historical data and to similar systems’ behavior,

but the uncertainty reflects the real-life randomness of disrup-

tions. As demonstrated in the application of the framework,

the failure probability of equipment is computed in real time,

according to the operating conditions from sensor data read

from the field and elaborated through the EPHM in the Digi-

tal Twin module. The results of the scheduling then offer the

makespan and the standard deviation of the best and worst

individuals of each generation, evaluating the robustness of

the solution in the evolution of the optimization algorithm.

Overall, the present work contributes to the research on

DT in manufacturing, proposing an innovative use of Digital

Shadow/Twin (i.e. synchronized simulation) for the produc-

tion scheduling with consideration of uncertainty. In this way,

a data-driven statistical model is adopted to compute the fail-

ure probability, implemented through the EPHM module of

the Digital Shadow/Twin. The application of the proposed

framework is demonstrated in a flowshop in an Industry 4.0-

compliant physical laboratory, in order to have a real system

in which the schedule could be applied and to have the real

time data gathering from sensors. The approach proposes

to avoid the full automatization of the best schedule selec-

tion; instead, it leaves the choice to the operator to select the

best preferred option, according to the results of the schedul-

ing framework, his/her experience and contingent operating

conditions. The proposed framework also contributes to the

robust scheduling research stream, by substituting the “tra-

ditional” statistical distributions to describe the stochastic

behavior, with data-driven statistical models that are obtained

both from historical data and real-time data from the sensors

and are integrated into the DT paradigm.

The paper finally opens new opportunities for research in

the DT area. In particular, high potentials reside in the data-

driven analyses that can be made in the EPHM module. The

framework proposed and demonstrated a statistical descrip-

tion of the failure behavior of the drilling station, while a

future direction of investigation can be to model the behavior

prediction soon. Thus, a more complete EPHM module can

be developed that not only detects a failure (and a correspond-

ing failure probability) but can also predict the future trend

of the failure probability. It will allow a comparison between

different failure conditions and their effect on dynamic

production scheduling. Further, the proposed framework is

considering a centralized decision-making approach, based

on a centralized DT simulation of the whole production sys-

tem. Another future direction of investigation may lead to

study the impact on decisions when the DT is distributed and

associated to the local control of the single workstations. By

constructing an agent-based architecture, new possibilities of

decision-making would be opened for further research to this

end. Lastly, it is worth remarking that data communication

protocols, such as OPC-UA, provide limited sampling rate

which may not be suitable for detecting faults in their incip-

ient stages. To cope with this issue, additional sensors, and

computational architectures such as Edge computing can be

integrated into the framework.
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