
  
 

Abstract—This research focused on preventing collisions 

between cyclists and heavy goods vehicles (HGVs). A collision 

avoidance system, designed to avoid side-to-side collisions 

between HGVs and cyclists, is proposed. The cyclist’s motion 

relative to the HGV is measured with an array of ultrasonic 

sensors.  The detected distances from ultrasonic sensors are 

processed in real time to construct a smooth trajectory for the 

cyclist. The controller assumes constant acceleration and 

constant yaw rate for both the HGV and the cyclist and 

extrapolates the relative motion forward in time. The HGVs' 

brakes are engaged if a collision is predicted. A prototype 

system was built and fitted onto a test truck. The proposed 

collision avoidance system was tested in real time and proved to 

be effective within certain speed ranges. 

 

Index Terms—ultrasonic sensors, cyclist protection, collision 

avoidance, position prediction, emergency braking, heavy goods 

vehicles 

 

I. INTRODUCTION 

HEAVY goods vehicles (HGVs), defined as having a 

Gross Combination Mass (GCM) of over 3.5 tons, transport 

over 90 per cent of all freight moved by road in the UK. This 

equated to 132 billion ton-kilometres in 2009, 73% of which 

was carried by articulated vehicles [1]. HGVs are 

overrepresented in accidents and lead to a substantial 

proportion of casualties and fatalities on the road. According 

to a consultation report prepared by the Royal Society for 

Prevention of Accidents (RoSPA), 18.3 per cent of all road 

fatalities occur in accidents involving an HGV, despite the fact 

that they only covered 5.8 per cent of the mileage of all 

vehicle traffic in the UK [2]. RoSPA reported that, although 

only 2 per cent of cyclists' accidents occurred in collisions 
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with HGVs, 22 per cent of them resulted in fatalities [3]. The 

vast majority of these accidents happened in built-up areas 

where only 25 per cent of total HGV mileage was covered.  

Side-to-side collisions are the most common configuration 

of HGV-cyclist accidents. The Transportation Research 

Laboratory (TRL) investigated HGV-related accidents 

between 2006 and 2008 [3]. They reported that on average, 

HGVs cause 27 deaths and 72 serious injuries to cyclists each 

year in the UK, among which side-to-side collisions account 

for 43% of fatalities and 36% of serious injuries to cyclists. A 

second report from TRL which looked at data for a different 

period of time (2008 to 2011) also arrived at similar 

conclusion: the most common manoeuvre in HGV-cyclist 

collisions was turning left: with a percentage being 31% [4]. 

Two physical factors are implicated in side-to-side collisions 

between HGVs and cyclists. Firstly, large blind spots exist 

around HGVs, especially during cornering manoeuvres. 

Consequently the driver may not be able to see a cyclist in 

dangerous proximity. Secondly, HGVs often 'cut the corner' in 

urban streets, encroaching into the area where cyclists travel 

[5]. A simulation of a typical articulated HGV traversing a 

standard 90 degree left corner of radius 10m showed that the 

vehicle can encroach into the inner boundary of the traffic lane 

by 1.6m at maximum.  In this same manoeuvre the side of the 

vehicle can approach the lane boundary at speeds of up to 

1.4m/s [6]. Such a closing speed would leave a cyclist located 

in the danger zone unable to react sufficiently quickly to the 

vehicle’s manoeuvre and an accident is very likely to occur.  

There are a number of initiatives to address safety for 

cyclists and pedestrians for front/rear end collisions. For 

instance, Volvo’s Cyclist Detection system harnesses a video 

camera to distinguish the types of objects in front of a car, and 

a radar unit to determine the distance to them [7]. Systems 

have been developed for protecting cyclists on the side of 

heavy vehicles, by 1), providing the driver with side-view 

cameras or wing mirrors for better visibility of blind spots 2), 

utilizing ultrasonic sensors on the side of the vehicle to detect 

cyclists who stray too close. To the authors’ knowledge, these 

existing technologies give warning signals based on either 

detected distance or presence of an object in the detection 

range, without considering the motion information. Providing 

an alarm to the driver is not sufficient to reduce the chance of 

collisions, because the time available to prevent a collision is 
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short, lorry drivers are heavily loaded with physical and 

cognitive tasks, and some might fail to respond promptly or 

correctly in many cases. To make matters worse, false alarms 

are distracting and annoying for the driver, and therefore may 

be ignored or shut down. 

It is shown in [5] that some collisions between HGVs and 

cyclists could be prevented by suitable intervention in the 

motion of the vehicle. A braking manoeuvre, if introduced in 

time, could slow down or stop the HGV and let the cyclist 

escape. A Collision Avoidance System (CAS) is proposed in 

[6] with the objective of minimizing the likelihood of 

accidents between cyclists and HGVs, especially side-to-side 

collisions, by employing sensors to detect the relative motion 

of the cyclists and a collision avoidance strategy to 

automatically brake the vehicle when a potential collision is 

predicted at a fixed look-ahead time in the future. 

 

 

 

A detailed simulation study for the proposed CAS was 

performed in [5], where two case studies were investigated. 

The first case study modelled articulated and rigid vehicles 

turning a fixed corner, alongside a cyclist. In each case, 

560,000 different combinations of start positions and vehicle 

speeds were simulated in order to map out the outcomes of 

each encounter and determine the situations in which the CAS 

would be effective. It was concluded that the CAS could 

prevent 78-91% of the accidents involving articulated vehicle, 

and 64-88% of accidents involving the rigid truck. In the 

second case study, 19 real accidents were reconstructed from 

police case files using detailed information from witness and 

police statements, tachograph records, site photographs, etc. It 

was concluded that 18 out of the 19 fatalities could have been 

prevented by the proposed CAS. See details in [5]. On the 

basis in this analysis it was decided to build and test the 

system described in this paper.  

Based on the research presented in [5] and [6], it was 

decided to build and test a prototype collision avoidance 

system (CA).  This paper discusses testing of the prototype 

CAS in real time for verification of its effectiveness in 

preventing potential collisions between cyclists and HGVs.  

Section II summarises the proposed CAS in terms of cyclist 

detection and motion prediction. . Section III describes the 

testing setup for the prototype system while testing results are 

given in Section IV, followed by conclusions in Section V. 

II. COLLISION AVOIDANCE 

A. Overview 

There are three main stages in the proposed collision 

avoidance strategy: Detection, Prediction and Actuation, as 

shown in 

. 

The first task in the Detection stage is to detect the cyclist and estimate its motion relative to the truck. During the same time, 

based on the current speed of the vehicle and its braking capability, a 'look-ahead' period, defined as 'Time-to-Avoidance' (TTA), 

is calculated. In the Prediction stage, information about the cyclist’s motion relative to the HGV is sent to a processor to estimate 

the cyclist’s position at time TTA in the future. In this estimation, it is assumed that the cyclist maintains its current acceleration 

(longitudinally and laterally), as well as its current yaw rate relative to the HGV. If a collision is predicted, an emergency 

(antilock brakes) stop is triggered automatically by the system during the Actuation stage. 

This strategy only requires knowledge of the cyclist's motion relative to the HGV, without requiring HGV's position at any 

specific time. Using the relative motion means that accurate vehicle motion information, such as acceleration and position, is not 

required, eliminating the need for vehicle motion sensors and the associated computation. 

 

B. Cyclist Detection 

1) System formulation 

There are several possible sensing methods for detecting objects around a vehicle (summarized in [6]), including camera, 

RADAR, LIDAR and ultrasonic sensors. In this project, ultrasonic sensors were selected over the other detection methods 

because: 

1) The characteristics of the detection geometry are well suited to cyclist detection. The lateral distance from the cyclist to the 

HGV is normally less than 2m; this corresponds to the detection range of a typical ultrasonic sensor 

2) Ultrasonic sensors could provide distance measurements of acceptable accuracy. 

3) The low cost of ultrasonic sensors make them commercially attractive. 

The output from an off-the-shelf ultrasonic sensor is the distance between the target and the sensor. With the distance 

information alone, it is not possible to pinpoint the exact position of the target because the bearing angle from the sensor to the 

target is unknown. In order to construct the cyclist’s trajectory relative to the truck, it is necessary to recover the bearing 

information.  

A coordinate system was set to define the positions of the ultrasonic sensors on the truck as well as to describe the cyclist’s 

position. The origin was set at the mid-point on the front edge of the vehicle, with x axis along the longitudinal direction and y 

axis pointing to the left. 

A reference line (UA) was defined for each sensor, pointing along the outwards normal to the side of the vehicle (as shown in 

Fig. 2). The position vector from the sensor to the target is UB. The angle from the reference line to the position vector is defined 



as the target bearing θ. Clockwise rotation of θ is defined as positive. 

Given the lateral and longitudinal positions for the ultrasonic sensor (Psx, Psy) in this coordinate system and the detected 

distance d (the length of the UB line defined in (Fig. 2) the cyclist position (Pcx, Pcy) can be expressed by the following 

equations: 

 ��� = ��� + � ∙ �	
� (1) 

 ��� = ��� + � ∙ cos� (2) 

It is impossible to solve (1) and (2) independently, as the number of equations is smaller than the number of unknowns, 

rendering it an undetermined system mathematically.  

2) Quadratic Programming 

Given a series of detected distances (�1, �2, �3, … , �
) at sampling times (t1,t2,…,tn), we need to find the corresponding 

bearings (θ1, θ2,…, θn) so that the cyclist positions (���� , ���� , … , ����) and (���� , ���� , … , ����) can be determined. Based on (1) and 

(2), the longitudinal acceleration of the cyclist can be expressed as a function of the bearings, with detected distances and sensor 

positions being the known parameters. Assuming constant mean longitudinal acceleration for the cyclist, it is possible to find the 

best set of θi (i=1,…,n) that would result in a smooth trajectory history for the cyclist that minimizes the variation in longitudinal 

acceleration.  

 � = �����,� − �̅��"#
$

�%&
 (3) 

 

where, �̅�� is the mean longitudinal acceleration of the cyclist during the period to inspect. This can be achieved by 

formulating a classic quadratic programming (QP) problem.  

 � = 12'
()'+ *' (4) 

with equality constraints: 

 �+,' = -+, (5) 

and inequality constraints: 

 �	
' ≤ /	
 (6) 

Here ' is the vector of bearing angles, Q is the quadratic matrix and L is the linear matrix. Aeq, Beq, Ain and Cin in (5) and (6) are 

matrices that determines the relation between elements in '. 

The equality constraints (5) are generated using triangulation, in cases where two neighbouring sensors have overlapped 

detection ranges. The inequality constraints (6) occur because (i) each value of θi must be limited by upper and lower sensing 

limits, based on the range of field of the sensor; (ii) there are some simple consistency requirements for the order of the 

detections, based on the relative motion. 

In practice, there are some inaccurate detections (ultrasonic pings are not always reflected from the same point of the cyclist) 

and signal dropouts, it is not possible to obtain a smooth trajectory for the cyclist purely based on quadratic programming and 

triangulation. A Kalman filter is used to smooth the results derived from quadratic programming based on a kinematic model of 

the cyclist motion. Fig. 3 summarized the steps taken to estimate the cyclist's position relative to the truck in real time. A detailed 

description of the estimation of the cyclist motion based on ultrasonic sensors is presented in [6] and [8]. 

C. Time-to-Avoidance 

In this study the Time-to-Avoidance (TTA) is an estimate of the time from the detection of a potential collision to the moment 

when the vehicle is brought to full stop under maximum braking torque. 

 00� = 12 +
3
45 (7) 

Here: ts represents the system delay time, including the times for sensing, processing and brake actuation. V is the vehicle 

speed, 4 is the road-tyre friction coefficient and g is the gravitational acceleration. Within the TTA, the HGV can fully stop and a 

collision can just be avoided. Even if a cyclist is still in motion at the point of impact, the severity of the collision could be 

greatly reduced. 

D. Motion Prediction 

The acceleration Ac and velocity Vc of the cyclist cannot be measured directly; however, they can be derived from the cyclist’s 



position using numerical differentiation. Five sample points are used to evaluate the acceleration and the velocity terms. The 

future positions of the cyclist can be found using Euler integration by running the following set of equations in loop from time t 

to time t+TTA. 

 3�61 + �17 = 38617 + ���1 (8) 

 ��61 + �17 = ��617 + 3��1 (9) 

E. Collision Assessment and Intervention 

After the motion of a cyclist relative to the HGV has been predicted, it is necessary to define a criterion to judge whether a 

potential collision is imminent. When the envelope of the predicted cyclist position overlaps the HGV’s envelope, a collision 

signal is issued. 

A ‘threshold distance’ is introduced to tune the decision about when to intervene with the brakes. The HGV brakes are 

activated when the predicted cyclist’s distance to the side of the vehicle is less than the threshold distance at look-ahead time 

TTA. A larger threshold distance will cause the vehicle to decelerate sooner to avoid an accident, but will also cause more 

unnecessary ‘false positive’ interventions. The threshold distance was determined from the results of a set of simulations. A 

value of 0.15m was found to be a good compromise for tests in which the vehicle speed was less than 12km/h. 

III. TESTING SETUP FOR THE PROTOTYPE SYSTEM 

A. Overview 

A program of full-scale vehicle tests was conducted between April and June 2014. The testing aimed to prove that the 

suggested CAS can:  

1) detect and estimate the motion of a cyclist in real time; 

2) predict the likelihood of a collision between cyclist and truck; 

3) activate the braking system of the truck when necessary to prevent collisions 

There was no standard testing procedure available for testing a collision avoidance system in the literature, either for side-

collisions or HGV-cyclist interactions. Therefore, a new testing methodology was developed. 

The test setup involves a real truck and a dummy cyclist (simplified as 'dummy' in the following context), propelled by a 

motorized belt. Fig. 4 shows a schematic of the testing setup as well as the key equipment used for the vehicle testing. All 

equipment on the truck is termed the 'truck-based system' and the rest is called the 'road-side system'. Each piece of testing 

equipment will be discussed in the following sections.  

The manoeuvre chosen for testing was a left-turning truck crossing the path of the cyclist, which was moving in a straight line, 

as shown by the dash dot arrow lines in Fig. 4. This was found to be the most common accident configuration in an analysis of 

real accidents in the UK [5]. The dummy was set up to move at a designated speed and following a straight path. The truck 

followed a pre-defined left-turning path at a given speed. The truck’s path was designed to intersect with the dummy’s path. 

Multiple ultrasonic sensors were fitted on the left side of the truck for cyclist detection. The computer controller was placed in 

the cab for real time control. The truck brakes were activated when a potential collision is predicted. Further details are provided 

below. 

B.  xPC Model and Data Exchange in Real Time 

A real time CAS controller was developed using xPC Target for real time control from Mathworks [9]. A single Simulink 

model was developed for the vehicle testing. This Simulink model has a number of blocks that deal with different functionalities 

of the CAS: 

1) Ultrasonic sensor message input; 

2) Cyclist position estimation; 

3) Cyclist position prediction; 

4) Collision assessment; 

5) Actuation signals output. 

An analogue to CAN device, called PCAN-MicroMod Analog (PCAN) from PEAK System®, was used to convert analogue 

signals from ultrasonic sensors into CAN messages. The PCAN has eight analogue inputs and four analogue outputs, working at 

high-speed CAN (ISO 11898-2) with the default data transmission rate as 500k Baud. The inputs can measure bipolar range, 

from -10 to +10V, with a 16-bit resolution. 

In the xPC model, the multitasking mode was used to enable to different blocks in the model to run at different sampling rates. 

The basic sampling rate is clocked at 100Hz (i.e., 0.01s sample time) for the entire model and all the CAN-related devices 

(RT3000 Inertial and GPS Navigation System from OxTS® and PCAN) ran at this sampling rate. A slower sampling rate was 

needed for the cyclist position estimation and prediction blocks which take longer than 0.01s to complete. As the refresh rate of 

the ultrasonic sensor output is 7.5Hz, it takes approximately 0.133s to receive a new detection, which is sufficient for processing 



the estimation and prediction blocks. The xPC requires that the slower sample time must be an integer multiple of the faster 

sample time. Consequently, 0.13s was chosen as the slow sample time instead of 0.133s. The 3ms’ mismatch with the ultrasonic 

sensor’s output rate could result in 3 missed sensor readings during a 20s period of time, which was acceptable in this 

application. 

C.  Testing Set-up 

The dummy cyclist consisted of a half body mannequin was mounted onto a thin wooden base via a tripod consisting of three 

aluminium alloy tubes (Fig. 5). A Soft Pedestrian Target (SPT) system from Anthony Best Dynamics Ltd (ABD) was used to 

pull the dummy along a 50m straight path at steady speeds up to 4m/s [10]. 

The SPT was propelled by a continuous flat belt, connected to the dummy’s wooden base via two quick release mechanisms. In 

the event of the truck wheel running over the belt, the belt was instantly released from the wooden base and the motor went open 

loop while the whole system was stopped. 

The speed profile for the dummy was defined for each run of the test. A typical profile used for the testing consists of a short 

acceleration stage to get to the target speed, a constant speed stage and a deceleration stage to stop the dummy.  

The SPT was triggered by the signal from the front wheel of the truck passing over a pressure mat (Fig. 4). 

A Scania tipper truck provided by Laing O’Rourke was used as the testing vehicle for the project. Twelve ultrasonic sensors 

were used to cover the entire left side of the truck. The ultrasonic sensors, as shown in Error! Reference source not found., 

were placed at the height of 1.4m above the ground, so that the sensors faced the dummy’s mid torso. 

For the braking actuation, a pedal robot (‘sBrake’ from Anthony Best Dynamics) [11] was mounted in the cab. When 

commanded, it applied a force to the brake pedal to stop the truck. The sBrake was attached onto the floor inside driver’s foot 

well.  . In a future development, the braking command will be sent directly to the Braking ECU, eliminating the need for the 

sBrake. 

The RT3000 was used for measuring the vehicle motion. The outputs from the RT3000 are derived from measurements of its 

accelerometers and gyros, with a Kalman filter used to update the inertial measurements using GPS. The measurements were 

output over CAN bus. On the road side, a RT-base GPS base station was used to provide Differential GPS to improve position 

accuracy of the RT3000. The model used has a position accuracy of 20cm. 

During the prototype testing, TTA was not calculated based on Equation (7), due to the lack of the estimation capability of 

road-tyre friction coefficient. As the RT3000 records the speed profile of the truck accurately, TTA can be measured directly. 

For each vehicle speed used in testing, the stopping time was measured using the RT3000 beforehand. An extra 0.2s was added 

to the measured stopping times to give slightly more conservative behaviour. The inclusion of real time estimation of TTA will 

be carried out in a subsequent project. There were two separate data collection systems. The position of the dummy along the 

belt relative to the motor was recorded by the SPT software on a road-side laptop. The dummy positions estimated by the CAS 

and other vehicle data including its absolute position were stored in a laptop on the truck. There was no direct link between two 

sets of data and each set of data had its own time stamps.  To indicate the common start point for both sets of data and to verify 

the estimated positions of the dummy against its true positions, a communal time stamp was inserted into the two sets of data. A 

wireless link was therefore included between the road-side instrumentation system and the vehicle-based system. 

IV. TESTING RESULTS 

A. Stationary Truck Testing 

The first objective of the testing was to check whether the CAS could detect a moving target consistently and estimate the 

position correctly. The second was to determine the range of relative speeds between the dummy and the vehicle for which 

reliable detections could be obtained by the CAS. The prediction of the cyclist's future position and the collision assessment were 

not verified in the stationary truck testing stage. 

Various relative speeds between the truck and the dummy were used, with the maximum speed differential set as 5km/h. This 

speed limit is determined by the sensing performance of the ultrasonic sensors. If the relative speed is greater than 5km/h, the 

dummy cyclist fails to be detected consistently due to the low refresh rate of the sensors. It is hoped to improve this maximum 

speed in a future system through use of higher performance ultrasonic sensors. During each test run, the speed combination and 

the time delay were set in a way that the dummy was in the detection range of the sensors for a longest possible period time. 



An example is provided in  

Fig. 1.  Control Structure of the Collision Avoidance System  

 

Fig. 2.  Illustration of the cyclist detection 

 

Fig. 3.  A flowchart for position estimation for cyclist in real time 

 

Fig. 4.  The schematic for testing the collision avoidance system 

 



 

Fig. 5.  Testing setup showing the truck & the dummy cyclist 

 

Fig. 6.  Ultrasonic sensors mounted along the side of the test vehicle 

 

Fig. 7, where dummy speed was 3km/h. It is noticeable that the Kalman filter (black crosses) significantly improves the 

estimation errors of the QP and gives a much smoother trajectory. Another observation from the figure is that the maximum error 

in lateral position was approx. 5cm.  The standard deviation of the estimation errors and maximum detection errors for 5 

different relative speeds are provided in Error! Reference source not found.. These results proved that the CAS could track the 

dummy to a level of accuracy that is acceptable (5-10cm maximum errors).  



It was also important to check if the similar performance could be achieved when the cyclist trajectory was angled towards the 

truck. Such a testing scenario was termed ‘diagonal testing’. One configuration of such diagonal testing is shown in Fig. 8. The 

error characteristics are summarized in Error! Reference source not found.. It is concluded that whether the configuration 

is diagonal or parallel, the cyclist position estimator using the combination of QP and Kalman filter work to a similar level of 

accuracy. 

From the discussion above, the following conclusions can be drawn: 

1) The estimated trajectories in all the figures followed the dummy’s real trajectory in a reasonable way. 

2) The maximum estimation errors were within 10cm. 

3) The 1km/h case (i.e. small relative speed) was the worst in terms of tracking oscillations and estimation errors. 

4) The estimated trajectory for the 3km/h case offered the best results compared with other speed cases.  

5) When the relative speeds were higher, the oscillations reduced. However, the ultrasonic sensors performed worse because 

less raw detection was made.  

B. Moving Truck Testing 

It was of interest to check if similar results could be obtained when the truck is in motion. A line parallel to the nearside belt of 

the SPT system was drawn on the ground, which served as the left boundary of the truck path. The distance between the nearside 

belt and the line was set to 1.2m. An L-shape pointer was placed near the front left corner of the truck. It could be observed by 

the truck driver from the top mirror which pointed to the ground. The truck driver maintained a straight line by referring to the 

position of the L-shape pointer relative to the line on the ground. 

A typical example of the dummy overtaking the truck in parallel is provided in Fig. 9. The dummy was set with a speed of 

6km/h and the truck was maintained at a speed around 3km/h. It can be seen that the estimated position of the dummy (line with 

crosses) was very close to dummy’s true position (light dash line), and the error level is less than 10 cm. 

To test the scenario that a left turning truck closes in onto the dummy's path, instead of having the truck follow a naturally-

curved left turn, it was much simpler to let the vehicle follow a straight line parallel to the dummy and then turn onto a diagonal 

path that intersected the path of the dummy. Similar to the parallel testing cases, different speeds were assigned to both the 

vehicle and the dummy, keeping the speed difference less than 5km/h.  

A typical example is illustrated in  

Fig. 10 to Fig. 12. In this example, the speed for the dummy was 7km/h and the truck speed was 5km/h.  



Fig. 10 shows the truck's trajectory and the dummy's track in 

the global coordinate system. The path is almost due South. It 

can be seen that the truck narrowed the gap between it and the 

dummy at approximately 37 m through the 50 m long test.  

The CAS predicted the future positions of the dummy while 

estimating its current position. It can be seen in Fig. 11 that 

the estimated positions were off the target line by a few 

centimetres on the straight-line section. The CAS captured the 

dummy's motion well for the majority of the left-turning path. 

Fig. 11 also compares the predicted positions against the 

reference line, with the estimated positions plotted in the same 

figure as well. It can be seen that the prediction worked well, 

although a level of mismatch between the trajectories can be 

observed. This level of inaccuracy was still within 10cm.  

The threshold distance line was plotted as a dotted line in 

Fig. 11. This line was shifted away from the sensor positions 

by 566mm (half of the diagonal of the dummy's base) with its 

lateral coordinates being 1.86m from the centre line of the 

truck. This line was designated the 'collision assessment line'. 

The brakes were actuated immediately the predicted position 

crossed the collision assessment line (i.e. at x=-1.3m in Fig. 

11). 

The speed profiles of both the dummy and the truck are 

plotted Fig. 12. The lateral positions of the dummy (both 

current and future positions) are also plotted against the same 

time scale. It can be seen that the future lateral position 

crossed the 1.86m line at 32.9s. The vehicle started to 

decelerate rapidly shortly after this time. The truck speed 

reached zero at 34s. The dummy was about 0.5m away from 

the truck laterally at that time. 

At the end of the entire testing period, the CAS was 

switched off for a run in which the dummy was deliberately 

hit by the moving lorry. This run served as the control for a 

CAS-enabled run. The truck speed was 8km/h and the dummy 

10km/h.  

The speed profile for both the truck and the dummy in this 

control test are shown in Fig. 13. It can be seen that when the 

dummy position crossed the collision assessment line there 

was no reduction in truck speed. Both the dummy and the 

truck proceeded without slowing down until they reached a 

point (approx. 21s) when the lateral distance was 1.3m, off the 

side of the truck. The dummy hit the truck and the speed of the 

dummy oscillated wildly. 

If the CAS was enabled, the braking command would have 

begun stopping the lorry immediately after the predicted 

position of the dummy (light solid line in Fig. 14) crossed the 

collision assessment line.  

The effectiveness of the CAS for a matrix of left-turning 

truck cases is summarised in Table 3. A successful prevention 

of a potential accident was defined as the truck being stopped 

by the CAS without intervention by the driver. This was 

marked as a tick (�). If the test run was terminated by any 

human inputs, the result was treated as a failed test as 

indicated by a cross sign (�) in the table. The speed 

combinations that were untested were left blank.   

For each test case three repeats were performed, however, 

these repeats were not identical because both the truck 

position and speed varied slightly under manual control. 

Failed runs are denoted by the number in the brackets in the 

table. Of all the test runs, only 4 failed detections occurred. 

These were due to some of the sensors failing to detect the 

dummy for a period of time; therefore the system failed to 

respond correctly. 

V. CONCLUSIONS 

1) An overview of the collision avoidance system that 

focuses on preventing collisions between the HGVs and 

the cyclists was presented. A testing methodology was 

developed for testing the proposed side collision 

avoidance system. It consisted of a motorized dummy 

cyclist and a moving truck.  

2) The ultrasonic sensors used in this project provided 

relatively reliable detections when the speed differential 

between the truck and the dummy cyclist was less than 

5km/h.  

3) Preliminary testing with the truck stationary and a moving 

cyclist proved that the quadratic programming can be 

used in combination with a Kalman filter to determine the 
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cyclist position within 10 cm for a 5 km/h speed 

differential. 

4) The predicted position of the cyclist, under the constant 

acceleration assumption, was within reasonable accuracy.  

5) The moving truck testing showed that vehicle-based 

detection and estimation worked well for constant speed 

tests. The testing provided similar results to the stationary 

testing, which further demonstrated that the CAS could 

work effectively for a range of relative motions. Potential 

collisions were prevented successfully by this prototype 

CAS system, and the performance was reliable within a 

5km/h speed difference between the dummy and the 

truck. With a higher relative speed, the ultrasonic sensors 

failed to provide consistent detections and the system's 

performance began to degrade. 
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VII. TABLES 

Dummy speed 

relative to the 

stationary truck (in 
km/h) 

Mean 
lateral errors 

(in cm) 

Standard 

deviation of 

lateral errors (in 
cm) 

1 -1.3 4.0 

2 -0.7 3.6 

3 1.0 4.1 

4 0 4.8 

5 2.9 3.4 
Table 1 Position estimation accuracy for cyclist moving in parallel with a 

stationary truck 

 

Dummy speed 

relative to the 

stationary truck (in 

Mean 

lateral errors 

(in cm) 

Standard 

deviation of 

lateral errors (in 

km/h) cm) 

1 -0.1 4.3 

2 0.2 2.3 

3 1.1 2.8 

4 1.8 3.4 

5 -0.6 1.0 
Table 2  Position estimation accuracy for cyclist moving diagonally w.r.t. a 

stationary truck 

 

Vehicle     

Speed(km/h) 

 

 

 

Cyclist                  

Speed(km/h) 

4 5 6 7 8 

1  �    

2  �    

3  �    

4  �   � 

5 
�    � 

6 
� 

� 

(1/4)   � 

7 
� � �   

8 
� � 

� 

(1/4) 

� 

(1/4)  

9 
 

� 

(1/4) � � � 

10   � � � 

11    � � 

12     � 
Table 3. Test results for a left-turning truck with a straight line dummy: 

(1/4) means a failure on 1 out of 4 repeated tests 
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Fig. 1.  Control Structure of the Collision Avoidance System  

 

Fig. 2.  Illustration of the cyclist detection 

 

Fig. 3.  A flowchart for position estimation for cyclist in real time 

 

Fig. 4.  The schematic for testing the collision avoidance system 
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Fig. 5.  Testing setup showing the truck & the dummy cyclist 

 

Fig. 6.  Ultrasonic sensors mounted along the side of the test vehicle 

 

Fig. 7.  Testing result of a moving dummy at 3km/h in parallel with a stationary truck 
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Fig. 8.  Estimated position comparisons for different speeds for the dummy travelling diagonally 

 

Fig. 9.  Parallel testing result with the dummy (6km/h) overtakes the truck (3km/h) 

 

Fig. 10.  A left turning trucking (5km/h) with a straight moving cyclist (7km/h) with trajectories displayed in the global coordinate system 
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Fig. 11.  Comparison of the estimated positions and the predicted positions after the TTA time 

 

Fig. 12.  Speed profiles of the dummy and the truck against the current and the predicted positions of the dummy  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

15 

 

Fig. 13.  Speed comparison for a test run with CAS disabled 

 

Fig. 14.  Speed comparison for a test run with CAS enabled
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