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The single-species annihilation reaction A + A → ∅ is studied in the presence of random
advecting ˇeld. In order to determine possible infrared behavior of the system, all stable ˇxed points
are presented to two-loop approximation in double (ε, Δ) expansion with the corresponding regions
of stability. The main result of this paper is the calculation of all the renormalization constants and
the decay exponent to the second-order precision as well as calculation of scaling function for the
mean particle number to the ˇrst order. Effects of random sources and sinks on reaction kinetics in
the master-equation description have been investigated in the framework of a ˇeld-theoretic model,
obtained by the ®second quantization¯ a la Doi of the corresponding master equation. It has been
demonstrated that random sources and sinks have a signiˇcant effect on the asymptotic behaviour
of the model, and two universality classes for their description have been identiˇed by the scaling
analysis. Results are compared with the Langevin-equation description of the same process.
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INTRODUCTION

The irreversible annihilation reaction A+A → ∅, also known as the mutually
annihilating random walk, is a fundamental model of nonequilibrium physics. The
A particles perform chaotic motion due to diffusion, and after the mutual collision
they may react with constant microscopic probability K0 per unit time. Usually it
is assumed that resulting molecule ∅ is inert, i.e., chemically inactive and without
any backward in�uence on the motion of reacting A particles. Many reactions
of this type are observed in diverse chemical, biological, or physical systems.
For instance, various models, such as formation of domain in some magnetic
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materials [1], annihilation of excitons in crystals [2], or model for spreading of
opinion of voters in one dimension [3], can be described in terms of annihilation
process of this type.

The usual approach to the problems dealing with chemical reactions is based
on the use of the kinetic rate equation [4] for concentration ˇeld n(t,x). It leads
to a self-consistent description analogous to the mean-ˇeld approximation in the
theory of critical phenomena in the sense that �uctuations in the concentration are
neglected. Equivalently, one can assume that the particle concentration is spatially
homogeneous n = n(t). This homogeneity can be thought as a consequence of
either very high mobility of the reactants or of a very small probability that
a reaction actually occurs after mutual collision of reacting particles. For the
annihilation process A + A → ∅, kinetic rate equation can be formulated as

∂tn(t) = −K0n
2(t), (1)

which can be easily integrated and the obtained solution is

n(t) =
n0

1 + n0K0t
, (2)

where n0 ≡ n(0) is initial number of particles. For a long-time (t → ∞)
asymptotic decay, equation (1) predicts power law behaviour for concentration
n(t) ∼ t−1 without any dependence on the value of space dimension. This is
a common situation observed in the mean ˇeld-like theories. In what follows,
we will refer to the value of the time exponent α in power-law dependence for
concentration n(t) ∝ t−α as the decay exponent. Note also that the long-time
behaviour does not depend on the initial number n0 of reacting particles. In
the other case, when the particle mobility is sufˇciently small, or equivalently,
if the microscopic reaction probability K0 becomes large enough (so particles
react immediately after mutual collision), there is a possible transition to a new
regime. In which it is more probable that the given particle reacts rather with
particles in its neighbourhood than with distant ones. This behaviour is known
as the diffusion-controlled regime [4,5]. To gain physical insight, let us consider
diffusion process (also known as continuous random walk) to be responsible
for the motion of particles. A well-known property of diffusion [6] is the re-
entrancy of the visited sites in low space dimensions. In particular, for d = 1
and d = 2, the probability that the diffusing particle will ever return (t → ∞)
to the starting point is equal to 1. Physically it means that the diffusing particle
sweeps thoroughly its local neighbourhood, and thus, it is highly probable that it
will react with another particle in its vicinity. Hence, it is reasonable to expect
that, after short period of time, the system will be in a state, where there is a lot
of isolated particles, that need effectively longer time to traverse to each other
and hence to annihilate. This mechanism can effectively slow down the time
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evolution of the process and thus lower the decay exponent to other value than
1 predicted by Eq. (2). The approximate value of the decay exponent can be
guessed according to the following scaling argument. The re-entrancy property
leads to the scaling relation

V (t) ∼ rd(t), (3)

where ∼ denotes corresponding scaling relation between physical quantities. The
root-mean-square distance for the diffusing particle scales as r(t) ∼ (Dt)1/2 and
therefore the mean particle number should behave as

n(t) ∝ 1
V (t)

∼ 1
td/2

=
1

t1+Δ
, (4)

where the exponent Δ denotes the deviation from the space dimension 2 via the
relation

d = 2 + 2Δ. (5)

For the space dimension d = 3, we have V (t) ∼ t, because now the diffusing
particle effectively explores always new volume, and the re-entrancy property can
be neglected. Therefore, the same behaviour as the one described by (1) would
be observed. From this simple analysis it could be estimated that space dimension
dc = 2 is the upper critical dimension for the annihilation process, above which
the mean ˇeld approximation is valid. A more rigorous treatment [7] based
on renormalization group proves this conclusion and also produces a logarithmic
correction for n(t) at the critical dimension, which could not be determined by the
simple scaling analysis. In the preceding discussion we have considered only the
diffusive motion of reacting particles. However, a typical reaction usually occurs
in liquid or gaseous environment. Thermal �uctuations of this environment or
some external advection ˇeld such as atmospheric eddies could have additional
in�uence on motion of the reacting particles. Therefore, it is interesting to study
what effect the external velocity ˇeld can have on the annihilation process.

The most �exible approach to the theoretical analysis of the effects of �uc-
tuations in reaction kinetics seems to be the second-quantization method due to
Doi [8]. Most of the renormalization-group studies of the effect of random drift
on the annihilation reaction A + A → ∅ in the framework of the Doi approach
have been carried out for the case of a quenched random drift ˇeld. Poten-
tial random drift with long-range [9, 10] and short-range correlations [11] has
been studied as well as ®turbulent¯ �ow (i.e., quenched solenoidal random ˇeld),
with potential disorder [12, 13]. For a more realistic description of a turbulent
�ow, time-dependent velocity ˇeld would be more appropriate. In [14], dynamic
disorder with a given Gaussian distribution has been considered, whereas the
most ambitious approach on the basis of a velocity ˇeld generated by the sto-
chastic NavierÄStokes equation has been introduced here by two of the present
authors [15]. From the point of view of the NavierÄStokes equation, the situation
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near the critical dimension dc = 2 of the pure reaction model is even more in-
triguing due to the properties of the NavierÄStokes equation. It is a well-known
fact [16] that in the case of space dimension d = 2, there is inviscid conserva-
tion law of enstropy absent in the three-dimensional case. Calculations in [15]
were performed in the one-loop approximation. As may be readily seen from
examination of the Feynman graphs, in the one-loop approximation there is no
in�uence of the velocity �uctuations on the renormalization of the interaction
vertices. However, the in�uence of higher-order terms of the perturbation series
can have signiˇcant effect on the critical properties.

To this end, the most suitable choice for generation of random velocity ˇeld
is the stochastic NavierÄStokes equation, which can be used to produce a velocity
ˇeld corresponding to thermal �uctuations [17] and a turbulent velocity ˇeld with
the Kolmogorov scaling behaviour [18].

A powerful tool for analyzing asymptotic behaviour of stochastic systems is
provided by the renormalization-group (RG) method. It allows one to determine
long-time Å or infrared (IR) Å asymptotic regimes of the system and also it
is very efˇcient tool for calculation of various universal physical quantities, e.g.,
critical exponents. The aim of this study is to examine the IR behaviour of
the annihilation process under the in�uence of advecting velocity �uctuations
and to determine its stability. Using the mapping procedure based on the Doi
formalism [8], an effective ˇeld-theoretic model for the annihilation process will
be described in detail in Sec. 1. Consequently, the RG method is applied to
this model, and within the two-parameter expansion the renormalization constants
and ˇxed points of the renormalization group are determined in the two-loop
approximation. The nonlinear integro-differential equation, which includes the
ˇrst nontrivial corrections to the (1), is obtained for the mean particle number
and it is shown how the information about IR asymptotics can be extracted from it.

Another aspect of the annihilation problem is connected with its theoretical
description in the form of a functional integral with a given action. This action
resembles actions for ˇeld-theoretic models of critical dynamics obtained from
the Langevin equation [19] within the MartinÄSiggiaÄRose approach [20].

In the Langevin equation, the random ˇeld compensates for dissipative and
reactive losses, hence bringing about a steady state of dynamics of the system. In
reaction kinetics, the random sources and sinks, in fact, re�ect the real physical
situation, in which, during the chemical reaction of follow-up species, particles
can appear or disappear due to uncontrolled random interaction with a particle
bath, e.g., due to active chemical radicals. The interpretation of random ˇelds
in the Langevin equation as physical sources and sinks is rather problematic.
Therefore, we propose to analyze the alternative approach provided by the master
equation with terms corresponding to interactions with the bath.

In the present paper, we follow the ideas of [4] and describe the random
sources and sinks in terms of new birth and death reactions in the master equation
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for the single-species annihilation reaction. The simplest choice does not conserve
the particle number and we have no possibility to compare it with the standard
Langevin approach. A slightly more involved set of birth-death reactions allows
one to conserve the particle number and the result may be compared with that of
the standard multiplicative noise in the Langevin equation.

The aim of this paper is to give a detailed account of how the ˇeld-theoretic
approach can be applied to the analysis of the large-scale asymptotic behaviour of
annihilation process A + A → ∅. We give an elaborate derivation of the action
functional for this reaction and show how the velocity �uctuations and effects of
sinks and sources can be described. For the analysis of the large-scale behaviour,
methods of the renormalization group are employed.

This paper is organized as follows. In Sec. 1, a detailed description of the Doi
approach for construction of the ˇeld-theoretic model for the annihilation process
A + A → ∅ is summarized. In Sec. 2, it is shown how both the Kolmogorov
scaling and thermal �uctuations can be included into the model and the ultraviolet
(UV) renormalization of the model, and elaborated algorithm for the calculation
of the renormalization constants is described. Fixed points of the RG are classiˇed
together with their stability regions, and possible scaling regimes are presented,
and the integro-differential equation for the mean particle number is derived,
and analysis of its solution is given. Section 3 is devoted to the introduction
of random sources and sinks into the ˇeld-theoretic model of reaction-diffusion
processes. We recall the basic features of the Doi formalism and construct the
basic ˇeld-theoretic dynamic action functional together with scaling analysis of
the dynamic actions.

1. FIELD-THEORETIC REPRESENTATION
OF THE MASTER EQUATION

1.1. Introduction. In our work, we are mainly interested in the annihilation

process A + A
K0−→ ∅, therefore in this section, we describe a derivation of the

ˇeld-theoretic model for such a process, which allows one to take into account
spatial inhomogeneities and randomness in individual reaction events. Probably,
the most fundamental description of reaction processes is based on the use of
master equation [4]. We summarize general principles of how such a master
equation can be mapped onto a suitable Fock space, which makes it possible to use
very powerful methods of quantum ˇeld theory. The resulting action functional
can be treated systematically by such methods as the Feynman diagrammatic
technique, renormalization group and operator product expansion [21]. Here we
focus mainly on the ˇeld-theoretic description of diffusion and reaction process,
but it is possible [22] to generalize this approach to include effects as multiple
reaction schemes, disorder effects, in�uence of spatial boundaries, etc.
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Let us start with the particles on a regular, inˇnite, hypercubic lattice with
the lattice spacing a in d-dimensional space. The sites of lattice can be labeled by
natural numbers (i = 1, 2, . . .). The A particles are performing continuous random
walk on this lattice (random hopping betweeen adjoint sites) with the diffusion
constant D/a2 (the factor a2 will be eliminated in the continuum limit). It is
assumed that reaction process can happen only for particles that occupy the same
lattice site with the probability rate K0. A complete (microscopic) description of
such a stochastic problem can be given in terms of evolution equations for proba-
bilities P (t; {n}), where {n} is a given microstate {n1, n2, . . .} characterized by
n1 particles at site 1, n2 at site 2 and so on. These equations (known as master
equations) express the balance between incoming and outcoming probabilities [4]
for the state {n} and in a compact notation they can be written as

dP (t; {n})
dt

=
∑
{m}

Rm→nP (t; {n})−
∑
{m}

Rn→mP (t; {n}), (6)

where Rm→n is the transition probability rate from the state m to the state n.
According to the work of Doi [8] (see also [23]), such a system of coupled
differential equations (6) can be rewritten in terms of creation and annihilation
operators well known from quantum mechanics. If there is no site occupation
restriction, bosonic operators for each lattice site i can be introduced with the
following commutation relations:

[âi, â
†
j] = δij , [âi, âj ] = [â†

i , â
†
j ] = 0. (7)

The ground state |0〉 is deˇned as

âi|0〉 = 0 for all sites i, (8)

which corresponds to the empty lattice (without any A particle). From the bosonic
commutation relations (7) important relations follow:

ân
i â†

i = nân−1
i + â†

i â
n, âiâ

n†
i = nâ

(n−1)†
i + ân†âi. (9)

The state |{n}〉 with the given lattice conˇguration {n} = {n1, n2, . . .} is intro-
duced with a normalization different from that used in the second quantization
method in quantum ˇeld theory

|{n}〉 = â†n1
1 â†n2

2 · · · |0〉. (10)

Using relations (9), it can be directly shown that

âi|{n}〉 = ni|{n1, n2, . . . , ni − 1, . . .}〉,
â†

i |{n}〉 = |{n1, n2, . . . , ni + 1, . . .}〉, (11)

â†
i âi|{n}〉 = ni|{n}〉,
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where the last relation legitimizes the identiˇcation

n̂i = â†
i âi (12)

for the number operator at site i. The scalar product between two states |{n}〉
and |{m}〉 can be obtained:

〈{n}|{m}〉 =
∏
i=1

δni,mini!, (13)

where δi,j stands for Kronecker symbol, and n! = 1× 2× . . .× n is the factorial
function. The complete information about the stochastic system is embodied in
the probabilities P (t; {n}), and in the Doi formalism it is incorporated into the
state vector |Φ〉, which is deˇned as follows:

|Φ(t)〉 ≡
∑
{n}

P (t; {n})|{n}〉 =
∑
{n}

P (t; {n}) â†n1
1 â†n2

2 · · · |0〉, (14)

where the sum runs over all possible lattice occupations. Now the task is to
rewrite master equation (6) into the Schréodinger-like form for the state vector |Φ〉

d

dt
|Φ(t)〉 = −Ĥ|Φ(t)〉, (15)

with some ®Hamiltonian¯ Ĥ, whose exact form depends on the system under
consideration. Then Eq. (15) can be formally integrated to obtain |Φ(t)〉 =
e−Ĥt|Φ(0)〉. The initial state |Φ(0)〉 has to be speciˇed for the full descrip-
tion. In the case of chemical reactions, initial distribution of particles P (0; {n})
is usually prescribed and initial state follows from the deˇnition (14). From the
technical point of view, the most convenient choice for the singe-species annihi-
lation reaction is the Poisson distribution. Unlike the bimolecular reaction [24],
the long-time behaviour is independent of the concrete form of initial conditions.

Let us derive the diffusion part ĤD of the Hamiltonian H , which corresponds
to the diffusive (random walk) movement of A particles. First consider a two-
site system with n1 particles at site 1 and n2 particles at site 2 with the one-
directional hopping process 1 → 2 at the rate D0/a2. For such a process the
master equation (6) is

dP (n1, n2)
dt

=
D0

a2
(n1 + 1)P (n1 + 1, n2 − 1) − D0

a2
n1P (n1, n2), (16)

where n1 + 1 and n1 are combinatorial factors resulting from the fact that A
particles jump independently of each other. Multiplying both sides of Eq. (16) by
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the term a†n1
1 a†n2

2 and performing sum
∑

{n1,n2}
over all possible occupations of

sites, we arrive at
d|Φ〉
dt

=
D0

â2
(â†

2â1 − â†
1â1)|Φ〉. (17)

This result is easily generalized to the two-directional case 1 ↔ 2 described by
the following master equation:

d|Φ〉
dt

= −D0

a2
(â†

2 − â†
1)(â2 − â1)|Φ〉, (18)

and hence the diffusion part HD between two given sites can be written as

ĤD =
D0

a2
(â†

2 − â†
1)(â2 − â1). (19)

Now consider the annihilation process at given site 1 and derive the corresponding
part HR of the Hamiltonian. Because any two particles can react together, we
can write

dP (n)
dt

= K0(n + 2)(n + 1)P (n + 2) − K0n(n − 1)P (n), (20)

where again the combinatorial factors are taken into account. After short algebraic
manipulations and the use of the relations (7) and (12), relations (20) can be
rewritten in the Doi formalism as

d|φ〉
dt

= K0(â2 − â†2â2)|φ〉, (21)

from which we deduce the reaction part of the Hamiltonian

ĤR = −K0(â2 − â†2â2) . (22)

Results (19) and (22) are easily generalized to include all the lattice sites. Conse-
quently, the total Hamiltonian that accounts for diffusion and annihilation process
on the hypercubic lattice has the following form:

ĤD + ĤR =
D0

a2

∑
〈ij〉

(â†
i − â†

j)(âi − âj) − K0

∑
i

(â2
i − â†2

i â2
i ) , (23)

where the ˇrst sum runs over the neighbouring sites i and j. Non-Hermitian
Hamiltonians such as the one given in (23) are often observed in the case of sys-
tems out of equilibrium [3], which cannot be obtained as dynamical counterparts
of some static models. Non-Hermiticity also means that the reaction rates in (6)
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do not satisfy the detailed balance condition and thus the equilibrium state can-
not be characterized by the Gibbs distribution. The Doi formalism also exhibits
other differences from the usual quantum mechanics. They are caused by the
fact that physical observables cannot be given as bilinear products 〈Φ|A|Φ〉, since
according to (14) this would imply expressions bilinear in probability P (t; {n}).

Let us now take a closer look at derivation of the ensemble average value
for an observable quantity A within the Doi approach. It is physically reasonable
to assume that A can be expressed as a function of the occupation numbers
A = A({n}). Examples of such quantities interesting for the case of chemical
reactions are:

(a) mean particle number (concentration)

n ←→
∑

i

â†
i âi, (24)

(b) two-point correlation function (between sites i and j)

C(i, j) ←→ â†
i âiâ

†
jâj . (25)

The ensemble average of A is then clearly given by the expression

〈A(t)〉 =
∑
{n}

P (t; {n})A({n}), (26)

and, from the technical point of view, it would be very convenient to have a
projection state 〈P| such that following identity is valid:

〈A(t)〉 =
∑
{n}

P (t; {n})〈P|Â({â†â})â†n1
1 â†n2

2 . . . |0〉 = 〈P|Â|Φ(t)〉. (27)

Substitution of the formal solution of the ®Schréodinger¯ equation (15) leads to
yet another form of the last expression on the right side of (27)

〈A(t)〉 = 〈P|Â exp (−Ĥt)|Φ(0)〉. (28)

Here, the operator Â({â†â}) is obtained from the classical function A({n}) with
the substitution ni → â†

i âi at every site i, what is justiˇed by (12). Hence, by
comparing (26) and (27) it is easy to guess that the projection state 〈P| should
satisfy relation

〈P|Â({â†â})â†n1
1 â†n2

2 . . . |0〉 = A({n})〈P|â†n1
1 â†n2

2 . . . |0〉 = A({n}). (29)

It implies that the following two conditions:

〈P|â†
i = 〈P| for every site i, 〈P|0〉 = 1 (30)
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have to be valid for the operator P . By direct use of relations (7), we can
conclude that the following choice of the projection state

〈P| = 〈0| exp
(∑

i

âi

)
(31)

serves our purpose. Note that if the operator Â is written in the normal-ordered
form (all creation operators are commuted to the left), it can then be written in
terms of the annihilation operators ai only using properties (30) of the projection
state 〈P|, i.e.,

〈P|Â({â†â}) = 〈P|N
[
ÂN ({â†, â})

]
= 〈P|ÂN ({1, â}). (32)

The normal form ÂN of the operator Â is deˇned by relation Â =
N
[
ÂN ({â†, â})

]
, where N denotes the normal product (creation operators are

put to the left of annihilation operators). The â-dependent operator ÂN ({1, â})
corresponding to (24) is then simply âi, while the correlation function (25) cor-
responds to the operator âiâj + δij âj . For technical reasons it is reasonable to

commute the factor exp
(∑

i

âi

)
to the right in Eq. (27). In order to do this, we

employ the following formula:

eâi â†
i = (â†

i + 1) eâi , (33)

which is derived from relations (9), and thus equation (28) can be cast into the
form

〈A(t)〉 =
〈

0
∣∣∣∣ÂN ({1, â}) exp (−Ĥ({â† + 1, â})t)

∣∣∣∣ exp

(∑
i

âi

)
Φ(0)

〉
, (34)

where the substitution â†
i → â†

i + 1 was performed both in the expression for

the operator Â (with the subsequent substitution â†
i → 0) and also in the original

Hamiltonian Ĥ({a†, a}). For further use, let us write expression for the mean
particle number (24)

n(t) =
〈

0
∣∣∣∣∑

i

âi exp (−Ĥ({â† + 1, â})t)
∣∣∣∣ exp

(∑
i

âi

)
Φ(0)

〉
. (35)

Thus, in the case of annihilation process described by Eq. (23) we obtain

ĤD + ĤR =
D0

a2

∑
〈ij〉

(â†
i − â†

j)(âi − âj) + K0

∑
i

(2â†
i â

2
i + â†2

i â2
i ). (36)
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As was mentioned above, the convenient choice for the initial condition is the
Poisson distribution, which for a given site i corresponds to

p(ni) = e−n0
nni

0

ni!
, (37)

where n0 stands for the mean particle number. Using deˇnition (14), we arrive
at the initial state vector in the form

|Φ(0)〉 =
∑
{n1}

e−n0
nn1

0

n1!
â†n1
1

∑
{n2}

e−n0
nn2

0

n2!
â†n2
2 . . . |0〉 =

=
∏

i

e−n0 exp

(
n0

∑
i

â†
i

)
|0〉. (38)

We see that after the substitution â† → â† + 1, the term e−n0 drops out.
1.2. Continuum Limit. In the ˇeld of critical phenomena emphasis often lies

on the analysis and determination of possible behaviour of the studied system. It
turns out that near athe second-order phase transition [25] a whole set of different
models behave in the same way. Despite the fact that they describe different
physical systems, they can exhibit the same behaviour of the so-called universal
quantities. They are model-independent, but can depend on universal parameters
such as space dimension, number of components of the order parameter, or
symmetries of the system. Examples of such universal quantities are critical
exponents [26], describing singular behaviour of various functions.

Now we summarize the main points of the derivation of the continuum limit
for the Hamiltonian (23), which allows us to study universal properties of the
annihilation process A + A → ∅ around its critical dimension. In fact, here we
just brie�y outline a few important steps, following [22], of the introduction of the
functional integral of the continuum limit by the popular interpolation procedure.
The alternative operator approach will be sketched later. The main task consists
of evaluation of matrix elements for the evolution operator exp(−Ĥ({a†, a})t).
In order to do this, we apply the Trotter formula [27], according to which the

exponential e−Ĥt can be written as the inˇnite product

exp (−Ĥt) = lim
Δt→0

(1 − ĤΔt)t/Δt = (1 − ĤΔt)(1 − ĤΔt) . . . (39)

Here we assume that NΔt = t, and at the end of our derivation we let the
number of time slices N → ∞ (or equivalently Δt → 0). Now into each time
slice complete set of coherent states is inserted, which results into mapping of
operators â†

i , âi onto complex numbers. Coherent states are explicitly deˇned
as [27]

|ψ〉 = exp
(
−1

2
|ψ|2 + ψâ†

)
|0〉, (40)
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and they form the eigenstate basis of the annihilation operator

â|ψ〉 = ψ|ψ〉, 〈ψ|â† = ψ∗〈ψ|, (41)

where the star stands for complex conjugation. The important property of coherent
states is their overlap function between different eigenstates

〈ψ1|ψ2〉 = exp
(
−1

2
|ψ1|2 −

1
2
|ψ2|2 + ψ∗

1ψ2

)
. (42)

For a single site we can write an identity resolution in the form

1 =
∑

n

1
n!
|n〉〈n| =

∑
m,n

1
n!
|n〉〈m|δmn =

∫
dψ∗ dψ

π
|ψ〉〈ψ|, (43)

where the orthogonality relation

δmn =
1

πm!

∫
dψ∗ dψ exp (−|ψ|2)ψ∗mψn (44)

has been used (note the appearance of the weight function e−|ψ|2 , the measure
adopted here is dψ∗dψ = Re ψ Im ψ). Generalization of (43) to the whole lattice
is straightforward

1 =
∫ ∏

i

dψ∗
(i,j) dψ(i,j)

π
|{ψ}j〉〈{ψ}j|, (45)

where now {ψ}j = (ψ(1,j), ψ(2,j), . . .) denotes the set of all eigenvalues corre-
sponding to the annihilation operators âi at each lattice site at the time instant
jΔt (j = 0, . . . , N). Inserting (45) into each time slice in (39) we get

exp (−Ĥt) =
1
N lim

Δt→0

∫
[dψ∗][dψ] |{ψ}N〉×

×
N∏

j=1

〈{ψ}j | exp (−Ĥ({â†, â})Δt) |{ψ}j−1〉〈{ψ}0|, (46)

where N is the normalization constant, and we have introduced the notation

[dψ∗][dψ] ≡
∏
i,j

dψ∗
(i,j) dψ(i,j) (47)

for the functional measure. Note that if we deal with normal ordered Hamiltonian
(which we shall assume and which explicitly is the case for (36)), then using
relations (41) we can immediately write

〈{ψ}j | exp (−H({a†, a})Δt)|{ψ}j−1〉 =
= 〈{ψ}j|{ψ}j−1〉 exp (−H({ψ∗}j, {ψ}j−1)Δt), (48)
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where H({ψ∗}j, {ψ}j−1) is obtained by the replacement of operators by their

eigenvalues âi → ψi, â
†
i → ψ∗

i . The remaining term in (48) more precisely stands
for the expression

〈{ψ}j|{ψ}j−1〉 =
∏

i

〈ψ(i,j)|ψ(i,j−1)〉, (49)

which, with the overlap relation (42), can be rewritten as

〈ψ(i,j)|ψ(i,j−1)〉 = exp (−ψ∗
(i,j)[ψ(i,j) − ψ(i,j−1)])×

× exp
(

1
2
|ψ(i,j)|2 −

1
2
|ψ(i,j−1)|2

)
. (50)

The whole scalar product from (46) can be expressed to the ˇrst order in the time
increment as

∏
j

〈ψ(i,j)|ψ(i,j−1)〉 = exp
(
−
∑

j

ψ∗
(i,j)

dψ(i,j)

dt
Δt + O(Δt)

)
×

× exp
(

1
2
|ψ(i,N)|2 −

1
2
|ψ(i,0)|2

)
, (51)

so that in the continuum time limit Δt → 0 we obtain the functional integral
representation for the evolution operator in the form

exp (−Ĥt) =
∫

[dψ∗][dψ]
N |{ψ}N〉×

× exp

⎛⎝1
2
|ψi(t)|2 −

1
2
|ψi(0)|2 −

t∫
0

dt[ψ∗
i ∂tψi + H({ψ∗, ψ})]

⎞⎠ 〈{ψ}0|. (52)

In calculation of expectation values such as (24) and (25) we have to act on the
expression (52) from the left by the projection state 〈P| and from the right by the
initial state |Φ(0)〉. It can be done in the following manner: ˇrst, we note that
the following relation holds:

〈{ψ}0|Φ(0)〉
∏

i

exp
(
−1

2
|ψi(0)|2

)
= exp

(∑
i

[n0ψ
∗
i (0)−n0−|ψi(0)2|]

)
, (53)

where we have used the initial state in the form (38) and relations (40), (41).
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Using equation (33), we proceed as follows:

〈P |{ψ}N〉
∏

i

exp
(

1
2
|ψi(t)|2

)
=

= 〈0| exp
(∑

i

âi

)
exp
[∑

i

(
−1

2
|ψi(t)|2 + ψi(t)â

†
i

)]
|0〉
∏

i

exp
(

1
2
|ψi(t)|2

)
=

= 〈0|
∏

i

exp (âi) exp (ψi(t)â
†
i ) |0〉 =

= 〈0|
∏

i

∑
k=0

ψk
i (t)
k!

exp (âi) â†k
i |0〉 =

= 〈0|
∏

i

exp
(
ψi(t)(â

†
i + 1)

)
exp (âi) |0〉 = exp

(∑
i

ψi(t)
)

. (54)

Putting together terms from (52)Ä(54) and inserting them into expression (28) for
the expectation value of the quantity A, we arrive at the important expression

〈A(t)〉 = N−1

∫
[dψ∗][dψ]AN ({1, ψ}) exp [S({ψ∗, ψ})], (55)

where the functional AN ({1, ψ}) is obtained from the normal form ÂN ({1, â})
of the operator Â by replacing the operators âi by their eigenvalues ψi, and the
action functional S is given as

S({ψ∗, ψ}) =
∑

i

(
ψi(t) + n0ψ

∗
i (0) − n0 − |ψi(0)|2−

−
t∫

0

dt [ψ∗
i ∂tψi + H({ψ∗}, {ψ})]

)
. (56)

The normalization constant N is now ˇxed by the condition

N =
∫

[dψ∗][dψ] exp [S({ψ∗, ψ})]. (57)

Before taking the continuum limit in space, let us note that the initial term
−|ψi(0)|2 in (56) can actually be dropped in calculations within perturbation the-
ory. In fact, we will deˇne the functional integral in (55) in terms of perturbation
expansion and use the bilinear part of the dynamic action to generate propagators,
since otherwise the convergence of the functional integral is somewhat problem-
atic [22]. Thus, we arrive at perturbation theory with a retarded propagator,
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which we choose such that its value at coinciding time arguments is zero by deˇ-
nition. In the traditional ˇeld-theoretic parlance this is tantamount to deˇning the
time-ordered product at coinciding time arguments as the normal-ordered prod-
uct. Since we are dealing with expectation values of functions of the annihilation
operators only, a short re�ection of the perturbation expansion reveals that all
graphs containing vertices brought about by the initial term −|ψi(0)|2 either are
proportional to the equal-time value of the propagator, which we have chosen to
vanish, or contain closed loops of propagators and therefore vanish as well.

Continuum limit then can be performed in traditional manner according to
the substitution∑

i

→
∫

dx
ad

, ψi → ψ(t,x) ad, ψ∗
i (t) → ψ†(t,x), n0 → n0a

d, (58)

that leads to the ˇeld-theoretic action for the scalar ˇelds ψ†(x, t) and ψ(x, t)

S = −
t∫

0

dt

∫
dx
{
ψ†∂tψ − D0ψ

†∇2ψ − λ0[1 − ψ†2]ψ2
}
+

+
∫

dx
[
ψ(t,x) + n0ψ

†(0,x) − n0

]
. (59)

It corresponds to the lattice Hamiltonian (23). After the shift ψ† → ψ† + 1, we
arrive at the desired result, which is the ˇeld-theoretic action S for the annihilation
reaction A + A → ∅

S = −
t∫

0

dt

∫
dx
{

ψ†∂tψ − D0ψ
†∇2ψ+

+ λ0D0[2ψ† + (ψ†)2]ψ2 + n0

∫
dxψ†(x, 0)

}
, (60)

which corresponds to the continuum limit of the action used in (36). It should be
noted that the shift ψ† → ψ† +1 allows one to replace the ˇnal term

∫
dxψ(t,x)

in (59) by the initial term
∫

dxψ(0,x) and the contribution of the latter to the
perturbation expansion vanishes by the same one taken as the contribution of the
quadratic initial term. Therefore, we have not included this linear initial term in
the dynamic action either.

The action functional (60) will be used in calculation of physical quantities
such as the mean value (34) that can be expressed as the functional integral

〈A(t)〉 =
∫

Dψ†DψAN {1, ψ(t)} eS . (61)
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Here Dψ† Dψ is the continuum functional measure. The continuum limit of the
expression (35) for mean particle number becomes

n(t,x) = 〈0|ψ(x) exp
(
−H{ψ†(t) + 1, ψ(t)}t

)
exp
(

n0

∫
dx ψ†

)
|0〉. (62)

1.3. Langevin Equation and FokkerÄPlanck Equation. Many equations
describing evolution of physical, chemical, biological, and social processes are
written as mean-ˇeld equations for averages of quantities, which intrinsically are
random processes to some extent. To take �uctuations around the averages into
account, a straightforward way to proceed is to introduce a source of randomness
directly in the mean-ˇeld equation. Then the quantities solved from the mean-
ˇeld equations become stochastic processes depending on coordinate variables,
i.e., stochastic ˇelds.

The paradigmatic example of this procedure is the Langevin equation for
random walk, which describes the position r of a test particle subject to random
force η

dr
dt

= η.

Here, the random force is of zero mean and uncorrelated in time (white noise),
i.e.,

〈ηi(t) ηj(t′)〉 = Dδij δ(t − t′).

Strictly speaking, this standard physical formulation is mathematically inconsis-
tent, which gives rise to inevitable ambiguities in the case of multiplicative noise
(when the noise term is multiplied by a function of the random position).

Consider, for instance, the average distance between two points of the path
of the random walk, i.e., (d is the dimension of space) a hint to the property that
the Brownian path, although continuous, is not differentiable anywhere.

Increments of the Brownian path

W(t) − W(t0) =

t∫
t0

dt η(t)

constitute an extremely important random process, the Wiener process, whose
conditional probability density is the Gaussian

p
(
W, t |W0, t0

)
=

1
[4π(t − t0)]d/2

e−(W−W0)
2/2(t−t0).

In particular, the Wiener process is the basis of the mathematically consistent
deˇnition of the Langevin equation (the stochastic differential equation, SDE).

Critical dynamics. In the Landau theory of phase transitions, the dynamics
of the order parameter ϕ near equilibrium are described by the kinetic equation
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(time-dependent GinzburgÄLandau (TDGL) equation)

∂ϕ

∂t
= −Γ

(
−∇2ϕ + aϕ +

λ

6
ϕ3

)
. (63)

In linear response theory, dynamics of �uctuations near equilibrium [28] are often
described by kinetic equations similar to (63), but with a random noise term added
to the right-hand side.

In a more generic setup, standard models of critical dynamics are based on
nonlinear Langevin equations

∂ϕ

∂t
= −Γ

δH

δϕ
+ f := V (ϕ) + f, (64)

where H is the effective equilibrium Hamiltonian. For the random source, a
suitable Gaussian distribution is assumed in which the correlation function is
determined through the connection to the static equilibrium (�uctuation-dissipation
theorem). For instance, model A for the nonconserved order parameter [29] is
described by the SDE obtained from 63 by the addition of a white-noise ˇeld to
the right-hand side.

In reaction kinetics and population dynamics, the simplest kinetic description
of the dynamics of the average particle numbers is given by the rate equation.
The rate equation is a deterministic differential equation for average particle num-
bers in a homogeneous system, therefore it does not take into account boundary
conditions, spatial inhomogeneities, and randomness in the individual reaction
events. Spatial dependence is often accounted for by a diffusion term, which
gives rise to models of diffusion-limited reactions (DLR).

As a simple example, consider the coagulation reaction A + A → A. The
diffusion-limited rate equation for the concentration ϕ of the compound A is

∂ϕ

∂t
= D∇2ϕ − kϕ2,

where k is the rate constant.
The most straightforward way to take into account various effects of random-

ness is to add a random source and sink term to the rate equation:

∂ϕ

∂t
= D∇2ϕ − kϕ2 + f. (65)

This is a nonlinear Langevin equation for the ˇeld ϕ; physically, in the case of
concentration ϕ � 0.

There is an important difference between the reaction models and the critical
dynamics: in the latter, deviations of the �uctuating order parameter from the
(usually zero) mean may physically be of any sign (or direction). In particular,
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deviations from the equilibrium value are always allowed. In the reaction there
is often an absorbing steady state, which does not permit �uctuations therefrom:
once the system arrives at the absorbing state, it stays there forever. In particular,
if the empty state is an absorbing state of the reaction, then the random source
should be introduced multiplied by a factor vanishing in the limit ϕ → 0 to
prevent the system returning from the absorbing state by the noise. The simplest
choice yields

∂ϕ

∂t
= D∇2ϕ − kϕ2 + fϕ

instead of (65). This is an equation with a multiplicative noise.
1.4. Multiplicative Noise. Consider the Langevin equation with the multi-

plicative noise of generic form

∂ϕ

∂t
= V (ϕ) + fb(ϕ) := −Kϕ + U(ϕ) + fb(ϕ), (66)

where f is (usually) a Gaussian random ˇeld with zero mean and the white-in-time
correlation function

〈f(t,x) f(t′,x′)〉 = D(x − x′) = δ(t − t′)D(x − x′), (67)

where the shorthand notation x = (t,x) has been used. In (66), b(ϕ) is a
functional of ϕ and U(ϕ) is a nonlinear functional of ϕ. Both functionals are
time-local, i.e., depend only on the current times instant of the SDE.

The Langevin equation with white-in-time noise f is mathematically incon-
sistent, because the time integral of the noise

∫
f dt is a Wiener process which is

not differentiable anywhere as a function of time.
This problem may be approached by starting with the set of correlation

functions consisting of a δ sequence in time, i.e.,

〈f(t,x)f(t′,x′)〉 = D(t,x; t′,x′) −−−→
t′→t

δ(t − t′)D(x,x′) (68)

and passing to the white-noise limit at a later stage. From the mathematical point
of view, this treatment gives rise to the solution of the stochastic differential equa-
tion (66) in the Stratonovich sense [30]. Physically, this is often the most natural
way to approach the white-noise case. However, technically the Stratonovich
interpretation gives rise to a rather complicated treatment and the SDE is most
often used in the Ito interpretation in mathematical analyses.

1.5. FokkerÄPlanck Equation. Recall that the point of introducing of the
SDE with white noise is to avoid dealing with the limit (68) explicitly. To this end,
instead of using the mathematically problematic, although physically transparent,
Langevin equation, the stochastic problem (66), (67) may be equivalently stated
in terms of the FokkerÄPlanck equation (FPE), which is an equation for both the
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conditional probability density p(ϕ, t|ϕ0, t0) and the probability density p(ϕ, t)
of the variable ϕ. Recall that both the master equation and the FokkerÄPlanck
equation are special cases of the generic (forward) Kolmogorov equation and
thus the two problems discussed here are closely related. The simple way to
demonstrate this equivalence uses rules of Ito calculus [30], which is beyond the
scope of the present treatment. Therefore, only the correspondence between the
quantities specifying the stochastic problem in both approaches will be quoted
here. The main advantage of the FokkerÄPlanck equation is that the equation
itself is completely well-deˇned partial differential (or functional-differential for
ˇeld variables) equation. The ambiguity of the Langevin problem shows that the
FPE is different for different interpretations of the SDE.

For simplicity of notation, consider zero-dimensional ˇeld theory. The
FokkerÄPlanck equation for the conditional probability density p(ϕ, t|ϕ0, t0) in
the case of the Ito equation is

∂

∂t
p (ϕ, t|ϕ0, t0) = − ∂

∂ϕ
{[−Kϕ + U(ϕ)] p (ϕ, t|ϕ0, t0)}+

+
1
2

∂2

∂ϕ2
[b(ϕ)Db(ϕ)p (ϕ, t|ϕ0, t0)] . (69)

If the SDE (66) is interpreted in the Stratonovich sense, the FPE is

∂

∂t
p (ϕ, t|ϕ0, t0) = − ∂

∂ϕ
{[−Kϕ + U(ϕ)] p (ϕ, t|ϕ0, t0)}+

+
1
2

∂

∂ϕ

{
b(ϕ)

∂

∂ϕ
[Db(ϕ)p (ϕ, t|ϕ0, t0)]

}
. (70)

The conditional probability density p (ϕ, t|ϕ0, t0) is the fundamental solution of
the FPE (69) or (70), i.e.,

p (ϕ, t0|ϕ0, t0) = δ (ϕ − ϕ0) .

Contractions are not quite obvious, when the random variable has several com-
ponents. For instance, the FokkerÄPlanck equation in the Ito form becomes

∂

∂t
p (ϕ, t|ϕ0, t0) = − ∂

∂ϕi
{[−Kijϕj + Ui(ϕ)] p (ϕ, t|ϕ0, t0)}+

+
1
2

∂2

∂ϕi∂ϕj
[bik(ϕ)Dklbjl(ϕ)p (ϕ, t|ϕ0, t0)]

for a multicomponent variable ϕi.
The FokkerÄPlanck equation may be regarded as the Schréodinger equation

with imaginary time. Using this analogy, the solution of the FPE as well as
calculation of expectation values may be represented in a way analogous to
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quantum ˇeld theory [31]. Construction with the FPE as the starting point gives
rise to the famous MartinÄSiggiaÄRose solution of the SDE [20], but avoids
ambiguities inherent in the SDE (they have been ˇxed by the choice of the FPE).

Consider, for deˇniteness, the FokkerÄPlanck equation (69) corresponding to
the Ito interpretation of the Langevin equation (66). Introduce Å in analogy with
Dirac's notation in quantum mechanics Å the state vector |pt〉 according to the
following representation of the PDF:

p(ϕ, t) = 〈ϕ|pt〉,

which is the solution of the FPE (69) with the initial condition p(ϕ, 0) = p0(ϕ).
To construct the evolution operator for the state vector, introduce momentum and
coordinate operators in the manner of quantum mechanics by relations

π̂f(ϕ) = − ∂

∂ϕ
f(ϕ), ϕ̂f(ϕ) = ϕf(ϕ), [ϕ̂, π̂] = 1.

In these terms, the FPE for the PDF gives rise to the evolution equation for the
state vector in the form

∂

∂t
|pt〉 = −Ĥ|pt〉,

where the ®Hamilton¯ operator for the FPE corresponding to the Ito interpretation
of the SDE assumes, according to (69), the form

Ĥ = −π̂ [−Kϕ̂ + U(ϕ̂)] − 1
2
π̂2b(ϕ̂)Db(ϕ̂). (71)

Note that, contrary to quantum mechanics, there is no ordering ambiguity in the
construction of the Hamilton operator here. In this notation, the conditional PDF
may be expressed as the matrix element

p(ϕ, t |ϕ0, t0) = 〈ϕ | e−Ĥ(t−t0) |ϕ0〉, (72)

and the functional-integral representation may be constructed in the same fashion
as in the master-equation case.

2. FIELD-THEORETIC STUDY OF REACTION PROCESS A + A → ∅

2.1. Field-Theoretic Model of Annihilation Process. Let us study anomalous
kinetics of the general type of the irreversible single-species annihilation reaction

A + A
K0−−→ ∅, (73)
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with the unrenormalized (mean ˇeld) rate constant K0. The ˇrst step of the
Doi approach [8] (see also [23]) consists of the introduction of the creation and
annihilation operators ψ† and ψ and the vacuum state |0〉 satisfying the usual
bosonic commutation relations

[ψ(x), ψ†(x′)] = δ(x − x′),

[ψ(x), ψ(x′)] = [ψ†(x), ψ†(x′)] = 0, (74)

ψ(x)|0〉 = 0, 〈0|ψ†(x) = 0, 〈0|0〉 = 1.

Let P ({ni}, t) be the joint probability density function (PDF) for observing ni

particles at positions xi. The information about the macroscopic state of the
classical many-particle system may be transferred into the state vector |Φ(t)〉
deˇned as the sum over all occupation numbers

|Φ(t)〉 =
∑
{ni}

P ({ni}, t)|{ni}〉, (75)

where the basis vectors are deˇned as

|{ni}〉 =
∏

i

[ψ†(xi)]ni |0〉. (76)

The whole set of coupled partial differential equations for the PDFs may be
rewritten in the compact form of a master equation [7,8]

∂

∂t
|Φ(t)〉 = −Ĥ|Φ(t)〉, (77)

where Ĥ = ĤA + ĤD + ĤR and for the annihilation process A + A → ∅ under
consideration

ĤA =
∫

dxψ†∇[v(x, t)ψ(x)],

ĤD = −D0

∫
dxψ†∇2ψ(x), (78)

ĤR = λ0D0

∫
dx (ψ†)2ψ2,

corresponding to the advection, diffusion and reaction part [15]. Due to dimen-
sional reasons, we have extracted the diffusion constant D0 from the rate constant
K0 = λ0D0. The mean of a physical quantity A(t) may be expressed [15] Ä with
the use of the notation of Sec. 1 Å as the vacuum expectation value

〈A(t)〉 = 〈0|T
[
ÂN ({1, ψ(t)}) exp

[
−

∞∫
0

Ĥ ′
I dt + n0

∫
dxψ†(x, 0)

]]
|0〉. (79)
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Here, the interaction operator is deˇned as Ĥ ′
I = Ĥ ′ − Ĥ ′

0 and the substitution
ψ† → ψ† + 1 : Ĥ ′ ≡ Ĥ(ψ† + 1, ψ) is understood. The ˇeld operators (74) have
been replaced by the time-dependent operators of the interaction representation

ψ†(t,x) = eĤ′
0t ψ†x e−Ĥ′

0t, ψ(t,x) = eĤ′
0t ψ(x) e−Ĥ′

0t.

In this formulation Å assuming the Poisson distribution as the initial condition Å
the average number density can be computed via the expression

n(t,x) = 〈0|ψ(x) e−Ĥ′t exp
(

n0

∫
dxψ†

)
|0〉. (80)

The expectation value of the time-ordered product in (79) can be cast [38] into
the form of a functional integral over scalar ˇelds ψ†(x, t) and ψ(x, t):

〈A(t)〉 =
∫

Dψ† DψAN ({1, ψ(t)}) eS1 , (81)

where the action S1 for the annihilation reaction A + A → ∅ is

S1 = −
∞∫
0

dt

∫
dx

{
ψ†∂tψ + ψ†∇(vψ) − D0ψ

†∇2ψ+

+ λ0D0[2ψ† + (ψ†)2]ψ2 + n0

∫
dxψ†(x, 0)

}
. (82)

In order to analyze the effect of velocity �uctuations on the reaction process, we
average the expectation value (81) over the random velocity ˇeld v. The most
realistic description of the velocity ˇeld v(x) is based on the use of the stochastic
NavierÄStokes equation. Due to the incompressibility conditions ∇ · v = 0 and
∇ · fv = 0 imposed on the velocity ˇeld v and the random-force ˇeld fv, it is
possible to eliminate pressure from the NavierÄStokes equation [32] and hence it
is sufˇcient to consider only the transverse components

∂tv + P (v · ∇)v − ν0∇2v = fv. (83)

Here, ν0 is the molecular kinematic viscosity; Pij(k) = δij − kikj/k2 is the
transverse projection operator, and k = |k| is the norm of the wave vector k.
Here and below we use the subscript ®0¯ for all ®bare¯ parameters to distin-
guish them from their renormalized counterparts, which will appear during the
renormalization procedure.

The large-scale random force per unit mass f is assumed to be a Gaussian
random variable with zero mean and the following correlation function:

〈fm(x1, t1)fn(x2, t2)〉 = δ(t1 − t2)
∫

dk
(2π)d

Pmn(k)df (k) eik·(x1−x2), (84)
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where the kernel function is chosen in the form

df (k) = g10ν
3
0k4−d−2ε + g20ν

3
0k2. (85)

The nonlocal term is often used to generate the turbulent velocity ˇeld with
Kolmogorov's scaling [18,19,33,39]. This case is achieved by setting ε = 2. The
local term g20ν

3
0k2 has been added not only because of renormalization reasons

but has also an important physical meaning. Such a term in the force correlation
function describes generation of thermal �uctuations of the velocity ˇeld near
equilibrium [17] and thus can mimic the usual environment in which chemical
reactions take place.

Averaging (61) over the random velocity ˇeld v is done with the ®weight¯
functional W2 = eS2 , where S2 is the effective action for the advecting velocity
ˇeld

S2 =
1
2

∫
dt dx dx′ ṽ(x, t) · ṽ(x′, t) df (|x − x′|)+

+
∫

dt dx ṽ · [−∂tv − (v · ∇)v + ν0∇2v]. (86)

With the use of the complete weight functional

W = eS1+S2 , (87)

the expectation value of any desirable physical quantity is possible to be
calculated.

Actions (82) and (86) for the studied model are written in the form con-
venient for the use of the standard Feynman diagrammatic technique. There
is, however, one delicate point which should be noted. In the pure reaction
case we were dealing with the Cauchy problem and, consequently, all time in-
tegrals in the dynamic action were written over the positive time axis. When
the random drift is included, it is rather natural and technically much simpler
to regard the drift as a stationary random process given on the whole time axis.
Then, the integration over the ˇelds ψ and ψ† should include negative time ar-
guments as well for consistency. In the pure reaction part, this does not make
any difference, because the retarded propagators render the time integrations at
interaction vertices insensitive to the lower limit of integration. In the veloc-
ity part this leads to immense technical simpliˇcation, because the translation
invariance with respect to time is preserved in construction of the perturbation
expansion with the only exception of the initial conditions for the ˇelds ψ and
ψ†. In the case of Poisson initial distribution, the initial condition is expressed
as a linear term in the action and, in particular, does not affect renormalization
of the model.
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Thus, henceforth we assume all time integrals in the dynamic action to be
taken over the whole time axis and may use the standard Fourier representation
to express the Feynman rules for the model. The inverse matrix of the quadratic

Fig. 1. The propagators of the model

part of the actions determines the form of the
bare propagators. It is easily seen that the
studied model contains three different types
of propagators in Fig. 1. In the momentum-
frequency representation they are given as

Δψψ†
(wk,k) =

1
−iwk + D0ik2

(88)

and in the momentum-time representation as

Δψψ†
(t,k) = θ(t) exp (−D0k

2t). (89)

The vertex factor

Vm(x1, x2, . . . , xm; Φ) =
δmV (Φ)

δΦ(x1)δΦ(x2) · · · δΦ(xm)
(90)

is associated to each interaction vertex of a Feynman graph. Here, Φ could be
any member from the set of all ˇelds {ψ†, ψ, ṽ, v}. The interaction vertices from
action (86) describe interactions between and it may be rewritten in a technically
more convenient form

−
∫

dt dx ṽ(v∂)v = −
∫

dt dx ṽivk ∂kvi =
∫

dt dx (∂kṽi) vkvi,

where the incompressibility condition ∂ivi = 0 and partial integration method
have been used. We assume that the velocity ˇelds fall off rapidly for |x| → ∞.
Rewriting this functional in the symmetric form viVijlvjvl/2, it is easy to ˇnd
the explicit form for the corresponding vertex factor in the momentum space

Vijl = i(kjδil + klδij). (91)

Here, the momentum k is �owing into the vertex through the ˇeld ṽ. The
advecting term from the action (82) can be similarly presented as

−
∫

dt dxψ†∇(vψ) =
∫

dt dxψ† ∂i(viψ) =

−
∫

dt dxψ†vi ∂iψ =
∫

dt dx (∂iψ
†) viψ. (92)
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Rewriting this expression in the form ψ†Vjvjψ, we immediately obtain the vertex
factor in the momentum space

Vj = ikj , (93)

where the momentum k represents the momentum �owing into the vertex through
the ˇeld ψ†. The vertices ṽvv and ψ†ψv are depicted graphically in Fig. 2. The
two reaction vertices derived from the functional (82) according to the deˇni-
tion (90) are depicted in Fig. 3 and physically describe the density �uctuations of
the reactant particles.

Fig. 2. Interaction vertices describing velocity �uctuation and advection with corresponding
vertex factors

Fig. 3. Interaction vertices responsible for density �uctuations with corresponding vertex
factor

It should be stressed that in our model there is no in�uence of the reactants
on the velocity ˇeld itself. Therefore, the model given by actions (82) and (86)
may be characterized as a model for the advection of the ®passive¯ chemically
active admixture.

2.2. UV Renormalization. The functional formulation provides a theoretical
framework suitable for applying methods of quantum ˇeld theory. Using RG
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methods it is possible to determine the IR asymptotic (large spatial and time
scales) behaviour of the correlation functions. First of all, a proper renormal-
ization procedure is needed for the elimination of ultraviolet (UV) divergences.
There are various renormalization prescriptions applicable for such a task, each
with its own advantages. To most popular belong the PauliÄVillars lattice and di-
mensional regularization [21]. In what follows, we will employ the modiˇed min-
imal subtraction (MS) scheme. Strictly speaking, in the analytic renormalization
there is no consistent MS scheme. What we mean here, is the ray scheme [36],
in which the two regularizing parameters ε, Δ (ε has been introduced in (85) and
2Δ = d− 2 was introduced in (5)) are taken proportional to each other: Δ = ξε,
where the coefˇcient ξ is arbitrary but ˇxed. In this case, only one independent
small parameter, say ε, remains and the notion of minimal subtraction becomes
meaningful. UV divergences manifest themselves in the form of poles in the
small expansion parameter and the minimal subtraction scheme is characterized
by discarding all ˇnite parts of the Feynman graphs in the calculation of the
renormalization constants. In the modiˇed scheme, as usual, certain geometric
factors are not expanded in ε, however. This is the content of the MS scheme
used in our analysis.

In order to apply the dimensional regularization for the evaluation of renor-
malization constants, an analysis of possible superˇcial divergences has to be
performed. For the power counting in the actions (82) and (86) we use the
scheme [18], in which to each quantity Q two canonical dimensions are assigned,
one with respect to the wave number dk

Q and the other to the frequency dω
Q. The

normalization for these dimensions is

dω
ω = −dω

t = 1, dk
k = −dk

x = 1, dω
k = dk

ω = 0. (94)

The canonical (engineering) dimensions for ˇelds and parameters of the model
are derived from the condition for action to be a scale-invariant quantity, i.e., to
have a zero canonical dimension.

The quadratic part of the action (82) determines only the canonical dimension
of the quadratic product ψ†ψ. In order to keep both terms in the nonlinear part
of the action

λ0D0

∫
dt dx[2ψ† + (ψ†)2]ψ2, (95)

the ˇeld ψ† must be dimensionless. If the ˇeld ψ† has a positive canonical
dimension, which is the case for d > 2, then the quartic term should be discarded
as irrelevant by the power counting. The action with the cubic term only, however,
does not generate any loop integrals corresponding to the density �uctuations and
thus is uninteresting for the analysis of �uctuation effects in the space dimension
d = 2.
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Using the normalization choice (94) we are able to obtain the canonical
dimensions for all the ˇelds and parameters in the d-dimensional space. The
results are summarized in Table 1.

Table 1. Canonical dimensions for the parameters and the ˇelds of the model

Q ψ ψ† v ṽ ν0 D0 λ0 g10 g20

dk
Q d 0 −1 d + 1 −2 −2 −2Δ 2ε −2Δ

dω
Q 0 0 1 −1 1 1 0 0 0

dQ d 0 1 d − 1 0 0 −2Δ 2ε −2Δ

Here, dQ = dk
Q + 2dω

Q is the total canonical dimension and it is determined
from the condition that the parabolic differential operator of the diffusion and
NavierÄStokes equation scale uniformly under the simultaneous momentum and
frequency dilatation k → μk, ω → μ2ω.

The model is logarithmic when all coupling constants g10, g20, λ0 vanish si-
multaneously. From Table 1 it follows that this situation occurs for the choice
ε = Δ = 0. The UV divergences have the form of poles in various linear
combinations of ε and Δ. The total canonical dimension of an arbitrary one-
particle irreducible Green (1PI) function Γ = 〈Φ · · ·Φ〉1−ir is given by the re-
lation dΓ = d + 2 − NΦdΦ, where NΦ = {Nψ† , Nψ, Nv, Nṽ} are the numbers
of corresponding external ˇelds. The statistical averaging 〈. . .〉 means averaging
over all possible realizations of ˇelds ṽ,v, ψ†, ψ satisfying appropriate bound-
ary conditions with the use of the complete weight functional (87). Superˇcial
UV divergences may be present only in those Γ functions for which dΓ is a
non-negative integer. The superˇcial degree of divergence for the 1PI Green
function Γ is

dΓ = 4 − Nv − Nṽ − 2Nψ. (96)

However, the real degree of divergence δΓ is smaller, because of the structure
of the interaction vertex (91),which allows for factoring out the differential op-
erator ∂ to each external line ṽ. The real divergence exponent δΓ may then be
expressed as

δΓ ≡ dΓ − Nṽ = 4 − Nv − 2Nṽ − 2Nψ. (97)

Although the canonical dimension for the ˇeld ψ† is zero, there is no proliferation
of superˇcial divergent graphs with arbitrary number of external ψ† legs. This
is due to the fact that nψ† � nψ, which may be established by a straightforward
analysis of the graphs [7]. Brief analysis shows that the UV divergences are
expected only for the 1PI Green functions listed in Table 2.
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Table 2. Canonical dimensions for the (1PI) divergent Green functions of the model

Γ1−ir 〈ψ†ψ〉 〈ψ†ψv〉 〈ṽv〉 〈ṽvv〉 〈ṽṽ〉 〈ψ†ψ2〉 〈(ψ†)2ψ2〉

dΓ 2 1 2 1 2 0 0

δΓ 2 1 1 0 0 0 0

This theoretical analysis leads to the following renormalization of parameters
g0, D0, and u0:

g1 = g10μ
−2εZ3

1 , g2 = g20μ
2ΔZ3

1Z−1
3 , u = u0Z1Z

−1
2 ,

(98)
λ = λ0μ

2ΔZ2Z
−1
4 , ν = ν0Z

−1
1 , D = D0Z

−1
2 ,

where μ is the reference mass scale in the MS scheme [21] and we have in-
troduced the inverse Prandtl number u = D/ν for convenience. It represents
the ratio between diffusion and viscosity forces in a liquid. In terms of intro-
duced renormalized parameters, the total renormalized action for the annihilation
reaction in a �uctuating velocity ˇeld is

SR =
∫

dx dt

{
ψ†∂tψ+ψ†∇(vψ)−uνZ2∇2ψ+λuνμ−2ΔZ4[2ψ†+(ψ†)2]ψ2+

+ n0

∫
dxψ†(x, 0) − 1

2
ṽ[g1ν

3μ2ε(−∇2)1−Δ−ε − g2ν
3μ−2ΔZ3∇2]ṽ+

+ ṽ · [∂tv + (v · ∇)v − νZ1∇2v]
}

. (99)

The renormalization constants Zi, i = 1, 2, 3, 4 are to be calculated perturba-
tively through the calculation of the UV divergent parts of the 1PI functions
Γψ†ψ, Γψ†ψ2 , Γ(ψ†)2ψ2 , Γṽv , and Γṽṽ . Interaction terms corresponding to these
functions have to be added to the original action S = S1 + S2 with the aim to
ensure UV ˇniteness of all Green functions generated by the renormalized action
SR. At this stage, the main goal is to calculate the renormalization constants Zi,
i = 1, 2, 3, 4.

The singularities in various Green functions will be realized in the form of
poles in ε and Δ and their linear combinations such as 2ε + Δ or ε − Δ. Recall
that for the consistency of the MS scheme it is necessary that the ratio

ξ =
Δ
ε

(100)

is a ˇnite real number. It should be noted that the graphs corresponding to
Γψ†ψ2 and Γ(ψ†)2ψ2 differ only by one external vertex and thus give rise to equal
renormalization of the rate constant λ0D0. Therefore, in what follows, we will
always consider the function Γψ†ψ2 . In order to calculate the renormalization
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constants Z2 and Z4, we proceed according to the general scheme suggested
in [35, 36]. We require the fulˇllment of UV ˇniteness (i.e., ˇnite limit when
ε, Δ → 0) of the 1PI functions Γψ†ψ|ω=0 and Γψ†ψ2 |ω=0. Because the divergent
part of the Feynman graphs should not depend on the value of ω, we have
adopted the simplest choice ω = 0. It is convenient to introduce the dimensionless
expansion variables of the perturbation theory as

α10 ≡ g10Sd

p2ε
, α20 ≡ g20Sd

p−2Δ
, α30 ≡ λ0Sd

p−2Δ
, (101)

where Sd is the surface area of the unit sphere in d-dimensional space; p is the
total momentum �owing into the Feynman diagram and Sd = Sd/(2π)d. For
brevity, in the following we use the abbreviation g0 ≡ g0Sd for the parameters
{g10, g20, λ0} or their renormalized counterparts, respectively. Next, we demon-
strate the perturbation series for the 1PI Green functions to the second-order
approximation. The perturbative expansion for Γψ†ψ may be written as

Γψ†ψ|ω=0 = D0p
2

⎡⎢⎢⎣−1 +
n1+n2=2∑
n1,n2�0,
n1+n2�1

αn1
10αn2

20γ
(n1,n2)

ψ†ψ
(d, u0)

⎤⎥⎥⎦ , (102)

where γψ†ψ are dimensionless coefˇcients which contain poles in ε and Δ. Ex-
plicit dependence on the space dimension d and inverse Prandtl number u0 is
emphasized. It is important to note that there are no terms in this sequence pro-
portional to the expansion parameter α30. In terms of the renormalized parameters
perturbative expansion for the Green function is (102)

Γψ†ψ|ω=0

Dp2
= Z2

⎡⎢⎢⎣−1 +
n1+n2=2∑
n1,n2�0,
n1+n2�1

αn1
1 αn2

2 γ
(n1,n2)

ψ†ψ
(d, u)

⎤⎥⎥⎦ , (103)

with the renormalized parameters α1 = g1s
2εZ−3

1 and α2 = g2s
−2ΔZ3Z

−3
1 in

accordance with the relations (98) and (101), where s ≡ μ/p. Here we would
like to stress that in order to get the correct expansion in ε and Δ, one has to
make replacement

d → 2 + 2Δ, u0 → Z−1
1 Z2u (104)

in the arguments of γ
(n1,n2)

ψ†ψ
. In the same way, the perturbation expansion series

for the Green function Γψ†ψ2 is

Γψ†ψ2 |ω=0 = −4D0λ0

⎡⎢⎢⎣1 +
n1+n2+n3=2∑
n1,n2,n3�0,
n1+n2+n3�1

αn1
10 αn2

20 αn3
30 γ

(n1,n2,n3)

ψ†ψ2 (d, u0)

⎤⎥⎥⎦ , (105)
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where γψ†ψ2 are dimensionless coefˇcients resulting from calculation of Feynman
graphs. Again by replacing the bare parameters with the renormalized counter-
parts, the following series is obtained:

Γψ†ψ2 |ω=0

4λDμ−2Δ
= −Z4

⎡⎢⎢⎣1 +
n1+n2+n3=2∑
n1,n2,n3�0,
n1+n2+n3�1

αn1
1 αn2

2 αn3
3 γ

(n1,n2,n3)

ψ†ψ2 (d, u)

⎤⎥⎥⎦ , (106)

where the dimensionless parameter α3 = λs−2ΔZ−1
2 Z4 is introduced and the

change (104) is understood. The perturbation series for the Green function
Γ(ψ†)2ψ2 has the same form, so we do not present it.

Denoting by Z(n) the contribution of the order gn, g = {g1, g2, λ}, the ˇrst
order of renormalization constants Z2 and Z4 may be calculated via equations

Z
(1)
2 = L

[
g1s

2εγ
(1,0)

ψ†ψ
+ g2s

−2Δγ
(0,1)

ψ†ψ

]
, (107)

Z
(1)
4 = −L

[
g1s

2εγ
(1,0,0)

ψ†ψ2 + g2s
−2Δγ

(0,1,0)

ψ†ψ2 + λs−2Δγ
(0,0,1)

ψ†ψ2

]
, (108)

where L stands for the operation of extraction of the UV-divergent part (poles in ε
and Δ or their linear combination). In the MS scheme ˇnite terms are discarded,
so we do not need to take care of them. At the second order the term for Z2 can
be schematically written as

Z
(2)
2 = L

[
− g1s

2ε

1 + u

(
uZ

(1)
2 + (u + 2)Z(1)

1

)
γ

(1,0)

ψ†ψ
−

− g2s
−2Δ

(
u

1 + u
Z

(1)
2 +

u + 2
1 + u

Z
(1)
1 − Z

(1)
3

)
γ

(0,1)

ψ†ψ
+ g1

2s4εγ
(2,0)

ψ†ψ
+

+ g1g2s
2ε−2Δγ

(1,1)

ψ†ψ
+ g2

2s−4Δγ
(0,2)

ψ†ψ

]
. (109)

The two-loop graphs that contribute to the calculation of Z2 are represented
by the graphs depicted in Fig. 4. For the renormalization constants Z4 we have
the expression

Z
(2)
4 = −L

[
g1λs2(ε−Δ)γ

(1,0,1)
(ψ+)2ψ2 + g2λs−4Δγ

(0,1,1)

ψ†ψ2 + λ
2
s−4Δγ

(0,0,2)

ψ†ψ2 +

+ g1s
2εγ

(1,0,0)

ψ†ψ2 (−3Z
(1)
1 ) + g2s

−2Δγ
(0,1,0)

ψ†ψ2 (Z(1)
3 − 3Z

(1)
1 )+

+ λs−2Δγ
(0,0,1)

ψ†ψ2 (2Z
(1)
4 − Z

(1)
2 )
]
. (110)
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Fig. 4. Two-loop graphs for the perturbation expansion of Γψ†ψ

Fig. 5. Two-loop graphs for the perturbation expansion of Γψ†ψ2

The two-loop graphs that contribute to the calculation of Z4 are represented
by the graphs depicted in Fig. 5. From these expressions the renormalization
constants Z2 and Z4 can be calculated in the form

Z2 = 1 − g1

8u(1 + u)ε
+

g2

8u(1 + u)Δ
+

A11g1
2

ε2
+

A22g2
2

Δ2
+

A12g1g2

εΔ
+

+
B11g1

2

ε
+

B22g2
2

Δ
+

B12g1g2

ε − Δ
, (111)

Z4 = 1 − λ

2Δ
− 1

16u(1 + u)
g1λ

(ε − Δ)Δ
+

1
32u(1 + u)

g2λ

Δ2
+

+
λ

2

4Δ2
−
(

g1λ

ε − Δ
− g2λ

Δ

)
C(u, ξ). (112)
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The lengthy expressions for the coefˇcient functions Aij(ξ, u), Bij(ξ, u) and
C(u, ξ) can be found in Appendix A.

In a similar way, we obtain renormalization constants Z1 and Z3 [36] from
condition of the UV ˇniteness for the 1PI Green functions Γṽv|ω=0 and Γṽṽ|ω=0.
The perturbation series for Γṽv can be written as

Γṽv|ω=0 = ν0p
2P p

ij

⎡⎢⎢⎣−1 +
n1+n2=2∑
n1,n2�0,
n1+n2�1

αn1
10αn2

20γ
(n1,n2)
ṽv (d)

⎤⎥⎥⎦ , (113)

and for Γṽṽ as

Γṽṽ|ω=0 = P p
ij

⎡⎢⎢⎣g10ν
3
0p2−2Δ−2ε +

+g20ν
3
0p2

⎧⎪⎪⎨⎪⎪⎩−1 +
n1+n2=2∑

n1�0,n2�−1,
n1+n2�1

αn1
10αn2

20γ
(n1,n2)
ṽṽ (d)

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦ . (114)

From the deˇnition of the projection operator P p
ij it is easy to see, that after

contracting indices i and j we are left with the constant d − 1. Hence, rewrit-
ing perturbation series for Γṽv and Γṽṽ in the renormalized variables (98) and
contracting indices i and j, we get

Γṽv|ω=0

νp2(d − 1)
= −Z1 + Z1

⎡⎢⎢⎣n1+n2=2∑
n1,n2�0,
n1+n2�1

αn1
1 αn2

2 γ
(n1,n2)
ṽv (d)

⎤⎥⎥⎦ , (115)

Γṽṽ|ω=0

(d − 1)g2ν3μ−2Δp2
=

g1

g2
s2ε+2Δ+

+ Z3 + Z3

n1+n2=2∑
n1�0,n2�−1,
n1+n2�1

αn1
1 αn2

2 γ
(n1,n2)
ṽṽ (d). (116)

By the same algorithm as described above in detail, for the calculation of Z2 and
Z4 explicit expressions for the renormalization constants Z1 and Z3 are obtained.
The results for them in the MS scheme can be found in [36].

2.3. IR Stable Fixed Points and Scaling Regimes. The coefˇcient functions
of the RG differential operator for the Green functions

DRG = μ
∂

∂μ

∣∣∣∣
0

= μ
∂

∂μ
+
∑
gi

βi
∂

∂gi
− γ1ν

∂

∂ν
, (117)
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where the bare parameters are denoted with the subscript ®0¯, are deˇned as

γ1 = μ
∂ ln Z1

∂μ

∣∣∣∣
0

, βi = μ
∂gi

∂μ

∣∣∣∣
0

, (118)

with the charges gi = {g1, g2, u, λ}. From this deˇnition and the renormalization
relations (98) it follows that

βg1 = g1(−2ε + 3γ1), βg2 = g2(2Δ + 3γ1 − γ3),
(119)

βλ = λ(2Δ − γ4 + γ2), βu = u(γ1 − γ2),

where the anomalous dimensions γα (α = 2, 3, 4) are deˇned as

γα = μ
∂ ln Zα

∂μ

∣∣∣∣
0

. (120)

We are interested in the IR asymptotics of small momentum p and frequencies ω
of the renormalized functions or, equivalently, large relative distances and time
differences in the (t,x) representation. Such a behaviour is governed by the IR-
stable ˇxed points g∗ = (g∗1 , g∗2 , u

∗, λ∗), which are determined as zeroes of the β
functions β(g∗) = 0. The ˇxed point g∗ is IR stable, if real parts of all eigenvalues
of the matrix ωij ≡ ∂βi/∂gj|g=g∗ are strictly positive. From the knowledge of
renormalization constants Z2 and Z4 (111), (112) and deˇnitions (118), (120), it
is possible to calculate anomalous dimensions γ2 and γ4

γ2 =
g1 + g2

4u(1 + u)
− 4B11g1

2 + 4B22g2
2 − 2B12g1g2, (121)

γ4 = −λ + λ(g1 + g2)C(u, ξ). (122)

A straightforward calculation shows that higher-order poles cancel each other, so
that the anomalous dimensions γ2 and γ4 are ˇnite. For completeness, we quote
also anomalous dimensions γ1 and γ3 [36] to the same order

γ1 =
g1 + g2

16
+

(4ξ + 3)
512(2 + ξ)

g1
2 +

5ξ + 3
512

g1g2 −
R

256
(g1 + g2)2, (123)

γ3 =
(g1 + g2)2

16g2
− ξ(13 + 19ξ)

1024(2 + ξ)
g1

3

g2
+

34ξ + 19 + 6ξ2

512(2 + ξ)
g1

2 − 3g1
2

512
+

+
13 + 31ξ

1024
g1g2 +

1 − R

256
(g1 + g2)3

g2
, (124)

where the value R = −0.168 is a result from numerical integration. Zeroes of
the beta functions (2.3) determine possible IR behaviour of the model. There are
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four IR-stable ˇxed points and one IR-unstable ˇxed point. In this section, we
present them with their regions of stability.

(i) The trivial (Gaussian) ˇxed point:

g1
∗ = g2

∗ = λ
∗

= 0, (125)

with no restrictions on the inverse Prandtl number u. The Gaussian ˇxed point
is stable, when

ε < 0, Δ > 0, (126)

and physically corresponds to the case, when the mean-ˇeld solution is valid and
�uctuation effects are negligible.

(ii) The short-range (thermal) ˇxed point:

g1
∗ = 0, g2

∗ = −16Δ + 8(1 + 2R)Δ2,

u∗ =
√

17 − 1
2

− 1.12146Δ, (127)

λ
∗

= −Δ +
Δ2

2
(ξ − 2.64375),

at which local correlations of the random force dominate over the long-range
correlations. This ˇxed point has the following basin of attraction:

Δ − 2R − 1
2

Δ2 < 0, 2ε + 3Δ − 3Δ2

2
< 0, (128)

Δ +
1
2
Δ2 < 0, Δ + 0.4529Δε < 0 (129)

and corresponds to anomalous decay faster than that due to density �uctuations
only, but slower than the mean-ˇeld decay.

(iii) The kinetic [37] ˇxed point with ˇnite rate coefˇcient:

g1
∗ =

32
9

ε (2ε + 3Δ)
ε + Δ

+ g∗12(ξ)ε
2,

g2
∗ =

32
9

ε2

Δ + ε
+ g∗22(ξ)ε

2,

(130)

u∗ =
√

17 − 1
2

+ u∗
1(ξ)ε,

λ
∗

= −2
3
(ε + 3Δ) +

1
9π

(3Δ + ε)(Qε − Δ),

here Q = 1.64375. The ˇxed point (130) is stable, when inequalities

Ω± > 0, ε > 0, −2
3
ε < Δ < −1

3
ε (131)



642 HNATI	C M., HONKONEN J., LU	CIVJANSK
Y T.

are fulˇlled, where

Ω± = Δ +
4
3
ε ±

√
9Δ2 − 12εΔ− 8ε2

3
+

+
2
9

(
−(3 + 2R)ε2 − 3εΔ ± 4ε(ε + 3Δ)R − 6ε2 − 12εΔ− 9Δ2

√
9Δ2 − 12Δε − 8ε2

ε

)
. (132)

The decay rate controlled by this ˇxed point of the average number density is
faster than the decay rate induced by dominant local force correlations, but still
is slower than the mean-ˇeld decay rate.

(iv) The kinetic ˇxed point with vanishing rate coefˇcient:

g1
∗ =

32
9

ε (2ε + 3Δ)
ε + Δ

+ g∗12(ξ)ε
2,

g2
∗ =

32
9

ε2

Δ + ε
+ g∗22(ξ)ε

2, (133)

u∗ =
√

17 − 1
2

+ u∗
1(ξ)ε, λ

∗
= 0.

This ˇxed point is stable, when the long-range correlations of the random force
are dominant

Ω± > 0, ε > 0, Δ > −1
3
ε, (134)

and corresponds to reaction kinetics with the normal (mean-ˇeld like) decay rate.
(v) Driftless ˇxed point given by:

g1
∗ = g2

∗ = 0, u∗ not ˇxed, λ
∗

= −2Δ, (135)

with the following eigenvalues:

Ω1 = −2ε, Ω2 = −Ω4 = 2Δ, Ω3 = 0. (136)

An analysis of the structure of the ˇxed points and the basins of attraction
leads to the following physical picture of the effect of the random stirring on the
reaction kinetics. Anomalous behaviour always emerges below two dimensions,
when the local correlations are dominant in the spectrum of the random forcing
(the short-range ˇxed point (ii)). However, the random stirring gives rise to
an effective reaction rate faster than the density-�uctuation induced reaction rate
even in this case. The anomaly is present (but with still faster decay, see the next
Section) also, when the long-range part of the forcing spectrum is effective, but
the power-like falloff of the correlations is fast (this regime is governed by the
kinetic ˇxed point (iii)). Note that this is different from the case in which the di-
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Fig. 6. Regions of stability

vergenceless random velocity ˇeld is time-
independent, in which case there is no ˇxed
point with λ∗ 
= 0 [12]. At slower spa-
tial falloff of correlations, however, the
anomalous reaction kinetics is replaced by a
mean-ˇeld-like behaviour (this corresponds
to the kinetic ˇxed point (iv)). In particu-
lar, in dimensions d > 1 this is the situa-
tion for the value ε = 2 which corresponds
to the Kolmogorov spectrum of the velocity
ˇeld in fully developed turbulence. Thus,
long-range correlated forcing gives rise to a
random velocity ˇeld, which tends to sup-
press the effect of density �uctuations on
the reaction kinetics below two dimensions.
For better illustration, regions of stability for ˇxed points (i)Ä(iv) are depicted
in Fig. 6. We see that in contrast to the one-loop approximation [15], overlap
(dashed region) between regions of stability of ˇxed points (ii) and (iii) is ob-
served. It is a common situation in the perturbative RG approach that higher
order terms lead to either gap or overlap between neighbouring stability regions.
The physical realization of the large-scale behaviour then depends on the initial
state of the system.

2.4. Long-Time Asymptotics of Number Density. Since the renormalization
and calculation of the ˇxed points of the RG are carried out at two-loop level, we
are able to ˇnd the ˇrst two terms of the ε, Δ expansion of the average number
density, which corresponds to solving the stationarity equations at the one-loop
level. The simplest way to ˇnd the average number density is to calculate it from
the stationarity condition of the functional Legendre transform [38] (which is often
called the effective action) of the generating functional obtained by replacing the
unrenormalized action by the renormalized one in the weight functional. This is
a convenient way to avoid any summing procedures used [7] to take into account
the higher-order terms in the initial number density n0. We are interested in the
solution for the number density, therefore we put the expectation values of the
ˇelds v and ṽ equal to zero at the outset (but retain, of course, the propagator
and the correlation function). Therefore, at the second-order approximation the
effective renormalized action for this model is

ΓR = S1+
1
4

+
1
8

+ + . . . , (137)

where S1 is the action (82) (within our convention S2 = 0 in the effective action)
and graphs are shown together with their symmetry coefˇcients. The slashed
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wavy line corresponds to the ˇeld ψ† and the single wavy line to the ˇeld ψ. The
stationarity equations for the variational functional

δΓR

δψ† =
δΓR

δψ
= 0 (138)

give rise to the equations

∂tψ = uνZ2∇2ψ − 2λuνμ−2ΔZ4

(
1 + ψ†)ψ2+

+ 4u2ν2λ2μ−4Δ

∞∫
0

dt′
∫

dy (Δψψ†
)2(t − t′,x − y)ψ2(t′,y)+

+ 4u2ν2λ2μ−4Δψ†(t,x)

∞∫
0

dt′
∫

dy (Δψψ†
)2(t − t′,x − y)ψ2(t′,y)+

+
∂

∂xi

∞∫
0

dt′
∫

dy Δvv
ij (t − t′,x− y)

∂

∂xj
Δψψ†

(t − t′,x− y)ψ(t′,y) + . . . ,

(139)

− ∂tψ
† = uνZ2∇2ψ† − 2λuνμ−2ΔZ4

[
2ψ† +

(
ψ†)2]ψ+

+ 8u2ν2λ2μ−4Δ

∞∫
0

dt′
∫

dy(Δψψ†
)2(t′ − t,y − x)ψ†(t′,y)ψ(t,x)+

+ 4u2ν2λ2μ−4Δ

∞∫
0

dt′
∫

dy(Δψψ†
)2(t′ − t,y − x) ×

[
ψ†(t′,y)

]2
ψ(t,x)+

+

∞∫
0

dt′
∫

dy Δvv
ji (t′ − t,y − x)

∂

∂xi
Δψψ†

(t′ − t,y − x)
∂

∂yj
ψ†(t′,y) + . . .

(140)

In (139) and (140), in the integral terms it is sufˇcient to put all renormalization
constants equal to unity. Substituting the solution ψ† = 0 of (140) into (139) we
arrive at the �uctuation-amended rate equation in the form

∂tψ = uνZ2∇2ψ − 2λuνμ−2ΔZ4ψ
2+

+ 4u2ν2μ−4Δλ2

∞∫
0

dt′
∫

dy (Δψψ†
)2(t − t′,x − y)ψ2(t′,y)+ (141)

+
∂

∂xi

∞∫
0

dt′
∫

dy Δvv
ij (t− t′,x− y)

∂

∂xj
Δψψ†

(t− t′,x− y)ψ(t′,y) + . . . (142)
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This is a nonlinear partial integro-differential equation, whose explicit solution is
not known. It is readily seen that for a homogeneous solution the term resulting
from the third graph in (137) vanishes, and hence the in�uence of the velocity
ˇeld on the homogeneous annihilation process would be only through the renor-
malization of the coefˇcients λ and D. However, in the case of a nonuniform
density ˇeld ψ, the effect of velocity �uctuations is explicit in (141). Such a
solution can be most probably found only numerically.

To arrive at an analytic solution, we restrict ourselves to the homogeneous
density n(t) = 〈ψ(t)〉, which can be identiˇed with the expression (62). In this
case, the last term in (141) vanishes together with the Laplace operator term and
the remaining coordinate integral may be calculated explicitly. The propagator is
the diffusion kernel of the renormalized model (we consider ˇrst the system in
the general space dimension d)

Δψψ†
(t − t′,x) =

θ(t − t′)

[4πuν(t − t′)]d/2
exp

[
− x2

4uν(t − t′)

]
. (143)

As noted above, for calculation of the one-loop contribution it is sufˇcient to
put the renormalization constant Z2 = 1 in the propagator Δψψ†

. Therefore,
evaluation of the Gaussian coordinate integral in (141) yields∫

dy (Δψψ†
)2(t − t′,x − y) =

θ(t − t′)

[8πuν(t − t′)]d/2
, (144)

and we arrive at the ordinary integro-differential equation

dn(t)
dt

= −2λuνμ−2ΔZ4n
2(t) + 4λ2u2ν2μ−4Δ

t∫
0

dt′
n2(t′)

[8πuν(t − t′)]d/2
. (145)

Spatial �uctuations in the particle density show in the integral term and affect
rather heavily even the homogeneous solution. In particular, the integral in (145)
diverges at the upper limit in space dimensions d � 2. This is a consequence of
the UV divergences in the model above the critical dimension dc = 2 and near
the critical dimension is remedied by the UV renormalization of the model. To
see this, subtract and add the term n2(t) in the integrand to obtain

dn(t)
dt

= −2λuνμ−2ΔZ4n
2(t) + 4λ2u2ν2μ−4Δn2(t)

t∫
0

dt′

[8πuν(t − t′)]d/2
+

+ 4λ2u2ν2μ−4Δ

t∫
0

dt′
n2(t′) − n2(t)

[8πuν(t − t′)]d/2
. (146)
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The last integral here is now convergent at least near two dimensions, pro-
vided the solution n(t) is a continuous function. This is deˇnitely the case
for the iterative solution constructed below. The divergence in the ˇrst inte-
gral in (146) may be explicitly calculated below two dimensions and is can-
celed Å in the leading order in the parameter Δ = (d− 2)/2 Å by the one-loop
term of the renormalization constant Z4 (112). Expanding the right-hand side
of (146) in the parameter Δ = (d − 2)/2 to the next-to-leading order, we arrive
at the equation

dn(t)
dt

= −2λuνμ−2Δn2(t) + 2λuνμ−2Δn2(t)
{

λ

4π

[
γ + ln

(
2uνμ2t

)]}
+

+
λ2uνμ−2Δ

2π

t∫
0

dt′
n2(t′) − n2(t)

t − t′
(147)

without divergences near two dimensions. Here, the factor μ−2Δ has been re-
tained intact in order not to spoil the consistency of scaling dimensions in dif-
ferent terms of the equation. In (147), γ = 0.57721 is Euler's constant and
we have considered the coupling constant λ and the parameter Δ = (d − 2)/2
to be small parameters of the same order taking into account the magnitudes
of the parameters in the basins of attraction of the ˇxed points of the RG.
The leading-order approximation for n(t) is given by the ˇrst term on the
right-hand side of (147) and it is readily seen that, after substitution of this
expression, the integral term in (147) is of the order of λ3 and thus negli-
gible in the present next-to-leading-order calculation. In this approximation,
Eq. (147) yields

n(t) =
n0

1 + 2λuνt

{
1 +

λ

4π
[1 − γ − ln (2uνμ2t)]

}
μ−2Δn0

, (148)

where n0 is the initial number density.
Since the ˇelds Φ = {v, ṽ, ψ, ψ†} are not renormalized, the renormalized con-

nected Green functions WR differ from the unrenormalized W = 〈Φ · · ·Φ〉 [19]
only by the choice of parameters and thus, one may write

WR(g, ν, μ, . . .) = W (g0, ν0, . . .), (149)

where g0 = {g10, g20, u0, λ0} is the full set of the bare parameters, and dots
denote all variables unaffected by the renormalization procedure. The inde-
pendence of renormalization mass parameter μ is expressed by the equation
μ∂μWR = 0. Using this equation, the RG equation for the mean particle
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number n(t) is readily obtained:(
μ

∂

∂μ
+
∑

g

βg
∂

∂g
− γ1ν

∂

∂ν

)
n(t, μ, ν, n0, g) = 0. (150)

We are interested in long-time behaviour of the system (t → ∞), therefore we
trade the renormalization mass for the time variable. Canonical scale invariance
yields relations [34](

μ
∂

∂μ
− 2ν

∂

∂ν
+ dn0

∂

∂n0
− d

)
n(t, μ, ν, n0, g) = 0, (151)

(
−t

∂

∂t
+ ν

∂

∂ν

)
n(t, μ, ν, n0, g) = 0, (152)

where the ˇrst equation expresses scale invariance with respect to wave number
and the second equation with respect to time. Eliminating partial derivatives with
respect to the renormalization mass μ and viscosity ν, we obtain the CallanÄ
Symanzik equation for the mean particle number[

(2 − γ1)t
∂

∂t
+
∑

g

βg
∂

∂g
− dn0

∂

∂n0
+ d

]
n (t, μ, ν, n0, g) = 0. (153)

To separate information given by the RG, consider the dimensionless normalized
mean particle number

n

n0
= Φ

(
νμ2t, λu

n0

μd
, g

)
. (154)

For the asymptotic analysis, it is convenient to express the particle density in the
combination used here. Solution of (153) by the method of characteristics yields

Φ
(

νμ2t, λu
n0

μd
, g

)
= Φ

(
νμ2τ, λu

n0

μd
, g

)
, (155)

where τ is the time scale. In Eq. (155), g and n0 are the ˇrst integrals of the
system of differential equations

t
d

dt
g = − βg(g)

2 − γ1(g)
, t

d

dt
n0 = d

n0

2 − γ1(g)
. (156)

Here g = {g1, g2, u, λ} with initial conditions g|t=τ = g and n0|t=τ = n0. In
particular,

λun0 = λu n0

(
t

τ

)
exp

⎡⎣ t∫
τ

γ4ds

(2 − γ1)s

⎤⎦ . (157)
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The asymptotic expression of the integral on the right-hand side of (157) in the
vicinity of the IR-stable ˇxed point g∗ is of the form

t∫
τ

γ4ds

(2 − γ1)s
∼

t→∞

γ∗
4

2 − γ∗
1

ln
(

t

τ

)
+

2
2 − γ∗

1

∞∫
τ

(γ4 − γ∗
4 )ds

(2 − γ1)s
=

=
γ∗
4

2 − γ∗
1

ln
(

t

τ

)
+ c̃4(τ), (158)

corrections to which vanish in the limit t → ∞. In (158) and henceforth, the
notation γ∗

1 = γ1 (g∗) has been used. From the point of view of the long-time
asymptotic behaviour, the next-to-leading term in (158) is an inessential constant.
In the vicinity of the ˇxed point

λu
n0

μd
∼ λu

n0

μd

(
t

τ

)1+
γ∗
4

2−γ∗
1

C̃n ≡ λu
n0

μd

(
t

τ

)α

C̃n ≡ y C̃n, (159)

where a shorthand notation y has been introduced for the long-time scaling of the
normalized number density as well as the dimensional normalization constant

C̃n = ec̃4(τ)

and the decay exponent
α = 1 + γ∗

4

2 − γ∗
1

. (160)

The asymptotic behaviour of the normalized particle density is described by the
scaling function f(x, y)

Φ
(

νμ2t, λu
n0

μd
, g

)
∼ Φ

(
νμ2τ, C̃ny, g∗

)
≡ f

(
νμ2τ, C̃ny

)
. (161)

The free parameters in the variables of the scaling function f(x, y) correspond
to the choice of units of these variables, whereas the objective information is
contained in the form of the scaling function [19, 34]. Here, it is convenient
to use the explicit solution (148) to obtain the ε, Δ expansion for the inverse
h(x, y) = 1/f(x, y) of the scaling function. We obtain the generic expression

h(x, y) =
1

f(x, y)
= 1 + 2xy

{
1 +

λ∗

4π
[1 − γ − ln (2u∗x)]

}
, (162)

in which the substitution of the various ˇxed-point values λ∗ (at the leading order
λ∗ ≈ 2πλ

∗
) and u∗ in the leading approximation yields the corresponding ε, Δ

expansions.
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Below, we list the scaling functions h(x, y) and the dynamic exponents α at
the stable ˇxed points in the next-to-leading-order approximation.

(i) At the trivial (Gaussian) ˇxed point (125) the mean-ˇeld behaviour takes
place with

h(x, y) = 1 + 2xy, α = 1. (163)

(ii) The thermal (short-range) ˇxed point (127) leads to scaling function and
decay exponent

h(x, y) = 1 + 2xy

{
1 − Δ

2

[
1 − γ − ln

(√
17 − 1

)
x
]}

,

(164)

α = 1 +
Δ
2

+
Δ2

2
.

Here, the last coefˇcient is actually a result of numerical calculation, which in
the standard accuracy of Mathematica is equal to 0.5. We have not been able to
sort out this result analytically, but think that most probably the coefˇcient of the
Δ2 term in the decay exponent α in (164) really is 1/2.

(iii) The kinetic ˇxed point with an anomalous reaction rate (130) corre-
sponds to

h(x, y) = 1 + 2xy

{
1 − ε + 3Δ

3

[
1 − γ − ln

(√
17 − 1

)
x
]}

,

(165)

α = 1 +
3Δ + ε

3 − ε
,

with an exact value of the decay exponent.
(iv) At the kinetic ˇxed point with mean-ˇeld-like reaction rate (133) we

obtain
h(x, y) = 1 + 2xy, α = 1. (166)

In the actual asymptotic expression corresponding to (161), the argument y →
C̃ny is different from that of the Gaussian ˇxed point.

To complete the picture, we recapitulate Å with a little bit more detail Å the
asymptotic behaviour of the number density in the physical space dimension d = 2
predicted within the present approach [15] (it turns out that for these conclusions
the one-loop calculation is sufˇcient). On the ray ε � 0, Δ = 0 logarithmic
corrections to the mean-ˇeld decay take place. The integral determining the
asymptotic behaviour of the variable (157) yields in this case

t∫
τ

γ4ds

(2 − γ1)s
∼

t→∞
−1

2
ln ln

(
t

τ

)
+ c̃4(τ), (167)
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with corrections vanishing in the limit t → ∞. Therefore, in the vicinity of the
ˇxed point

λu
n0

μd
∼ λu

n0

μd

(
t

τ

)
ln−1/2

(
t

τ

)
C̃n ≡ y C̃n. (168)

The scaling function h is of the simple form

h(x, y) = 1 + 2xy

and gives rise to asymptotic decay slower than in the mean-ˇeld case by a
logarithmic factor:

n ∼ ln1/2 (t/τ)

2νλuC̃nt
.

It is worth noting that this logarithmic slowing down is weaker than that brought
about the density �uctuations only [23] and this change is produced even by the
ubiquitous thermal �uctuations of the �uid, when the reaction is taking place in
gaseous or liquid media.

On the open ray ε > 0, Δ = 0, the kinetic ˇxed point with mean-ˇeld-
like reaction rate (133) is stable and the asymptotic behaviour is given by (166)
regardless of the value of the falloff exponent of the random forcing in the
NavierÄStokes equation. In particular, only the amplitude factor in the asymptotic
decay rate in two dimensions is affected by the developed turbulent �ow with
Kolmogorov scaling, which corresponds to the value ε = 2. This is in accord
with the results obtained in the case of quenched solenoidal �ow with long-range
correlations [12, 13] as well as with the usual picture of having the maximal
reaction rate in a well-mixed system.

3. ROLE OF RANDOM SOURCES AND SINKS
ON REACTION PROCESSES

3.1. Master Equation for Random Sources and Sinks. We will consider
the annihilation reaction A + A → ∅ in a random drift ˇeld in a more general
setup than in the previous parts. For this purpose we introduce random sources
and sinks of the reacting particles in order to maintain a steady state in the
system. In most cases this is carried out by including an additive noise term in
the Langevin equation of the stochastic process as was done, e.g., in (83), to have
steady turbulent state. Since our analysis is based on the master equation, this
is not quite appropriate here. Unfortunately, there is no unique way to introduce
random sources in the master equation corresponding to the random noise of
the mean-ˇeld (Langevin) description. We use the simplest choice, described in
detail in [4], which is equivalent to adding processes A → X and Y → A to the
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whole reaction scheme. Here, X and Y stand for particle baths of the sink and
the source, respectively. In a homogeneous system these reactions lead to the
master equation

dP (t, n)
dt

= μ+V [P (t, n − 1) − P (t, n)] +

+ μ− [(n + 1)P (t, n + 1) − nP (t, n)] . . . , (169)

where P (t, n) is the probability to ˇnd n particles at the time instant t in the
system. The ellipsis in (169) represents terms describing the annihilation reaction,
diffusion and advection in the system. In (169) μ+ and μ− are the reaction con-
stants of the creation and annihilation reactions, respectively. The transition rate
has been chosen proportional to the particle number n, which can be understood
as consequence of independent processes A → X and this choice also preserves
the empty state as an absorbing state. In the transition rate for creation process,
V is the volume of the (for the time being) homogeneous system and will be
important in passing to the continuum limit of the inhomogeneous system. The
master equation (169) gives rise to the reaction-rate equation

d〈n〉
dt

= μ+V − μ−〈n〉 + . . . , (170)

where 〈n〉 is the mean particle number.
We recall that the basic idea of the Doi approach [8] is to rewrite the set

of master equations for probability distributions of a stochastic problem in the
form of a single kinetic equation for a state vector incorporating all probabilistic
information about the system constructed in a suitable Fock space. The ki-
netic equation is deˇned by the Liouville operator acting in the Fock space and
generated by the set of master equations. Although the basic procedure has been
thoroughly exposed in the literature, the introduction of random sources and sinks
of particles in the master equation has speciˇc features, which should be presented
in detail. Therefore, let us brie�y recall the basic quantities and relations of the
Doi approach. For simplicity, consider probabilities P (t, n) to ˇnd n particles
at the time instant t on a ˇxed lattice site. Then the spatial dependence may be
described by labeling the particle number by the coordinates of the lattice and
introducing necessary sums and products over the lattice sites. The construction
of corresponding Fock space was presented in Sec. 1, namely Eqs. (7)Ä(14). The
set of master equations for a birthÄdeath process may also be cast in the form of a
single evolution equation for the state vector (14) without any explicit dependence
on the occupation number

d|Φ〉
dt

= −Ĥ(â+, â)|Φ〉. (171)
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Master equations (169) give rise to the following terms in the Hamilton operator:

Ĥg(â+, â) = −μ+V
(
â+ − I

)
− μ−

(
I − â+

)
â, (172)

where I is the identity operator. The expectation value of any function A(n) of
the random particle number

〈A(t)〉 =
∞∑

n=0

A(n)P (t, n) (173)

may be expressed in the form of the functional integral over the functions ã(t)
and a(t)

〈A(t)〉 =
∫

DãDa AN (1, a(t)) eS1 , (174)

where AN (ã, a) is the normal form [38] of the operator A(â+â) and S1 is the
dynamic action

S1(ã, a) =

∞∫
0

dt [−ã(t)∂ta(t) + μ+V ã(t) − μ−ã(t)a(t)] . . . (175)

Only the generic time-derivative term and terms brought about by the random
source model are expressed here explicitly, while the ellipsis stands for terms
corresponding to other reactions and initial conditions.

Let the transition rates μ± be the random functions uncorrelated in time with a
probability distribution given in terms of the moments 〈μn

±〉 = E±,n. To keep the
problem translation-invariant in time, we assume stationary stochastic processes
determined on the whole time axis. Therefore, henceforth all time integrals in
the action functional and, correspondingly, in the perturbation expansion shall be
taken over the whole time axis. At this point we also generalize the treatment
to the case of a spatially inhomogeneous system and introduce a lattice subscript
as the spatial argument, i.e., a(t) → ai(t). In this case, the volume V becomes
the volume element attached to the lattice site. For simplicity, we replace the

time integral with the integral sum
∞∫

−∞
dt →

∑
α

Δt and assume that the transition

rates at each time instant and lattice site μ±,α,i are independent random variables.
Then, the average of the expectation value (174) over the distribution of random
sources reduces to the calculation of the expectation value∏

α,i

〈exp (μ+,α,iV ãα,iΔt − μ−,α,iãα,iaα,iΔt)〉. (176)

For each particular time instant and lattice (we assume that the moments of μ±
are the same for all α and i and omit labels for brevity) this gives rise to the
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usual cumulant expansion

〈eμbΔt〉 = 1 + bΔtE1 +
1
2
E2(bΔt)2 +

1
6
E3(bΔt)3 + . . . =

= exp
(

bΔtE1 +
E2 − E2

1

2
(bΔt)2 +

E3 − 3E1E2 + E3
1

6
(bΔt)3 + . . .

)
. (177)

Here, b stands for either V ã or −ãa. Thus, for instance, the average over μ+

assumes the form∏
α,i

〈exp(μ+,α,iV ãα,iΔt)〉 =

= exp

(∑
α

∑
i

[
ΔtE+1V ãα,i +

1
2
(
E+2 − E2

+1

)
(V ãα,iΔt)2

])
×

× exp

(∑
α

∑
i

[
E+3 − 3E+1E+2 + E3

+1

6
(V ãα,iΔt)3 + · · ·

])
. (178)

In the continuum limit, the function ãα,i is replaced by the ˇeld ψ+(t,x), whereas
in the limit V → 0, the expression aα,i/V gives rise to the ˇeld ψ(t,x). The
sum over α together with Δt gives rise to the time integral and the sum over i
together with the volume element leads to the spatial integral

∑
i

V →
∫

dx. In

the ˇrst term of the exponential in (178) we thus obtain∑
α

∑
i

ΔtE+1V ãα,i → E+1

∫
dt

∫
dxψ+(t,x). (179)

The continuum limit for the cumulants of the second and higher order is not so
obvious. We assume the simplest nontrivial distribution for μ±, in which only
the variance term has a ˇnite limit, when Δt → 0 and V → 0, whereas the
contributions of higher-order cumulants vanish, for instance,

(E+2 − E2
+1)V Δt → σ+, Δt → 0, V → 0, (180)

(E+3 − 3E+1E+2 + E3
+1)(V Δt)2 → 0, Δt → 0, V → 0. (181)

Therefore, the contribution of the average over μ+ to the effective dynamic action
assumes the form

S+ =
∫

dt

∫
dx
{

E+1ψ
+(t,x) +

1
2
σ+

[
ψ†(t,x)

]2}
. (182)
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For the average over μ−, a similar argument yields

S− =
∫

dt

∫
dx
{
−E−1ψ

†(t,x)ψ(t,x) +
1
2
σ−
[
ψ†(t,x)ψ(t,x)

]2}
. (183)

These contributions to the effective dynamic action may, of course, be generated
by suitably chosen normal distributions of μ±.

This way of introduction of random sources and sinks has the annoying
feature that it does not conserve the number of particles in the system. For a
comparison with the treatment of this problem in the Langevin approach, the
random sources and sinks should be introduced in such a way that the particle
number is conserved. The simplest way how to deal with this problem is to add
to the random source a term proportional to the particle number, i.e., to use the
®reaction constant¯ μ+V + μ1+n instead of μ+V in the master equation. The
source terms on the right-hand side of the master equation (169) in this case
assume the form

dP (t, n)
dt

= μ+V [P (t, n − 1) − P (t, n)] +

+ μ1+ [(n − 1)P (t, n − 1) − nP (t, n)] . . . (184)

The new part of the master equation corresponds to a branching process [4].
The added term gives rise to the following contribution to the Hamilton

operator:
Ĥg2(â+, â) = −μ1+

(
â+ − I

)
â+â. (185)

Performing the steps described above we arrive at the contribution to the dynamic
action in the following form:

S1+ =
∫

dt

∫
dx
{

E1+1ψ
† (ψ† + 1

)
ψ +

1
2
σ1+ψ†2 (ψ† + 1

)2
ψ2

}
. (186)

Now it is easy to see that if we exclude the plain source (i.e., letting E+1 =
σ+ = 0) and choose E1+1 = E−1, the empty state remains absorbing one and
the ®mass term¯ ∝ ψ†ψ disappears in the dynamic action and we arrive at the
dynamic action of random sources and sinks

Sgc =
∫

dt

∫
dx
{

E1+1ψ
†2ψ+

1
2
σ−
(
ψ†ψ

)2
+

1
2
σ1+ψ†2 (ψ† + 1

)2
ψ2

}
, (187)

which conserves the average number of particles.
The effects of the high-order terms are drastically different in the two cases

amenable for a scaling analysis with the aid of the renormalization group. The
time derivative term in the dynamic action

S = −
∫

dt

∫
dxψ†(t,x) ∂tψ(t,x) + . . . (188)
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must be dimensionless in order to have nontrivial dynamics. Therefore, the total
scaling dimension of the number-density operator ψ†(t,x)ψ(t,x) is equal to the
dimension of space and thus is positive.

First, if the scaling dimension of the ˇeld ψ† is equal to zero, dψ† = 0,
then the dimension of the ˇeld ψ is positive (more precisely dψ = d) and the
operator monomials in the second and third terms in (187) have the same scaling
dimension. Since they are carrying the factor ψ2, their scaling dimension is larger

than that of ψ†2ψ. Therefore, the second and third terms in (187) are IR irrelevant
and should be discarded in the asymptotic analysis.

Second, if the scaling dimensions of both ˇelds are positive, then in the
operator monomials in the second and third terms in (187) there is at least one
®excessive¯ ˇeld factor in comparison with the ˇrst term, which renders them
irrelevant. Thus, in these cases the IR relevant dynamic action of random sources
and sinks reduces to the single term

S′
gc =

∫
dt

∫
dxE1+1ψ

†2ψ, dψ† = 0 ∨ dψ† > 0, dψ > 0. (189)

Third, if the scaling dimension of the ˇeld ψ is zero, the scaling dimension of the
ˇeld ψ† is positive and terms with ®excessive¯ powers of ψ† are IR irrelevant.
So the starting point for the subsequent RG analysis is the source and sink action
in the form

S′′
gc =

∫
dt

∫
dx
{

E1+1ψ
†2ψ +

1
2

(σ− + σ1+)
(
ψ†ψ

)2}
, dψ = 0. (190)

3.2. Annihilation Process with Random Sources and Sinks. Let us analyze
the dynamic action of the diffusion-limited annihilation reaction A + A → ∅

S1 = −
∫

dt

∫
dx {ψ†∂tψ − D0ψ

†∇2ψ + λ0D0[2ψ† + (ψ†)2] ψ2}+

+ n0

∫
dxψ†(x, 0), (191)

from the point of view of scaling behaviour sketched below.
In the ˇrst case with dψ+ = 0, the nonlinear terms in action (191) are of

equal scaling dimension. However, the source-sink part (189) is linear in the ˇeld
ψ with positive scaling dimension in contrast to the quadratic ψ terms of (191).
Therefore, the IR relevant interaction above two dimensions is (189) and the
corresponding dynamic action is

SIR1 = −
∫

dt

∫
dx
{
ψ†∂tψ − D0ψ

†∇2ψ − E1+1ψ
†2ψ
}

+ n0

∫
dxψ†(x, 0).

(192)
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This dynamic action does not bring about any graphs with closed loops of the
density propagator, which implies suppresion of the �uctuation effects. However,
the scaling dimension of the interaction term is negative and may compensate for
the positive dimensions of the irrelevant interaction terms. Therefore, the rest of
the interaction terms are in fact dangerous irrelevant operators and in this case
deˇnitive conclusion about the IR relevant action cannot be reached on the basis
of the analysis of the scaling dimensions.

In the second case with dψ† > 0 and dψ > 0, the fourth-order term in
action (191) becomes irrelevant. Either of the remaining third-order terms alone
does not generate loops, therefore density �uctuation effects are brought about
only, when both ˇelds have the same scaling dimension dψ† = dψ = d/2. In this
case, the IR relevant dynamic action is

SIR2 = −
∫

dt

∫
dx
{
ψ+∂tψ − D0ψ

+∇2ψ + 2λ0D0ψ
+ψ2 − E1+1ψ

+2
ψ
}
+

+ n0

∫
dxψ+(x, 0). (193)

Here, the scaling dimension of both interaction terms is (d/2)−2 and vanishes at
the critical dimension dc = 4, at which the dimensions of all the other interaction
terms are positive and they are unambiguously irrelevant. Effective action (193)
is the dynamic action of the Gribov process [40], also known as the Reggeon
model. Effects of random drift in this case with the use of the ObukhovÄKraichnan
compressible velocity ˇeld have been analyzed in [41].

In the third case with dψ = 0, the fourth-order term in action (191) becomes
irrelevant as well due to the positive dimension of the ˇeld ψ+. By the same
token, however, both terms of the source-sink action (190) are also irrelevant and
we arrive at the IR relevant dynamic action

SIR3 = −
∫

dt

∫
dx
{
ψ†∂tψ − D0ψ

†∇2ψ + 2λ0D0ψ
†ψ2
}
+

+ n0

∫
dxψ+(x, 0). (194)

An argument similar to that used for (192) shows that the scaling analysis with
this choice of ˇeld dimensions does not allow one to resolve relevance of in-
teraction terms. It should be recalled that the scaling dimensions of auxiliary
quantities and the asymptotic behaviour of individual graphs are actually inde-
pendent of the choice of the values of the ˇeld dimensions. Therefore, the
effective action (193) with unambiguous classiˇcation of relevant and irrelevant
interaction terms describes the critical scaling behaviour amenable to the RG
analysis.
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In summary, if the sources and sinks are chosen such that they conserve the
mean number of particles in the system, the anomalous scaling behaviour in the
system is that of the Gribov process.

A different situation arises, if the plain source term is included into the
analysis. Then there is a possibility that the system does not tend to the absorbing
empty state but to an active state with a ˇnite concentration of particles. In this
case, the starting point is the dynamic action with all the terms quoted above, i.e.,

S =
∫

dt

∫
dx

{
−ψ†∂tψ + D0ψ

†∇2ψ − λ0D0[2ψ† + (ψ†)2] ψ2 + E+1ψ
†+

+
1
2
σ+(ψ†)2 + E1+1ψ

†(ψ† + 1)ψ +
1
2
σ1+ψ+2(ψ† + 1)2ψ2 − E−1ψ

†ψ+

+
1
2
σ−(ψ†ψ)2

}
+n0

∫
dxψ†(x, 0). (195)

The stationarity equation brought about by this dynamic action for the ˇeld ψ is
(the stationary value ψ† = 0 as usual)

∂tψ − D0∇2ψ = −2λ0D0ψ
2 + E+1 + E1+1ψ − E−1ψ. (196)

However, the action expanded around the stationary value is rather complicated.
To keep expressions simple, continue to consider the case E1+1 = E−1. Then
the re-expanded action is

S =
∫

dt

∫
dx

{
−ψ†∂tψ + D0ψ

†∇2ψ −
√

8
√

E+1λ0D0ψ
†ψ+

+

(
−E+1

2
+

E−1

√
E+1 λ0D0√
2λ0D0

+
E+1σ1+

4λ0D0
+

E+1σ−
4λ0D0

+
σ+

2

)
ψ†2+

+
E+1σ1+ψ†3

2λ0D0
+

E+1σ1+ψ†4

4λ0D0
+

√
2
√

E+1 λ0D0 σ1+ ψ†3ψ

λ0D0
+

+

(
E−1 −

√
2
√

E+1 λ0D0 +

√
E+1 λ0D0 σ1+√

2λ0D0

+

√
E+1 λ0D0 σ−√

2λ0D0

)
ψ†2ψ+

+

√
E+1 λ0D0 σ1+ ψ†4ψ√

2λ0D0

− 2 λ0D0 ψ†ψ2 +
(
−λ0D0 +

σ1+

2
+

σ−
2

)
ψ†2ψ2+

+ σ1+ ψ†3ψ2 +
σ1+ ψ†4ψ2

2

}
+ n0

∫
dxψ†(x, 0). (197)

In the critical limit E+1 → 0. Since it is the expectation value of a non-negative
random quantity μ+, the variance σ+ vanishes as well. In the vicinity of the
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critical point we keep only the leading E+1 and σ+ putting them equal to zero in
terms, where they are subleading. This simpliˇes the action a little bit

S =
∫

dt

∫
dx

{
−ψ†∂tψ + D0ψ

†∇2ψ −
√

8
√

E+1λ0D0ψ
†ψ+

+

(
E−1

√
E+1√

2λ0D0

+
σ+

2

)
ψ†2 +

E+1σ1+ψ†3

2λ0D0
+

E+1σ1+ψ†4

4λ0D0
+ E−1ψ

†2ψ+

+

√
2
√

E+1 λ0D0 σ1+ ψ†3ψ

λ0D0
+

√
E+1 λ0D0 σ1+ ψ†4ψ√

2 λ0D0

− 2λ0D0ψ
†ψ2+

+
(
−λ0D0 +

σ1+

2
+

σ−
2

)
ψ†2ψ2 + σ1+ ψ†3ψ2 +

σ1+ ψ†4ψ2

2

}
+

+ n0

∫
dxψ†(x, 0). (198)

Dimensional analysis of the canonical dimensions then yields the following cases.
In the nonlinear parts without the critical parameters E+1 and σ+, the previous
arguments hold, but in terms having powers of these parameters as coefˇcients,
the positive scaling dimensions of them must be taken into account. The free-ˇeld
part of the action (198) suggests that the canonical dimension of E+1 is four. In
fact, the canonical dimension of σ+ remains a free parameter.

Proceeding in the same manner as above, we arrive at the following effective
actions for the IR scaling limit. In the ˇrst case with dψ† = 0, the third and fourth
powers of ψ† and independent of ψ or ˇrst order in ψ are irrelevant (due to the

coefˇcients proportional to E+1 or its square root) compared with terms ∝ ψ†2

in action (198). Nonlinear in ψ terms are irrelevant against the linear terms due
to the positive dimension of ψ. Therefore, the IR effective action in this case is

S =
∫

dt

∫
dx

{
−ψ†∂tψ + D0ψ

†∇2ψ − 2
√

2
√

E+1 λ0D0 ψ†ψ+

+

(
E−1

√
E+1√

2λ0D0

+
σ+

2

)
ψ†2 + E−1 ψ†2ψ

}
+ n0

∫
dxψ†(x, 0). (199)

Again, the interaction term remaining after the formal dimensional analysis does
not bring about loops, although here we have a nontrivial correlation function of
the ˇeld ψ. The scaling dimension of this term is negative, however, rendering
the irrelevant terms dangerous and prohibiting any deˇnitive conclusion about the
relevance of individual interaction terms.

In the second case with dψ† > 0 and dψ > 0, higher powers than the leading
corrections to the free-ˇeld action of both ˇelds are irrelevant. This argument
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leaves us with the dynamic action

S =
∫

dt

∫
dx

{
−ψ†∂tψ + D0ψ

†∇2ψ − 2
√

2
√

E+1 λ0D0 ψ†ψ+

+

(
E−1

√
E+1√

2λ0D0

+
σ+

2

)
ψ†2 + E−1 ψ†2ψ − 2 λ0D0 ψ†ψ2

}
+

+ n0

∫
dxψ†(x, 0). (200)

Contrary to the case discussed above, here the interaction term −2 λ0D0 ψ†ψ2

generates loops alone due to the presence of the correlation function of the ˇeld
ψ. Therefore, two effective actions with nontrivial �uctuation contributions are
possible.

a) dψ† > dψ . To keep the correlation function of the ˇeld ψ for the loops,

the variance σ+ must have a dimension less than that of
√

E+1. This yields the
effective action

S =
∫

dt

∫
dx

{
−ψ†∂tψ + D0ψ

†∇2ψ − 2
√

2
√

E+1 λ0D0 ψ†ψ+

+
σ+

2
ψ†2 − 2 λ0D0 ψ†ψ2

}
+ n0

∫
dxψ+(x, 0) (201)

with the critical dimension depending on the scaling dimension of σ+ in the spirit
of the description of tricritical scaling behaviour [19]. The model is logarithmic

at six dimensions, however, because apart from the coefˇcient of the ∝ ψ†2, the
action is that of critical dynamics of the ϕ3 model. The upper critical dimension is
determined by the scaling behaviour of σ+ in the critical limit σ+ → 0, E+1 → 0.

b) dψ† = dψ = d/2. Both third-order terms are relevant and the effective
action is basically (200). In this case, the dimension of σ+ is larger than that of√

E+1 and for simplicity we omit σ+. Thus, the effective dynamic action may
be written as

S =
∫

dt

∫
dx

{
−ψ†∂tψ + D0ψ

†∇2ψ − 2
√

2
√

E+1 λ0D0 ψ†ψ+

+
E−1

√
E+1√

2λ0D0

ψ†2 + E−1 ψ†2ψ − 2λ0D0 ψ†ψ2

}
+ n0

∫
dxψ†(x, 0). (202)

Note that this is a dynamic action describing the Gribov process with a random
source independent of the active agent density. It is a natural assumption that the
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rate of change of the density due to the random sink is proportional to a power
of density. The assumption that the rate of change of the density due to the
random source is proportional to a power of density is not natural. Therefore, the
dynamic action (202) possibly predicts a critical behaviour of the Gribov process
different from that discussed in the literature.

In the third case with dψ† > 0 and dψ = 0, we arrive at the effective
action (201).

The analysis of scaling dimensions shows that we may actually lift most
of the restrictions on the probability distribution of the transition rates of the
type (180) and (181). Indeed, even if the higher order cumulants are ˇnite, the
scaling dimensions of corresponding terms in the dynamic action grow with the
order of the cumulant with the exception of the case, when the transition rate is
independent of the agent density.

The scaling-dimension analysis of relevant and irrelevant interaction terms
presented above appears somewhat formal. In particular, the arbitrariness of the
scaling dimensions of the ˇelds is an irritating detail. Therefore, it is instructive
to repeat the analysis with the use of standard power counting. Consider ˇrst
the case of particle-number conserving sources and sinks. The dynamic action is
then (195) at the critical point, i.e., with E+1 = σ+ = 0 and E1+1 = E−1:

S =
∫

dt

∫
dx
{
−ψ+∂tψ + D0ψ

+∇2ψ − λ0D0[2ψ+ + (ψ+)2] ψ2+

+ E1+1ψ
+2

ψ +
1
2
σ1+ψ+2(ψ+ + 1)2ψ2 +

1
2
σ−(ψ+ψ)2

}
+

+ n0

∫
dxψ+(x, 0). (203)

The divergence index of a one-irreducible graph is

δ = (d + 2)L − 2I, (204)

where d is the dimension of space; L is the number of loops, and I is the number
of internal lines. The usual conditions relate the number of loops, lines, vertices,
external ˇeld arguments Eψ and Eψ+ as well as the number of vertices Vij ,
in which the ˇrst subscript denotes the number of ˇelds ψ and the second the
number of ˇelds ψ+ in the action (203):

L = I + 1 − (V12 + V21 + V22 + V23 + V24) ,

I = V12 + 2V21 + 2V22 + 2V23 + 2V24 − Eψ , (205)

I = 2V12 + V21 + 2V22 + 3V23 + 4V24 − Eψ+ .

From these equations it follows, in particular,

Eψ − Eψ+ = −V12 + V21 − V23 − 2V24. (206)
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Eliminating the number of lines I and the number of vertices V12, we obtain

δ = d+2+(d−4)V21+(d−2)V22+dV23+(d+2)V24−(d−2)Eψ−2Eψ+ . (207)

Multiplying relation (206) by an arbitrary coefˇcient a and combining with ex-
pression (207), we arrive at the following representation of the divergence index:

δ = d + 2 − aV12 + (d − 4 + a)V21 + (d − 2)V22 + (d − a)V23+
+ (d + 2 − 2a)V24 − (d − 2 + a)Eψ − (2 − a)Eψ+ . (208)

Here, it is immediately seen that the choice of the value of the parameter a is
tantamount to choosing the values of the scaling dimensions of the ˇelds. Since
the divergence index δ is independent of a, we conclude that the choice of the
scaling dimension of the ˇelds has actually nothing to do with the UV or IR
behaviour of a one-irreducible graph. There is no mass parameter in the model,
therefore a divergence index δ with at least one negative coefˇcient of a vertex
number indicates potential IR divergence, while a positive δ corresponds to the
usual superˇcial UV divergence.

For further discussion, let us denote the generic vertex as vnmψnψ+m
and

refer to any particular interaction term by its coefˇcient function vnm. From
expression (207), it would appear that vertices v23 and v24 always make a positive
contribution to δ regardless of the space dimension, therefore they are deˇnitely IR
irrelevant. The vertex v22 is irrelevant above two dimensions, whereas the vertex
v21 gives rise to IR divergences below four dimensions. Since there is no known
regular way to cope with these directly, we have to rely on the usual connection
between the IR and UV divergences in the logarithmic theory and extrapolate its
results below the critical dimension with the aid of the ε expansion. Thus, if the
vertex v21 is present, the best we can do is to carry out the RG analysis around
the critical dimension dc = 4, at which the vertex v22 is also irrelevant, and we
are left with the Gribov process. From the point of view of the previous scaling
dimension analysis, representation (207) corresponds to effective action (193) at
the logarithmic dimension d = 4 with the ˇeld dimensions dψ = d − 2, dψ+ = 2
and dimensionless coupling constant of the vertex v12.

On the other hand, with the use of relation (206) we may eliminate any one
vertex number, except V22, which then leads to changes in the coefˇcients of the
remaining vertex numbers (apart from V22) and to a different classiˇcation of the
relevance of a given vertex, although the index of any graph does not feel the
change. For instance, choosing a = 4 − d in (208) to eliminate V21 we arrive at

δ = d + 2 + (d − 4)V12 + (d − 2)V22 + (2d − 4)V23+
+ (3d − 6)V24 − 2Eψ − (d − 2)Eψ+ . (209)
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Here, v22, v23, and v24 are all irrelevant at d > 2, whereas v12 is relevant at
d < 4. Thus, if V12 > 0, the only critical regime amenable to an RG analysis
is that of the Gribov process. It is evident from the preceding discussion that
eliminating a vertex number Vij from the expression for the divergence index
is tantamount to putting the scaling dimension of that vertex equal to zero and
thus ˇxing the scaling dimensions of the ˇelds correspondingly. The aim of the
power-counting analysis is to discard all graphs of a perturbation expansion of a
Green function with the scaling dimension (i.e., the divergence index) larger than
that of the leading-order expression. The divergence index is independent of the
choice of the scaling dimension of the ˇelds. In fact, the only tunable parameter
it depends on is the space dimension. Putting the scaling dimension of a vertex
equal to zero means that we are looking for the critical behaviour of the model
at a space dimension at which there are no restrictions on the number of these
vertices in the relevant and marginal graphs.

Since we are analyzing the effect of random sources and sinks on the pair
annihilation process, we should keep the v21 vertex in the effective IR model at
any rate and therefore, for the purposes of the physical model, put the scaling
dimension of this vertex equal to zero. This means that dψ = 2 and dψ+ =
d − 2, and that the critical behaviour of the model is that of the Gribov process,
which belongs to a universality class signiˇcantly different from that of the pure
annihilation reaction model.

From the point of view of classiˇcation of terms in power counting, the
two effective actions (192) and (194) of the previous scaling-dimensions analysis
correspond to elimination of Eψ+ and Eψ, respectively, from the expression for
the divergence index. This yields

δ = d + 2 − 2V12 + (d − 2)V21 + (d − 2)V22 + (d − 2)V23+
+ (d − 2)V24 − dEψ, (210)

= d + 2 + (d − 2)V12 − 2V21 + (d − 2)V22 + (2d − 2)V23+
+ (3d − 2)V24 − dEψ+ . (211)

Relation (210) suggests that all other vertices than v12 are irrelevant above two
dimensions leading to effective action (192). However, all these are ®dangerous¯
irrelevant operators in the sense that the negative dimension of the vertex v12 may
render the dimension of a graph with irrelevant operators negative anyway. Since
all dangerous operators have equal dimensions, they cannot be classiˇed by the
degree of ®dangerousness¯. Relation (211) leads to a similar phenomenon with
respect vertices other than v21, which has negative dimension there. However,
here irrelevant operators have different dimensions and this might serve as a basis
for classiˇcation of some operators more dangerous than others.

Let us recall that all expressions (207)Ä(211) for the divergence index are
equal and re�ect different choices of the ambiguous ˇeld dimensions. We see that
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in a multicoupling case it is rather difˇcult to arrive at the consistent conclusion
about the relevance of different vertices solely on the basis of the analysis of
scaling dimensions of ˇelds and vertex operators. In particular, to put either of
the ˇeld dimensions equal to zero at the outset appears to be quite misleading.
Assuming both ˇeld dimensions nonvanishing, put them equal to each other to
obtain

δ = d + 2 +
(

d

2
− 2
)

V12 +
(

d

2
− 2
)

V21 + (d − 2)V22+

+
(

3d

2
− 2
)

V23 + (2d − 2)V24 −
d

2
Eψ − d

2
Eψ+ . (212)

Here, indeed, all coefˇcients of vertex numbers depend of the space dimension
explicitly and immediately lead to the conclusion that the critical scaling behaviour
tractable within the RG is that of the Gribov process.

Consider then the action (197) for the active state. The divergence index does
not give the whole truth in this case due to the presence of the ®temperature¯
parameter E+1, but it re�ects the contribution of the wave-vector and frequency
integral anyway. Many new types of vertices appear, but the set of conditions
imposed on their numbers remains the same. In this case, it is convenient to
analyze the IR and UV behaviour separately. The reason is that the temperature
parameter is not involved in the power counting of UV divergences in any other
way that new vertices have appeared. Thus, the power counting goes in the same
fashion as above. Denoting new vertices by tilde, we obtain

L = I + 1 − (Ṽ02 + Ṽ03 + Ṽ04 + V12 + Ṽ13 + Ṽ14+
+ V21 + V22 + V23 + V24), (213)

I = V12 + Ṽ13 + Ṽ14 + 2V21 + 2V22 + 2V23 + 2V24 − Eψ , (214)

I = 2Ṽ02 + 3Ṽ03 + 4Ṽ04 + 2V12 + 3Ṽ13 + 4Ṽ14 + V21+
+ 2V22 + 3V23 + 4V24 − Eψ+ . (215)

Consequently,

Eψ−Eψ+ = −2Ṽ02−3Ṽ03−4Ṽ04−V12−2Ṽ13−3Ṽ14+V21−V23−2V24. (216)

From (213) and (214), it follows that

δ = (d+2)L−2I = d+2−(d+2)Ṽ02−(d+2)Ṽ03−(d+2)Ṽ04−2V12−2Ṽ13−
− 2Ṽ14 + (d − 2)V21 + (d − 2)V22 + (d − 2)V23 + (d − 2)V24 − dEψ . (217)
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Adding the relation (216) multiplied by the coefˇcient a to expression (217) we
arrive at the representation

δ = d + 2 + (2a − d − 2)Ṽ02 + (3a − d − 2)Ṽ03 + (4a − d − 2)Ṽ04+

+ (a − 2)V12 + (2a − 2)Ṽ13 + (3a − 2)Ṽ14 + (d − 2 − a)V21 + (d − 2)V22+
+ (d − 2 + a)V23 + (d − 2 + 2a)V24 − a Eψ − (d − a)Eψ+ . (218)

Here, by the choice of the value of the parameter a we could try to ˇnd a
representation convenient for the classiˇcation of the vertices. However, in this
case the vertex with the negative dimension ψ+ψ+ may be absorbed in the pair
correlation function of the ˇeld ψ included in the elements of the graphical
representation. In calculation of the UV index the ˇeld dimensions are then ˇxed
by the condition that the coupling constant of the term ∝ ψ+ψ+ is dimensionless.
There is no ambiguity in the expression for the index and denoting the number
of correlation functions in a one-irreducible graph Ĩ we arrive at the relations

L = I + Ĩ + 1 −
(
Ṽ03 + Ṽ04 + V12 + Ṽ13 + Ṽ14 + V21 + V22 + V23 + V24

)
,

I + 2Ĩ = V12 + Ṽ13 + Ṽ14 + 2V21 + 2V22 + 2V23 + 2V24 − Eψ , (219)

I = 3Ṽ03 + 4Ṽ04 + 2V12 + 3Ṽ13 + 4Ṽ14 + V21 + 2V22 + 3V23 + 4V24 − Eψ+ .

From here, it follows that

δ = (d + 2)L − 2I − 4Ĩ = d + 2 +
(

d

2
+ 1
)

Ṽ03 + (d + 2) Ṽ04+

+
(

d

2
− 1
)

V12 + dṼ13 +
(

3d

2
+ 1
)

Ṽ14 +
(

d

2
− 3
)

V21 + (d − 2)V22+

+
(

3d

2
− 1
)

V23 + 2dV24 −
(

d

2
− 1
)

Eψ −
(

d

2
+ 1
)

Eψ+ . (220)

The same relation follows from (218), when the parameter a is chosen such that
the coefˇcient in front of Ṽ02 vanishes. From (220) we see that when the vertex
v21 is marginal, all the rest are irrelevant and we arrive at the situation described
by the action (201).

This, however, is not the whole story, because in the case of IR behaviour
we are interested in the limit of vanishing temperature parameter. Since coupling
constants of new vertices are functions of E+1, they affect the limit of small
E+1 directly. The dependence of a graph on E+1 in the critical limit (ωi → 0,
ki → 0, E+1 → 0, ωi = O

(√
E+1

)
, k2

i = O
(√

E+1

)
) is readily estimated

by a suitable scaling of variables in the loop integrals, if these integrals have
negative dimensions, in which case the upper limit in integrals of a renormalized
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graph may be sent to inˇnity. The result of the scaling of integration variables
is a power of the parameter E+1 multiplied by a function of reduced frequencies

and wave-vectors ωi/
√

E+1, kiE
−1/4
+1 . The wave-number integrals deˇning this

function are UV and IR ˇnite for all values of the reduced frequencies and wave-
vectors and thus possess a ˇnite limit, when the latter vanish. Therefore, any
IR-singular behaviour is signalled by a negative overall power of the parameter
E+1, which takes into account both the scaling of integration variables (this gives
the divergence index δ) and the additional powers of E+1 at the vertex factors
of the graph. Thus, we might use the following ®IR divergence index¯ brought
about by the action (197) (here, σ+ is assumed to be subleading for simplicity):

δIR = δ+2Ṽ02+4Ṽ03+4Ṽ04+2Ṽ13+2Ṽ14 = d+2+
(

d

2
+ 2
)

Ṽ03+(d + 2) Ṽ04+

+
(

d

2
− 2
)

V12 + dṼ13 +
(

3d

2

)
Ṽ14 +

(
d

2
− 2
)

V21 + (d − 2)V22+

+
(

3d

2
− 2
)

V23 + (2d − 2)V24 −
d

2
Eψ − d

2
Eψ+ (221)

to guide in the classiˇcation of the interaction terms. The same form may be
obtained by the generic expression (218) with the choice of a such that the
coefˇcient in front of Ṽ02 in δIR vanishes. In order to keep the IR behaviour
tractable, all coefˇcients of the vertex numbers in (221) must be non-negative.
The lowest space dimension conforming to this requirement is the upper critical
dimension of the model. We see from (221) that dc = 4 for model (197) and the
effective action is indeed (202).

CONCLUSIONS

In conclusion, we have analyzed the effect of density and velocity �uctuations
on the reaction kinetics of the single-species decay A + A → ∅ universality
class in the framework of ˇeld-theoretic renormalization group and calculated the
scaling function and the decay exponent of the mean particle density for the four
asymptotic patterns predicted by the RG.

We have calculated the relevant renormalization constants at two-loop level
and found the decay exponent of the mean particle density at this order of the ε,
Δ expansion for four IR stable ˇxed points of the RG, whose regions of stability
cover the whole parametric space in the vicinity of the origin in the ε, Δ plane.
The decay exponent assumes the mean-ˇeld value in the basins of attraction of
the trivial ˇxed point (125) and of the kinetic ˇxed point (133) with dominant
�uctuations of the random force of the NavierÄStokes equation. At the kinetic
ˇxed point with ˇnite rate coefˇcient (130), the decay value of the decay exponent
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is determined exactly by the ˇxed-point equations. At the thermal (short-range)
ˇxed point (127), the decay exponent possesses a nontrivial ε, Δ expansion. We
have calculated three ˇrst terms of this expansion.

Using a variational approach, we have inferred a renormalized �uctuation-
amended rate equation with the account of one-loop corrections. This nonlinear
integro-differential equation has been solved iteratively in the framework of the
ε, Δ expansion and the scaling function for the mean particle density has been
calculated for the four IR stable regimes. The scaling function assumes the mean-
ˇeld form (exactly) in the basins of attraction of the trivial ˇxed point and the
kinetic ˇxed point with dominant �uctuations of the random force. At the kinetic
ˇxed point with ˇnite rate coefˇcient and at the thermal ˇxed point the scaling
function possesses a nontrivial ε, Δ expansion, which we have calculated at the
linear order. Fluctuations of the random advection ˇeld affect heavily the long-
time asymptotic behaviour of the system: the kinetic ˇxed points are brought
about by the velocity �uctuations as well as the nontrivial series expansion of
the decay exponent at the thermal ˇxed point (without velocity �uctuations, the
decay exponent is ˇxed to the one-loop value, because there are no high-order
corrections to the rate constant in this case). Predictions of the renormalization-
group analyses for the reaction A + A → ∅ in quenched random ˇelds have
been corroborated by numerical simulations [10, 13]. In the case of dynamically
generated random drift, this seems to be a much more demanding task, but would
surely be highly desirable, since the experimental data for reaction processes is
quite scarce.

We have investigated possible effects of random sources and sinks on the pair
annihilation reaction A + A → ∅. Contrary to the frequently used approach, in
which the sources and sinks are introduced into the Langevin equation, we have
included them directly to the master equation, where their physical sense is clear.
We have considered linear in particle number creation and annihilation reactions
with random rate coefˇcients to model the sources and sinks. On the basis of the
analysis of canonical scaling dimensions we have constructed effective actions,
which are the starting point for an RG analysis of the critical behaviour of the
systems under consideration. In all cases, the effect of random sources and sinks
to the large-scale, long-time behaviour of the Green functions is signiˇcant and
changes the universality class of the model. Instead of the universality class of
the pair annihilation reaction A+A → ∅, the asymptotic behaviour of the model
with random sources and sinks belongs to the universality class of the Gribov
process in the critical case and to a modiˇed Gribov process in the critical limit
of the noncritical model. In the former case, it is demonstrated once again that
the description of a stochastic process with the use of the Langevin equation is
signiˇcantly different from the description in terms of a master equation. The
random noise term in the Langevin equation corresponds rather to the account of
effects of genuine random sources and sinks than to a description of the effect of
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microscopic degrees of freedom on the mesoscopic process. Here, the universality
classes of the same reaction process are completely different in the case of the
master equation without sources and sinks in comparison to the case of Langevin
equation for the same process.

In the noncritical case with a random source independent of the agent density,
the Gribov process is modiˇed to account for effects in critical behaviour, when
sources and sinks asymptotically vanish. The analysis of the dependence of
scaling functions on the parameters of the probability distribution of sinks and
sources in infrared limit is called for. This reminds the situation, which takes
place in the theory of phase transitions, where statistical correlations of the order
parameter depend on a ®mass¯ (deviation of temperature from the critical value)
and the dependence of the scaling functions on the ®mass¯ is investigated.
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Appendix A
EXPLICIT FORM OF THE RENORMALIZATION CONSTANTS

A11 = − (1 + ξ)u2 + (3ξ + 2)u + 6ξ + 1
512u(1 + u)3ξ

,

A12 = − (1 + ξ)u2 + (1 + 3ξ)u + 6ξ − 4
256u(1 + u)3(1 − ξ)

,

A22 = − u + 5
512u(1 + u)3

,

B11 = B1(u) + B2(u, ξ), B12 = 4[B1(u) + B3(u, ξ)],
B22 = −B1(u) − B2(u,−1),

where the functions B1, B2, and B3 are given as

B1(u) =
1

1024u4(1 + u)3(u − 1)

[
−12u3(1 + u) ln

2
1 + u

+

+ 32u4(1 + u)2 ln 2 + 2u3(1 + u)2(u + 10) ln
4
3
− 32u3(1 + u)3 arctgh

1
2
+

+ 4(2u6 + 6u5 + 7u4 + 10u3 − 4u − 1) ln
1 + 2u

(1 + u)2
−
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− 4u3(1 + u)[4u2 + 20u + 9] ln
1 + 2u

2 + 2u
+ 16u3(1 + u)3 arctgh

u

u + 1
+

+ 8u3(1 + u)2(u − 1)(γ + ψ(3/2))u2(23u4 + 38u3 + 17u2 + 22u + 4)
]
−

− 1
128πu(1 + u)2(u − 1)

∞∫
1

dq

1∫
−1

dzF (q, z, u),

B2(u, ξ) = ξ
(2 + 4ξ)u2 + (10ξ + 8)u + 38 + 22ξ

1024u(1 + u)3(2 + ξ)
,

B3(u, ξ) = − (8ξ + 4)u2 + (14ξ + 10)u + 22 − 10ξ

1024u(1 + u)3

with function F given by the expression

F (x, z, u) = (1 − z2)1/2 M(x, z, u)
N(x, z, u)

,

M(x, z, u) = (x6 + 1)[z3(24u3 + 24u2 + 72u + 72)−

− z(8u3 + 12u2 + 8u + 60)] + (x5 + x)[−z4(40u3 + 88u2 + 120u + 264)+

+ z2(−4u3 + 16u2 + 108u + 168) + 4u3 + 14u2 + 28u + 18]+

+ (x4 + x2)[z5(16u3 + 96u2 + 48u + 288) + z3(12u4+

+ 64u2 + 128u2 + 96u + 180)− z(4u4 + 26u3 + 92u2 + 174u + 312)]+

+ x3[−z6(32u2 + 96) − z4(8u4 + 64u3 + 240u2 + 144u + 600)+

+ z2(−8u4 + 4u3 + 84u2 + 108u + 452) + 2u4 + 6u3 + 26u2 + 58u + 36],

N(x, z, u) = (1 + x2 − 2xz)(1 + x2 − xz)((1 + u)x2 + 2 − 2xz)×

× (1 + u + 2x2 − 2xz),

C(u, ξ) = − 1
8uπ

1∫
−1

dz(1 − z2)1/2G(z, u)+

+
1

8u(1 + u)

(
ln

1 + u

2u
+ 1 +

2 + u

u
ln

u + 2
2u + 2

+ ξ

)
, (A.1)
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where

G(z, u) =
4

(1 − u)2 + 4uz2

{
u − 1

2
ln

2u

1 + u
− 2(1 + u)z√

1 − z2
×

×
[

π

2
− arctan

√
1 + z

1 − z

]
+

u(u + 3)z√
2u(1 + u) − u2z2

×

×
[
π − arctan

zu + u + 1√
2u(1 + u) − u2z2

− arctan
(2 + z)u√

2u(1 + u) − u2z2

]}
. (A.2)

Appendix B
FIXED POINTS

u∗
1(ξ) =

8R

3
√

17
− 8192

3
√

17
B1(u∗

0) −
1

432
√

17(1 + ξ)2(2 + ξ)
×

×
(
(21384− 648

√
17)ξ4 + (52512− 2592

√
17)ξ3 + (22192 − 2736

√
17)ξ2+

+ (72
√

17 − 29064)ξ + 720
√

17 − 18768
)
, (B.1)

g∗12(ξ) =
64(R(2 + 3ξ) − 1)

27(1 + ξ)
− 16(2 + 3ξ)

243(1 + ξ)4(2 + ξ)
×

×
[
45ξ4 + 213ξ3 + 349ξ2 + 231ξ + 50

]
, (B.2)

g∗22(ξ) =
64(1 + R)
27(1 + ξ)

− 16(2 + 3ξ)
243(1 + ξ)4(2 + ξ)

[
57ξ4+171ξ3+185ξ2+93ξ+22

]
.

(B.3)
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