
C00-2220-105 

FIELD THEORIES IN TERMS OF PARTICLE-STRING VARIABLES: 
SPIN, INTERNAL SYMMETRIES AND ARBITRARY DIMENSION 

M. B. Halpem* 

Department of Physics 
University of California 

Berkeley, CA 94720 

A. Jevicki 

Institute for Advanced Study 
Princeton, New Jersey 08540 

and 

P. Senjanovic 

Department of Physics 
University of California 

Berkeley, CA 94720 

- NOTICE-
This report was prepared as an account of work 
sponsored by the United States Government. Neither 
the United States nor the United States Energy 
Research and Development Administration, nor any of 
their employees, nor any of their contractors, 
subcontractors, or their employees, makes any 
warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or 
process disclosed, or represents that its use would not 
infringe privately owned rights. 

ABSTRACT 

We provide essential tools for a program of rewriting field theories 

in terms of particle-string variables. The general methods are illustrated 

in the case of quantum chromodynamics: (1) We find the particle-trajectory 

representation for the quark Green's functional. (2) Thus, we derive 

directly correct end-point terms for quarks at the ends of strings. (1) 

and (2) are for any number of dimensions. (3) In two dimensions, we find 

a functional bridge from quantum chromodynamics to the Bardeen-Bars-Hansoh-

Peccei string. 
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I. Introduction •- * 

In recent years, the thrust of fundamental theory has turned increas

ingly toward the problem of quark confinement - the extraction of hadrons 

from local quantum field theory. Evidence is mounting that we may already 

know the beginning (quantum chromodynamics - QCD) and the end (string-like 

and bag-like theories) of such a program. Yet the path from field vari

ables to particle-string-bag variables has remained elusive. 

In 1950, Feynman ' made the first step in this direction, when he 

showed how to express the Green's functionals of scalar field theories 
(2) in terms of particle variables. In a previous publication , we pointed 

out that these particle variables x (x) can be identified as the trajec

tory of the end points of a string. Indeed, in two dimensions, where the 

gluon variables can be integrated explicitly, we concretized this intuition 

by providing a direct functional bridge from certain Abelian field theories 
(3) to the Bardeen-Bars-Hanson-Peccei (BBHP) string . 

Our goal in this paper is to provide the tools for a program of re

writing general field theories in terms of particle and particle-string 

variables. The first step in such a program is to find particle-trajectory 

representations for Green's functionals of fields carrying spin and internal 

symmetry in an arbitrary number of dimensions. The methods we use will 

suffice for any such fields; for simplicity, we choose to illustrate all 

our work with the case of QCD. 

This is the subject of Section II. There we find the particle-trajectory 

functional representation of the quark Green's functional in QCD. We find 

that each quark is associated with an x (T) (end-point trajectory) and an anti 

commuting trajectory-variable ^ ( T ) . The quantity iM> is conserved and equal to 

one for a single quark. The derivation thus provides correct end-point terms 

for quarks at the ends of strings. 
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In Section III, we discuss the same problem in light-cone variables. 

In Section IV, we apply the formalism, in the case of two dimensions, 

to find a functional bridge from QCD to the BBHP string. 

There is also an Appendix, where we give details of the derivation 

of the fermionic functional integrals. 
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II. Quark Green's Functional and QuarkEndPoint Terms from QCD 
We consider QCD in D^2 dimensions, 

L = *(ljl  e ^ A a  M ) *  JsF°v F^V, (1) 

F° = 3 A
a  8 A

a  ef a 6 Y A3 AY . (2) 
uv p v v u vi v 

The color group may be SU(N) or U(N), and the desired number of flavors 
is assumed implicitly. As discussed in Ref. (2), the Green's functions 
of the theory can be expressed as functional integrals over quark Green's 
functionals. As an example, the quark fourpoint function, shown in 
Figure 1, is given by 

G«l«2
a
3°«. = <0|T(*a (Zl) * <*2> il^Ug) * (*„) |0> 

= /PAa(A6) [det G"1] exp{i/dDx(!«Fa F " V
) } 

Vi F viv a 

8 [Gp
2 *(z2,Zlt;A) G p

3 1
(z3,z1;A)  G p

3 "♦(z3lz^;A) Gp
2 ^ . z ^ A ) ] 

(3) 

Here a are indices labeling spin, color (and flavor), while G^p(x,y;A) 
is the quark Green's functional: 

(it  eA° ^1  M ) * GlB(x,y;A) = 6 6°(xy) . (4) 
z. py r p p 

(6A) is some gaugefixing and FaddeevPopov determinant. The correct 
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time-ordering prescription is obtained via M -+• M-ie. In finding a particle-

trajectory representation for G , the quark field variables will be entirely 

eliminated from the theory in favor of particle variables. 

The method for finding this representation follows that of Ref. (2), 

but there are complications due to spin and internal symmetry. The first 

step toward the desired representation is to -Invert Equation (4), 

Toward this end, we introduce a preliminary operator formalism. We 

define position and momentum operators P ,x , and coordinate eigenstates, 

x |x> = x |x>, <x|y> = 6 (x-y), <x|P |y> = - i9x <x|y>. (5) 

We will also introduce -anti-commuting quark operators ty , ty0 such that 
a. p 

K>hh - V (6) 

Here \\> = \\> y but, so that <Ji may be a spinor under Lorentz transformations, 

we have taken the [i(',ij'J algebra. Such representations were first intro

duced for dual models, and for the same reason, in Ref. (4). 

We construct a ,̂̂ j7 Hilbert space by multiple application of ij> on a 

state |o>, defined by 

i|) |o> = 0^ <0|0> = 1. (7) 

Most useful to us will be the product states 

|xa> = ij>a|x,0> , 

|x,0> = |x> ® |o> , 
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<xB| = <x,0| i | i , 

<xa|yg> = 6D(x-y)6 0 . (8) 

We also define an operator G such that 

< x | 8 a V = Gae(x,y;A). (9) 

We now have the formalism to incorporate the spin and internal symmetry 
indices in the operator statement; define further 

G = i GaB * . (10) 
ot 8 

Then it is immediate that 
<xa|G|y3> = Ga6(x,y;A) . (11) 

In this notation it is not hard to see that Equation (4) is equivalent 
to 

- t[t + e A x ) ^L + M ) J G - 1 . (12) 

The verification proceeds by sandwiching Equation (12) between <xo| and 
|y6>. You must note that 

H = l IP + e A°(x) ̂ L + MJ i (13) 

does not change the particle number 

N = ̂  ip, (14) 

so only intermediate states with N=l can contribute. 
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The desired inversion is then 

G = - - - , - — i— . (15) 
i If + e Aa(x) hSL + M-ie\ J 

where we have chosen the time-ordered boundary condition, Further, then 

G (x,y;A) = <xa|G|yB> 
CXP 
= - <xa|J |yB> 

H-ie 

= -i /dT<xa|e"iTH|y3> . (16) 
0 

To get the [H-ie] form, we again used the fact that H does not change 

particle number, and that the external states have N=l . 

Equation (16), together with Equation (13), is in large part the 

attainment of our goal. The quark Green's functional is expressed in 

terms of (operator) particle variables. 

For further application, as in Ref. (2), it is valuable to put (16) 

in a functional integral form. This is a matter of defining anti-commuting 

c-numbers on a suitable grid. The calculation is technically involved, 

and there are some tricky points, especially in regard to the external wave 

functions. Details are given in the Appendix; here we state the final 

result. 

<xa|e |yB> 

= Jflx^ PPv tty tty **>a (x(T), ip (T), * (T)j 

* e(x(0),iK0),iK0)l e i S , (17) 
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T 
S  f [ P  x + |  * T i|)H]dT, (18) 

H = * [t + eAa(x) ̂  + Mj *. (19) 

Here *,* are the external wave functions, 

*y>B U)J(0),*(0)  e^(0)*(0) ?p(0) 6° (x(O)y) , 

**>a (x<T>.*(T>.*(T>)  e^<
T
>*<

T
> ^(T) <? (x(T)x) . (20) 

The functional integral is over the location of the quark trajectory 
x ( T ) , as a function of some "proper" time T, and over anticommuting 
cnumbers i|>,iji. 

Except for the details of the external wave functions, the functional 
quark dynamics is what one might guess from Equation (13). In operator 
language, using [x^.Pj = ig , I^.'l'gl^ 6a3»9

T°
 = i^. 0

].
 the Hamiltonian 

equations of motion are 

i3T *(T)  \t + M + eAa(x) M J(T) , 

i3T *(T)  id) It + M + eAa(x) ̂ j , 

x (T) = ♦ Y * , 

Py(T) = *e^rA°(x) ̂ L * • (2D 
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From these, it follows that N • i|> i|< is conserved, a6 expected 

aT<W)  o. (22) 

This also follows from an application of Noether's theorem to the invariance 

ty -*■ e iji. In the sector we are considering, it is consistent to set 

4MJI = l in the Hamiltonian, and take instead 

H'= J If + eA°(x) ̂ . W + M . (23) 

This can be done inside the functional integral, but one must not tamper 

with the external wave functions, as given in Equation (20). 

Another remark worth making is about Zitterbewegung. The x equation 

of motion is showing that phenomenon: in |\|)>,<ij»| states, <x > ̂  Y • This 

can also be seen directly by doing the V? integration. Thus, we have not 

only "ordinary" Zitterbewegung (y « 1,2, . . . Dl), but an "x°Zitterbewegung" 

as T goes on. Apparently, the fermion is switching back and forth between 

particle and antiparticle. [What is constant is N=l, but N cannot tell 

the difference between fermion forward in T and antifermion backward in T ] . 

An important byproduct of our result, Equation (17), is that we have 

derived correct endpoint terms from QCD for quarks at the ends of strings. 

In fact, of course, we do not yet know how to integrate the nonAbelian 

gluon field (except for D=2). Proceeding formally however, by putting 

Equation (17) back into Equation (3), we derive for the stringplusend

pointsaction 

ST h  S ( 0 ) . + S(0> , + e2 S , , • (24) 
Total quark antiquark string 
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Here 
T 

Sn!!Lw = f dT [x * P + k * X * " * (f + M) «. ] . (25) quark J 1 1 l 2 1 T l i j 1 

and the same for S ^. , , with T„,T ,x„ ,P.,iJ>̂ ,̂ „. (The difference at 
anti-quark' 2' 2 2 2'r2 2 

this stage is only in the external wave functions. See also Section IV.) 

We do not have an explicit expression for e2 S . (the result of the 

gluon integration). We do know, however, that it is 0(e2), and it is 

additive. From a general point of view e2 S . is sn extremely complicated 

functional of x ,P ,x ,P ,ty ,ty ,\|>?,ij(2. We speculate that it will be con

venient not to integrate Aa out, but rather to change variables Vka -*• 
VX (O,T) to string-like variables, e2 S . will then also be a func-Vi string 
tional of these variables. 

The reader should recall that T are finally integrated over, as 

in Equation (Ifi). The Bars-Hanson end-point terms have no such additional 

integration. Thus, the connection of our end-point terms with those of 

Bars and Hanson deserves further investigation. In fact, we can show 

such a connection in two-dimensions (see Ref. (2) and Section IV of the 

present paper). In an arbitrary number of dimensions, a fruitful approach 
(6) 

may be to consider the semi-classical limit of our end-point terms: if 

one also varies with respect to T, it is easy to show that, for each quark, 

the additional equation of motion 

H = Uf + M + eAa ^L) * = 0 (26) 

is obtained. The solution of the system is then very close to that of 

an ordinary Dirac equation. In particular, one obtains a "pseudo-classical" 

dynamics, similar to that studied by Berezin and Marinov and other workers. 
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We will, at the end of Section III, make some further remarks about the 

difficulties of showing correspondence between our end-point terms and 

those of other workers. 



12

III. LightCone Treatment > 

Again we begin with the action for QCD in D>2 dimensions (Equation [l]). 
(8) 

This time, we introduce lightcone coordinates 

+ A0 + AD-1 + o + D _ l 
. - A Z A - x" - x 
A = , x = 

± Y ° ± YD_1 + 2 - o + -

y = *—=?■—, (Y ) - (Y ) 2 = o, (Y ,y ) + - 2 
V2 

+ ± 
R± ° h y Y , R+ + R_ - i , R+ R_ - o 

* 5 R. *, A° ? £ = A . 
+ + vi 2 y 

After a l i t t l e algebra, we reach, 

L =y2~(ij ;_)+ (i3_-eA+) U»_ + JT (*+)+ ( i3+ -eA~) ij>+ 

-j= (* J + (lY±31-eA1Y1 + M) y \ 

(27) 

- p . 0i<+)
 + ( iY i 9 ± -eA i Y 1 + M) Y"*_ . (28) 

Here l^i^D-2 denotes transverse var iab les . As i s well known, ij; i s a 

dependent variable 

JT~ d a _ - eA ) ^_ - - ~ ( i Y
i a i - e A ^ 1 + M) Y + + + = 0, (29) 

VT 

and can be eliminated from the dynamics. 
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We intend computing Green's functions involving external ty 's only, 

so we begin with the generating functional 

Z [p,p+] = WJPA(6A) !ty_+ tty_ tty++ lty+ 

® exp { i J d D x [L + 2k p\+ + 2 h <|,++p] } . (30) 

The factors 2 have been introduced for convenience, and N is the customary 

normalization. We now rescale 

f+ - 2~k *+, ̂ +
+ * 2_Ji *+

+ (31) 

and integrate over ty ,ty . The result is 

Z [p,p+] = N J DA(6A) Tty+f tty+ det(i3_- eA+) 

9 exp {ijd° x [L+ + p % + + i/>+fp]} , (32) 

L+ = *+
+(i3+-eA~) * + - $5 * +

+ KT (i3_-eA+)_1 K^ * + , 

K̂ , = iYi3± - eA*Y± + M , 

KT
+ = -iYi3i + eAiYi + M . (33) 

In the usual way, one then expresses Green's functions in terms of the 

quark Green's functional. For the light-cone ordered 4-point function, we find 
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C l ¥ A " *«>l* (<<«!> ^ U 2 ) ^ 3 U 3 ) ^ («y)jh 

- -[Vk Q(A6) d e t ( i 9 - eA+) [det G_-1 ] 
J y ~ * 

® e x p { i f d D x ( - ! S F a F ; J V ) } 0 [ G _ a 2 a H z 2 , z , ; A ) G_° ^ (z 3 , Z l ,A) 

a * * w _ _ .AN ~a,a , (34)  G ^ ^ . z ^ A ) G;
2a
l(z2,2l;A)]. 

Here the lightcone ordered quark Green's functional G satisfies 

{i9+  eA~  %(iY
i
9i  e A ^ + M) *_ & A + ( I Y ^ + eA^ 1 + M)} 

® Gp[A] = R+6
D . (35) 

The (ILghtcone) time ordering prescription is, as usual, M »■ M  ie 

(or K + K  ie, K "► K. - ie). Because (R+,Y ) = °, it is easy to 

show from Equation (35) that R, G_ R = G_, as it should be. It is our 
^ + F + F 

job now to invert G , and express the result in particle variables. 

In this form, we are going to have trouble with one of our inversion 
A —1 f —iHT 

tricks: if we are to use again the simple identity [i(H-ie)] = I dTe , 

we must have the ie term of definite sign. In Section II, this was true; 

we found ie tyty % ie in the sector of interest. In the present light-

cone formulation, the ie term is loaded with structure of unknown sign: 

we need only worry about the ie term at e = 0, because other e-structure 

is part of the vertices and therefore irrelevant. But even at e = 0, 

the ie term in the bracket of Equation (35) has the form (i9 ) iell (and 

will be worse when we introduce the fermion variables). 
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To circumvent this, we employ the trick of Reference (2). Define 

another, more "bosonic," Green's functional by 

Gp = 2(i3_  eA+) G , (36) 

{2(i9^  eA") (13  eA+)  K_ r K„+(i3  eA+)} G * R 6D , 
+ "

 T i9  eA+ a + 

K̂ .  1^  ie, K ^ + K ^  ie . (37) 

Now the ie term at e = 0 has the form +ie2M = +ie, and this will suffice 

for the inversion. We record 

{2(i9+  eA") (i3_  eA ) + Rj *_ ■ K,, (i3_  eA ) ie} G=R+6 

(38) 

It will also be useful to have the equation in another form: multiply

ing the equation by R from the left and from the right, and noticing 

that (R,,Y ) = 0, we can write 

R+{. . .} R+ R+ GR+ = R+6° , (39) 

where {. . .} is exactly the bracket of Equation (38). The R.'s will not 

prevent the inversion. 

Following Section II, we next introduce an operator formalism. For 

x , P ,x ,P , we take over the definitions of Section II. For the fermionic 
V \1 \1 V 

structure, we introduce 

f*4a» KlK = <VaB' V + = *+» *A = *++ 
(40) 
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The relevant states (and operator Green's functional) are 

|xct> = ^ | x , o > , |x,0> = |x> ® |0> , 

^+B lo> = 0 , <o|o> = 1, <xa|y3> = <S (x-y) (R+) a g , 

— * t -aB * 
v+a V+B 

<Xd|G|y$> = (R+ U R +) a B = Ga6 . (41) 

The operator statement equivalent to Equation (39) is now 

(H - f i++ i+) G = - ± , («) 

H = -i+f(p" + eA"(x)j (P + + eA+(x) ) J+ 

+ h *+\ry±*± ~ ̂ ( x ) Y1 + M ' P+ + eA+(x) 

® (Y1P1 + eA1(x) Y 1 + MJ (P+ + eA+(x)) J+ . (43) 

+ As in Section II, the operator N = \\> tjj commutes with H and is equal 
to l on the states |xa>, so we have 

<xa|8|yB>-^R+G<x.y) R+ ) ^ = G^x.y) 

= - h <xa| — : - — Iy6> 

= - h <xa| 

H -

1 

H -

i e 
2 

i e 
2 

|y3> 
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= -A f dT <xa|e'iHT|yB> . (44) 
0 

A calculation almost identical to that of the Appendix yields the functional 

integral form 

I -iHTi . <xa|e |v3> 

- JP*+
+ fy+ PPPx •^(*+.*+

+,x) •JB(*+,*+
+,x) e i S , (45) 

T 
S = f dx [P • x + h *.+ T *. - H] 

I + T + 
(46) 

where H is the same form as Equation (43) with all x ,P replaced by c-numbers 
- .j. -

x ,P , and fermionic operators to ,i|i replaced by anti-commuting c-numbers 

iK »iK. These are taken to satisfy R.'J', = V'.»'l'+ R. = 'I'. • The *'s a r e 

external wave functions, 

•JB<*+.*++*x) - «D t (o)-yj *o,8<V*++) . 

»D|((W) -e " ^ + ( 0 ) M 0 ) *> ) . 

C(^'C'X) = fiD(x(T)-xj*T*a(^+,n+), 
* ,, , 1\ -^.+(T)^,(T) 

*T,a(,''+**+ > - e + + ^ ( T ) . (47) 

* t ~ As in Section II, one easily recovers 3 (i|i \\> ) = o from the equations 

of motion. Further, if desired, i|> ij; may be set to 1 in H (inside the 

functional integral). This completes our task. Equations (44) to (47) 
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express the quark Green's functional as a path integral over particle trajec; 

tories in light-cone variables. 

Light-cone quark end-point terms can again be read off from the e = o 

form of Equation (45); for quark or anti-quark 

T 
S(0) = f dx[x • P + j *++ V *+ + *++ P" P+ *+ 

- h *+
+ ( -Y1 P± + M) (Y1 P± + M) *+] . (48) 

Again, the connection with Bars-Hanson end-point terms in obscure, except 

for D = 2. Drawing on our experience in Reference (2), we can make a few 

remarks about why this is so. 

In light-cone gauge, A = 0, we can easily do the P integration in 

Equation (45), obtaining a factor 

6(i+ + <|>++ P+ * ) e 6(x+ + P+) . (49) 

+ + 
Since P has arbitrary sign, so also will x . In Reference (2), we argued 

that the end-point terms of Bars and Hanson (5) correspond to a single sign 

of x (positive for quarks, negative for anti-quarks), and we explored a 

method (the "chopping" procedure of Reference (2)) of eliminating the sign 

changes of x . Indeed, if sign changes of P , x are ignored, the {-function 

of Equation (49) is enough to do the T integration and get very close to 

Bars and Hanson's end-point terms. Unfortunately, the "chopping" procedure 

is Lorentz-invariant only for D = 2; in other dimensions the connection 

between our end-point terms and those of Bars and Hanson is not yet clear. 

As mentioned in Section II, it is our feeling that a study of the semi-classical 
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limit of our dynamics may provide the connection with the terms of Bars 

and Hanson: it is physically reasonable to expect that sign changes of 

x (or i in Section II) would be suppressed in that limit. 

L 
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IV. Bridge from QCD2 to String 

In this section, we shall "specialize the results of Section III to 

D = 2 and proceed to find a functional bridge from two-dimensional quantum 

chromodynamics to the BBHP string. We will assume some familiarity with 

the methods of Reference (2), where we detailed a similar transition for 

Abelian gauge theories in two dimensions. 
(9) 

In two dimensions, ignoring annihilation graphs and quark loops , we 
have . 

G? a 2°#\ £ i t B 2 f l 3 t £ i f ) = 2<0 |T^(« 1 ) ^z2) *4a3<*3>++aS)) ' 

« |DA+
a DA~Q (6A) exp {\ j d2x F° _ F°_} 

0> 

Gp
2 \ z 2 z^A) Gp^l (z3,Zi;A) . (50) 

We know further that 

Gp = 2( i3_ - eA+) G , (51) 

00 

Gag(x,y) = - § J dT <xa|e"iHT|yB> , 
0 

<xa|e"iHT|yB> = / l ty+
+ P*+ V? flx »*][(*+.*+

+.x) 

(52) 

*JB<*+.*+?*> e±S > (53) 

• , i , t « S = f dt [P • i + j i|/+T 3T i\> - H] , (54) 
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H= -*+
+(P~ + eA") (P+ + eA+) <J,+ + h M2 </>++ i|>+ . (55) 

As in Reference (2), we choose to "chop" out the "pure" quark part of 
~a ^i .+ G„ (z ,z ;A) by the Lorentz-invariant, gauge-invariant insertion 6(x ) F 3 1 
inside the functional integral. This procedure was discussed in detail in 

Reference (2). In terms of trajectories, we are requiring the particle 

always to go forward in proper time. In light-cone gauge diagrams, it is 

not hard to show that the chopping amounts to a change in the propagator 

+ + f d2p e _ i p * (Z3 ~ Z l ) + 
sF(z3-z1)^e(z3

+-z1 ) sF(z3-z1)=/-AfEre , . M + le- e(p), 
(56) 

which suppresses all light-cone Z-graphs. Similarly, we will (later) chop 

out the pure anti-quark part of G (z„,z.) by the insertion 6 (-i ): "pure" 

anti-quarks moving forward in T are like quarks moving always backward in 

proper time; this corresponds to 

SF(Z2 " ZW ) ~* e(z4 " 22 > SF(z2 " zh> 

J (2ir)2 _jj - M + ie 

Both choppings thus correspond to 6(p ) insertions on all Fermi lines. 

As mentioned in Reference (2), it is a fact that the t'Hooft integral equa

tion "chops itself" during solution: the same solution is obtained for 

that equation whether the extra 0(p ) ' s are fed in or not. We further 

define formally in coordinate space 6(0) = 0. This suppresses (light-cone 

gauge) all mass and vertex renormalizations. The chopping procedure is 

quite appropriate to get to the BBHP string - which, e.g., neglects mass 
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renormalizations. On the other hand, the procedure is presumably only an 
an interim measure for the present non-Abelian case, as we are not taking 
full advantage of the N~ expansion. (The N expansion, by itself, 
suppresses vertex corrections.) 

For the quark Green's functional, then,we wish to study 

00 -

G°3a 1 ( z 3 , Z l ;A) = DZ3 J dT J tty+
+ Zty+ Vx+ Px" P P " PP+ 

0 x(T) = z 3 
x(0) = z1 

® K „ (^^4-+> ^o n <*4..*Jt) e(i+) e i S, DZ3 = 3 Z 3 + ieA+(z3) , (58) 

where S is given in Equation (54). The subscript C on G denotes "chopped". 
It is our option, if we choose, to set iji ^ = 1 in S. 

The following manipulation (on the quark Green's functional) follow 
quite closely the procedure of Reference (2). Choosing the light-cone gauge 
(A = 0 ) and doing the P~ integration, we obtain 

Sc"1 (23'zl'A> = f dT + / + % + ^ . PP+Px+Px" 
J
0 x(T) - 23"*" 

x+(0) = z + 

x"(T) = z 3' 
x"(0) = z " 

• *T!«S
(*+'*++> ' o . a / V O iP+(T> 6[ET<X+ + P + > 1 

T 
6(-P+) ® exp {i j dT[P+ x" + i *+

+ V * + + e^+
+ P+ A_ *+ - h M2] } . 

0 

(59) 
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In this form, the factor 3_ (of Equation [58]) has been brought inside 

the functional integral by the standard method l3_ -*■ iP (T)J. e is the 

size of the xgrid, as in Reference (2). Because the chopping does not 

allow P ■ 0 (no mass or vertex renormalizations) the following change of 
(12) 

variable is welldefined, 

P
+
(T) S P (X), X (T) H X (X) , 

* + ( T ) H * +<X), * +
+
( T ) S * +

+
(X). (61) 

The minus signs are necessary to maintain X>0. Then, as in Reference (2), 

6[e(x
+ + P+)]  6(z +  z.+  A) n 6(x

+
(X)  X  z1

+
) (62) 

T 3 0<X<A \ / 

These 6-functions are j u s t enough to do the x and A in tegra t ions , with 

the resu l t 

GpC
3°ll(z3,z1;A) = - i 8 ( z 3

+ - Z l
+ ) _ + J + _ W+ t?x-8(-P+)e i S 

x~(z3 - zx ) = z 3 

x*(0) = z j " 

+ - . 1
+ , a 9 M +

+ ] f0 iOllV*+
+l • (63) 

% Y * 
Z

3 

+ + 

/ ' " "' dX'fc + 7 ♦+* Tx *+ - V eA" (X + Zt- X" (X)) *♦ 
0 

+ ? + * " ' • (64) 
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Note that, as promised, the chopped G is non-zero only for z 3 >z, . ..A 
last change of variables, 

+ -+ + -X + Z j =Tj,P (X) =- P2 ( T ^ X ^ X ) = Xl (Tl) , 

*+(X) 5 ̂ ( x ^ . f ^ t t ) = *+^(T!) , " (65) 

brings us to a res t ing place for the chopped quark Green's functional 

Gp 3 a l (z 3 , Z l ;A) = - i 6 ( z 3
+ - Z l

+ ) + f _ p P l
+ p X l " 6(P1

+) 
x l ~ ( z 3 > = z 3 ~ 
x2 (z2 ) = zx 

x V^l V*+i eiSl »*3 + f a 3[*+ l .^] \+,aiKl>hl] • ( 6 6 ) 

+ 
S1 = f3 dx, (- P,+ i , + + T * J "X *_ - H, ) , (67) ]\"l<-*i**i* + ?*«\ *«'*!>-

Zl 

H i c IP7^T + e^ ( T l > A~ (v*i"<Ti>) W • (68) 

We turn our attention now to the "anti-quark" Green's functional 
G_ (z2,z^;A). The previous 6(i ) chopping quaranteed that the quark 
moved always forward in T; to guarantee that the anti-quark moves always 
forward in T, we must chop now with 0(-x ). We are studying then 

G°2°''*(z2,zit;A) = D Z 2 7 dT J P<|.++ tty+ Px" Px + PP" PP+ 

0 X 2 ( T ) = z2 
x2(o) = zk 

9 6(-x+) *J <*+.*++> f0, a i f<V*+
+> e±S * ( 69 ) 



-25-

where S is given in Equation (54). As above, we bring 3_2 inside the func
tional integral, choose light-cone gauge, and do the P integral. The 
resulting 6-functional 6[e (x + P )] this time brings the 6 function to 
6(+P ) . The desired rescaling is this time 

x JT A -
_dX T . . f dX T 5 C ^ _ T s + f _ d X _ 

J P+(X> J P+(X) ' 0 o 

_+, . . ^ , ± -± P T ( T ) = P^(X), x (T) = x-(X) , (70) 

and similarly for the fermionic variables, as in (61). The sign is again 
chosen to keep X^O. Because of this sign change relative to Equation (60), 
the 6-functional identity is now 

6[e (x+ + P+)] = 6(z + - z + + A) n 6[x+(X) - z + + X] . (71) 
0<x<A 

The integration over A results in the factor 8(z. - z ) , and A is set 
equal to z^ ~ z2 • ^he integration over x (X) is simple, setting 
x+(X) = z + - X . 

Finally, in analogy to Equation (65), we make the change of variables 

z^ - X = x +(X), variables (X) = variables2(T2) (72) 

obtaining our result, the chopped anti-quark Green's functional 

G ^ N z z . z ^ A ) = - i 0 ( Z i <
+ - z2

+) f+ _ PP 2
+ Px2" V*+l PiJ;+2 9(P2

+) 
x2"(ztt ) = z~ 

x„ (z„ ) = z 
2 2 2 
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+ z, 
S2 - f+ dx2[- P 2

+ x2" - | )+l r 2 *+2 - H2] , (74) 
Z 2 

H2
 = . A , , ~ ^+2

ixZ) A"h2 ,x0 (x,)J *_(x„) . (75) l 2 ^2P+(x , ) " " W V A VT2»X2 ^ V / *+2*V 
2 V l 2 ^ 

Since z^ >z2 for the anti-quark (moving forward in x), we have taken the 

liberty of interchanging the positions of ¥ and Y* (at the cost of one 

minus sign). Note that, for the anti-quark, the final wave function is not 

complex conjugated, while the initial wave function is. Also the derivative 

term differs in sign from the quark form. These effects are because (pure) 

anti-quarks are like pure quarks moving backward in proper time: the roles 
t t 

of i|) , i|> are interchanged relative to the roles of ty , ij> for the quark. 

(Operatorially, \\> |o> $ 0, but ^ T̂  10> = 0) . 

We choose to uniformize by the fermionic change of variables 

\b + = U( . d> = - iL + . (76) 
H-2 V+2 * *+2 v+2 v ' 

Thus, 

W ^ - O - V.s ( i« , i> 

V.^***-*^'" V.*2
(i+2'i+2)' 

K2X ̂ 2
 = +li+ITx, *«• 

T 
r+2 2 y+2 V+2 -y~ ̂ +2 » 

*« Kl = *+l *+2 • <77> 
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In terms of the twiddled variables then, the anti-quark Green's functional 

has exactly the same form as the quark - except for the sign change of e 

and the transpose (T) on all X-matrices. Dropping the twiddles, we record 

our final result for the chopped anti-quark Green's functional: 

C ^ N Z J . ^ A ) = ieU„+ - z+) fv?* Px2" P*+J D*+2 e(p2
+) 

*:»+...^-O V.-21**-**1 elS2 • <78) 

+ 
S2 = J*+ dx2[- P2

+ i2" + f ^ T2 Kl - H2] , (79) 
Z 2 + 

"2 = I7V7"e K^2) A"T ( T 2 , X 2 " ( T 2 ) ) *+2(T2)' (80) 

Now we a re ready for the f o u r - p o i n t - f u n c t i o n . I n s e r t i n g Equations (66) 

and (78) i n t o Equation (50) and doing the func t iona l i n t e g r a t i o n over A 

(as i n Reference [ 2 ] ) , t h e r e s u l t i s 

G^ 1 2 3 ' t ( z 1 , z 2 , z 3 , z i t ) 
z 3 = \ 
zl = z 2 

Z3 > Z l 

) + _ ^ j " ^ ! + p x 2 " ^ P 2
+ 6 ( P l + ) 0 ( P 2 + ) ^ + 1 ^ + 1 VKz VKz 

* l " ( l 3 + ) = Z 3 

x 1 ~(z 1 ) = z1 

x 2 " ( z 3
+ ) = zk' 

x 2 " ( Z l
+ ) = z2" 

(1 )* ,,,(2)* „(1) „,(2) IS «F + If I If + V . 
Z 3 ' a

3
 z 3 >** Z l , a i z l »a2 

e (81) 
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+ z 
s - j 3

+ dx[- P l
+

 Xl- - P2
+ i f + | * J T *+1 + i ^ T T *+2 - H] , 

z l + 

H = J^ + IP7 + # ^ 2 ^ * + 2 I X I " - X 2 _ I C ^ *H 

(82) 

(83) 

The superscripts (l) and (2) on the external wave functions denote the 
factors involving ik and ty respectively. 

At this point, we prefer to employ the. equivalent operator Hamiltonian 

H = -4-x + JgL + «- *I — 2̂ K" - x2"l *l + ̂  *l • (84> 2P,+ 2P,+ 2 Z 2 * * * l Z l 

If we choose the initial state as a color-singlet, the functional integral 
will be expressible in terms of the eigenvalues spanned by the state(s) 

1 i> V„ |0>. In the color-singlet sector H takes the form, then, — la 2a' 

2N For U(N), the potential is thus ~- |x ~ - x ~|, while for SU(N) it is 
2 1 — ( N - —) |xj - x "| . This is the BBHP string Hamiltonian. 
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Appendix: Derivation of Fermionic Functional Integrals 

Here we extend the techniques of Candlin and Berezin to derive 

the functional integral forms stated in the text. 

We will need fermionic operators ty ,ij> , satisfying (ip ,ip ) = 6 
s s t s i* rs 

and anti-commuting c-numbers ij> ,ij> . We assume that the appropriate Klein 

transformation has been done, so that the anti-commuting c-numbers also 

anti-commute with the operators. The indices r,s subsume spin, color, 

flavor, etc. We will need a number of theorems. 

Theorem 1; [i|> ,e**] - * e** . (A.l) — m m 

N 
Here ^ ty = £ i|> i|» and the proof is immediate using e B e = B + [A,B] 

s=l 8 s 

(when [A,B] is a c-number). 

Theorem 2: J * e** = e** e*'* e*' * . (A.2) 

This is also immediate, using e e = e e e ' , for [A,B] a c-number. 

Theorem 3: (Completeness). The ("coherent") states 

|ty> = e"1*** e* " ^\0> , ij* |o> = 0 , 4i |ij)> = $ \$> , (A.3) 

satisfy the completeness relation 

f N _ 
1 = J n d*£ d ^ |i|»> <*| . (A.4) 

This can be shown term-by-term in a comparison with 

1 = |0> <0| + <|> |0> <0| \\> + . . . (A.5) 
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Now consider the object 

<o|ir e"iHT^s|o> = <r|e"1HT|s> , (A.6) 

with H «= ij> T i|>, and T a matrix-valued function independent of 4»,i|*. We 
—iHT —iHe M introduce a grid of length T = eM, and spacing e, by writing e = (e ) 

Completeness is used repeatedly to obtain 

, I - iHT| ^ f .-M . ,M j 7 0 . ,0 
< r | e |s> - J dij; dip . . . dip dip 

® < 0 | i r i /> </ i | e - i H e i / - i > 

. . . V|e" 1 H e|/> <*°|is|0> , (A.7) 

where |<J> > is a complete set at the k grid point. Using theorems 1 and 2, 

it is not hard to evaluate 

<*V _ 1> = e - ^ ( * k - *k_1> + * ̂  - * k ' 1 ) / " 1 . (A.8) 

<^k|H|4'lc~1> - < / k k _ 1 > ** r * k - 1 . (A.9) 

Thus, for small e, 

^.ki - iHei.k-1 r i - r k ^ k ,k-l N i . - k - k - 1 . ,k 

- l e * r \l> ~ } . (A.10) 

For the end-points, we also need 
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<o | j r iA . . - " ^ *M * M 
r » 

<*°|i |0> = e'1**0 * % ° • (A. 11) 

Putting everything together, we have 

M r , -jM ,M 

<r | e™|B>-n f d ^ W e " ^ * * 
n=0 -

r . \-> r i -k.iji - ip . i /ip - * N , k - l 
exp {ie 2^ [-=- ip (- -* ) - 7 (- r* ) * 

k - l 

^ r Z " 1 ] } Qe-h*° +° * 8 ° . (A. 12) 

As e»0 at fixed T=eM, we have finally 
T 

<0|*r e"iHT *s\0>  Jo* Pi), ** U(T),*(T)j e ° J i dx i 
® *8U(0),*(0)1, 

(A.13) 

i = 4 * V *  trill . (A. 14) 
2 X 

Here * ,* are the external wave functions 

** (?(T),*(T))  e**(T> *(T) *r(T) • 

*s (MO),*(O)] = e-***M ♦CO) ̂ (o) . (A.15) 

With superposition of the usual coordinate space structure, this is the 

result quoted in Section II of the text. Only minor notational changes 

are necessary to adapt this derivation to obtain the lightcone forms stated 

in Section III. 
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Figure Captions 

Figure 1. The quark four-point function. 
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