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1 Introduction

1.1 Effective theories and singular limits

Physics is all about length scales, and most theories that we use to describe Nature are

effective theories, including the spectacularly successful Standard Model of particle physics.

Effective theories are often formulated by going to a certain sub-sector of a higher theory.

Hence, often there is a lot to be learnt by focussing on a sub-sector of a particular theory.

One of the very obvious examples that come to mind in this regard is the non-relativistic

sector of well defined relativistic theories, which become important for most of the physics

around us. Galilean physics is obtained from relativistic physics by taking the speed of

light to infinity. Group theoretically, the symmetries contract from the relativistic Poincare

group to the Galilean group as one takes c→ ∞. Various counter-intuitive things happen

in this singular limit. The light-cones open up, the spacetime metric degenerates and

the Riemannian structure of spacetime manifold is lost. New mathematical structures

emerge, viz. the spacetime manifold becomes what is called a Newton-Cartan manifold

(for a brief introduction see e.g. [1]), and often the underlying symmetries get enhanced.

Some of these ideas have come into light only recently and this is a very fertile area of

current research [2–11], some of which have been motivated by understanding the notion

of holography for non-relativistic systems [12–16].

Out of mathematical curiosity, one could ask if similar new structures may emerge

when one takes the speed of light to go to zero instead of infinity. This peculiar c → 0

limit has been dubbed the Carrollian limit in literature [17]. This defines a contraction of

the Poincare group different from the Galilean one, and the group so generated is called

the Carrollian group. In this paper, we would be interested in constructing field theoretic

examples that exhibit Carrollian symmetry. A selection of previous related work in this

direction includes [18–22].

Purely mathematical curiosity is perhaps not very good justification for research in

theoretical physics, although many very important breakthroughs, like the formulation of

Yang-Mills theories that later have led to the understanding of the weak and strong nuclear

forces, have come via this path. Our investigations in this paper are driven by some very

strong motivations, which we elaborate on below.

1.2 Holographic duals to flatspace

It is more than 20 years since the advent of the famed AdS/CFT correspondence [23], which

has given a firm footing to the idea of holography [24, 25]. This has opened up an avenue

of studying quantum gravity by looking at quantum field theories and vice versa. Our

physical world is, however, clearly not AdS. For many applications, especially astrophysical

ones, the universe can be well approximated by an asymptotically flat spacetime. It is

thus of great importance to extend the notion of holography from its original setting in

asymptotically AdS spacetimes to flat backgrounds.

A natural way to construct a holographic quantum field theory for a general gravita-

tional theory is to consider the symmetry structure at the boundary of the spacetime in

which the gravitational theory lives. These symmetries at the boundary are formally given
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by the Asymptotic Symmetry Group (ASG) and its associated algebra, the Asymptotic

Symmetry Algebra. In mathematical terms, given a set of boundary conditions,

Asymptotic Symmetry Group =
Group of all allowed diffeomorphisms

Group of trivial diffeomorphisms
. (1.1)

One can then propose that the dual field theory lives on the asymptotic boundary of the

spacetime and inherits the symmetry of the ASG. This analysis of the ASG of AdS3

famously led Brown and Henneaux [26] to two copies of the Virasoro algebra which are of

course the symmetries of a 2d conformal field theory. This could be looked upon as the

principle precursor to the discovery of AdS/CFT. Recently, similar asymptotic symmetry

analysis for theories of higher spin in AdS3 [27] has led to the uncovering of higher spin

dualities [28]. Earlier, similar ideas were used to propose a holographic dual to de Sitter

spacetimes [29].

We wish to extend this analogy to the case of asymptotically flat spacetimes. For

Einstein gravity in 3 and 4 dimensional Minkowski spacetime, the asymptotic symmetries

at the null boundary of spacetime are given, not by the Poincare group, but by the infinite

dimensional Bondi-Metzner-Sachs (BMS) groups. The associated algebras are

BMS3:

[Ln, Lm] = (n−m)Lm+n, [Ln,Mm] = (n−m)Mm+n +
3

G
δn+m,0(n

3 − n), (1.2)

[Mn,Mm] = 0.

The structure at null infinity in 3d is IR× S
1. Ln form the diffeomorphisms of the circle at

I+, while the Mn’s are angle-dependent translations called supertranslations. The central

charge 3/G to the [L,M ] commutator is the value for Einstein gravity [30]. One could in

general have a non-zero central extension to the [L,L] commutator. For Einstein gravity,

this is zero. But one could add a topologically massive term to generate a non-zero central

extension for theories of gravity with higher derivative interactions [31].

In 4d, I+ becomes IR × S
2. The structure on S

2 enhances to two copies of the Witt

algebra, very much like 2d CFTs [32] and the algebra becomes

BMS4:

[Ln, Lm] = (n−m)Lm+n, [L̄n, L̄m] = (n−m)L̄m+n

[Ln,Mr,s] =

(
n+ 1

2
− r

)

Mn+r,s, [L̄n,Mr,s] =

(
n+ 1

2
− s

)

Mr,n+s (1.3)

[Mr,s,Mp,q] = 0.

One cannot find physical boundary conditions (e.g. without excluding gravitational radi-

ation and the Schwarzschild black holes in 4d) so as to limit these infinite dimensional

groups to the finite Poincare group in dimensions 3 and 4.1

1It is important to mention here that another infinite dimensional extension of the BMS4 exists where the

infinite dimensional group is taken to be the semi-direct product of the supertranslations with Diff(S2),

i.e. the group of all smooth diffeomorphisms on the conformal sphere S2 [33]. We shall however not be

interested in this or its possible generalisations (or the lack of it) to higher dimensions.
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This is however not true in d > 4. Here with boundary conditions strict enough one

can reduce the ASG to ISO(d − 1, 1) [34–36]. Interestingly though, one can find looser

boundary conditions so that there are infinite enhancements in d > 4 [37]. This begs the

question as to which set of boundary conditions is the more physically relevant.

Of late, there has been a resurgence in the study of physics in flat-spacetimes, initiated

by Strominger and his collaborators. An incomplete list of interesting work in this direction

includes [38–50]. A very intriguing picture has emerged linking asymptotic symmetries

with soft theorems in QFT in asymptotically flat spacetimes and to memory effects. The

interested reader is pointed to [51] for a review of the current developments in this field.

The asymptotic BMS symmetries arise at null infinity and it is thus very natural that

these should play an important role in scattering theory in flat space. Weinberg’s soft

graviton theorem [52] relates the S-matrix element of a theory of quantum gravity to

another which differs from the original one by the addition of a soft graviton. Recently it has

been shown that this soft-graviton theorem actually arises out of a supertranslation Ward

identity [40]. Weinberg’s theorem does not depend on the dimension of spacetime where

the quantum theory of gravity lives. So, if we were to assume that the relation between

asymptotic symmetries and soft theorems exist in all dimensions, then these infinitely

extended supertranslation symmetries should also exist in all dimensions. It is thus perhaps

of greater physical significance to consider looser boundary conditions in d > 4 which

generate an infinite dimensional asymptotic symmetry algebra.

If we are to draw inspiration from AdS/CFT, holography in asymptotically flat space-

times should involve these infinite dimensional symmetry algebras and the putative dual

theories should be non-gravitational quantum field theories living on the null boundary

and invariant under the infinite extended BMS algebras. A natural avenue to explore flat

holography is to investigate the singular limit where the bulk theory goes from AdS to

flat space, i.e. taking the radius of AdS to infinity. It can be shown that this leads to

an ultra-relativistic contraction of the boundary CFT [53]. So these conformal versions

of Carrollian theories that we discussed in the beginning are putative duals of flat space.

It has also been shown that the conformal Carrollian symmetries are isomorphic to BMS

symmetries [54, 55].

A relativistic CFT in d dimensions has a finite symmetry algebra, viz. so(d, 2).

The ultra-relativistic contraction of this also obviously leads to a finite symmetry alge-

bra iso(d, 1). This, clearly, is also the process of taking radius of AdSd+1 to infinity to get

to flat space, which has (d + 1) dimensional Poincare symmetry. Even before speaking of

infinite extensions, it is clear that these d-dimensional field theories are exotic theories. For

example, for asymptotically flat spacetimes in 4 dimensions, we are seeking a field theory in

d = 3 that is invariant under iso(3, 1). These are clearly not usual relativistic field theories

and as we have stated just above, one of the natural ways to generate them is to consider

Carrollian limits of relativistic CFTs.

The case of d = 2 is special. Here, as is very well known, the relativistic conformal

algebra enhances to two copies of the infinite dimensional Virasoro algebra, which under

the Carrollian limit, generate the ultra-relativistic algebra (1.2):

Ln = Ln − L̄−n, Mn = ǫ
(
Ln + L̄−n

)
, ǫ→ 0. (1.4)
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Here ǫ is the speed of light in the 2d theory. In holographic terms, the identification is

as follows: ǫ = G/ℓ, with ℓ being the AdS radius and G is the Newton’s constant. This

is thus also the flatspace limit. The ultra-relativistic contraction and its link to the large

radius limit of AdS is explored in detail in [53]. The symmetries in both the parent AdS

theory and its contracted flat space version remain infinite dimensional and there is a lot

to be learnt by exploiting this singular limit. This has been used to understand features

of flat holography in 3 bulk and 2 boundary dimensions. An incomplete list of references

include [31, 53–68]. The interested reader is pointed to [19, 69] for a summary of work in

this direction. Some of the more recent interesting developments include [70–73].

In boundary dimensions d > 3, the story is very different. The limit from AdS yields

just finite dimensional symmetries. But, in flat space, we need more,- we need to generate

infinite dimensional supertranslation symmetries in order to relate to Weinberg’s theorem.

Starting out with finite symmetries on the boundary via the process of contraction that

we have just outlined above, we thus need a mechanism to generation these infinite super-

translations. Following earlier work [19], we describe an algebraic process which achieves

this. We will focus specifically in d = 4 and find that generic field theories generated by this

process of contraction naturally have these infinite dimensional symmetries that emerge in

this singular limit.

1.3 Other potential applications

Taking the speed of light to zero focuses us on a subsector of a parent theory that is very

highly energetic. One could think of doing this on the worldsheet of the relativistic string.

This singular limit, interestingly, is also the tensionless limit of string theory [74] where

a greater symmetry structure has been conjectured to exist and this has been in focus

for its relation to recent higher spin holographic theories [75]. The residual symmetry

on the tensionless string worldsheet after fixing the equivalent of the conformal gauge

turns out to be (1.2) [76–78]. The construction of tensionless strings has been recently

revisited in connection to these symmetry structures [79–81]. It is very likely that when

one is interested in taking the tensionless limit of membranes, higher BMS or equivalently

conformal Carrollian field theories would have a decisive role to play [78].

1.4 Outline of this paper

In this paper, we systematically construct Carrollian field theories which are further invari-

ant under the Conformal Carrollian group or equivalently the BMS group (in one higher

dimension). We start from well-known relativistic conformal field theories and show that

in the ultra-relativistic limit, the contraction of these field theories become invariant under

the infinitely-extended conformal Carrollian group. In section 2, we begin with a review

of the algebraic aspects of conformal Carrollian symmetry. We discuss the process of con-

traction that gets one from the relativistic conformal algebra to first the finite conformal

Carrollian Algebra (CCA) and then proceed to give the CCA an infinite dimensional lift.

We then provide a detailed survey of the representation theory of this algebra.

In section 3, we begin our construction of field theories invariant under the CCA. We

start with scalar fields and outline the process of finding the symmetries of the limiting

– 4 –



J
H
E
P
0
5
(
2
0
1
9
)
1
0
8

field theory by focusing on equations of motion (EOM). We are thus discussing on-shell

symmetries throughout this work. We then move on to fermions and then to the Carrollian

version of Yukawa theory. We focus on dimensions d = 4. In each case, the study of

EOM reveals an infinite symmetry enhancement of the underlying theory to the (infinitely)

extended conformal Carrollian group.

In section 4, we revisit the construction of Carrollian electrodynamics and the emer-

gence of the Electric and Magnetic limits here [18, 19]. We then add matter to these

theories. We showcase the example of Carrollian scalar electrodynamics with the most

general scalings of the (massless) matter fields and show how consistency of the theory

reduces the allowed parameter space of scalings to a particular patch in each of the Elec-

tric and Magnetic limits. All these allowed values of scalings give rise to EOM which are

invariant under the infinite CCA. We show this for a theory with an arbitrarily chosen set

of parameters. We then add fermions to the U(1) theory and perform a similar analysis

and find infinite symmetries of the EOM.

In section 5, we move on to non-Abelian theories with Carrollian invariance. First we

review pure Carrollian Yang-Mills theory following earlier work [19]. We then go on to

add fermionic matter to these theories and investigate the various limits arising from the

parent theory. The (gory!) details of the SU(2) theory are worked out in appendix A. In the

main body of the paper, we present the general analysis of SU(N) Carrollian Yang-Mills

theory coupled to fermionic matter. We end up with numerous possible sectors in the UR

limit which we systematically analyse. A number of these sectors can be discarded for the

absence of kinetic terms in some equations of motion. We again obtain that in all of these

sectors, the symmetries of the EOM get enhanced infinitely and the CCA turns out to be

the relevant symmetry algebra. This enhancement of symmetries in the ultra-relativistic

limit of conformal field theories thus seems to be generic and we propose that this would

be true at the classical level for all dimensions and all conformal field theories.

We conclude with a summary of our results and a number of possible directions of future

work. Appendix B contains details of the cousin of the Carrollian Yang-Mills theory, viz.

the Galilean SU(N) Yang-Mills theory and associated additional fermionic matter. We

present the similarities and differences between the two theories in appendix C.

2 Conformal Carrollian symmetry

We begin with some algebraic preliminaries. We will first consider how to obtain conformal

Carrollian algebras from relativistic conformal algebras and then go on to a detailed review

of the representation theory which we would use throughout the rest of the paper.

2.1 Contraction and algebra

The ultra-relativistic limit of a relativistic conformal field theory is obtained by performing

an Inönü-Wigner contraction on the generators of conformal group. Let us consider a d

dimensional CFT. The limit that one needs to take in terms of the spacetime coordinates is:

xi → xi, t→ ǫt, ǫ→ 0, (2.1)

– 5 –
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where i = 1, . . . , (d − 1). This means we are sending the speed of light, c → 0. Under

this limit, the relativistic conformal algebra contracts and the generators of the contracted

algebra, which is the finite conformal Carrollian algebra (CCA), are written as:

Bi = xi∂t, Jij = (xi∂j − xj∂i), H = ∂t, Pi = ∂i,

D = (t∂t + xi∂i), K = xixi∂t, Kj = 2xj(t∂t + xi∂i)− (xixi)∂j . (2.2)

The non vanishing brackets of the finite CCA generators are given by:

[Jij ,Bk] = δk[jBi], [Jij ,Pk] = δk[jPi], [Bi,Pj ] =−δijH, [Jij ,Jkl] = Ji[lδk]j+Jj[kδl]i,

[D,K] =K, [K,Pi] =−2Bi, [Ki,Pj ] =−2Dδij−2Jij , [H,Ki] = 2Bi,

[D,H] =−H, [D,Pi] =−Pi, [D,Ki] =Ki. (2.3)

where Jij , H, Pi, Bi are the rotation generators in (d − 1) spatial dimensions, time trans-

lation, spatial translations, and Carrollian boosts respectively. These form the Carrollian

group, which is the ultra-relativistic analogue of the Galilean group. The conformal gen-

erators are dilatation D, and the Carrollian versions of temporal and spatial conformal

generators K,Ki. The set of the generators {Jij , Pi, D,Ki} close to form a so(d− 1) sub-

algebra of the finite conformal Carroll algebra, which unsurprising is iso(1, d − 1). This

so(d − 1) subalgebra can be looked upon as the conformal generators of the S
d−1 at the

null boundary of flat spacetime, which as stated earlier, has a structure IR × S
d−1.

In [19], it was shown that it is possible to give the CCA infinite dimensional extensions.

These are different for different dimensions. The infinite extensions in the d = 2 case

yields (1.2) and for d = 3 gives (1.3). Here we are interested in the d = 4 construction.

We have three spatial directions and one temporal one. Of course, for d ≥ 4, there is no

infinite enhancement of the (relativistic) conformal symmetries on the sphere at infinity

like in the 2d and 3d examples. The proposed infinite extension for the generators is thus

only in the supertranslation part:

Mm1,m2,m3 = xm1ym2zm3∂t. (2.4)

The finite part of the algebra described above fit into this scheme as follows:

H =M0,0,0, Bx =M1,0,0, By =M0,1,0, Bz =M0,0,1,

K =M2,0,0 +M0,2,0 +M0,0,2. (2.5)

The infinite part of CCA algebra are given by the lie brackets [19, 22]:

[Px,M
m1,m2,m3 ] = m1M

m1−1,m2,m3 ,

[D,Mm1,m2,m3 ] = (m1 +m2 +m3 − 1)Mm1,m2,m3 ,

[Kx,M
m1,m2,m3 ] = (m1 + 2m2 + 2m3 − 2)Mm1+1,m2,m3

−m1(M
m1−1,m2+2,m3 +Mm1−1,m2,m3+2),

[Jxy,M
m1,m2,m3 ] = m2M

m1+1,m2−1,m3 −m1M
m1−1,m2+1,m3 . (2.6)

The other commutators (e.g. for the other components of Pi or Ki) follow similarly. The

supertranslations form an abelian sub-algebra among themselves:

[Mm1,m2,m3 ,Mn1,n2,n3 ] = 0. (2.7)
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Generalisation to higher dimensions. The above construction has a natural gener-

alisation to dimensions d > 4. Again, we would look to give an infinite lift to only the

supertranslation generators:

Mm1,m2,...,mn = (xm1

1 xm2

2 . . . xmn
n )∂t. (2.8)

The conformal structure on the S
d remains finite dimensional and generated by the so(d)

algebra mentioned above. The algebra of generators follows immediately and is a direct

generalisation of the d = 4 case:

[Pi,M
m1,m2,...,mn ] = miM

m1,...,mi−1,...,mn ,

[D,Mm1,m2,...,mn ] = −Mm1,m2,...,mn +

mn∑

mi=m1

miM
m1,...,mi,...,mn ,

[Kj ,M
m1,m2,...,mn ] = −2Mm1,...,mj+1,...,mn +mjM

m1,...,mj+1,...,mn ,

+
∑

mi 6=mj

(2miM
m1,...,mi,mj+1,...,mn −mjM

m1,...,mi+2,mj−1,...mn),

[Jij ,M
m1,m2,...,mn ] = mjM

m1,...,mi+1,mj−1,...mn −miM
m1,...,mi−1,mj+1,...mn . (2.9)

Again, the supertranslations form an abelian sub-algebra by themselves:

[Mm1,m2,...,mn ,Mp1,p2,...,pn ] = 0. (2.10)

The infinite supertranslations can also be written as:

Mf = f(xi)∂t, where f(xi) = (xm1

1 xm2

2 . . . xmn
n ) (2.11)

and the above algebra can be written in a compact form for d ≥ 4 [22]:

[Pi,Mf ] =M∂if , [D,Mf ] =Mh, where h = xi∂if − f,

[Ki,Mf ] =Mh̃, where h̃ = 2xih− xkxk∂if,

[Jij ,Mf ] =Mg, where g = x[i∂j]f. (2.12)

2.2 Representation theory

We now discuss the building blocks of infinite conformal Carrollian algebra, the represen-

tation theory based on highest weights. Unless otherwise stated, our construction would

be for d = 4. As with the algebra described above, it is expected that the representa-

tion theoretic aspects would also have a natural generalisation to higher dimensions. This

subsection is primarily intended to be a detailed review of earlier work [19] along with an

extension in case of different integer and half-integer spins. We aim to study the conformal

Carrollian limit of different free and interacting field theories in d = 4. Each of these field

theories can be classified based on their spins. Hence, a natural choice of constructing the

representation theory is to label the states by the eigenvalues of dilatation and rotation

operators. Thus, the states will be labelled with definite scaling dimension ∆ and spin j.

This particular choice of representation is known as the scale-spin representation. Below

we describe in detail the scale-spin representation of spin 0, spin 1
2 and spin 1 fields.

– 7 –
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Scale-spin representation. As just stated above, we would label the states by their

scaling dimension ∆ and spin j.

D|Φ〉 = ∆|Φ〉, J2|Φ〉 = j(j + 1)|Φ〉, (2.13)

where, J2 is the sum of square of the three rotation generators in three spatial dimensions.

We propose that similar to 2d CFT, in these conformal Carrollian theories, there exists a

state-operator correspondence:

lim
(xi,t)→(0,0)

Φ(xi, t)|0〉 = |Φ〉. (2.14)

This is not strictly necessary, but helps us in translating from operator language to states.

It follows that

[D,Φ(0, 0)] = ∆Φ(0, 0), [J2,Φ(0, 0)] = j(j + 1)Φ(0, 0). (2.15)

In (2.15) the generators have been promoted to operators and the brackets imply commu-

tators henceforth.

Next, we introduce the notion of primaries in a way similar to CFTs. We demand

that the spectrum of these field theories (i.e. the value of ∆) is bounded from below.

Following [19], the conformal Carrollian primary is defined as an operator annihilated by

all lowering operators. This means for the finite algebra:

[Ki,Φ(0, 0)] = 0, [K,Φ(0, 0)] = 0. (2.16)

This translates to

[Mm1,m2,m3 ,Φ(0, 0)] = 0 for at least one of mi > 1, (2.17)

for the infinite dimensional algebra. Under rotation,

[Jij ,Φ(0, 0)] = ΣijΦ(0, 0), (2.18)

where Σij is the spin operator. The spatial and time translation of a generic field at any

spacetime point is generated by the Hamiltonian H and momentum operators Pi as

[H,Φ(t, x)] = ∂tΦ(t, x), [Pi,Φ(t, x)] = ∂iΦ(t, x). (2.19)

From (2.3), it is clear that the primaries are not eigenstates of Carrollian boosts Bi. Hence,

following previous work [19] we use the Jacobi identity to examine the action of boosts on

the primaries:

[Jij , [Bk,Φ(0, 0)]] = [Bk,ΣijΦ(0, 0)] + δk[i[Bj],Φ(0, 0)]. (2.20)

The most general transformation is

[Bk,Φ(0, 0)] = rϕk + fσkφ+ f ′σkχ + aAtδik + bAk + . . . (2.21)

– 8 –
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Here, ϕ, {φ, χ}, {At, Ak} are primaries of different spins and r, {f, f ′}, {a, b} are some

constants yet to be determined. For the purposes of this paper, we will truncate the above

expansions at spin 1. In principle, we could have mixing with higher spins as well.

Now we review the action of the finite and infinite CCA generators on the primaries

at any general spacetime point. A CCA primary Φ(t, x) is related to its own version at the

origin by

Φ(t, x) = UΦ(0, 0)U−1, where, U = e−tH−xiPi . (2.22)

Hence, for any finite CCA generator O

[O,Φ(t, x)] = U [U−1OU,Φ(0, 0)]U−1. (2.23)

We employ Baker-Campbell-Hausdorff formula along with the algebra in (2.3) to recast

the above expression for finite and infinite generators in a simplified form as

[Jij ,Φ(t,x)] = (xi∂j−xj∂i)Φ(t,x)+ΣijΦ(t,x),

[Bj ,Φ(t,x)] =xj∂tΦ(t,x)+U [Bj ,Φ(0,0)]U
−1,

[D,Φ(t,x)] = (∆+t∂t+xi∂i)Φ(t,x),

[Kj ,Φ(t,x)] = (2∆xj+2xjt∂t+2xixj∂i−2xiΣij−xixi∂j)Φ(t,x)+2tU [Bj ,Φ(0,0)]U
−1,

[Mm1,m2,m3 ,Φ(t,x)] = (xm1ym2zm3)∂tΦ(t,x)+∂i(x
m1ym2zm3)U [Bi,Φ(0,0)]U

−1. (2.24)

The equations (2.24) are the action of finite and infinite symmetry generators on a CCA

primary. Below we explicitly write down the transformations for scalars, fermions and

spin-1 vector bosons.

Scalars (ϕ).

[Bj , ϕ(0, 0)] = rϕj(0, 0), [Σij , ϕ(t, x)] = 0. (2.25)

The representation of CCA for scalars is given by {∆, j, r}. These would be fixed by input

from dynamics, e.g. when we will demand that the Carrollian scalar theory emerges as a

limit of the relativistic scalar field theory, as we do in the next section, we would be able

to fix the value of r to be zero.

Fermions (Ψ). We would be working with two component Dirac spinors φ and χ,

Ψ =

(

φ

χ

)

. (2.26)

From (2.24) the representation of CCA for Dirac fermions is given by the quadruplet

{∆, j, f, f ′}.

[Bi, φ(0, 0)] = fσiχ(0, 0), [Bi, χ(0, 0)] = f ′σiφ(0, 0),

[Σij , φ(t, x)] =
1

4
[σi, σj ]φ(t, x), [Σij , χ(t, x)] =

1

4
[σi, σj ]χ(t, x). (2.27)

Again, as stated before, merely invariance under the underlying symmetries is not enough

to fix these values. We would need input from dynamics.
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Vectors. The representation is given by the quadruple {∆, j, a, b}

[Bi, At(0, 0)] = aAi(0, 0), [Bi, Aj(0, 0)] = bδijAt(0, 0),

[Σij , At(t, x)] = 0, [Σij , Ak(t, x)] = δikAj(t, x)− δjkAi(t, x). (2.28)

Having detailed the features of the scale-spin representation, we are now in a position to

deal with conformal Carrollian field theories. Our construction of these theories in the

next few sections will crucially depend on the algebraic details outlined in this section.

We will start with relativistic field theories and through a process of contraction, generate

Carrollian field theories. We will then use the representation theory developed in this

section to examine the symmetries of the equations of motion of these Carrollian theories.

We should emphasise that all Carrollian theories need not to be constructed in this

way and there should be an independent way of arriving at these peculiar field theories

without recourse to any limiting procedure. The advantage of constructing theories in this

particular way from the ultra-relativistic limit of relativistic conformal field theories is that

the values of the constants undetermined by symmetries that we discussed in this section

would be fixed by the limit.

3 Carrollian field theories: spin 0 and spin 1

2

In this section we will begin our analysis of constructing conformal Carrollian field theories

for spin-0 and spin- 12 fields. We will be looking at the conformal Carrollian versions of free

scalars, free fermions and the interacting Yukawa theory.

3.1 Scalar fields

The simplest relativistic field theory is of course the theory of a massless spin-0 real scalar

field. The relativistic Lagrangian of massless scalars and the corresponding equation of

motion are invariant under conformal transformations in all dimensions. While dealing

with Carrollian field theories, we would also be initiating our discussion with the spin-0

field. We wish to see whether the finite conformal Carrollian symmetry remains in the

ultra-relativistic limit of real scalar. Afterwards, we would extend our analysis in search of

the infinite enhancement of conformal Carrollian symmetry.

The equation of motion of a relativistic massless real scalar field is

∂µ∂
µϕ = 0. (3.1)

We take appropriate spacetime scaling to obtain the ultra-relativistic limit of massless

scalar field.

xi → xi, t→ ǫt, ǫ→ 0. (3.2)

Plugging eq. (3.2) in (3.1), the Carrollian scalar equation of motion can be expressed as:

∂t∂tϕ = 0. (3.3)

We will now find the symmetries of Carrollian scalar fields at the level of its equation

of motion.
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The philosophy that we would be employing to understand the symmetries of the equa-

tions of motion of a particular theory is the following. Suppose we have a generic equation:

D ◦ Φ(t, x) = J (3.4)

where D is some differential operator acting on a field Φ(t, x) of arbitrary spin, and J is a

source term. We wish to examine the symmetries of this equation under a symmetry group

G, whose associated algebra has generators Qα. We will say that the equation is invariant

under this symmetry when:

δε (D ◦ Φ(t, x)) = D ◦ δεΦ(t, x) = D ◦ [εαQα,Φ(t, x)] = 0, (3.5)

where εα is the infinitesimal parameter of the particular transformation.

Fixing the values of the representation theory from the limit. We now need to fix the values

of the constants {∆, j, r} which remained unfixed in our symmetry analysis by input from

the dynamics. We will follow the limit from the relativistic massless scalar theory in order

to do this. The relativistic field Φ had a scaling dimension

[Drel,Φ(0, 0)] = ∆rel Φ(0, 0), where ∆rel =
d− 2

2
(3.6)

The relativistic generator does not change in form in the ultra-relativistic limit. So its

action on the field is also unchanged. We thus will work with the input

∆ = ∆rel =
d− 2

2
= 1 for d = 4. (3.7)

We are dealing with a scalar field. So, of course, we have j = 0.

For fixing the boost labels, we start with the relativistic boost generator

Ji0 = xi∂t + t∂i. (3.8)

The action of the relativistic boost operator on a generic relativistic field Φ is

Ji0Φ(t, x) = (xi∂t + t∂i)Φ(t, x) + Σi0Φ(t, x) (3.9)

where Σi0 describes analogue of the spin for the spatial rotation. As, we are dealing with

a scalar field, Σi0 = 0. When we take the ultra-relativistic limit, as stated in eq. (3.2),

we get

Bi = lim
ǫ→0

ǫJi0 = xi∂t (3.10)

Hence, the action of Carrollian boost generator on a Carrollian scalar field is obtained as,

Biϕ(t, x) = xi∂tϕ(t, x) (3.11)

From the representation theory, the action of Carrollian boost on Carrollian scalar fields

using equation (2.25) can be written as
[

Bi, ϕ(t, x)
]

= xi∂tϕ(t, x) + rϕi(t, x) (3.12)

Comparing the above equation with (3.11), we fix the value of boost label ‘r’ for the

Carrollian scalar field ϕ to be zero.

– 11 –
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Symmetries of the EOM. Under finite conformal Carrollian generators, the scalar field

equation transforms as:
[

D, ∂t∂tϕ
]

= (t∂t + 2 + xi∂i +∆)(∂t∂tϕ) = 0, (3.13a)
[

Ki, ∂t∂tϕ
]

= (2∆xi + 2xit∂t + 4xi + 2xixj∂j − xjxj∂i)(∂t∂tϕ) = 0, (3.13b)
[

K, ∂t∂tϕ
]

= (xixi∂t)∂t∂tϕ = 0 (3.13c)

Hence, real scalar field respects the finite conformal Carrollian symmetry. Furthermore, it

also has the infinite conformal Carrollian symmetry in d = 4.

[Mm1,m2,m3 , ∂t∂tϕ] = xm1ym2zm3∂t(∂t∂tϕ) = 0. (3.14)

It can also be checked that the Carrollian scalar obeys conformal Carrollian invariance in

all dimensions.

3.2 Fermionic fields

In this section, we will be looking at the ultra-relativistic limit of spin- 12 field or free massless

Dirac fermions in 4 dimensions. The Dirac fermion Ψ can be written as two component

Dirac spinors φ and χ:

Ψ =

(

φ

χ

)

. (3.15)

We will be working in the Pauli-Dirac representation in which the gamma matrices are

given by

γ0 =

(

1 0

0 −1

)

, γi =

(

0 σi

−σi 0

)

.

The σi’s are the Pauli matrices. The relativistic free Dirac equation is

iγµ∂µΨ = 0. (3.16)

In terms of the spinors (φ, χ) this becomes

i∂tφ+ iσi∂iχ = 0, i∂tχ+ iσi∂iφ = 0. (3.17)

Carrollian scalings for fermions. For the ultra-relativistic massless fermionic theory, we

scale the spinor fields as

φ→ φ, χ→ ǫχ. (3.18)

Taking the scaling (3.18) on the relativistic equations of motion, the ultra-relativistic Dirac

equation can be recast as,

i∂tφ = 0, i∂tχ+ iσi∂iφ = 0. (3.19)

We could have considered a general scaling for the spinors:

φ→ ǫrφ, χ→ ǫsχ. (3.20)
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In this scaling the ultra-relativistic Dirac equation takes the form

i∂tφ+ iǫs+1−rσi∂iχ = 0, i∂tχ+ iǫr+1−sσi∂iφ = 0. (3.21)

We wish to see an interaction term apart from the usual kinetic term in the EOM. This

can be achieved if

s+ 1− r = 0, or, r + 1− s = 0. (3.22)

We have used the second condition, without the loss of generality

s = 1 + r. (3.23)

This condition justifies the scaling in (3.18), if we put r = 0. Considering, any higher value

of r will also result in the same Carrollian Dirac equations (3.19). It is worth mentioning

here that choosing the first condition in (3.22), will give the Carrollian Dirac equations

where the role of φ and χ will be exchanged among each other in (3.19).

Fixing coefficients. Now, we will fix the values of the undetermined constants {∆, f, f ′}

by taking the ultra-relativistic limit on the parent relativistic dilatation and boost transfor-

mation. We start with (3.9) and write down the action of Σi0 on the relativistic fermion Ψ.

Σi0Ψ = −
1

4
[γi, γ0]Ψ =⇒ Σi0Ψ =

[

0 −σi

2

−σi

2 0

][

φ

χ

]

, (3.24)

where we have lowered the indices in the final result. Also, we mention here the action of

relativistic spin operator Σij on Ψ,

ΣijΨ = −
1

4
[γi, γj ]Ψ =⇒ ΣijΨ =

1

4

[

[σi, σj ] 0

0 [σi, σj ]

][

φ

χ

]

. (3.25)

Here, σi’s are the Pauli Matrices and [σi, σj ] = 2iǫijkσk. For a generic spacetime point, we

obtain the transformation of the relativistic spinors under relativistic boost as in (3.9)

Ji0 φ(t, x) = (xi∂t + t∂i)φ(t, x)−
σi
2
χ(t, x), (3.26)

Ji0 χ(t, x) = (xi∂t + t∂i)χ(t, x)−
σi
2
φ(t, x). (3.27)

In the ultra-relativistic limit (t → ǫt, xi → xi, φ → φ, χ → ǫχ, ǫ → 0), the transformation

of the spinors under Carrollian boost becomes:

[Bi, φ(t, x)] = xi∂tφ(t, x), [Bi, χ(t, x)] = xi∂tχ(t, x)−
σi
2
φ(t, x). (3.28)

Taking input from the dynamics (3.28), we are able to fix the values of the boost labels in

the representation theory to {f = 0, f ′ = −1
2}. Similarly, following the same argument as

in (3.6) and (3.7), we fix the scaling dimension ∆ for the Carrollian spinors to be

∆ = ∆rel =
d− 1

2
(3.29)

For 4 dimensions, ∆ takes the value of 3
2 .
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Symmetries of EOM. Next, we are interested in checking the invariance under conformal

Carrollian algebra. Under scale transformation,

[D, i∂tφ] = 0, [D, i∂tχ+ iσi∂iφ] = 0. (3.30)

Similarly, under the spatial part of the Carrollian special conformal transformation (SCT)

[Ki, i∂tφ] = 2ifσiχ+ 2itfσi∂tχ, (3.31a)

[Kl, i∂tχ+ iσi∂iφ] = 2iσl(f
′ +∆− 1)φ+ 2itfσiσl∂iχ. (3.31b)

Here, we rewrite the representation of the massless Carrollian fermion theory for

convenience {

∆ =
3

2
, j =

1

2
, f = 0, f ′ = −

1

2

}

. (3.32)

It is thus clear that the equations are invariant under spatial SCT, for these particular

values. It can be easily checked that the equations are invariant under the temporal SCT.

Under Mm1,m2,m3 , the equations of motion are trivially invariant.

[Mm1,m2,m3 , i∂tφ] = 0, [Mm1,m2,m3 , i∂tχ+ iσi∂iφ] = 0. (3.33)

So, we have seen that the EOM for Carrollian fermions are also invariant under the infinite

CCA. It should be emphasised here that we have focussed on d = 4. The analysis is

expected to hold for all higher dimensions as well.

3.3 Yukawa theory

In the previous sections, we described in detail, the theory of Carrollian version of the

free spin-0 and spin- 12 fields. We are now equipped to analyse ultra-relativistic interacting

theories. In this section, we will construct the Carrollian version of Yukawa theory.

We will consider relativistic massless Yukawa theory and then consider its ultra-

relativistic limit. The parent theory consists of a scalar field ϕ and a fermion Ψ. Massless

Yukawa theory is classically conformally invariant in d = 4. The action for relativistic

massless Yukawa theory is

S =

∫

d4x

[

−
1

2
∂µϕ∂µϕ+ iΨ̄γµ∂µΨ− gΨ̄ϕΨ

]

. (3.34)

The equations of motion are

∂µ∂µϕ− gΨ̄Ψ = 0, iγµ∂µΨ− gϕΨ = 0. (3.35)

We will now decompose the Dirac spinor into (φ, χ) and use Pauli-Dirac representation of

gamma matrices. The relativistic EOM can be written down in terms of (φ, χ) as:

∂µ∂µϕ− g(φ†φ− χ†χ) = 0, i∂tφ+ iσi∂iχ− gϕφ = 0, i∂tχ+ iσi∂iφ+ gϕχ = 0. (3.36)

Now we want to see the ultra-relativistic limit of massless Yukawa theory and check for its

symmetries.
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Carrollian massless Yukawa theory

Free equations Constraints

∂t∂tϕ = 0 2α+ 2 ≥ 0, 2β + 2 ≥ 0

i∂tφ = 0 β − α+ 1 > 0

i∂tχ+ iσi∂iφ = 0 α− β + 1 = 0

Table 1. Constraints on α, β for massless Carrollian Yukawa theory.

Carrollian scalings for Yukawa theory. Along with the usual coordinates scaling, the scalar

and fermion are scaled as

ϕ→ ϕ, φ→ ǫαφ, χ→ ǫβχ. (3.37)

We consider this general scaling in order to make sure that we are not missing out on

interesting interaction terms by restricting our scalings. Plugging the scaling (3.37) in the

equations of motion (3.36) we obtain the scaled equations:

−∂t∂tϕ+ ǫ2∂i∂iϕ− g(ǫ2α+2φ†φ− ǫ2β+2χ†χ) = 0, (3.38a)

i∂tφ+ ǫβ−α+1iσi∂iχ− ǫgϕφ = 0, (3.38b)

i∂tχ+ ǫα−β+1iσi∂iφ+ ǫgϕχ = 0. (3.38c)

For consistency of the theory, when the fermions are turned off, the EOM (3.38) need to

reduce to free Carrollian scalar EOM and similarly, when the scalar is turned off the EOM

should reduce to the free fermionic EOM. These put restrictions on the allowed values of

(α, β) in our scalings above. The constraints on α, β are summarised in table 1. Combining

all the constraints, we finally arrive at the following relations:

α ≥ −1, β = α+ 1. (3.39)

Hence the possible values of α, β are

α −1 −1
2 0 1

2 1 . . .

β 0 1
2 1 3

2 2 . . .

Interestingly, the parameter space of different values of α, β splits into two distinct

cases:

• Case 1: (α = −1, β = 0):

∂t∂tϕ+ gφ†φ = 0, i∂tφ = 0, i∂tχ+ iσi∂iφ = 0. (3.40)

This yields an interesting interacting theory. We will be primarily interested in this

and will call this Carrollian Yukawa theory.

• Case 2: (Reproduces free theory) (α 6= −1, β = α+ 1):

∂t∂tϕ = 0, i∂tφ = 0, i∂tχ+ iσi∂iφ = 0. (3.41)

This just gives back the free equations of the scalar and fermions. Since there are no

interaction terms, we will not be interested in these class of scalings.
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Symmetries of EOM. As just mentioned, we will choose α = −1, β = 0. Now we investi-

gate the symmetries for the equations (3.40). For this, we use the values of the constants

of the individual free scalar and fermionic theories.2 They are given as

{

∆1 = 1, r = 0
︸ ︷︷ ︸

Scalar Field

,∆2 =
3

2
, f = 0, f ′ = −

1

2
︸ ︷︷ ︸

Fermionic Field

}

. (3.42)

The transformations of the EOM under scale transformation are given by

[D, ∂t∂tϕ+ gφ†φ] = (∆1 − 1)∂t∂tϕ+ (2∆2 − 3)gφ†φ, (3.43a)

[D, i∂tφ] = 0, [D, i∂tχ+ iσi∂iφ] = 0. (3.43b)

Similarly, under special conformal transformation (Kl), we have

[Kl, i∂tφ] = 0, [Kl, i∂tχ+ iσi∂iφ] = 2iσl

(

∆2 −
3

2

)

φ, (3.44a)

[Kl, ∂t∂tϕ+ gφ†φ] = (2∆1 − 2)xl(∂t∂tϕ) + (4∆2 − 6)xl(gφ
†φ). (3.44b)

So we see that with the values of parameters as in (3.42), the EOM are invariant under

the finite CCA.3 The equations of motion are trivially invariant under Mm1,m2,m3 .

[Mm1,m2,m3 , i∂tφ] = 0, [Mm1,m2,m3 , i∂tχ+ iσi∂iφ] = 0, (3.45)

[Mm1,m2,m3 , ∂t∂tϕ+ gφ†φ] = 0 (3.46)

So we have constructed our first example of an interacting conformal Carrollian theory in

this paper and have checked that its EOM have infinitely enhanced symmetries for d = 4.

4 Carrollian electrodynamics and massless matter

Having investigated Carrollian scalars and fermions, the natural next step is to consider

spin-1 theories. We begin with a brief review of Carrollian electrodynamics [18, 19] and

then we go on to add massless scalars and fermions to the U(1) theory and investigate its

different sectors and the associated symmetry structure of the equations of motion in each

sector, like in the previous section.

4.1 Carrollian electrodynamics: a quick look back

This section is intended to be a quick review of the earlier work [19] before stepping onto

the next part of this paper. The Carrollian limits of Abelian (U(1) Electrodynamics) and

Non-abelian (SU(N) Yang-Mills) gauge theories were discussed in detail in [19]. We will

summarise the details of Electrodynamics in this current section.

2Since we are concerned with the classical invariance of the EOM in this work, interaction terms would

not affect the values of these constants and hence using the constants obtained from the free theories is a

justified choice.
3Invariance under K is trivial.
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The relativistic Electrodynamics and Yang-Mills theory are classically conformally

invariant in d = 4. The starting point of studying gauge fields in ultra-relativistic limit

concerns breaking the Lorentz invariance by treating the spatial and temporal part of a four

vector differently, in addition to the scaling of the underlying spacetime. The corresponding

scaling results in two distinct sectors:

Electric sector: At → At, Ai → ǫAi, (4.1a)

Magnetic sector: At → ǫAt, Ai → Ai. (4.1b)

The existence of two different Carrollian sectors of electrodynamics can be traced to the

fact that there is no non-degenerate metric for the entire Carrollian spacetime. For this

precise reason, the covariant and contravariant vectors form two different inequivalent char-

acterisation of the spin-1 theory. On taking the UR limit on the spacetime, contravariant

vectors transform as

A′ i =

(
∂x′ i

∂xj

)

Aj = δijA
j , A′ 0 =

(
∂t′

∂t

)

A0 = ǫA0. (4.2)

We associate this with the magnetic sector (4.1b):

At → ǫAt, Ai → Ai. (4.3)

On the other hand, covariant vectors transform as

A′
i =

(
∂xj

∂x′ i

)

Aj = δjiAj , A′
0 =

(
∂t

∂t′

)

A0 =
1

ǫ
A0. (4.4)

We can write the transformation of the covariant vectors (after an overall multiplication

by a factor of ǫ which does not change anything) as

At → At, Ai → ǫAi. (4.5)

This is the electric sector. The dynamics of the two sectors are governed by different

equations of motion. These EOM for the electric and magnetic sector are respectively

given as:

Electric Sector: ∂i∂iAt − ∂i∂tAi = 0, ∂t∂iAt − ∂t∂tAi = 0, (4.6a)

Magnetic Sector: ∂i∂tAi = 0, ∂t∂tAi = 0. (4.6b)

As we have done previously, we can check for the symmetries of the EOM in these sectors,

based on the representation theory discussed in section 2.2. We will also need input from

dynamics, which as before, can be obtained by looking carefully at the limit from the

relativistic parent theory. Both sets of EOM turn out to have finite and infinite conformal

Carrollian symmetry. For the detailed analysis of the symmetries of the EOM, the reader

is pointed to [19]. We will use this knowledge of the pure gauge theory to go beyond and

study Carrollian gauge fields coupled to matter in the next section.
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4.2 Adding scalars

Scalar electrodynamics is the theory of U(1) gauge field coupled to a complex charged scalar

field. The Lagrangian density of the massless scalar electrodynamics theory is given by

L = −
1

4
FµνFµν − (Dµϕ)

†(Dµϕ), (4.7)

where Fµν is the field strength defined as Fµν = ∂µAν−∂νAµ and Dµ is the gauge covariant

derivative Dµ = ∂µ + ieAµ, with e being the coupling parameter and Aµ being the U(1)

gauge field. ϕ is the massless complex scalar field charged under the U(1) gauge group.

The gauge transformation are given as,

Aµ(x) → Aµ(x) + ∂µα(x), ϕ(x) → e−ieα(x)ϕ(x). (4.8)

Here, α is a parameter of gauge transformation. The equations of motion of the massless

complex scalar field ϕ and the gauge field Aµ is given as,

∂µF
µν + ie[ϕ†(Dνϕ)− ϕ(Dνϕ)†] = 0, DµD

µϕ = 0. (4.9)

Massless scalar electrodynamics preserves relativistic conformal symmetry in d = 4. The

complex scalar field ϕ can be expressed in terms of two real scalar fields ϕ1 and ϕ2.

ϕ = ϕ1 + iϕ2 (4.10)

The equations of motion (4.9) in terms of the components are:

∂µF
µν + 2e[ϕ2∂

νϕ1 − ϕ1∂
νϕ2 − eAν(ϕ2

1 + ϕ2
2)] = 0, (4.11a)

∂µ∂
µϕ1 − e(∂µA

µ)ϕ2 − 2eAµ(∂
µϕ2)− e2AµA

µϕ1 = 0, (4.11b)

∂µ∂
µϕ2 + e(∂µA

µ)ϕ1 + 2eAµ(∂
µϕ1)− e2AµA

µϕ2 = 0. (4.11c)

Carrollian scalar electrodynamics

As we have just seen, in Carrollian limit, we get two different sectors of electrodynamics

depending on the scaling of gauge field. Similarly, the scalar electrodynamics will also

exhibit these two different sectors, viz. the Electric and Magnetic sectors.

Electric sector. In this sector, we scale the gauge field in Carrollian scalar electro-

dynamics in the fashion similar to electric sector of electrodynamics. Along with usual

spacetime scaling, the scalings of the gauge field and the scalar field are chosen as (we are

considering the most generic situation by scaling the two real scalar fields individually):

At → At, Ai → ǫAi, ϕ1 → ǫp1ϕ, ϕ2 → ǫp2ϕ2, (4.12)
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Figure 1. Allowed region for electric sector of Carrollian scalar electrodynamics. Key: Points in

black: free Carrollian theories, Coloured points: non-trivial interacting sectors.

where p1, p2 are two arbitrary constants which will be determined later. The scalar and

gauge field equations in the electric sector are then given by:

∂i∂iAt−∂i∂tAi+2e[ǫp1+p2−1(ϕ2∂tϕ1−ϕ1∂tϕ2)−eAt(ǫ
2p1ϕ2

1+ǫ
2p2ϕ2

2)] = 0, (4.13a)

∂t∂tAj−∂t∂jAt−ǫ
2(∂i∂iAj−∂i∂jAi)−2e[ǫp1+p2+1(ϕ2∂jϕ1−ϕ1∂jϕ2)

−eAj(ǫ
2p1+2ϕ2

1+ǫ
2p2+2ϕ2

2)] = 0, (4.13b)

∂t∂tϕ1−ǫ
2∂i∂iϕ1−ǫ

p2−p1+1[2eAt(∂tϕ2)+e(∂tAt)ϕ2]+ǫ
p2−p1+3[2eAi(∂iϕ2)

+e(∂iAi)ϕ2]−ǫ
2e2AtAtϕ1+ǫ

4e2AiAiϕ1=0, (4.13c)

∂t∂tϕ2−ǫ
2∂i∂iϕ2+ǫ

p1−p2+1[2eAt(∂tϕ1)+e(∂tAt)ϕ1]−ǫ
p1−p2+3[2eAi(∂iϕ1)

+e(∂iAi)ϕ1]−ǫ
2e2AtAtϕ2+ǫ

4e2AiAiϕ2=0. (4.13d)

This of course are just the equations with the scalings put in. The actual EOM will be

determined when the appropriate scalings have been performed and the terms with higher

powers of ǫ as compared to the leading term are set to zero.

The above equations must reduce to free scalar and electrodynamics equations when

the gauge and the scalar field are respectively turned off. This leads to constraints on

p1, p2. The constraints that we obtain for electric sector is:

−1 ≤ p1 − p2 ≤ 1, p1 ≥ 0, p2 ≥ 0, p1 + p2 ≥ 1. (4.14)

The allowed values of p1, p2 are shown in figure 1. The marked points represent different

sectors within electric limit of Carrollian scalar electrodynamics.
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Different interacting sub-sectors. Restricting ourselves to integral and half integral values

of (p1, p2), we find that there are five distinct interacting sub-sectors within the Electric

sector of Carrollian scalar electrodynamics. These different sectors for different (p1, p2) are:

• Case 1: p1 = 1, p2 = 0 :

∂i∂iAt − ∂i∂tAi + 2e[(ϕ2∂tϕ1 − ϕ1∂tϕ2)− eAtϕ
2
2] = 0, ∂t∂tϕ2 = 0, (4.15a)

∂t∂tAj − ∂t∂jAt = 0, ∂t∂tϕ1 − e[2At(∂tϕ2) + ϕ2(∂tAt)] = 0. (4.15b)

• Case 2: p1 =
1
2 , p2 =

1
2 :

∂i∂iAt − ∂i∂tAi + 2e(ϕ2∂tϕ1 − ϕ1∂tϕ2) = 0, (4.16a)

∂t∂tAj − ∂t∂jAt = 0, ∂t∂tϕ1,2 = 0. (4.16b)

• Case 3: p1 =
3
2 , p2 =

1
2 :

∂i∂iAt − ∂i∂tAi = 0, ∂t∂tAj − ∂t∂jAt = 0, (4.17a)

∂t∂tϕ1 − e[2At(∂tϕ2) + ϕ2(∂tAt)] = 0, ∂t∂tϕ2 = 0. (4.17b)

• Case 4: p1 = 0, p2 = 1 :

∂i∂iAt − ∂i∂tAi + 2e[(ϕ2∂tϕ1 − ϕ1∂tϕ2)− eAtϕ
2
1] = 0, ∂t∂tϕ1 = 0, (4.18a)

∂t∂tAj − ∂t∂jAt = 0, ∂t∂tϕ2 + e[2At(∂tϕ1) + ϕ1(∂tAt)] = 0. (4.18b)

• Case 5: p1 =
1
2 , p2 =

3
2 :

∂i∂iAt − ∂i∂tAi = 0, ∂t∂tAj − ∂t∂jAt = 0, (4.19a)

∂t∂tϕ2 + e[2At(∂tϕ1) + ϕ1(∂tAt)] = 0, ∂t∂tϕ1 = 0. (4.19b)

We have demarcated the distinct sectors with coloured dots in figure 1. The points

shown in black reduce to free Carrollian scalar and electric sector of Carrollian electrody-

namics. The values of p1, p2 which result in same sectors are connected with each other in

the same figure. It is of interest to note here that the non-trivial interacting sub-sectors

within the Electric sector of Carrollian scalar electrodynamics all lie along the corners of

the allowed region. This is a feature that will be true for all cases we consider after this,

where we look at the parameter space of these allowed field theories.

Symmetries of EOM. Now we want to check the symmetries the above equations posses.

We will examine an arbitrary sector, say (p1 = 0, p2 = 1) to discuss the symmetry. It will

require the following inputs from the representation theory,

{

∆ = 1, j = 0, r = 0
︸ ︷︷ ︸

Scalar Field

,∆′ = 1, j′ = 1, a = 0, b = 1
︸ ︷︷ ︸

Gauge Field

}

. (4.20)
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In this sector the equations of motion are:

∂i∂iAt − ∂i∂tAi + 2e[(ϕ2∂tϕ1 − ϕ1∂tϕ2)− eAtϕ
2
1] = 0, (4.21a)

∂t∂tAj − ∂t∂jAt = 0, ∂t∂tϕ2 + e[2At(∂tϕ1) + ϕ1(∂tAt)] = 0, ∂t∂tϕ1 = 0. (4.21b)

Let us now check for the invariance under scale transformation:

[D, (4.21a)] = (∆′−1)(∂i∂iAt−∂i∂tAi−2e2Atϕ
2
1)

+(2∆−2)2e[(ϕ2∂tϕ1−ϕ1∂tϕ2)−eAtϕ
2
1], (4.22a)

[D,∂t∂tϕ2+e{2At(∂tϕ1)+ϕ1(∂tAt)}] = (∆′−1)e[2At(∂tϕ1)+ϕ1(∂tAt)], (4.22b)

[D,∂t∂tAj−∂t∂jAt] = 0, [D,∂t∂tϕ1] = 0. (4.22c)

Similarly, under Ki, we have

[Kl, (4.21a)] = (4∆′+2−2δii)∂lAt−(2∆′+4−2δii)∂tAl (4.23a)

+2xl(∆
′−1)(∂i∂iAt−∂t∂iAi−2e2Atϕ

2
1)

+4xl(∆−1)[2e{(ϕ2∂tϕ1−ϕ1∂tϕ2)−eAtϕ
2
1}],

[Ki,∂t∂tϕ2+e{2At(∂tϕ1)+ϕ1(∂tAt)}] = 2xi(∆
′−1)e[2At(∂tϕ1)+ϕ1(∂tAt)], (4.23b)

[Ki,∂t∂tAj−∂t∂jAt] =−(2∆′−2)δij∂tAt, [Ki,∂t∂tϕ1] = 0. (4.23c)

Hence the scale invariance and special conformal invariance is preserved in d = 4. There

is invariance under Mm1,m2,m3 for all the equations.

[Mm1,m2,m3 , (4.21a)] = 0, [Mm1,m2,m3 , ∂t∂tϕ2 + e{2At(∂tϕ1) + ϕ1(∂tAt)}] = 0, (4.24a)

[Mm1,m2,m3 , ∂t∂tAj − ∂t∂jAt] = 0, [Mm1,m2,m3 , ∂t∂tϕ1] = 0. (4.24b)

It can be shown in an identical fashion that in all the other sectors mentioned in our

previous analysis, the EOM would also have this infinite dimensional conformal Carrollian

invariance.

Magnetic sector. Carrollian scalar electrodynamics also has a magnetic sector, named

after the particular sector in Carrollian electrodynamics with magnetic field dominating

over the electric field. In the magnetic sector, the scaling are given by

At → ǫAt, Ai → Ai, ϕ1 → ǫp1ϕ1, ϕ2 → ǫp2ϕ2. (4.25)

The equations of motion in this limit are:

−ǫ2∂i∂iAt + ∂i∂tAi − 2e[ǫp1+p2(ϕ2∂tϕ1 − ϕ1∂tϕ2)

−eAt(ǫ
2p1+2ϕ2

1 + ǫ2p2+2ϕ2
2)] = 0, (4.26a)

∂t∂tAj − ǫ2(∂t∂jAt + ∂i∂iAj − ∂i∂jAi)− 2e[ǫp1+p2+2(ϕ2∂jϕ1 − ϕ1∂jϕ2)

−eAj(ǫ
2p1+2ϕ2

1 + ǫ2p2+2ϕ2
2)] = 0, (4.26b)

∂t∂tϕ1 − ǫ2∂i∂iϕ1 − ǫp2−p1+2[e(∂tAt)ϕ2 − e(∂iAi)ϕ2 + 2e(∂tϕ2)At

−2e(∂iϕ2)Ai]− ǫ4e2AtAtϕ1 + ǫ2e2AiAiϕ1 = 0, (4.26c)

∂t∂tϕ2 − ǫ2∂i∂iϕ2 + ǫp1−p2+2[e(∂tAt)ϕ1 − e(∂iAi)ϕ1 + 2e(∂tϕ1)At

−2e(∂iϕ1)Ai]− ǫ4e2AtAtϕ2 + ǫ2e2AiAiϕ2 = 0. (4.26d)
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Figure 2. Allowed region for magnetic sector. Key: Points in black: free Carrollian theories,

Coloured points: non-trivial interacting sectors.

Studying the equations we find the constraints on p1, p2 as,

− 2 ≤ p1 − p2 ≤ 2, p1 + p2 ≥ 0, p1 ≥ −1, p2 ≥ −1. (4.27)

The allowed values of p1, p2 are easily realised in figure 2. The marked points represent

different sectors within magnetic limit of Carrollian scalar electrodynamics.

Different interacting sub-sectors. We again find 5 distinct sub-sectors within the Magnetic

sector. These different possible sub-sectors are:

• Case 1: p1 = 1, p2 = −1:

∂i∂tAi−2e[(ϕ2∂tϕ1−ϕ1∂tϕ2)−eAtϕ
2
2] = 0, ∂t∂tAj+2e2Ajϕ

2
2=0, (4.28a)

∂t∂tϕ1−e[(∂tAt)ϕ2−(∂iAi)ϕ2+2At(∂tϕ2)−2Ai(∂iϕ2)] = 0, ∂t∂tϕ2=0. (4.28b)

• Case 2: p1 =
1
2 , p2 = −1

2 :

∂i∂tAi − 2e(ϕ2∂tϕ1 − ϕ1∂tϕ2) = 0, ∂t∂tAj = 0, ∂t∂tϕ1,2 = 0. (4.29)

• Case 3: p1 =
3
2 , p2 = −1

2 :

∂i∂tAi = 0, ∂t∂tAj = 0, ∂t∂tϕ2 = 0, (4.30a)

∂t∂tϕ1 − e[(∂tAt)ϕ2 − (∂iAi)ϕ2 + 2At(∂tϕ2)− 2Ai(∂iϕ2)] = 0. (4.30b)

• Case 4: p1 = −1, p2 = 1:

∂i∂tAi−2e[(ϕ2∂tϕ1−ϕ1∂tϕ2)−eAtϕ
2
1] = 0, ∂t∂tAj+2e2Ajϕ

2
1=0, (4.31a)

∂t∂tϕ2+e[(∂tAt)ϕ1−(∂iAi)ϕ1+2At(∂tϕ1)−2Ai(∂iϕ1)] = 0, ∂t∂tϕ1=0. (4.31b)
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• Case 5: p1 = −1
2 , p2 =

3
2 :

∂i∂tAi = 0, ∂t∂tAj = 0, ∂t∂tϕ1 = 0, (4.32a)

∂t∂tϕ2 + e[(∂tAt)ϕ1 − (∂iAi)ϕ1 + 2At(∂tϕ1)− 2Ai(∂iϕ1)] = 0. (4.32b)

The black points in figure 2 reduce to free Carrollian scalar and magnetic limit of Carrollian

electrodynamics. The non trivial sectors having interaction terms are marked in different

colours in figure 2. The values of p1, p2 which result in same sectors are connected with

coloured lines in the same figure.

Symmetries of EOM. Before discussing the symmetries, we require the values of the con-

stants {∆,∆′, r, a, b} from the representation theory.

{

∆ = 1, j = 0, r = 0
︸ ︷︷ ︸

Scalar Field

,∆′ = 1, j′ = 1, a = 1, b = 0
︸ ︷︷ ︸

Gauge Field

}

. (4.33)

We are choosing a sector randomly, p1 =
1
2 , p2 = −1

2 . The equations in this sector are:

∂i∂tAi − 2e(ϕ2∂tϕ1 − ϕ1∂tϕ2) = 0, ∂t∂tAj = 0, ∂t∂tϕ1,2 = 0. (4.34)

We will now check for invariance of the above equations. Under scale transformations,

we have

[D, ∂i∂tAi − 2e(ϕ2∂tϕ1 − ϕ1∂tϕ2)] = (∆′ − 1)∂i∂tAi + (2∆− 2)[2e(ϕ1∂tϕ2 − ϕ2∂tϕ1)],

[D, ∂t∂tAj ] = 0, [D, ∂t∂tϕ1,2] = 0. (4.35)

Similarly, under Ki, the transformation is given as

[Kl, ∂i∂tAi − 2e(ϕ2∂tϕ1 − ϕ1∂tϕ2)] = (2∆′ + 4− 2δii)∂tAl + 2xl(∆
′ − 1)(∂i∂tAi)

+ (4∆− 4)xl[2e(ϕ1∂tϕ2 − ϕ2∂tϕ1)], (4.36a)

[Ki, ∂t∂tAj ] = 0, [Ki, ∂t∂tϕ1,2] = 0. (4.36b)

The right hand side of all of the above expression vanishes as {∆ = 1,∆′ = 1}. The

equations of motion also have infinite Mm1,m2,m3 symmetry.

[Mm1,m2,m3 , ∂i∂tAi − 2e(ϕ2∂tϕ1 − ϕ1∂tϕ2)] = ∂i(x
m1ym2zm3)∂t∂tAi = 0,

[Mm1,m2,m3 , ∂t∂tAj ] = 0, [Mm1,m2,m3 , ∂t∂tϕ1,2] = 0. (4.37)

We can perform the same symmetry analysis for all the possible subsectors and we find

that the emergent infinite dimensional symmetry exists in all of these sectors.

4.3 Adding fermions

The relativistic theory of U(1) gauge field Aµ coupled to fermionic fields Ψ exhibit conformal

symmetry in d = 4. The Lagrangian density of this theory is given as

L = −
1

4
FµνF

µν + iΨ̄γµDµΨ, (4.38)
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where Dµ is the covariant derivative and Fµν is the electromagnetic field strength:

Dµ = ∂µ − ieAµ, Fµν = ∂µAν − ∂νAµ. (4.39)

The relativistic equations of motion are:

∂µF
µν + eΨ̄γνΨ = 0, iγνDνΨ = 0. (4.40)

We will decompose the Dirac fermion in two component spinors as in section 3.2. The

relativistic equations of motion get recasted as,

∂iFit − e(φ†φ+ χ†χ) = 0, −∂tFtj + ∂iFij + e(φ†σjχ+ χ†σjφ) = 0, (4.41a)

(i∂t + eAt)φ+ (iσi∂i + eσiAi)χ = 0, (iσi∂i + eσiAi)φ+ (i∂t + eAt)χ = 0. (4.41b)

Next, we are interested in studying the Carrollian limit of the same theory.

Carrollian electrodynamics with fermions

We have seen that the gauge fields can be scaled in two ways, electrically and magnetically.

Here, we will also scale the spinors accordingly. For easier understanding, we will be using

the conventional names of the different limits in a way similar to Carrollian electrodynamics.

Electric sector. In this sector, the scaling of gauge fields and fermions are given as:

φ→ ǫαφ, χ→ ǫβχ, At → At, Ai → ǫAi. (4.42)

Here α and β are two arbitrary constants which will be determined later. In this sector,

the equations of motion become:

∂i∂iAt − ∂i∂tAi − e(ǫ2αφ†φ+ ǫ2βχ†χ) = 0, (4.43a)

−∂t∂tAj + ∂t∂jAt + ǫ2∂i(∂iAj − ∂jAi) + ǫα+β+1e(φ†σjχ+ χ†σjφ) = 0, (4.43b)

i∂tφ+ ǫβ−α+1iσi∂iχ+ ǫβ−α+2eσiAiχ+ ǫeAtφ = 0, (4.43c)

i∂tχ+ ǫα−β+1iσi∂iφ+ ǫα−β+2eσiAiφ+ ǫeAtχ = 0. (4.43d)

The above equations must reduce to the free Carrollian equations of the electric sector of

electrodynamics and fermions separately. These constraints put some restrictions on the

arbitrary constants α, β. This can be seen in table 2.

Combining all the constraints we finally arrive at the following relations:

α = β − 1, α ≥ 0, β ≥ 0. (4.44)

Hence the possible values of α, β are:

α 0 1
2 1 3

2 . . .

β 1 3
2 2 5

2 . . .
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Electric sector of U(1) + Fermion

Free equation Constraints

∂i∂iAt − ∂i∂tAi = 0 2α ≥ 0, 2β ≥ 0

∂t∂tAi − ∂t∂iAt = 0 α+ β + 1 ≥ 0

i∂tφ = 0 β − α+ 1 > 0

i∂tχ+ iσi∂iφ = 0 α− β + 1 = 0, α− β + 2 ≥ 0

Table 2. Constraints on α, β for Electric sector of electrodynamics with fermions.

Different sub-sectors in the theory. We will now write down different sectors for the Elec-

tric sector of Carrollian electrodynamics coupled to fermions:

• Case 1: α = 0, β = 1:

∂i(∂iAt − ∂tAi)− e(φ†φ) = 0, ∂t(∂tAj − ∂jAt) = 0, (4.45a)

i∂tφ = 0, i∂tχ+ iσi∂iφ = 0. (4.45b)

• Case 2: α > 0, β = α+ 1:

∂i(∂iAt − ∂tAi) = 0, ∂t(∂tAj − ∂jAt) = 0, (4.46a)

i∂tφ = 0, i∂tχ+ iσi∂iφ = 0. (4.46b)

We see that in Case 2, the equations (4.46) reduces to Carrollian equations of electrody-

namics and free Dirac fermions.

Symmetries of EOM. The next task is to find the invariance of these equations under con-

formal Carrollian symmetries. For that, we will only consider Case 1, since these equations

contain interaction terms. For this case, the values of the constants are mentioned here:

{

∆ =
3

2
, f = 0, f ′ = −

1

2
︸ ︷︷ ︸

Fermionic Field

,∆′ = 1, a = 0, b = 1
︸ ︷︷ ︸

Gauge Field

}

. (4.47)

The invariance under scale transformation is given by

[D, ∂i(∂iAt − ∂tAi)− e(φ†φ)] = (∆′ − 1)[∂i∂iAt − ∂i∂tAi]− (2∆− 3)eφ†φ, (4.48a)

[D, ∂t(∂tAj − ∂jAt)] = 0, [D, i∂tφ] = 0, [D, i∂tχ+ iσi∂iφ] = 0. (4.48b)

Under Kl, we have

[Kl,∂i(∂iAt−∂tAi)−e(φ
†φ)] = (4∆′−2δii+2)∂lAt+(2δii−2∆′−4)∂tAl

+(2∆′−2)xl(∂i∂iAt−∂t∂iAi)−(4∆−6)xl(eφ
†φ), (4.49a)

[Kl,∂t(∂tAj−∂jAt)] =−2(∆′−1)δlj∂tAt, [Kl, i∂tφ] = 0, (4.49b)

[Kl, i∂tχ+iσi∂iφ] = 2iσl

(

∆−
3

2

)

φ. (4.49c)
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Magnetic sector of Fermion+ED

Free equation Constraints

∂t∂tAi = 0 α+ β + 2 ≥ 0

∂i∂tAi = 0 2α+ 1 ≥ 0, 2β + 1 ≥ 0

i∂tφ = 0 β − α+ 1 > 0

i∂tχ+ iσi∂iφ = 0 α− β + 1 = 0

Table 3. Constraints on α, β for Magnetic sector of electrodynamics with fermions.

Similarly, the invariance under Mm1,m2,m3 can be worked out in a similar way.

[Mm1,m2,m3 , ∂i(∂iAt − ∂tAi)− e(φ†φ)] = −∂t(∂tAj − ∂jAt) = 0, (4.50a)

[Mm1,m2,m3 , i∂tφ] = 0, [Mm1,m2,m3 , ∂t(∂tAj − ∂jAt)] = 0, (4.50b)

[Mm1,m2,m3 , i∂tχ+ iσi∂iφ] = 0. (4.50c)

We see that the Electric sector comes out to be invariant under finite and infinite conformal

Carrollian symmetries in d = 4.

Magnetic sector. The scaling of the fields in this sector are given by

φ→ ǫαφ, χ→ ǫβχ, At → ǫAt, Ai → Ai. (4.51)

In this limit, the equations of motion becomes

∂i(ǫ
2∂iAt − ∂tAi)− e(ǫ2α+1φ†φ+ ǫ2β+1χ†χ) = 0, (4.52a)

−∂t(∂tAj − ǫ2∂jAt) + ǫ2∂i(∂iAj − ∂jAi) + ǫα+β+2e(φ†σjχ+ χ†σjφ) = 0, (4.52b)

i∂tφ+ ǫ2eAtφ+ ǫβ−α+1(iσi∂iχ+ eσiAiχ) = 0, (4.52c)

i∂tχ+ ǫα−β+1iσi∂iφ+ ǫ2eAtχ+ ǫα−β+1eσiAiφ = 0. (4.52d)

Comparing the above equations with the free equations of magnetic sector of Carrollian

electrodynamics and free fermions we obtain restrictions on the arbitrary constants α, β

mentioned in table 3.

Analysing all the constraints we get the following relations:

α = β − 1, α ≥ −
1

2
, β ≥ −

1

2
. (4.53)

Hence the possible values of α, β are:

α −1
2 0 1

2 1 . . .

β 1
2 1 3

2 2 . . .
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Different subsectors. The different subsectors within the Magnetic sector are the following:

• Case 1: α = −1
2 , β = 1

2 :

∂i∂tAi + eφ†φ = 0, ∂t∂tAi = 0, (4.54a)

i∂tφ = 0, i∂tχ+ iσi∂iφ+ eσiAiφ = 0. (4.54b)

• Case 2: α > −1
2 , β = α+ 1:

∂i∂tAi = 0, ∂t∂tAi = 0, (4.55a)

i∂tφ = 0, i∂tχ+ iσi∂iφ+ eσiAiφ = 0. (4.55b)

Unlike the electric sector, Case 2 does not reduce to just the free equations of Carrollian

gauge fields and fermions. There are interaction terms as well.

Symmetries of EOM. The values of the constants under Carrollian symmetries are given as

{

∆ =
3

2
, f = 0, f ′ = −

1

2
︸ ︷︷ ︸

Fermionic Field

,∆′ = 1, a = 1, b = 0
︸ ︷︷ ︸

Gauge Field

}

. (4.56)

We will consider Case 1 as the representative sector to examine the symmetries. The

same analysis can be repeated for Case 2, with similar results. The transformations of the

equations of motion under scale transformations are given by

[D, ∂i∂tAi + eφ†φ] = (∆′ − 1)∂i∂tAi + (2∆− 3)eφ†φ, (4.57a)

[D, ∂t∂tAi] = 0,
[

D, i∂tφ] = 0, [D, i∂tχ+ iσi∂iφ+ eσiAiφ] = (∆′ − 1)eσiAiφ. (4.57b)

Putting in the values of {∆,∆′}, we find that the equations are invariant. Similarly, under

Kl, we have

[Kl, ∂i∂tAi + eφ†φ] = (4 + 2∆′ − 2δii)∂tAl + (2∆′ − 2)xl(∂i∂tAi)

+ (4∆− 6)xl(eφ
†φ), (4.58a)

[Kl, i∂tχ+ iσi∂iφ+ eσiAiφ] = 2(∆′ − 1)xl(eσiAiφ) + (2∆− 3)iσlφ, (4.58b)

[Kl, ∂t∂tAi] = 0, [Kl, i∂tφ] = 0. (4.58c)

Again, putting in the values of the constants, the EOM turn out to be invariant. Under

the infinite dimensional Mm1,m2,m3 , the invariance of the EOM are straight-forward.

[Mm1,m2,m3 , ∂i∂tAi + eφ†φ] = 0, [Mm1,m2,m3 , ∂t∂tAi] = 0 (4.59a)

[Mm1,m2,m3 , i∂tχ+ iσi∂iφ+ eσiAiφ] = −i
(σi
2

)

∂i(x
m1ym2zm3)∂tφ = 0, (4.59b)

[Mm1,m2,m3 , i∂tφ] = 0. (4.59c)

So, we can conclude that the Magnetic sector of Carrollian U(1) gauge field coupled to

fermion respects the conformal Carrollian symmetry in d = 4.
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Lessons from this section

For the reader who does not wish to be buried in the details of the rather tedious analysis we

have done so far in this section, we will provide a brief recapitulation of the main results. In

this section, we have carried out a detailed analysis of Carrollian Electrodynamics theory

with scalars and fermions. In case of Carrollian Electrodynamics, there were only two

sectors, viz. the electric and magnetic sectors. However, the inclusion of matter into the

theory led to many diverse subsectors inside each of the two above mentioned sectors.

Massless scalars led to the splitting of each sector into 5 different interacting sub-sectors.

The inclusion of fermions made the splitting a bit more restrictive and there were two

subsectors in each of the Electric and Magnetic sectors.

Next, we checked for the symmetries of the theories under conformal Carrollian gener-

ators. We found that the field theories possess finite as well as infinite conformal Carrollian

symmetries in d = 4. The infinite extension of symmetries makes Carrollian Electrody-

namics with matter prominently distinct from its relativistic counterpart.

5 Carrollian Yang-Mills theory and massless fermions

So far we have constructed Carrollian field theories with Abelian gauge symmetry. We

have found that these theories respect finite and infinite conformal Carrollian symmetry

in d = 4. At this point, it is natural to ask if we can extend our analysis to field theories

with non-Abelian gauge symmetry as well. The ultra-relativistic limit of SU(N) Yang-Mills

has been described in detail in [19]. In this section, we would construct Carrollian SU(N)

Yang-Mills theory coupled to massless fermionic matter in d = 4.

5.1 Carrollian Yang-Mills theory: a brief review

This section is going to be a quick review of pure Carrollian Yang-Mills (YM) theory

presented in [19]. The field content of Carrollian YM theory is the gauge potential

Aµ = Aa
µTa. (5.1)

Here Ta (a = 1, . . . ,D) are the Lie algebra generators and the dimension of the gauge

group is D. In [19], it was shown that there are a large number of new sectors arising

in the Carrollian limit, as opposed to the two sectors in Carrollian Electrodynamics. The

reason lies in the projection of individual gauge fields into either individual electric or

magnetic sectors.

Different sectors. Following [19], we divide the theory intoD+1 sectors, each characterised

by a vector:

Ξ(p) = (0, 0, . . . , 0
︸ ︷︷ ︸

D−p

, 1, 1, . . . , 1
︸ ︷︷ ︸

p

) p = 0, . . . ,D (5.2)

Ξa
(p) denotes its a’th component. We choose a particular sector (say, p0-th) denoted by the

vector Ξ(p0). In p0-th sector Ξ(p0), the gauge fields scale as

Aa
t →

ǫ

1 + ǫ− Ξa
(p0)

Aa
t , A

a
i →

ǫ

ǫ+ Ξa
(p0)

Aa
i . (5.3)
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If Ξa
(p0)

= 1, the gauge fields transform electrically and we denote them by the index α, β:

Aα
t → Aα

t , A
α
i → ǫAα

i . (5.4)

On the other hand, for Ξa
(p0)

= 0, the gauge fields transform magnetically and we denote

them by the index I, J :

AI
t → ǫAI

t , A
I
i → AI

i . (5.5)

It is seen from (5.2) that I, J run from 1, 2 . . . ,D− p0 and α, β are in the range D− p0 +

1, . . . ,D. The Carrollian Yang-Mills equations are:

Case 1: 1 ≤ a ≤ D − p0

The Carrollian scalar equation is:

∂i∂tA
I
i + gf IJKA

J
i ∂tA

K
i = 0. (5.6)

The vector one is:

∂t∂tA
I
j = 0. (5.7)

Case 2: D − p0 + 1 ≤ a ≤ D

Scalar equation:

fαIJA
I
i ∂tA

J
i = 0. (5.8)

Vector equation:

∂t(∂tA
α
j − ∂jA

α
t + gfαβIA

β
t A

I
j ) + gfαβIA

β
t ∂tA

I
j = 0. (5.9)

It is worth noting here that the equation (5.8) does not have a kinetic term. Hence, these

sectors would not be considered when we are looking at sensible Carrollian theories. Let us

clarify that by “kinetic term” we mean the remnants of the usual relativistic kinetic term,

which will contain both spatial and time derivatives in the Carrollian framework. The

sectors we wish to discard are ones with only interaction terms, without any derivatives

whatsoever.4

This argument turns out to be a little too hasty. Notice also that the interaction piece

vanishes when there is only one Magnetic leg (I = J = 1). Hence, in [19], the next higher

order term in the series of ǫ was considered and this led to the following equation:

∂i(∂iA
α
t − ∂tA

α
i + gfαIβA

I
iA

β
t )− gfαβIA

β
i ∂tA

I
i + gfαIJA

I
i (gf

J
KρA

K
i A

ρ
t )

+gfαIβA
I
i (∂iA

β
t − ∂tA

β
i + gfβKρA

K
i A

ρ
t ) = 0. (5.10)

So, this is a mixed leg that we would consider as a valid sector.

4One has to keep in mind, however, that the set-up is non-covariant and hence one needs to be careful

with the definition of kinetic terms and this is linked with the causal structure in Carrollian spacetimes.

This is known to be a tricky issue and we shall not venture into this discussion in the current paper.
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To summarise, the sectors of pure Carrollian Yang-Mills theory that we interested

in are:

• Purely magnetic sector. The equations of relevance here are {(5.6), (5.7)};

• Purely electric sector. The purely electric sector survives. This is the one where we

consider {(5.9) (with I = 0), (5.10)}. There are no magnetic legs, and hence we have

to put AI = 0 in these equations. This leads to:

∂t(∂tA
α
j − ∂jA

α
t ) = 0, ∂i(∂iA

α
t − ∂tA

α
i ) = 0. (5.11)

• Mixed sector (with J = 1). Only one mixed sector survives. This corresponds to

p0 = D− 1 and equations {(5.9) (with I = 1), (5.10) (with I, J,K = 1)}.

∂t(∂tA
α
j − ∂jA

α
t + gfαβ1A

β
t A

1
j ) + gfαβ1A

β
t ∂tA

1
j = 0, (5.12)

∂i(∂iA
α
t − ∂tA

α
i + gfα1βA

1
iA

β
t )− gfαβ1A

β
i ∂tA

1
i

+gfα1βA
1
i (∂iA

β
t − ∂tA

β
i + gfβ1ρA

1
iA

ρ
t ) = 0 (5.13)

It was also shown in [19] that these the sectors in Carrollian Yang-Mills theory respect

finite and infinite conformal Carrollian symmetries in d = 4.

Yang-Mills with fermions

The Lagrangian density of the relativistic SU(N) Yang-Mills with fermions is given by

L = −
1

4
F a
µνF

µνa + iψ̄mγ
µ(Dµψ)m, (5.14)

where Dµ ≡ ∂µ − igT aAa
µ is the non abelian gauge covariant derivative and F a

µν = ∂µA
a
ν −

∂νA
a
µ+ gf

abcAb
µA

c
ν is the non abelian field strength tensor. The label a is the colour index,

m is an internal symmetry index and fabc are the structure constants of the underlying

gauge group with generators following the algebra [T a, T b] = ifabcT c. The equations of

motion for this theory are

∂µF
µνa + gfabcAb

µF
µνc + gψ̄mγ

νT a
mnψn = 0, iγν(Dνψ)n = 0. (5.15)

The relativistic equations of motion under the decomposition of Dirac fermion (3.15) are

∂tF
a
tj − ∂iF

a
ij + gfabc(Ab

tF
c
tj −Ab

iF
c
ij)− g(φ†mσjT

a
mnχn + χ†

mσjT
a
mnφn) = 0, (5.16a)

∂iF
a
it + gfabcAb

iF
c
it − g(φ†mT

a
mnφn + χ†

mT
a
mnχn) = 0, (5.16b)

i∂tφm + gT a
mnA

a
tφn + iσi∂iχm + gσiT

a
mnA

a
i χn = 0, (5.16c)

i∂tχm + gT a
mnA

a
tχn + iσi∂iφm + gσiT

a
mnA

a
i φn = 0. (5.16d)

The relativistic Yang-Mills coupled to fermions have conformal symmetry in d = 4.
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5.2 Carrollian SU(N) Yang-Mills with fermions

The simplest example of a non-Abelian group is, of course, SU(2). We have discussed the

details of the Carrollian SU(2) Yang-Mills with fermionic matter extensively in appendix A,

to which the interested reader is pointed. Here we proceed to present the general analysis

for Carrollian SU(N) Yang-Mills with matter. The discussion can also be generalised

immediately to any other compact gauge group.

Let us now move to the scaling of fields in SU(N) case. The scaling of gauge fields

is very similar to the scaling in [19] and is briefly explained in the previous section. Next

step will be to take scaling on the fermions (φm, χm) where m = 1, . . . , N . The scaling is

taken as,

φm → ǫamφm, χm → ǫbmχm. (5.17)

We will look at the equations of motion of different sectors of SU(N) Carrollian Yang-Mills

coupled to fermions:

• 1 ≤ a ≤ D − p0. The equations of motion in this case are given as

A = ∂i∂tA
I
i + gf IJKA

J
i ∂tA

K
i + g[ǫam+an+1φ†mT

I
mnφn + ǫbm+bn+1χ†

mT
I
mnχn] = 0, (5.18a)

B = ∂t∂tA
I
j − g[ǫam+bn+2φ†mσjT

I
mnχn + ǫbm+an+2χ†

mσjT
I
mnφn] = 0. (5.18b)

For simplicity, we will denote the l.h.s. of first equation by A and second by B.

• D − p0 + 1 ≤ a ≤ D. The equations of motion in this case are given as

C = ∂t(∂tA
α
j − ∂jA

α
t + gfαβIA

β
t A

I
j ) + gfαβIA

β
t ∂tA

I
j − g[ǫam+bn+1φ†mσjT

α
mnχn

+ ǫbm+an+1χ†
mσjT

α
mnφn] = 0, (5.19a)

E = gfαIJA
I
i ∂tA

J
i + g[ǫam+an+1φ†mT

α
mnφn + ǫbm+bn+1χ†

mT
α
mnχn] = 0. (5.19b)

We will denote the l.h.s. of the third and fourth equation by C and E . When there is only

one magnetic leg I = J = 1, the first term in (5.19b) goes to zero by the antisymmetric

property of the structure constant fαIJ , (fα11 = 0). For that reason we consider the next

order term in ǫ (that is ǫ0), and the equation becomes

F = ∂i(∂iA
α
t −∂tA

α
i +gf

α
IβA

I
iA

β
t )−gf

α
βIA

β
i ∂tA

I
i +gf

α
IJA

I
i (gf

J
KρA

K
i A

ρ
t )

+gfαIβA
I
i (∂iA

β
t −∂tA

β
i +gf

β
KρA

K
i A

ρ
t )−g[ǫ

am+anφ†mT
α
mnφn+ǫ

bm+bnχ†
mT

α
mnχn] = 0.

(5.20)

The Dirac equations are same in both the cases and they are given as

G = i∂tφm + ǫbm−am+1iσi∂iχm + ǫan−am+1gTα
mnA

α
t φn + ǫan−am+2gT I

mnA
I
tφn

+ ǫbn−am+2gσiT
α
mnA

α
i χn + ǫbn−am+1gσiT

I
mnA

I
iχn = 0, (5.21a)

H = i∂tχm + ǫam−bm+1iσi∂iφm + ǫbn−bm+1gTα
mnA

α
t χn + ǫbn−bm+2gT I

mnA
I
tχn

+ ǫan−bm+2gσiT
α
mnA

α
i φn + ǫan−bm+1gσiT

I
mnA

I
iφn = 0. (5.21b)

Hence, in this section we are left with the equations A,B, C, E ,F ,G,H depending on differ-

ent sectors of Carrollian SU(N) Yang-Mills coupled to fermions. Please note that we are

yet to specify am’s and bm’s, which we will be doing in the next section.
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Detailed discussion of different sectors

At this juncture, it is important to remind ourselves of the discussion in the pure Carrollian

YM case. There we had discarded sectors which had no kinetic terms. This obviously would

also continue to hold when we put in matter fields. Clearly, a sector where the equation

E (5.19b) holds, is not a “nice” sector. In the analysis that follows, we will continue

to investigate all sectors, keeping in mind, that if we were to focus on “nice” sectors

of Carrollian YM coupled to matter, all the sectors which have a non-trivial realisation

of (5.19b) would be discarded.

In case of SU(2) Carrollian Yang-Mills with fermions there are three gauge fields and

4 different sectors: EEE, EEM, EMM, MMM. Similarly for SU(N) case, we can have

D + 1 distinct sectors. We would organise D + 1 sectors depending on the numbers of

magnetic legs.

Number of magnetic legs J ≥ 1. We start with the case in which one and more gauge

field transform magnetically. For J = 1, the equation E does not hold. Hence instead of

E , we get

F = ∂i(∂iA
α
t − ∂tA

α
i + gfα1βA

1
iA

β
t )− gfαβ1A

β
i ∂tA

1
i + gfα1βA

1
i (∂iA

β
t − ∂tA

β
i

+ gfβ1ρA
1
iA

ρ
t )− g[ǫam+anφ†mT

α
mnφn + ǫbm+bnχ†

mT
α
mnχn] = 0. (5.22)

The rest of the equations A,B, C,G,H remains same with J = 1. Now we want to see the

constraints on am and bm. In table 4, we find the constraints by comparing with the free

equations. Next, we analyze the range of am and bm. From equation (xii) and (xiv) we

can see,

(xii) : am − bm + 1 = 0 =⇒ bm = am + 1,

(xiv) : an − bm + 1 ≥ 0 =⇒ an − am ≥ 0. (5.23)

Eq. (5.23) is valid for all m,n = (1, 2, . . . N). Hence, the second equation of (5.23) says,

an = am ∀ m,n. (5.24)

We are yet to specify the range in which am belong. They are given by

For J > 1 (v) : am + an + 1 ≥ 0 =⇒ am ≥ −
1

2
(5.25)

For J = 1 (vii) : am + an ≥ 0 =⇒ am ≥ 0 (5.26)

Combining equations (5.23)–(5.26), we get the table 5. Writing the equations of motion in

each sector separately, we get

For the case J > 1. The equations of motion are written as,

• Case 1: (am = −1
2 , bm = 1

2):

∂i∂tA
I
i + gf IJKA

J
i ∂tA

K
i + gφ†mT

I
mnφn = 0, ∂t∂tA

I
j = 0, (5.27a)

∂t(∂tA
α
j − ∂jA

α
t + gfαβIA

β
t A

I
j ) + gfαβIA

β
t ∂tA

I
j = 0, (5.27b)

gfαIJA
I
i ∂tA

J
i + gφ†mT

α
mnφn = 0, (5.27c)

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
I
mnA

I
iφn = 0. (5.27d)
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Magnetic leg J ≥ 1

From equation Constraints

Equation A of Gauge field AI
(i) am + an + 1 ≥ 0

(ii) bm + bn + 1 > 0

Equation B of Gauge field AI (iii) am + bn + 2 > 0

[no equality to reduce it to U(1)]

Equation C of Gauge field Aα (iv) am + bn + 1 > 0

Equation E (for J > 1) of Gauge field Aα
(v) am + an + 1 ≥ 0

(vi) bm + bn + 1 > 0

Equation F (for J = 1) of Gauge field Aα
(vii) am + an ≥ 0

(viii) bm + bn > 0

Equation G for φm

(ix) bm − am + 1 ≥ 0,

(x) an − am + 1 ≥ 0

(xi) bn − am + 1 ≥ 0

Equation H for χm

(xii) am − bm + 1 = 0

(xiii) bn − bm + 1 ≥ 0

(xiv) an − bm + 1 ≥ 0

Table 4. Constraints on am, bm in J ≥ 1 sector.

For J = 1
a = 0, 12 , 1,

3
2 . . .

b = 1, 32 , 2,
5
2 , . . .

For J > 1
a = −1

2 , 0,
1
2 , 1,

3
2 . . .

b = 1
2 , 1,

3
2 , 2,

5
2 , . . .

Table 5. Values of am, bm in J ≥ 1 sector.

• Case 2: (am > −1
2 , bm = am + 1):

∂i∂tA
I
i + gf IJKA

J
i ∂tA

K
i = 0, ∂t∂tA

I
j = 0, (5.28a)

∂t(∂tA
α
j − ∂jA

α
t + gfαβIA

β
t A

I
j ) + gfαβIA

β
t ∂tA

I
j = 0, (5.28b)

gfαIJA
I
i ∂tA

J
i = 0, (5.28c)

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
I
mnA

I
iφn = 0. (5.28d)

Both of the above mentioned sectors contain no kinetic term in (5.27c), (5.28c). But (5.27b),

(5.27c), (5.28b) and (5.28c) drop off completely when α = 0, or in other words when there

is no electric leg. It corresponds to the purely magnetic limit of SU(N) Yang-Mills. Hence,

for the purely magnetic limit we get two individual sectors which differ by a fermionic

interaction term gφ†mT I
mnφn within themselves (see (5.27a) and (5.28a)).
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For the case J = 1. The equations of motion are written as,

• Case 1: (am = 0, bm = 1):

∂i∂tA
1
i = 0, ∂t∂tA

1
j = 0. (5.29a)

∂t(∂tA
α
j − ∂jA

α
t + gfαβ1A

β
t A

1
j ) + gfαβ1A

β
t ∂tA

1
j = 0, (5.29b)

∂i(∂iA
α
t − ∂tA

α
i + gfα1βA

1
iA

β
t )− gfαβ1A

β
i ∂tA

1
i

+ gfα1βA
1
i (∂iA

β
t − ∂tA

β
i + gfβ1ρA

1
iA

ρ
t )− gφ†mT

α
mnφn = 0, (5.29c)

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
1
mnA

1
iφn = 0. (5.29d)

• Case 2: (am > 0, bm = am + 1):

∂i∂tA
1
i = 0, ∂t∂tA

1
j = 0. (5.30a)

∂t(∂tA
α
j − ∂jA

α
t + gfαβ1A

β
t A

1
j ) + gfαβ1A

β
t ∂tA

1
j = 0, (5.30b)

∂i(∂iA
α
t − ∂tA

α
i + gfα1βA

1
iA

β
t )− gfαβ1A

β
i ∂tA

1
i

+ gfα1βA
1
i (∂iA

β
t − ∂tA

β
i + gfβ1ρA

1
iA

ρ
t ) = 0, (5.30c)

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
1
mnA

1
iφn = 0. (5.30d)

From the above analysis we see that there are (2+2) different sectors in the purely magnetic

(α = 0) and only one magnetic leg (J = 1) limit respectively.

Number of magnetic legs J = 0. This sector defines the case in which all the gauge

fields transform electrically. The equations of motion are given as

∂t(∂tA
α
j − ∂jA

α
t )− g[ǫam+bn+1φ†mσjT

α
mnχn + ǫbm+an+1χ†

mσjT
α
mnφn] = 0, (5.31a)

∂i(∂iA
α
t − ∂tA

α
i )− g[ǫam+anφ†mT

α
mnφn + ǫbm+bnχ†

mT
α
mnχn] = 0, (5.31b)

i∂tφm + ǫbm−am+1iσi∂iχm + ǫan−am+1gTα
mnA

α
t φn + ǫbn−am+2gσiT

α
mnA

α
i χn = 0, (5.31c)

i∂tχm + ǫam−bm+1iσi∂iφm + ǫbn−bm+1gTα
mnA

α
t χn + ǫan−bm+2gσiT

α
mnA

α
i φn = 0. (5.31d)

Similar to the previous case, we will be writing down table 6 to have a clear understanding

of the constraints on am and bm. The relevant equations that we need to look at are (ii),

(v) and (vii) in table 6.

(ii) : am + an ≥ 0,

(v) : an − am + 1 ≥ 0,

(vii) : am − bm + 1 = 0 =⇒ bm = am + 1. (5.32)

Unlike J ≥ 1 sector, we get no more constraints to specify am. Hence there will be many

sectors describing J = 0 case. At this point, we want to count how many sectors actu-

ally arise for the purely electric case of Carrollian SU(N) Yang-Mills coupled to fermions

considering the constraints (5.32).

We can start with SU(2) YM coupled to fermions case. We can see (a1, a2) can have

5 distinct values taking in consideration the exchange symmetry between a1, a2. The free
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Purely Electric sector (J = 0)

From equation Constraints

Equation (5.31a) of Gauge field Aα (i) am + bn + 1 > 0

Equation (5.31b) of Gauge field Aα
(ii) am + an ≥ 0

(iii) bm + bn > 0

Equation for φm

(iv) bm − am + 1 ≥ 0

(v) an − am + 1 ≥ 0

(vi) bn − am + 2 ≥ 0

Equation for χm

(vii) am − bm + 1 = 0

(viii) bn − bm + 1 ≥ 0

(ix) an − bm + 2 ≥ 0

Table 6. Constraints on am, bm in the J = 0 sector.

sectors which do not contain any interaction terms between the fermions and the gauge

fields are also accounted for in this counting of 5 different sectors for SU(2) YM coupled

to fermions case. Similarly for SU(3) coupled with fermions case, the set of (a1, a2, a3)

can take 11 distinct values (including the free sectors). The number of distinct values of

am’s for SU(4) and SU(5) case including the free sectors are 17 and 26 respectively. So,

for SU(N) coupled with fermions case, we can say that there are (N2 +1) different sectors

in the purely electric limit including the free sectors. For convenience we are showing the

allowed values of am’s in SU(N) Yang-Mills theory with fermions in table 7. Any other

combination of these am’s, which obeys the constraints (5.32), gives back no new sector.

Gauge transformation for Carrollian SU(N) Yang-Mills with fermions

Let us consider the transformations of gauge fields and fermions under SU(N) gauge group:

δAa
µ =

1

g
∂µΘ

a + fabcA
b
µΘ

c, δφm = iΘaT a
mnφn, δχm = iΘaT a

mnχn, (5.33)

where Θ is the gauge parameter. We will now see gauge transformations in ultra-relativistic

limit of SU(N) Yang-Mills theory. We scale the gauge transformation parameter for the

electric and magnetic legs as

Θα → ǫpΘα, ΘI → ǫqΘI . (5.34)

We would be plugging (5.34) into (5.33) along with the usual ultra-relativistic scaling of

spacetime, gauge fields and fermions. Our aim is to find the value of p, q which keep (5.33)

finite in the limit ǫ→ 0. They are given by

p = 1, q = 2, Θα → ǫΘα, ΘI → ǫ2ΘI . (5.35)

– 35 –



J
H
E
P
0
5
(
2
0
1
9
)
1
0
8

SU(2) SU(3) SU(4) SU(5)

+ fermion + fermion + fermion + fermion

(a1, a2) (a1, a2, a3) (a1, a2, a3, a4) (a1, a2, a3, a4, a5)

1. 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2. 0 1
2 0 0 1

2 0 0 0 1
2 0 0 0 0 1

2

3. 1
2

1
2 0 1

2
1
2 0 0 1

2
1
2 0 0 0 1

2
1
2

4. 0 1 1
2

1
2

1
2 0 1

2
1
2

1
2 0 0 1

2
1
2

1
2

5. 1
2

3
2 0 0 1 1

2
1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

6. 0 1 1 0 0 0 1 1
2

1
2

1
2

1
2

1
2

7. 1
2

1
2

3
2 0 0 1 1 0 0 0 0 1

8. 1
2

3
2

3
2 0 1 1 1 0 0 0 1 1

9. 1
2 1 3

2 0 0 1
2 1 0 0 1 1 1

10. 0 1
2 1 0 1

2
1
2 1 0 1 1 1 1

11. 0 1
2 1 1 0 0 0 1

2 1

12. 1
2

1
2

1
2

3
2 0 0 1

2
1
2 1

13. 1
2

1
2

3
2

3
2 0 1

2
1
2

1
2 1

14. 1
2

3
2

3
2

3
2 0 0 1

2 1 1

15. 1
2

3
2 1 1 0 1

2 1 1 1

16. 1
2

3
2

3
2 1 0 1

2
1
2 1 1

17. 1
2

1
2 1 3

2
1
2

1
2

1
2

1
2

3
2

18. 1
2

1
2

1
2

3
2

3
2

19. 1
2

1
2

3
2

3
2

3
2

20. 1
2

3
2

3
2

3
2

3
2

21. 1
2

1
2

1
2 1 3

2

22. 1
2

1
2 1 1 3

2

23. 1
2 1 1 1 3

2

24. 1
2 1 1 3

2
3
2

25. 1
2 1 3

2
3
2

3
2

26. 1
2

1
2 1 3

2
3
2

Table 7. Possible am values for different dimensional Carrollian SU(N) Yang-Mills with fermions.
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Thus we arrive at the following gauge transformation:

δAα
t =

1

g
∂tΘ

α, δAα
i =

1

g
∂iΘ

α + fαIβA
I
iΘ

β ,

δAI
t =

1

g
∂tΘ

I + f IαβA
α
t Θ

β , δAI
i = 0,

δφm = iǫan−am+1ΘαTα
mn
φn + iǫan−am+2ΘIT I

mn
φn ,

δχm = iǫbn−bm+1ΘαTα
mn
χn + iǫbn−bm+2ΘIT I

mn
χn . (5.36)

Choosing a particular representation (am = 0, bm = 1) for all m’s, we rewrite the last two

equations of (5.36) as

δφm = 0, δχm = 0. (5.37)

We can see that the above equations (5.36) keep the equations of motion for Carrollian

Yang-Mills with fermions invariant.

It is interesting to note here that (5.37) holds for every sector except for the purely

electric sector (J = 0). The reason lies in the fact that (an, bn)’s are all same for the

sectors with J 6= 0. For purely electric sector the last two equations in (5.36) give the

gauge transformation for the spinors.

Checking symmetries of Carrollian Yang-Mills with fermions

We are ready to analyse the symmetries of the equations of motion of Carrollian Yang-Mills

theory with fermions. We will be choosing an arbitrary value of {am, bm} in each of the

sectors to find the invariance under conformal Carrollian generators.

We will start with the sector where the number of magnetic legs J = 0 and {am = 0,

bm = 1} for all m. The equations of motion in this sector are

∂t(∂tA
α
j − ∂jA

α
t ) = 0, ∂i(∂iA

α
t − ∂tA

α
i )− gφ†

m
Tα

mn
φn = 0, (5.38a)

i∂tφm = 0, i∂tχm + iσi∂iφm = 0. (5.38b)

Before finding the invariance, we write the values of the constants in representation theory.

We should keep in mind that, here, all the gauge fields scale electrically.

{

∆ =
3

2
, f = 0, f ′ = −

1

2
︸ ︷︷ ︸

Fermionic Field

,∆′ = 1, a = 0, b = 1
︸ ︷︷ ︸

Gauge Field

}

. (5.39)

The invariance under scale transformation are given as

[D,∂i(∂iA
α
t −∂tA

α
i )−gφ

†
m
Tα

mn
φn ] = (∆′−1)(∂i∂iA

α
t −∂i∂tA

α
i )

−(2∆−3)gφ†mT
α
mnφn, (5.40a)

[D,∂t(∂tA
α
j −∂jA

α
t )] = 0, [D,i∂tφm] = 0, [D,i∂tχm+iσi∂iφm] = 0. (5.40b)
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Under special conformal transformation,

[Kl, ∂i(∂iA
α
t − ∂tA

α
i )− gφ†

m
Tα

mn
φn ] = (4∆′ − 2δii + 2)∂lA

α
t

+ (2δii − 2∆′ − 4)∂tA
α
l

+ (2∆′ − 2)xl[∂i∂iA
α
t − ∂t∂iA

α
i ]

− (4∆− 6)xl[gφ
†
m
Tα

mn
φn ], (5.41a)

[Kl, ∂t(∂tA
α
j − ∂jA

α
t )] = −2(∆′ − 1)δlj∂tA

α
t , [Kl, i∂tφm] = 0, (5.41b)

[Kl, i∂tχm + iσi∂iφm] = iσl(2∆− 3)φm. (5.41c)

Under Mm1,m2,m3 , we get

[Mm1,m2,m3 , ∂i(∂iA
α
t − ∂tA

α
i )− gφ†

m
Tα

mn
φn ] = 0

[Mm1,m2,m3 , ∂t(∂tA
α
j − ∂jA

α
t )] = 0, [Mm1,m2,m3 , i∂tφm] = 0,

[Mm1,m2,m3 , i∂tχm + iσi∂iφm] = 0. (5.42)

Hence, all the above mentioned equations in J = 0 sector, have infinite conformal Carrollian

symmetry in d = 4.

Next, we will examine the sections where J = 1 and J > 1. We are choosing {am = 0,

bm = 1} for all m. The relevant equations in these two representative sectors are,

A = ∂i∂tA
I
i + gf IJKA

J
i ∂tA

K
i = 0, B = ∂t∂tA

I
j = 0, (5.43a)

C = ∂t(∂tA
α
j − ∂jA

α
t + gfαβIA

β
t A

I
j ) + gfαβIA

β
t ∂tA

I
j = 0, (5.43b)

E = gfαIJA
I
i ∂tA

J
i = 0, (5.43c)

F = ∂i(∂iA
α
t − ∂tA

α
i + gfαIβA

I
iA

β
t )− gfαβIA

β
i ∂tA

I
i + gfαIJA

I
i (gf

J
KρA

K
i A

ρ
t )

+ gfαIβA
I
i (∂iA

β
t − ∂tA

β
i + gfβKρA

K
i A

ρ
t )− gφ†mT

α
mnφn = 0. (5.43d)

G = i∂tφm = 0, H = i∂tχm + iσi∂iφm + gσiT
I
mnA

I
iφn = 0. (5.43e)

The values of constants in representation theory are given by,
{

∆ =
3

2
, f = 0, f ′ = −

1

2
︸ ︷︷ ︸

Fermionic Field

,∆′ = 1, a = 0, b = 1
︸ ︷︷ ︸

Gauge Field Aα

,∆′ = 1, a = 1, b = 0
︸ ︷︷ ︸

Gauge Field AI

}

. (5.44)

The invariance under scale transformation is

[D,A] = (∆′ − 1)gf IJKA
J
i ∂tA

K
i , [D,B] = 0,

[D, C] = (∆′ − 1)gfαβI [(∂tA
β
t )A

I
j + 2Aβ

t (∂tA
I
j )],

[D, E ] = 0, [D,F ] = 0, [D,G] = 0, [D,H] = (∆′ − 1)gσiT
I
mnA

I
iφn. (5.45)

Under special conformal transformation, we have

[Kl,A] = (2∆′ + 4− 2δii)∂tA
I
l + 2(∆′ − 1)xl(gf

I
JKA

J
i ∂tA

K
i ),

[Kl, C] = −(2∆′ − 2)[δlj∂tA
α
t − xlf

α
βIg{(∂tA

β
t )A

I
j + 2Aβ

t (∂tA
I
j )}],

[Kl,B] = 0, [Kl, E ] = 0, [Kl,G] = 0,

[Kl,H] = (2∆− 3)iσlφm + 2(∆′ − 1)xl(gσiT
I
mnA

I
iφn). (5.46)
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The invariance of the equations also hold for the other finite conformal Carrollian genera-

tors. Under infinite supertranslations, we have

[Mm1,m2,m3 ,A] = 0, [Mm1,m2,m3 ,B] = 0, [Mm1,m2,m3 , C] = 0,

[Mm1,m2,m3 , E ] = 0, [Mm1,m2,m3 ,F ] = 0, [Mm1,m2,m3 ,G] = 0, (5.47)

[Mm1,m2,m3 ,H] = i
(σi
2

)

∂i(x
m1ym2zm3)∂tφm = 0.

The above analysis shows that both the J ≥ 1 sectors have finite as well as infinite conformal

Carrollian symmetries in d = 4.

Brief summary of the current section

Let us summarise the results that we have obtained in this section. We started out with

a brief review on SU(N) Carrollian Yang-Mills theory. We explained the scaling of gauge

fields (Aa
t , A

a
i ) in detail and wrote down the equations of motion. These equations were

invariant under conformal Carrollian generators including the infinite supertranslations in

d = 4. For further details about the invariance of these equations, the reader is referred

to [19]. One of the upshots of the analysis was that the number of “nice” sectors with

EOM having kinetic pieces, boiled down to just 3, viz. the purely electric and magnetic

sectors, and one mixed sector with one magnetic leg.

Then, we moved on to SU(N) Carrollian Yang-Mills coupled with fermions. The scaling

of gauge fields gave rise to (D+1) sectors, of which only 3 were “nice”, as just mentioned.

For the sake of completeness, we did not discard the other sectors outright. We arranged

the (D + 1) sectors depending on the number of magnetic legs, denoted by J . For J = 1

and J > 1, the equations (A,B, C,G,H) (see eq. (5.18a)–(5.21b)) were held perfectly. For

J > 1, equation E (5.19b) was true. This was the problematic equation in the pure YM

case, which contained only interaction pieces. So in principle, all these sectors with J > 1,

except the purely magnetic sector, should be discarded on grounds of having a non-trivial

realisation of this equation. For J = 1, we observed that the equation E did not hold and

we had to consider the next order in ǫ, captured by equation F (5.20). Each of the J = 1

and J > 1 sectors had two different subsectors within them (see eq. (5.27)–(5.30)).

We also considered J = 0 case, the purely electrical sector. The absence of the con-

straint an = am for all m,n’s into the scaling of fermions (that appeared in the previous

cases, see eq. (5.24)) resulted in a more diverse class of subsectors (see table 7).

We looked at the gauge transformations and the invariance of equations of motion in

each subsector. We took a particular representation for each of the subsectors in J = 0,≥ 1

cases. We investigated the symmetries of the Carrollian YM theory coupled to fermions

at the level of equations of motion. Again, like in the previous sections, we found the

emergence of finite as well as infinite conformal Carrollian symmetries d = 4 in all of these

subsectors. This emergence of infinite enhancement of conformal Carrollian symmetries in

d = 4, thus, seems to be a generic feature of all field theories that arise as a ultra-relativistic

limit of classically conformally invariant theories in d = 4.
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6 Conclusions and future directions

In this paper, we have systematically constructed conformal Carrollian field theories in

d = 4 by following the ultra-relativistic limit of relativistic CFTs in d = 4. We have

started with free scalars, fermions and reviewed previous constructions of Carrollian gauge

theories. Then we have constructed arbitrary interacting theories by adding matter to

general Carrollian gauge theories. The intricacies of the limit resulted in a multitude of

different sectors of these gauge field theories. We showed that in all these sectors the

equations of motion possess an infinite dimensional symmetry. We again stress here that

this enhancement of symmetries in conformal field theories in the ultra-relativistic limit

seems to be a generic feature of this limit. We also saw that algebraically the process of

infinite extension for d > 4 was very similar to d = 4. Taking this analogy further, we

propose that if one starts with any relativistic conformal field theory in any dimension

and constructs its Carrollian version by taking c → 0 limit, the equations of motion of

the ultra-relativistic theory so constructed would be invariant under the infinite conformal

Carrollian algebra.

Our analysis in this paper, as stated earlier, has been a direct follow-up to earlier

work [19]. The underlying mathematical formulation of the investigation of symmetries

from the point of view of equations of motion actually is very similar in nature to the

investigations of non-relativistic systems and the emergence of infinite Galilean conformal

symmetry in theories derived as a limit of relativistic conformal field theories [4–6]. Given

the similarity of these analyses, it is important to compare and contrast the two different

singular limits of gauge theories. In [6], the non-relativistic counterpart of the field theories

studied in the current paper were constructed, namely Galilean scalar, fermions, Yukawa

theory and interacting theories like electrodynamics and SU(2) Yang-Mills coupled to mat-

ter. This analysis has been extended for the case of SU(N) Yang-Mills coupled to matter

in appendix B, which also contains a brief introduction to aspects of the non-relativistic

symmetries for the uninitiated reader. The important question of the connection these two

opposite limits (Galilean and Carrollian) in terms of their similarities and differences is

discussed in detail in appendix C.

The infinite enhancement of symmetries in the ultra-relativistic limit, that has been

the central theme of our present paper, seems intimately related to the geometry of the

spacetime that these field theories live on. If we start with relativistic CFTs that live in

flat spacetimes, the Carrollian limit leads to a degeneration of the metric structure of the

Minkowskian manifold:

ds2 → −ǫ2dt2 + dx2i ; IR1,d → IRd × IRt (6.1)

The relativistic conformal structure is more restrictive as it involves space and time on

the same footing. In the ultra-relativistic case, the (pseudo) Riemannian structure (IR1,d)

turns into a fibre bundle structure with a IRd base and temporal one-dimensional IRt fibres.

Now there is more “wiggle-room” and the conformal structure gets split into that of the

base and the fibre. This degeneration of the spacetime metric into a purely spatial part

(for the base) and a purely temporal part (for the fibre) seems to be at the heart of these
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infinite dimensional enhancements in the ultra-relativistic limit. This also should be true

in the non-relativistic limit, where similar infinite enhancements are noticed. We wish

to investigate these geometrical aspects involving Carrollian and its dual Newton-Cartan

structures more carefully in the near future.

As we stated in the introduction, the ultimate aim of this programme is to make

connections with holography in asymptotically flat spacetimes. As a specific case, we

would like to understand what happens to the dual field theory when we take a flat limit

on the best known example of the AdS/CFT duality, viz. the duality between type IIB

superstring theory on AdS5×S5 and N = 4 Supersymmetric Yang-Mills (SYM) theory

in d = 4. In the bulk, the radii of the AdS5 and S5 are equal and hence taking a limit

on one induces a limit on the other, thereby giving us type IIB superstring theory on

a 10d flat spacetime. On the boundary, the limit would lead to a Carrollian version of

N = 4 SYM. In future work, we would attempt an understanding of SYM theories with

various supersymmetry building up to this example. The analysis done in this paper would

provide the basic ingredients for this investigation. It seems very unclear at present what

these various sectors arising in the Carrollian limit would correspond to in the holographic

setting. The infinite dimensional emergent symmetry, on the other hand, has tantalising

hints of a new integrable sector in the parent gauge theories and relatedly holography.

One of the stumbling blocks of our analysis in this paper, and our programme as a

whole, has been the lack of an action principal. For the case of Carrollian electrodynamics,

this has been partially addressed and one has an action for the Electric sector [22], and

the same symmetries have been understood by a rigorous canonical analysis.5 In ongoing

work [82], it has been possible to show that one can have a similar action principal for scalars

coupled to Carrollian electrodynamics for a particular sector. Generalisation of this to the

other possible sectors and then to the case of Yang-Mills theories and SYM is the obvious

goal of this line of work. With an action, quantities of interest like correlation functions

can be derived by functional methods and this would also pave the way to a possible

quantisation of the Carrollian theories and investigations into anomalies to understand

whether the infinite dimensional symmetries survive in the quantum regime.
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A Carrollian SU(2) Yang-Mills with fermions

In the main body of the paper, we have dealt with a general SU(N) Carrollian Yang-Mills

theory coupled to fermionic matter. It may be of interested for the reader to understand

the elementary details and hence in this appendix, we present the complete details of the

SU(2) Carrollian theory with fermions.

In SU(2) Yang-Mills with fermions, we have three colour indices for the gauge fields

and a doublet of fermions in the fundamental representation. The relativistic equations of

motion are given by (5.16). In the Carrollian limit, we scale the fermions as,

φ
1
→ ǫα1φ

1
, χ

1
→ ǫβ1χ

1
, φ

2
→ ǫα2φ

2
, χ

2
→ ǫβ2χ

2
. (A.1)

In [19], the detailed analysis of Carrollian SU(2) Yang-Mills is carried out. There are

four different sectors in case of SU(2) Yang Mills: EEE (purely Electric), MMM (purely

Magnetic), EEM and EMM (2 mixed sectors). Following the same trail, in case of SU(2)

Yang-Mills coupled to fermions, we scale the gauge fields in the similar way. Let us discuss

the different sectors in details below.

A.1 EEE sector

In this sector, all gauge fields are scaled electrically. The scaling is given as

Aa
i → ǫAa

i , A
a
t → Aa

t , φm → ǫαmφm , χm → ǫβmχm (A.2)

where m = 1, 2. The fermions are scaled as in (A.1). The equations of motion in this sector

are given as

∂t(∂tA
a
j − ∂jA

a
t )− g[ǫαm+βn+1φ†

m
σjT

a
mn
χn + ǫβm+αn+1χ†

m
σjT

a
mn
φn ] = 0, (A.3a)

∂i(∂iA
a
t − ∂tA

a
i )− g[ǫαm+αnφ†

m
T a

mn
φn + ǫβm+βnχ†

m
T a

mn
χn ] = 0, (A.3b)

i∂tφm + iǫβm−αm+1σi∂iχm + ǫαn−αm+1gT a
mnA

a
tφn + ǫβn−αm+2gσiT

a
mnA

a
i χn = 0, (A.3c)

i∂tχm + iǫαm−βm+1σi∂iφm + ǫβn−βm+1gT a
mnA

a
tχn + ǫαn−βm+2gσiT

a
mnA

a
i φn = 0. (A.3d)

The above equations must reduce to free equations of a particular field in absence of rest

of the fields. Also, if we replace T a by an identity matrix and set the structure constant to

be zero, we should get back the equations of U(1) Carrollian electrodynamics coupled to

fermions. For example, suppose we are looking at the limit EMM of the SU(2) gauge fields

coupled to fermions. In this sector A1 scales electrically and A2, A3 scales magnetically.

So we demand that if we replace Ta by an identity matrix, the A1 equation must reduce

to (4.45) or (4.46) while the rest of the gauge fields must follow (4.54) or (4.55). The same

goes for the fermions as well. If we turn off the gauge fields in the equations obtained in

EMM case, we must get back the free fermion equations. If we keep the gauge field, replace

Ta by an identity matrix, we should get the fermion equation from either (4.45), (4.46)

or (4.54), (4.55)(depending on how the particular gauge field coupled to the fermion scales).

The above conditions impose constraints on the constants {αm, βm}. Please see table 8.

There is no equality in some of the constraints in the table 8 to reduce it to Carrollian

– 42 –



J
H
E
P
0
5
(
2
0
1
9
)
1
0
8

EEE sector

Free equation U(1)+Fermions Constraints

∂t(∂tA
a
i − ∂iA

a
t ) = 0 ∂t(∂tAi − ∂iAt) = 0 (i) αn + βm + 1 > 0

∂i(∂iA
a
t − ∂tA

a
i ) = 0

∂i(∂iAt − ∂tAi)− eφ†φ = 0, (ii) αn + αm ≥ 0

∂i(∂iAt − ∂tAi) = 0 (iii) βn + βm > 0

i∂tφ = 0 i∂tφ = 0

(iv) βm − αm + 1 > 0,

(v) βn − αm + 2 ≥ 0,(n 6= m),

(vi) αn − αm + 1 ≥ 0

i∂tχ+ iσi∂iφ = 0 i∂tχ+ iσi∂iφ = 0

(vii) αm − βm + 1 = 0,

(viii) βn − βm + 1 ≥ 0,

(ix) αn − βm + 2 > 0

Table 8. Constraints on αm, βm in EEE sector.

Figure 3. Allowed values of (α1, α2) in EEE sector. Key: Points in black: free Carrollian theories

(Case 2), Coloured points: non-trivial interacting sectors.

electrodynamics with fermions case. Constraint (ii), (vi) and (vii) gives

α1 ≥ 0, α2 ≥ 0, (A.4a)

−1 ≤ α2 − α1 ≤ 1, (A.4b)

αm = βm − 1. (A.4c)

The rest of the constraints give no new information. In Mathematica, we can do a

regionplot 3 to plot (A.4) and find the possible values of α1, α2. Each intersecting point in

regionplot 3 corresponds to a sector in the EEE limit. Some of the possible values are:

(α1, α2) = (0, 0),

(

0,
1

2

)

, (0, 1),

(
1

2
, 1

)

,

(
3

2
,
1

2

)

,

(
1

2
,
1

2

)

,

(
1

2
, 0

)

. . . (A.5)
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We will now discuss different sectors within EEE limit. All the intersecting points in plot 3

do not give unique sectors. We are enlisting below only the different sectors.

• Case 1: (α1 = 0, α2 = 0, β1 = 1, β2 = 1):

∂t(∂tA
a
j − ∂jA

a
t ) = 0, ∂i(∂iA

a
t − ∂tA

a
i )− gφ†

m
T a

mn
φn = 0, (A.6a)

i∂tφm = 0, i∂tχm + iσi∂iφm = 0. (A.6b)

• Case 2: (α1 =
1
2 , α2 =

1
2 , β1 =

3
2 , β2 =

3
2): (Reproduces free sector)

∂t(∂tA
a
j − ∂jA

a
t ) = 0, ∂i(∂iA

a
t − ∂tA

a
i ) = 0, (A.7a)

i∂tφm = 0, i∂tχm + iσi∂iφm = 0. (A.7b)

• Case 3: (α1 = 0, α2 =
1
2 , β1 = 1, β2 =

3
2):

∂t(∂tA
a
j − ∂jA

a
t ) = 0, ∂i(∂iA

a
t − ∂tA

a
i )− gφ†

1
T a

11
φ

1
= 0, (A.8a)

i∂tφm = 0, i∂tχm + iσi∂iφm = 0. (A.8b)

• Case 4: (α1 = 0, α2 = 1, β1 = 1, β2 = 2):

∂t(∂tA
a
j − ∂jA

a
t ) = 0, ∂i(∂iA

a
t − ∂tA

a
i )− gφ†

1
T a

11
φ

1
= 0, (A.9a)

i∂tφ1 = 0, i∂tφ2 + gT a
21A

a
tφ1 = 0, i∂tχ1 + iσi∂iφ1 = 0, (A.9b)

i∂tχ2 + gT a
21A

a
tχ1 + iσi∂iφ2 + gσiT

a
21A

a
i φ1 = 0. (A.9c)

• Case 5: (α1 =
1
2 , α2 =

3
2 , β1 =

3
2 , β2 =

5
2):

∂t(∂tA
a
j − ∂jA

a
t ) = 0, ∂i(∂iA

a
t − ∂tA

a
i ) = 0, (A.10a)

i∂tφ1 = 0, i∂tφ2 + gT a
21A

a
tφ1 = 0, i∂tχ1 + iσi∂iφ1 = 0, (A.10b)

i∂tχ2 + gT a
21A

a
tχ1 + iσi∂iφ2 + gσiT

a
21A

a
i φ1 = 0. (A.10c)

We do not need to consider any other values of α1, α2 as we get no new sector out of it.

For the higher αm ’s the interaction part either drops off or we get back the same equations

from the above mentioned cases. In plot 3, the dots in black represent the sectors where

there is no interaction term between fermions and gauge fields. The coloured dots represent

the distinct non trivial sections. The different values of α1, α2 returning same sectors are

connected through lines in the same figure. So for the EEE sector we get five different

sectors (including the free sectors).
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Gauge transformation for EEE sector

Let us consider relativistic gauge transformations of gauge and fermions fields as

δAa
µ =

1

g
∂µΘ

a + fabcA
b
µΘ

c, δφm = iΘaT a
mnφn, δχm = iΘaT a

mnχn. (A.11)

We will now see gauge transformations in this sector. We scale the gauge transformation

parameter for EEE sector by

Θa → ǫpΘa. (A.12)

We would be plugging (A.12) into (A.11) along with the usual ultra-relativistic scaling of

spacetime, gauge fields and fermions. Our aim is to find the value of p which keeps (A.11)

finite in the limit ǫ→ 0. It is given by

p = 1, Θa → ǫΘa. (A.13)

Thus we arrive at the following gauge transformation for EEE sector of Carrollian SU(2)

Yang Mills coupled to fermions:

δAa
t =

1

g
∂tΘ

a, δAa
i =

1

g
∂iΘ

a,

δφm = ǫαn−αm+1iΘaT a
mn
φn, δχm = ǫβn−βm+1iΘaT a

mn
χn. (A.14)

To see the invariance under these transformation, we have to take one set of values of the

coefficients (αm, βm) along with ǫ→ 0 limit and plug them into (A.14).

Checking symmetries of EEE sector

Next, we will find the invariance of the equations of motion. For that we will choose a

representative sector, that is α1 = 0, α2 = 0, β1 = 1, β2 = 1. The equations are

∂t(∂tA
a
j − ∂jA

a
t ) = 0, ∂i(∂iA

a
t − ∂tA

a
i )− gφ†

m
T a

mn
φn = 0, (A.15a)

i∂tφm = 0, i∂tχm + iσi∂iφm = 0. (A.15b)

Before checking invariance under Carrollian symmetry, we remind the readers, the values

of constants in representation thoery:

{

∆ =
3

2
, f = 0, f ′ = −

1

2
︸ ︷︷ ︸

Fermionic Field

,∆′ = 1, a = 0, b = 1
︸ ︷︷ ︸

Gauge Field

}

. (A.16)

Under scale transformation,

[D,∂i(∂iA
a
t −∂tA

a
i )−gφ

†
m
T a

mn
φn ] = (∆′−1)(∂i∂iA

a
t −∂i∂tA

a
i )−(2∆−3)gφ†mT

a
mnφn,

[D,∂t(∂tA
a
j−∂jA

a
t )] = 0, [D,i∂tφm] = 0, [D,i∂tχm+iσi∂iφm] = 0. (A.17)
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Under special conformal transformation,

[Kl, ∂i(∂iA
a
t − ∂tA

a
i )− gφ†

m
T a

mn
φn ] = (4∆′ − 2δii + 2)∂lA

a
t + (2δii − 2∆′ − 4)∂tA

a
l

+ (2∆′ − 2)xl[∂i∂iA
a
t − ∂t∂iA

a
i ]

− (4∆− 6)xl[gφ
†
m
T a

mn
φn ], (A.18a)

[Kl, ∂t(∂tA
a
j − ∂jA

a
t )] = −2(∆′ − 1)δlj∂tA

a
t , [Kl, i∂tφm] = 0, (A.18b)

[Kl, i∂tχm + iσi∂iφm] = iσl(2∆− 3)φm. (A.18c)

Under infinite supertranslations,

[Mm1,m2,m3 , ∂i(∂iA
a
t − ∂tA

a
i )− gφ†

m
Tα

mn
φn ] = −∂i(x

m1ym2zm3)∂t(∂tA
a
j − ∂jA

a
t ) = 0

[Mm1,m2,m3 , ∂t(∂tA
a
j − ∂jA

a
t )] = 0, [Mm1,m2,m3 , i∂tφm] = 0,

[Mm1,m2,m3 , i∂tχm + iσi∂iφm] = 0. (A.19)

The equations are invariant under infinite conformal Carrollian symmetries in d = 4.

A.2 EEM sector

We would be looking at the two mixed sectors. First, we are discussing EEM, where two

of the gauge fields scale electrically and the other one scales magnetically. The scaling in

this limit is given by

A1,2
t → A1,2

t , A1,2
i → ǫA1,2

i , A3
t → ǫA3

t , A
3
i → A3

i , φm → ǫαmφm , χm → ǫβmχm . (A.20)

The equations of motion are:

• For gauge field A1,2:

∂t(∂tA
1
j − ∂jA

1
t + gA2

tA
3
j ) + gA2

t∂tA
3
j

−g[ǫαm+βn+1φ†
m
σjT

1
mn
χn + ǫβm+αn+1χ†

m
σjT

1
mn
φn ] = 0, (A.21a)

∂t(∂tA
2
j − ∂jA

2
t − gA1

tA
3
j )− gA1

t∂tA
3
j

−g[ǫαm+βn+1φ†
m
σjT

2
mn
χn + ǫβm+αn+1χ†

m
σjT

2
mn
φn ] = 0, (A.21b)

∂i(∂iA
1
t − ∂tA

1
i − gA3

iA
2
t )− gA2

i ∂tA
3
i − gA3

i (∂iA
2
t − ∂tA

2
i + gA3

iA
1
t )

−g[ǫαm+αnφ†
m
T 1

mn
φn + ǫβm+βnχ†

m
T 1

mn
χn ] = 0, (A.21c)

∂i(∂iA
2
t − ∂tA

2
i + gA3

iA
1
t ) + gA1

i ∂tA
3
i + gA3

i (∂iA
1
t − ∂tA

1
i − gA3

iA
2
t )

−g[ǫαm+αnφ†
m
T 2

mn
φn + ǫβm+βnχ†

m
T 2

mn
χn ] = 0. (A.21d)

• For gauge field A3:

∂t∂tA
3
j − g[ǫαm+βn+2φ†

m
σjT

3
mn
χn + ǫβm+αn+2χ†

m
σjT

3
mn
φn ] = 0, (A.22a)

∂i∂tA
3
i + g[ǫαm+αn+1φ†

m
T 3

mn
φn + ǫβm+βn+1χ†

m
T 3

mn
χn ] = 0. (A.22b)
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EEM sector

From equation Constraints

Equations (A.21c)–(A.21d) of Gauge field A1,2
(i) αn + αm ≥ 0

(ii) βn + βm > 0

Equations (A.21a)–(A.21b) of Gauge field A1,2 (iii) αn + βm + 1 > 0

Second equation of Gauge field A3

(iv) αn + αm + 1 ≥ 0

(v)βn + βm + 1 > 0

First equation of Gauge field A3 (vi)αn + βm + 2 > 0

Equation for φm

(vii) βm − αm + 1 > 0,

(viii) αn − αm + 1 ≥ 0

(ix) βn − αm + 1 > 0

Equation for χm

(x) αm − βm + 1 = 0

(xi) βn − βm + 1 ≥ 0

(xii)αn − βm + 1 ≥ 0

Table 9. Constraints on αn, βn in EEM sector.

• For spinors φm, χm:

i∂tφm + ǫβm−αm+1iσi∂iχm + ǫαn−αm+1gT 1
mnA

1
tφn + ǫαn−αm+1gT 2

mnA
2
tφn

+ ǫαn−αm+2gT 3
mnA

3
tφn + ǫβn−αm+2gσiT

1
mnA

1
iχn

+ ǫβn−αm+2gσiT
2
mnA

2
iχn + ǫβn−αm+1gσiT

3
mnA

3
iχn = 0, (A.23)

i∂tχm + ǫαm−βm+1iσi∂iφm + ǫβn−βm+1gT 1
mnA

1
tχn + ǫβn−βm+1gT 2

mnA
2
tχn

+ ǫβn−βm+2gT 3
mnA

3
tχn + ǫαn−βm+2gσiT

1
mnA

1
iφn

+ ǫαn−βm+2gσiT
2
mnA

2
iφn + ǫαn−βm+1gσiT

3
mnA

3
iφn = 0. (A.24)

Following the same reasoning mentioned above we can find the constraints on (αm, βm)

in table 9.

From constraints (i), (viii) and (x) we find:

α1 ≥ 0, α2 ≥ 0, (A.25a)

−1 ≤ α2 − α1 ≤ 1, (A.25b)

αm = βm − 1. (A.25c)

We can plot the region described by (A.25) in figure 4. However from constraint (xii),

αn − βm + 1 ≥ 0 =⇒ α1 = α2. (A.26)

The rest of the constraints trivially satisfy these four major constraints. Hence impos-

ing (A.26), we get only a subset of the intersecting points from the plot above. The
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Figure 4. Allowed region for EEM sector. Key: Point in magenta: Case 1, Points in blue (same

sectors are connected by a line): Case 2. Shaded region describe equations (A.25).

allowed values are

(α1, α2) = (0, 0),

(
1

2
,
1

2

)

, (1, 1) . . .

From the allowed values of (α1, α2) we can construct only two different sectors.

• Case 1: (α1 = 0, α2 = 0, β1 = 1, β2 = 1):

∂t(∂tA
1
j − ∂jA

1
t + gA2

tA
3
j ) + gA2

t∂tA
3
j = 0, (A.27a)

∂t(∂tA
2
j − ∂jA

2
t − gA1

tA
3
j )− gA1

t∂tA
3
j = 0, (A.27b)

∂t∂tA
3
j = 0, ∂i∂tA

3
i = 0,

∂i(∂iA
1
t − ∂tA

1
i − gA3

iA
2
t )− gA2

i ∂tA
3
i − gA3

i (∂iA
2
t − ∂tA

2
i + gA3

iA
1
t )

− gφ†
m
T 1

mn
φn = 0, (A.27c)

∂i(∂iA
2
t − ∂tA

2
i + gA3

iA
1
t ) + gA1

i ∂tA
3
i + gA3

i (∂iA
1
t − ∂tA

1
i − gA3

iA
2
t )

− gφ†
m
T 2

mn
φn = 0,

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
3
mnA

3
iφn = 0. (A.27d)

• Case 2: (α1 > 0, α2 > 0, β1 = α1 + 1, β2 = α2 + 1):

∂t(∂tA
1
j − ∂jA

1
t + gA2

tA
3
j ) + gA2

t∂tA
3
j = 0, (A.28a)

∂t(∂tA
2
j − ∂jA

2
t − gA1

tA
3
j )− gA1

t∂tA
3
j = 0, (A.28b)

∂t∂tA
3
j = 0, ∂i∂tA

3
i = 0,

∂i(∂iA
1
t − ∂tA

1
i − gA3

iA
2
t )− gA2

i ∂tA
3
i − gA3

i (∂iA
2
t − ∂tA

2
i + gA3

iA
1
t ) = 0, (A.28c)

∂i(∂iA
2
t − ∂tA

2
i + gA3

iA
1
t ) + gA1

i ∂tA
3
i + gA3

i (∂iA
1
t − ∂tA

1
i − gA3

iA
2
t ) = 0,

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
3
mnA

3
iφn = 0. (A.28d)

In Case 2, as the last equation is different, this sector does not fully reduce to the free

equations of SU(2) Yang-Mills theory and free fermions. In figure 4, we showed the Case

1 in magenta and the rest of the sectors in blue.
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Gauge transformation for EEM sector

For the EEM sector, we scale the gauge transformation parameter as,

Θ1,2 → ǫpΘ1,2, Θ3 → ǫqΘ3. (A.29)

We want to find p, q in the same way mentioned before. Now we scale Θa’s differently for

A1,2 and A3. The values comes out to be

p = 1, q = 2, Θ1,2 → ǫΘ1,2, Θ3 → ǫ2Θ3 (A.30)

The gauge transformation in this sector is given by

δA1
t =

1

g
∂tΘ

1, δA1
i =

1

g
∂iΘ

1 −A3
iΘ

2,

δA2
t =

1

g
∂tΘ

2, δA2
i =

1

g
∂iΘ

2 +A3
iΘ

1,

δA3
t =

1

g
∂tΘ

3 +A1
tΘ

2 −A2
tΘ

1, δA3
i = 0,

δφm = ǫαn−αm+1[iΘ1T 1
mn
φn + iΘ2T 2

mn
φn ] + ǫαn−αm+2iΘ3T 3

mn
φn ,

δχm = ǫβn−βm+1[iΘ1T 1
mn
χn + iΘ2T 2

mn
χn ] + ǫβn−βm+2iΘ3T 3

mn
χn . (A.31)

The invariance of each subsector under these transformations can be seen when we take one

set of values of the coefficients (αm, βm) along with ǫ→ 0 limit and plug them into (A.31).

Checking symmetries of EEM sector

The representative limit for this sector is taken as α1 = 0, α2 = 0, β1 = 1, β2 = 1. The

equations are

∂t(∂tA
1
j − ∂jA

1
t + gA2

tA
3
j ) + gA2

t∂tA
3
j = 0, (A.32a)

∂t(∂tA
2
j − ∂jA

2
t − gA1

tA
3
j )− gA1

t∂tA
3
j = 0, (A.32b)

∂t∂tA
3
j = 0, ∂i∂tA

3
i = 0,

∂i(∂iA
1
t − ∂tA

1
i − gA3

iA
2
t )− gA2

i ∂tA
3
i − gA3

i (∂iA
2
t − ∂tA

2
i + gA3

iA
1
t )

− gφ†
m
T 1

mn
φn = 0, (A.32c)

∂i(∂iA
2
t − ∂tA

2
i + gA3

iA
1
t ) + gA1

i ∂tA
3
i + gA3

i (∂iA
1
t − ∂tA

1
i − gA3

iA
2
t )

− gφ†
m
T 2

mn
φn = 0,

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
3
mnA

3
iφn = 0. (A.32d)

The values of the constants are given as

{

∆ =
3

2
, f = 0, f ′ = −

1

2
︸ ︷︷ ︸

Fermionic Field

,∆′ = 1, a1,2 = 0, b1,2 = 1, a3 = 1, b3 = 0
︸ ︷︷ ︸

Gauge Field

}

. (A.33)
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The invariance under scale transformation becomes

[D, ∂t(∂tA
1
j − ∂jA

1
t + gA2

tA
3
j ) + gA2

t∂tA
3
j ] = (∆′ − 1)g[(∂tA

2
t )A

3
j + 2A2

t (∂tA
3
j )], (A.34a)

[D, ∂t∂tA
3
j ] = 0, [D, ∂i∂tA

3
i ] = 0, [D, i∂tφm] = 0,

[D, (A.32c)] = (∆′ − 1)(∂i∂iA
1
t − ∂i∂tA

1
i )− (2∆′ − 2)g[(∂iA

3
i )A

2
t + 2A3

i (∂iA
2
t )

+A2
i (∂tA

3
i )−A3

i (∂tA
2
i )]− (3∆′ − 3)(gA3

iA
3
iA

1
t )

− (2∆− 3)(gφ†mT
1
mnφn), (A.34b)

[D, i∂tχm + iσi∂iφm + gσiT
3
mnA

3
iφn] = (∆′ − 1)gσiT

3
mnA

3
iφn. (A.34c)

Under Kl, we have

[Kl, ∂t(∂tA
1
j − ∂jA

1
t + gA2

tA
3
j ) + gA2

t∂tA
3
j ] = −(2∆′ − 2)[δlj∂tA

1
t − xlg(∂tA

2
t )A

3
j

− 2xlgA
2
t (∂tA

3
j )], (A.35a)

[Kl, ∂t∂tA
3
j ] = 0, [Kl, ∂i∂tA

3
i ] = (2∆′ + 4− 2δii)∂tA

3
l , [Kl, i∂tφm] = 0, (A.35b)

[Kl, i∂tχm + iσi∂iφm + gσiT
3
mnA

3
iφn] = (2∆− 3)iσlφm + (2∆′ − 2)xl(gσiT

3
mnA

3
iφn).

The equations are invariant under Mm1,m2,m3 . Similarly, the invariance of (A.32b)

and (A.32d) can also be checked respectively.

A.3 EMM sector

We are looking at the other mixed sector EMM. Here, two of the gauge fields scale mag-

netically and the other one scales electrically.

A1
t → A1

t , A
1
i → ǫA1

i , A
2,3
t → ǫA2,3

t , A2,3
i → A2,3

i , φm → ǫαmφm , χm → ǫβmχm . (A.36)

The equations of motion are

• For gauge field A1:

∂t(∂tA
1
j − ∂jA

1
t )− g[ǫαm+βn+1φ†

m
σjT

1
mn
χn + ǫβm+αn+1χ†

m
σjT

1
mn
φn ] = 0, (A.37a)

g(A2
i ∂tA

3
i −A3

i ∂tA
2
i ) + g[ǫαm+αn+1φ†

m
T 1

mn
φn + ǫβm+βn+1χ†

m
T 1

mn
χn ] = 0, (A.37b)

• For gauge field A2,3:

∂t∂tA
(2,3)
j − g[ǫαm+βn+2φ†

m
σjT

(2,3)
mn

χn + ǫβm+αn+2χ†
m
σjT

(2,3)
mn

φn ] = 0, (A.37c)

∂i∂tA
(2,3)
i + g[ǫαm+αn+1φ†

m
T (2,3)

mn
φn + ǫβm+βn+1χ†

m
T (2,3)

mn
χn ] = 0, (A.37d)

• For spinors φm, χm:

i(∂tφm + ǫβm−αm+1σi∂iχm) + ǫαn−αm+1gT 1
mnA

1
tφn + ǫαn−αm+2gT 2

mnA
2
tφn

+ ǫαn−αm+2gT 3
mnA

3
tφn + ǫβn−αm+2gσiT

1
mnA

1
iχn

+ ǫβn−αm+1gσiT
2
mnA

2
iχn + ǫβn−αm+1gσiT

3
mnA

3
iχn = 0, (A.38a)

i(∂tχm + ǫαm−βm+1σi∂iφm) + ǫβn−βm+1gT 1
mnA

1
tχn + ǫβn−βm+1gT 2

mnA
2
tχn

+ ǫβn−βm+1gT 3
mnA

3
tχn + ǫαn−βm+2gσiT

1
mnA

1
iφn

+ ǫαn−βm+1gσiT
2
mnA

2
iφn + ǫαn−βm+1gσiT

3
mnA

3
iφn = 0. (A.38b)
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EMM sector

From equation Constraints

Equation (A.37b) of Gauge field A1
(i) αn + αm + 1 ≥ 0

(ii) βn + βm + 1 > 0

Equation (A.37a) of Gauge field A1 (iii) αn + βm + 1 > 0

(no equality to reduce it to U(1))

Second equation of Gauge field A2,3

(iv) αn + αm + 1 ≥ 0

(v)βn + βm + 1 > 0

First equation of Gauge field A2,3 (vi)αn + βm + 2 > 0

Equation for φm

(vii) βm − αm + 1 > 0,

(viii) αn − αm + 1 ≥ 0

(ix) βn − αm + 1 ≥ 0

Equation for χm

(x) αm − βm + 1 = 0

(xi) βn − βm + 1 ≥ 0

(xii) αn − βm + 1 ≥ 0

Table 10. Constraints on αm, βm in EMM sector.

The constraints on (αm, βm) are described in table 10. From constraints (i), (viii) and (x)

we find:

α1 ≥ −
1

2
, α2 ≥ −

1

2
, (A.39a)

−1 ≤ α2 − α1 ≤ 1, (A.39b)

αm = βm − 1. (A.39c)

The region covered by the inequalities above is described by plot 5. The last constraint

(xii) adds another condition,

αn − βm + 1 ≥ 0 =⇒ α1 = α2. (A.40)

The rest of the constraints from the table are satisfied trivially. Hence imposing (A.40),

the allowed values are

(α1, α2) =

(

−
1

2
,−

1

2

)

.(0, 0),

(
1

2
,
1

2

)

, (1, 1) . . .

From the allowed values of (α1, α2) we can construct only two different sectors.

• Case 1: {α1 = −1
2 , α2 = −1

2 , β1 =
1
2 , β2 =

1
2}:

∂t(∂tA
1
j − ∂jA

1
t ) = 0, ∂t∂tA

(2,3)
j = 0, (A.41a)

g(A2
i ∂tA

3
i −A3

i ∂tA
2
i ) + gφ†

m
T 1

mn
φn = 0, (A.41b)

∂i∂tA
(2,3)
i + gφ†

m
T (2,3)

mn
φn = 0, (A.41c)

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
2
mnA

2
iφn + gσiT

3
mnA

3
iφn = 0. (A.41d)
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Figure 5. Allowed region for EMM sector. Key: Point in magenta: Case 1, Points in blue (same

sectors are connected by a line): Case 2. Shaded region is described by (A.39).

• Case 2: {α1 > −1
2 , α2 > −1

2 , β1 = α1 + 1, β2 = α2 + 1}:

∂t(∂tA
1
j − ∂jA

1
t ) = 0, ∂t∂tA

(2,3)
j = 0, (A.42a)

g(A2
i ∂tA

3
i −A3

i ∂tA
2
i ) = 0, ∂i∂tA

(2,3)
i = 0, (A.42b)

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
2
mnA

2
iφn + gσiT

3
mnA

3
iφn = 0. (A.42c)

Gauge transformation for EMM sector

For the EMM sector, we scale the gauge transformation parameter as,

Θ1 → ǫpΘ1, Θ2,3 → ǫqΘ2,3. (A.43)

We scale Θa’s differently for A1 and A2,3. The values of p, q comes out to be

p = 1, q = 2, Θ1 → ǫΘ1, Θ2,3 → ǫ2Θ2,3. (A.44)

The gauge transformations in this sector is given by

δA1
t =

1

g
∂tΘ

1, δA1
i =

1

g
∂iΘ

1, δA2,3
t =

1

g
∂tΘ

2,3, δA2,3
i = 0,

δφm = ǫαn−αm+1iΘ1T 1
mn
φn + ǫαn−αm+2[iΘ2T 2

mn
φn + iΘ3T 3

mn
φn ],

δχm = ǫβn−βm+1iΘ1T 1
mn
χn + ǫβn−βm+2[iΘ2T 2

mn
χn + iΘ3T 3

mn
χn ]. (A.45)

The invariance under these transformations can be seen when we take one set of values of

the coefficients (αm, βm) along with ǫ→ 0 limit and plug them into (A.45).

– 52 –



J
H
E
P
0
5
(
2
0
1
9
)
1
0
8

Checking symmetries of EMM sector

We will take α1 = 0, α2 = 0, β1 = 1, β2 = 1 as the representative limit for this sector. The

equations are

∂t(∂tA
1
j − ∂jA

1
t ) = 0, ∂t∂tA

(2,3)
j = 0, (A.46a)

g(A2
i ∂tA

3
i −A3

i ∂tA
2
i ) = 0, ∂i∂tA

(2,3)
i = 0, (A.46b)

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
2
mnA

2
iφn + gσiT

3
mnA

3
iφn = 0. (A.46c)

The values of the constants in the representation theory are

{

∆ =
3

2
, f = 0, f ′ = −

1

2
︸ ︷︷ ︸

Fermionic Field

,∆′ = 1, a1 = 0, b1 = 1, a2,3 = 1, b2,3 = 0
︸ ︷︷ ︸

Gauge Field

}

. (A.47)

Since, most of the equations do not contain interaction pieces, the invariance under D,Kl

and M are quite trivial to find. The equations come out to be invariant in d = 4 case.

However, in the EMM sector we do not get any kinetic term in the third equation for Case

1 and 2. Hence, we need to discard this entire EMM sector of Carrollian SU(2) Yang-Mills

with fermions.

A.4 MMM sector

In this sector, all gauge fields are scaled magnetically. The scaling are given as

Aa
i → Aa

i , A
a
t → ǫAa

t , φm → ǫαmφm , χm → ǫβmχm . (A.48)

The equations of motion in this sector are given as

∂t∂tA
a
j−g[ǫ

αm+βn+2φ†
m
σjT

a
mn
χn+ǫ

βm+αn+2χ†
m
σjT

a
mn
φn ] = 0, (A.49a)

∂i∂tA
a
i +gf

abcAb
i∂tA

c
i+g[ǫ

αm+αn+1φ†
m
T a

mn
φn+ǫ

βm+βn+1χ†
m
T a

mn
χn ] = 0, (A.49b)

i(∂tφm+ǫβm−αm+1σi∂iχm)+ǫαn−αm+2gT a
mnA

a
tφn+ǫ

βn−αm+1gσiT
a
mnA

a
i χn=0, (A.49c)

i(∂tχm+ǫαm−βm+1σi∂iφm)+ǫβn−βm+2gT a
mnA

a
tχn+ǫ

αn−βm+1gσiT
a
mnA

a
i φn=0. (A.49d)

Imposing the constraints we can write down table 11 to find out the allowed values of

αm, βm for the MMM sector. From constraints (ii), (vi) and (vii) we find:

α1 ≥ −
1

2
, α2 ≥ −

1

2
, (A.50a)

−2 ≤ α2 − α1 ≤ 2, (A.50b)

αm = βm − 1. (A.50c)

We can plot 6 to describe the region contained by (A.50). However we have another

constraint (ix),

αn − βm + 1 ≥ 0 =⇒ αn − (αm + 1) + 1 ≥ 0 =⇒ αn − αm ≥ 0, (for n 6= m)

=⇒ α1 − α2 ≥ 0, α2 − α1 ≥ 0. (A.51)

– 53 –



J
H
E
P
0
5
(
2
0
1
9
)
1
0
8

MMM sector

Free equation U(1)+Fermions Constraints

∂t∂tA
a
i =0 ∂t∂tAi=0 (i) αn+βm+2> 0

∂i∂tA
a
i +gf

abcAb
i∂tA

c
i =0

∂i∂tAi+eφ
†φ=0 (ii) αn+αm+1≥ 0

∂i∂tAi=0 (iii) βn+βm+1> 0

i∂tφ=0 i∂tφ=0

(iv) βm−αm+1> 0,

(v) βn−αm+1≥ 0,(n 6=m),

(vi) αn−αm+2≥ 0

i∂tχ+iσi∂iφ=0 i∂tχ+iσi∂iφ+eσiAiφ=0

(vii) αm−βm+1=0,

(viii) βn−βm+2≥ 0,

(ix) αn−βm+1≥ 0, (n 6=m)

Table 11. Constraints on αm,βm in MMM sector.

Eq. (A.51) can hold if and only if α1 = α2 which suggests β1 = β2. The rest of the con-

straints trivially satisfy these four major constraints. Hence the allowed values for (α1, α2)

are written from the intersecting points in the plot above (also strictly imposing (A.51)):

(α1, α2) =

(

−
1

2
,−

1

2

)

, (0, 0),

(
1

2
,
1

2

)

, (1, 1) . . .

From the allowed values of (α1, α2) we can construct only two different sectors.

• Case 1: {α1 = −1
2 , α2 = −1

2 , β1 =
1
2 , β2 =

1
2}:

∂t∂tA
a
j = 0, ∂i∂tA

a
i + gfabcAb

i∂tA
c
i + gφ†

m
T a

mn
φn = 0, (A.52a)

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
a
mnA

a
i φn = 0. (A.52b)

• Case 2: {α1 > −1
2 , α2 > −1

2 , β1 = α1 + 1, β2 = α2 + 1}:

∂t∂tA
a
j = 0, ∂i∂tA

a
i + gfabcAb

i∂tA
c
i = 0, (A.53a)

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
a
mnA

a
i φn = 0. (A.53b)

Gauge transformation for MMM sector

For the MMM sector we scale the gauge transformation parameter as,

Θa → ǫqΘa. (A.54)

We want to find the value of q that keeps the gauge transformation (A.11) of fermions and

gauge fields finite along with the ultra-relativistic spacetime contraction. The value of q

comes out to be

q = 2, Θa → ǫ2Θa. (A.55)
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Figure 6. Allowed region for MMM sector. Key: Point in magenta: Case 1, Points in blue (same

sectors are connected by a line): Case 2. Shaded region is described by (A.50).

We also scale the gauge fields magnetically and the fermions in the usual way. Thus we

arrive at the gauge transformation of MMM limit of Carrollian SU(2) Yang Mills coupled

to fermions:

δAa
t =

1

g
∂tΘ

a, δAa
i = 0,

δφm = ǫαn−αm+2iΘaT a
mn
φn, δχm = ǫβn−βm+2iΘaT a

mn
χn. (A.56)

When we take one set of values of the coefficients (αm, βm) along with ǫ → 0 limit and

plug them into (A.56), the equations remain invariant in that subsector.

Checking symmetries of MMM sector

The representative limit for this sector is chosen to be α1 = 0, α2 = 0, β1 = 1, β2 = 1. The

equations are

∂t∂tA
a
j = 0, ∂i∂tA

a
i + gfabcAb

i∂tA
c
i = 0, (A.57a)

i∂tφm = 0, i∂tχm + iσi∂iφm + gσiT
a
mnA

a
i φn = 0. (A.57b)

The values of the constants are

{

∆ =
3

2
, f = 0, f ′ = −

1

2
︸ ︷︷ ︸

Fermionic Field

,∆′ = 1, a = 1, b = 0
︸ ︷︷ ︸

Gauge Field

}

. (A.58)

The invariance under scale transformation is

[D, ∂t∂tA
a
j ] = 0, [D, ∂i∂tA

a
i + gfabcAb

i∂tA
c
i ] = (∆′ − 1)gfabcAb

i∂tA
c
i , (A.59a)

[D, i∂tφm] = 0, [D, i∂tχm + iσi∂iφm + gσiT
a
mnA

a
i φn] = (∆′ − 1)gσiT

a
mnA

a
i φn. (A.59b)

– 55 –



J
H
E
P
0
5
(
2
0
1
9
)
1
0
8

Under SCT, we have

[Kl, ∂i∂tA
a
i + gfabcAb

i∂tA
c
i ] = (2∆′ + 4− 2δii)∂tA

a
l + 2(∆′ − 1)xl(gf

abcAb
i∂tA

c
i ),

[Kl, i∂tχm + iσi∂iφm + gσiT
a
mnA

a
i φn] = (2∆− 3)iσlφm + 2(∆′ − 1)xl(gσiT

a
mnA

a
i φn),

[Kl, i∂tφm] = 0, [Kl, ∂t∂tA
a
j ] = 0. (A.60)

The equations are also invariant under Mm1,m2,m3 .

[Mm1,m2,m3 , ∂i∂tA
a
i + gfabcAb

i∂tA
c
i ] = 0,

[Mm1,m2,m3 , i∂tχm + iσi∂iφm + gσiT
a
mnA

a
i φn] = i

(σi
2

)

∂i(x
m1ym2zm3)∂tφ = 0,

[Mm1,m2,m3 , i∂tφm] = 0, [Mm1,m2,m3 , ∂t∂tA
a
j ] = 0. (A.61)

B Galilean SU(N) Yang-Mills theory with matter

In this section we extend the analysis of [6], to our non-relativistic counterpart of SU(N)

Yang-Mills coupled to matter. It is a further generalisation of Galilean SU(2) Yang-Mills

with matter described in [6].

Galilean conformal algebra

We start with a brief review on the Galilean Conformal Algebra (GCA). GCA is obtained

from conformal algebra by performing an Inonu-Wigner contraction. In the process of going

to the Galilean framework, the underlying Lorentz symmetry breaks down. The spacetime

scale differently, as

xi → ǫxi, t→ t. (B.1)

The generators of GCA can be found by imposing the limit (B.1) on relativistic conformal

algebra. The generators in this limit emerge as

L(n) = −tn+1∂t − (n+ 1)tnxi∂i, M
(n)
i = tn+1∂i for n = 0,±1, Jij = −x[i∂j], (B.2)

where L(−1,0,1) = H,D,K (H,D and K are the Galilean Hamiltonian, dilatation and

temporal SCT) and M
(−1,0,1)
i = Pi, Bi,Ki (Pi, Bi and Ki represent spatial momentum,

Galilean boost and spatial SCT). The full GCA is given as

[L(n), L(m)] = (n−m)L(n+m), [L(n),M
(m)
i ] = (n−m)M

(n+m)
i ,

[M
(n)
i ,M

(m)
j ] = 0, [L(n), Jij ] = 0, [Jij ,M

(n)
k ] =M

(n)
[j δi]k. (B.3)

The interesting point to be noted here is that the above algebra closes, even if the index

n runs over all integers. Hence, it is concluded that GCA has an infinite extension in all

spacetime dimensions, which is very unlike relativistic conformal algebras for d > 2.
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Galilean Yang-Mills

In [6], a detailed analysis of Galilean conformal field theories was performed including free

as well as interacting theories. The last example presented in this paper was Galilean SU(2)

Yang-Mills theory coupled to fermions. The various sectors of O(1500) emerged as sub-

limits of EEE, EEM, EMM and MMM. However, using some consistency requirements the

possible sectors were brought down to 19 (including both interacting and free sectors). This

significant reduction in the number of sectors hinted towards something deeper coming into

the scenario, which is unfortunately yet to be explained. Another interesting observation

was that, the equations of motion in all the sub-limits of SU(2) YM with fermions turned

out to be invariant under GCA.

The purpose of this appendix is to generalise the existing calculations of SU(2) case [6]

to non-relativistic limit of SU(N) Yang-Mills theory coupled to fermions. We would look

into the structure of equations of motion and try to find the constraints on parameters

am, bm appearing in the theory. Ultimately, we would check the invariance of a represen-

tative sector under GCA.

We begin by writing down the equations of motion of parent relativistic SU(N) coupled

to fermions theory:

∂µF
µνa + gfabcAb

µF
µνc + gψ̄mγ

νT a
mnψn = 0, iγν(Dνψ)n = 0, (B.4)

where Dµ ≡ ∂µ − igT aAa
µ is the non abelian gauge covariant derivative and F a

µν = ∂µA
a
ν −

∂νA
a
µ + gfabcAb

µA
c
ν is the non abelian field strength tensor. The relativistic equations of

motion under the decomposition of Dirac fermion (3.15) are

∂tF
a
tj − ∂iF

a
ij + gfabc(Ab

tF
c
tj −Ab

iF
c
ij)− g(φ†mσjT

a
mnχn + χ†

mσjT
a
mnφn) = 0, (B.5a)

∂iF
a
it + gfabcAb

iF
c
it − g(φ†mT

a
mnφn + χ†

mT
a
mnχn) = 0, (B.5b)

i∂tφm + gT a
mnA

a
tφn + iσi∂iχm + gσiT

a
mnA

a
i χn = 0, (B.5c)

i∂tχm + gT a
mnA

a
tχn + iσi∂iφm + gσiT

a
mnA

a
i φn = 0. (B.5d)

The next step is to find the appropriate scaling on gauge fields and fermions. The scaling

of Aµ and (φm, χm) are explained in details in section 5 for the Carrollian case. Here we

follow the same scaling keeping in mind that the change in the two systems happens as the

underlying spacetime scales differently (B.1) as opposed to (2.1). Under these scalings, the

generalised equations of motion are given by:

• Case 1: D − p0 + 1 ≤ a ≤ D:

∂i∂iA
α
t −g[ǫ

am+an+2φ†mT
α
mnφn+ǫ

bm+bn+2χ†
mT

α
mnχn] = 0, (B.6a)

∂t∂jA
α
t +∂i(∂iA

α
j −∂jA

α
i +gf

α
JKA

J
i A

K
j )+gfαβγA

β
t ∂jA

γ
t

+gfαJKA
J
i (∂iA

K
j −∂jA

K
i )+g[ǫam+bn+1φ†mσjT

α
mnχn+ǫ

bm+an+1χ†
mσjT

α
mnφn] = 0.

(B.6b)
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• Case 2: 1 ≤ a ≤ D − p0:

∂i(∂iA
I
t − ∂tA

I
i + gf IJαA

J
i A

α
t ) + gf IJαA

J
i ∂iA

α
t

−g[ǫam+an+1φ†mT
I
mnφn + ǫbm+bn+1χ†

mT
I
mnχn] = 0, (B.7a)

∂i(∂iA
I
j − ∂jA

I
i ) + g[ǫam+bn+2φ†mσjT

I
mnχn + ǫbm+an+2χ†

mσjT
I
mnφn] = 0. (B.7b)

The Dirac equations are same in both the cases,

i∂tφm + ǫan−amgTα
mnA

α
t φn + ǫan−am+1gT I

mnA
I
tφn + ǫbm−am−1iσi∂iχm

+ǫbn−am+1gσiT
α
mnA

α
i χn + ǫbn−amgσiT

I
mnA

I
iχn = 0, (B.8a)

i∂tχm + ǫbn−bmgTα
mnA

α
t χn + ǫbn−bm+1gT I

mnA
I
tχn + ǫam−bm−1iσi∂iφm

+ǫan−bm+1gσiT
α
mnA

α
i φn + ǫan−bmgσiT

I
mnA

I
iφn = 0. (B.8b)

Comparing with the free equations, the constraints on (am, bm) can be written as

am + an + 1 ≥ 0, am + bn + 1 ≥ 0, bm = am + 1. (B.9)

We will not go into details of the number of possible sectors and ways to reduce them in

this appendix. What we are really after is the emergence of symmetries in these various

sub-sectors.

Symmetries of EOM. We now pick a representative sector for which we will find the

invariance under GCA. We choose a sector randomly, say am = 0, bm = 1. The equations

of motion in this sector are given as

∂t∂jA
α
t + ∂i(∂iA

α
j − ∂jA

α
i + gfαJKA

J
i A

K
j ) + gfαβγA

β
t ∂jA

γ
t

+ gfαJKA
J
i (∂iA

K
j − ∂jA

K
i ) = 0, (B.10a)

∂i(∂iA
I
t − ∂tA

I
i + gf IJαA

J
i A

α
t ) + gf IJαA

J
i ∂iA

α
t = 0, (B.10b)

∂i(∂iA
I
j − ∂jA

I
i ) = 0, ∂i∂iA

α
t = 0, (B.10c)

i∂tφm + gTα
mnA

α
t φn + iσi∂iχm = 0, iσi∂iφm = 0. (B.10d)

We will now find the invariance of the equations under GCA generators Ln,Mn
i . Before

that, let us pause to remind the action of these generators on fields of different spins. They

are given as

[L(n),Φ(t, x)] = (tn+1∂t + (n+ 1)tnxl∂l + (n+ 1)tn∆)Φ(t, x)

− tn−1n(n+ 1)xkU [M
(0)
k ,Φ(0, 0)]U−1,

[M
(n)
l ,Φ(t, x)] = −tn+1∂lΦ(t, x) + (n+ 1)tnU [M

(0)
l ,Φ(0, 0)]U−1, (B.11)

where Φ = {ϕ, φ, χ,At, Ai}, U = etL
−1−xiM

−1

i and

[M
(0)
k ,Φ(0, 0)] = aϕk + bσkχ+ b̃σkφ+ sAk + rAtδki + . . . . (B.12)
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For details on representation theory of GCA, we recommend section 2.2 of [6]. The values

of the constants (r, s, b, b̃) are given as,

∆1 = 1, ∆2 =
3

2
, rα = −1, sα = 0, rI = 0, sI = −1, b = 0, b̃ =

1

2
, (B.13)

where ∆1, ∆2 are scaling weights of gauge fields and fermionic fields respectively. The

equations are trivially invariant under Mn
i . Under L

n, we have

[Ln, (B.10a)] = n(n+ 1)tn−1(∆1 + 2− δii)∂jA
α
t + (∆1 − 1)(n+ 1)tn[gfαβγA

β
t ∂jA

γ
t

+ gfαJK(AK
j ∂iA

J
i −AJ

i ∂jA
K
i + 2AJ

i ∂iA
K
j )], (B.14a)

[Ln, (B.10b)] = (∆1 − 1)(n+ 1)[−ntn−1∂iA
I
i + gf IJαt

n(Aα
t ∂iA

J
i + 2AJ

i ∂iA
α
t )], (B.14b)

[Ln, ∂i(∂iA
I
j − ∂jA

I
i )] = 0, [Ln, ∂i∂iA

α
t ] = 0, [Ln, iσi∂iφm] = 0, (B.14c)

[Ln, i∂tφm + gTα
mnA

α
t φn + iσi∂iχm] = in(n+ 1)tn−1

(

∆2 −
3

2

)

φm

+ (∆1 − 1)tn(n+ 1)gTα
mnA

α
t φn. (B.14d)

From the above set of results, it is easier to conclude that the equations of motion are

invariant under the generators of GCA.

C Comparison between Galilean and Carrollian CFTs

The reader familiar with earlier work [4–6] will find many similarities in the methods and

indeed the final results of Carrollian and Galilean conformal field theories. Here we attempt

to make a comparison between these field theories, which can be thought of as two distinct

sub-sectors of a parent relativistic theory.

The underlying algebras, the CCA and the GCA, are obviously different as they appear

from different inequivalent contractions of the relativistic conformal algebra. For the finite

algebras, arising solely out of contractions, the number of generators are the same. As we

have seen, the infinite extensions in both cases have different flavours and the algebraic

structure of the infinite dimensional algebras are quite different. The GCA has the same

structure for all dimensions, which the CCA differs significantly depending on dimensions

(and whether or not one can give the super-rotation part an infinite lift).

Moving on to the explicit examples of the field theories, we find quite a few important

distinctions. We will begin the discussion with our first example, the scalar field theory.

In [6], we found that in Galilean limit (B.1) of ∂µ∂µϕ = 0, we get

∂i∂iϕ = 0. (C.1)

The above expression (C.1) contains spatial derivative only. If we take Carrollian limit (3.2)

on scalar equation, the result comes out to be

∂t∂tϕ = 0, (C.2)

which only involve time derivatives. This is a generic feature and obviously has to do with

the underlying contraction where in the non-relativistic case, space is scaled down and as

a result, spatial derivatives scaled up as opposed to the Carrollian case where time and

time-derivatives are scaled down and up respectively.
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For our second example, we will look at massless Dirac field theory. In Galilean case,

the equations are given as

i∂tφ+ iσi∂iχ = 0, iσi∂iφ = 0, (C.3)

where φ, χ are two component spinors in Pauli-Dirac representation. In Carrollian case,

the equations are given by (3.19). In both cases, the scaling of the spinors are taken to be

φ→ φ, χ→ ǫχ. Again, as expected, in the NR case, we get an equation which contain only

spatial derivatives whereas in the UR case we have the time derivative acting on the spinor.

Let us now move on to Electrodynamics. The relativistic EOM are:

∂µFµν = 0. (C.4)

To take the non-relativistic limit on (C.4), we used the non-relativistic scaling of the coor-

dinates and scaled the gauge field components as

Electric sector: At → At, Ai → ǫAi (C.5a)

Magnetic sector: At → ǫAt, Ai → Ai (C.5b)

The reason that we get these two sectors is due to that fact that the contravariant and

covariant vectors behave like two independent quantities (because the metric becomes de-

generate). This can also be seen clearly as follows

Āµ =
∂x̄µ

∂xα
Aα −→

{

Āt = At, Āi = ǫAi

}

, (C.6a)

Āµ =
∂xα

∂x̄µ
Aα −→

{

Āt = ǫAt, Āi = Ai

}

, (C.6b)

where we have used x̄i → ǫxi, t̄ → t in the intermediate steps. We see that (C.6a) can be

associated with electric sector, whereas (C.6b) denotes the magnetic sector. In case of ultra-

relativistic limit, the gauge fields are scaled in a similar fashion (C.5). But contravariant

vectors gives rise to magnetic sector (see (4.2)) and the covariant ones give the electric

sector. This is because of opposite scaling of spacetime coordinates (x̄i → xi, t̄ → ǫt) in

contrast to Galilean case.

The equations of motion in Galilean case and Carrollian case are also different. Non-

relativistic limit taken on the relativistic equation yields

Electric sector: ∂i∂iAt = 0, ∂j∂jAi − ∂i∂jAj + ∂t∂iAt = 0; (C.7a)

Magnetic sector: (∂j∂j)Ai − ∂i∂jAj = 0, (∂i∂i)At − ∂i∂tAi = 0. (C.7b)

For Carrollian limit, we have

Electric sector: ∂i∂iAt − ∂i∂tAi = 0, ∂t∂iAt − ∂t∂tAi = 0; (C.8a)

Magnetic sector: ∂i∂tAi = 0, ∂t∂tAi = 0. (C.8b)

We now want to focus on the differences that occur when we check for the symmetries

of the EOM in both cases. We have worked in the scale-spin representation. The scale-

spin representations of GCA and CCA are determined by the set {∆, j, a, b}. The constants
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a, b are boost labels on the fields, exclusive to each spin. For Galilean Electrodynamics

(GED), the values of the constants are given by (ae, be) = (1, 0) for electric limit and

(am, bm) = (0, 1) for magnetic limit.6 For Carrollian Electrodynamics case, the value of

the constants are given by (ae, be) = (0, 1) for electric limit whereas for magnetic limit,

the values are (am, bm) = (1, 0). We see that the boost labels are interchanged between

the sectors when we compare both limits. For example, the values of constants in electric

sector of GED are same as that in magnetic sector of Carrollian ED.

Moving on to gauge fields coupled to matter, we also see some differences. In GED

coupled to fermions, the magnetic limit is devoid of any interactions between the fields

∂i∂iAt − ∂i∂tAi = 0, ∂i∂iAj − ∂i∂jAi = 0, iσi∂iχ = 0, iσi∂iφ+ i∂tχ = 0. (C.9)

In Carrollian ED coupled to fermions, only the sectors with (α > 0) of electric limit is

devoid of the interaction terms and can be seen explicitly from the equations

∂i(∂iAt − ∂tAi) = 0, ∂t(∂tA
j − ∂jAt) = 0, i∂tφ = 0, i∂tχ+ iσi∂iφ = 0. (C.10)

Another point of difference is that while taking generalised scaling of fermions (φ, χ) as

φ→ ǫαφ, χ→ ǫβχ, (C.11)

the minimum value of α for electric limit turns out to be α = −1 and for magnetic limit

α = −1
2 in Galilean case, whereas in Carrollian case, the values are given as α = 0 (for

electric limit) and α = −1
2 (for magnetic limit). These minimum values of α show that any

value below this, fails to reproduce the free equations (kinetic terms).

Lastly, we consider the example of SU(N) YM theory. For the case, D−p0+1 ≤ a ≤ D

in SU(N) Carrollian YM (section 5.2), we have two separate scalar equations because of

the magnetic index J . For J = 1, the equation is denoted by F (5.20) and for J > 1,

we obtain E (5.19b). Correspondingly, we get two different constraints on am for SU(N)

Carrollian YM coupled to fermions. They are given as

am ≥ 0 for J = 1 and am ≥ −
1

2
for J > 1. (C.12)

The sectors where the E hold, are not “nice” sectors, as these equations have only inter-

action pieces and no kinetic terms. This means that we need to discard all those sectors

where E has a non-trivial realisation. In fact, the only surviving sector with J > 1 is the

purely magnetic one as E drops off there. In SU(N) Gallilean YM, we do not have any

such divisions because we do not get any equation similar to E . We only have single scalar

equation for D− p0 +1 ≤ a ≤ D case and it is given as ∂i∂iA
α
t = 0. On the one hand, this

is a simplification in terms of the underlying equations. On the other hand, the absence of

the equivalent of equation E means that one has a huge number of possible sectors to deal

with in the Galilean YM theories.

For the convenience of the reader, we have listed the points we discussed above in an

extensive table in the next page.

6In [4], the values of (ae, be) and (am, bm) were taken to be ae = −1, be = 0 and am = 0, bm = −1. These

sign differences in the two cases arise from sign conventions of the representation theory. When chosen

consistently, the signs of the constants turn out to be the same.
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Comparison between Galilean and Carrollian Conformal theories

Galilean Conformal Algebra Carrollian Conformal Algebra

1. Scaling of the coordinates: xi → ǫxi, t → t

along with c = 1 and ǫ → 0. Lightcones

flatten out.

Scaling of the coordinates: xi → xi, t → ǫt

along with c = 1 and ǫ → 0. Lightocones

close up.

2. Presence of Infinite extension of the algebra

in all dimensions.

Presence of Infinite extension of the algebra

in d = 2, 3 case and partial infinite exten-

sion in d = 4, 5, . . . cases.

3. Galilean boost and the SCT are Bi = t∂i,

Ki = t2∂i, K = −t2∂t − 2txi∂i.

Carrollian boost and SCT have the form

Bi = xi∂t, Ki = −2xi(t∂t + xk∂k) + x2∂i,

K = x2∂t.

4. We will write some of the commutators to

show the difference between two algebras.

They are written down as

[Bi, Pj ] = 0, [Ki, Pj ] = 0.

Similarly, for CCA we have

[Bi, Pj ] = −δijH, [Ki, Pj ] = −2Dδij−2Jij .

5. We can have representations labelled by the

scale and boost in all dimensions.

Here the scale-boost representation is only

possible in d=2 case. For d>2 case, there

are no non-trivial representation that are

labelled by weights under scale and boost.

Galilean Conformal Field theories Carrollian Conformal Field theories

6. In case of scalars, the equation of motion is

given as ∂i∂iϕ = 0. Here, we have no time

derivatives.

For scalars, the equation is given as ∂t∂tϕ =

0. We see the absence of spatial derivatives.

7. In fermion case, one of the equations just

contains the spatial derivatives and is given

by iσi∂iφ = 0

Whereas, in this case, one of the equations

contains only the time derivative and is

given as i∂tφ = 0.

8. In GED case, the contravariant vectors are

associated with electric sector, whereas the

covariant vectors give rise to the magnetic

sector.

In Carrollian ED case, the contravariant

vectors are associated with the magnetic

sector, whereas the covariant vectors de-

notes the electric sector.

9. The constants that defines the scale-spin

representation are given by a, b. For GED,

the values of the constants are given by

ae = 1, be = 0 for electric limit and am =

0, bm = 1 for magnetic limit.

In Carrollian ED case, the values of the con-

stants are given by ae = 0, be = 1 for elec-

tric limit whereas for magnetic limit, the

values are am = 1, bm = 0.

10. In GED coupled with fermions, the mag-

netic limit is devoid of any interactions be-

tween the fields.

In Carrollian ED coupled with fermions, the

electric limit (only the sectors with α > 0)

is devoid of the interaction terms.

11. In SU(2) GYM, the self interactions among

gauge fields are present in EEE, EMM sec-

tor.

In SU(2) Carrollian YM, the self interac-

tions among gauge fields are present in

EEM, MMM sector.
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12. In SU(N) GYM, we do not have any such

divisions because we do not get any equa-

tion similar to E . We only have a single

scalar equation for the D − p0 + 1 ≤ a ≤ D

case.

For the case D − p0 + 1 ≤ a ≤ D in SU(N)

Carrollian YM, we have two separate scalar

equation because of the magnetic index J .

For J = 1, the equation is denoted by F

and for J > 1, we have E . Due to such

division, we get two different constraints on

am for SU(N) Carrollian YM coupled with

fermions. For J = 1, we have am ≥ 0 and

am ≥ − 1

2
for J > 1.

13. Number of sectors in GYM is large as there

are no sectors we discard for non-existence

of a kinetic term

The number of sectors in Carrollian YM is

more limited due to the existence of sectors

where there are EOM like E . This class of

EOM only contain interaction terms. So all

sectors with non-trivial realisations of this

class of EOM are discarded.
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