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Abstract

This paper is intended as an introduction to the functorial formulation of quantum
field theories with defects. After some remarks about models in general dimension,
we restrict ourselves to two dimensions – the lowest dimension in which interesting
field theories with defects exist.

We study in some detail the simplest example of such a model, namely a topo-
logical field theory with defects which we describe via lattice TFT. Finally, we give
an application in algebra, where the defect TFT provides us with a functorial def-
inition of the centre of an algebra. This involves changing the target category of
commutative algebras into a bicategory.

Throughout this paper, we emphasise the role of higher categories – in our case
bicategories – in the description of field theories with defects.
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1 Introduction

One way to think about quantum field theory – motivated by conformal field theory and
string theory [FS, Va] – is as functors from bordisms to vector spaces [Se, At]; here, each of
the terms ‘functor’, ‘bordism’, ‘vector space’ has to be supplemented with the appropriate
qualifiers for the application in mind. In its most basic form, the bordisms for an n-
dimensional quantum field theory form a symmetric monoidal category whose objects are
(n−1)-dimensional manifolds equipped with ‘collars’ and whose morphisms are equivalence
classes of n-dimensional manifolds with parametrised boundary.
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To study quantum field theories beyond this basic functorial definition, it is often
appropriate to employ higher categories. There are two natural ways in which such higher
categories enter.

1. The (n−1)-manifolds which form the objects in the above bordism category could in
turn be obtained by gluing (n−1)-manifolds along (n−2)-manifolds, and so on, down
to 0-manifolds, i.e. points. This process is called ‘extending the field theory down to
points’ [Fre, Law, BD, Lu1]. One obtains a higher category whose objects are now
points (with extra structure) and which has 1-morphisms, 2-morphisms, . . . , up to
n-morphisms. The resulting field theories are most studied in the case of topological
field theories [Lu1].

2. One can let the bordisms remain a (1-)category but equip them with extra struc-
ture, namely with ‘defects’. These are submanifolds embedded in the (n−1)- and
n-dimensional bordisms, decorated with labels which describe different possible ‘de-
fect conditions’. A field theory on bordisms with defects equips the set of defect
conditions with the structure of a higher category.

Here we want to elaborate on the second point. Some other works which also stress the
appearance of higher categories in field theories with defects, and which the reader could
consult for further references, are [SFR, Lu1, BDH, Ka, KK]. In the present paper, we
will concentrate on the simplest interesting class of models, namely two-dimensional field
theories with defects. In section 2 we will see how a field theory with a particular type of
defects – so called topological defects – gives rise to a 2-category defined in terms of the
set of defect conditions. In section 3 we use lattice topological field theory to construct a
very simple but still non-trivial example of a field theory with defects. This example will
motivate – in section 4 – a nice mathematical construction, namely a method to make the
assignment which maps an algebra to its centre functorial. Section 5 contains an outlook
on further developments.

These three constructions – the 2-category of topological defects (section 2.4), lattice
topological field theory with defects (theorem 3.8), and the centre functor (theorem 4.12
and remark 4.19) – are the main points of this paper. We hope that they provide some
intuition on how to work with field theories containing defects and illustrate their useful-
ness.

2 Field theory with defects

2.1 Bordisms with defects

It is beyond the scope of this article (and the present abilities of the authors) to develop
an all-purpose formalism for field theories with defects. In this subsection we briefly sketch
the basic features of the functorial formulation of field theory with defects.1

1 In doing so will omit most details. For those who are familiar with the functorial formulation, some of
these details are: we should equip our object-(n−1)-manifolds with collars to ensure a well-defined gluing
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As usual, a field theory will be a functor from a bordism category to a category of vector
spaces. In the presence of defects, the target category of the functor remains unchanged.
However, we do modify the source category. The category of n-dimensional bordisms with
defects contains the following ingredients.

• Sets of defect conditions: the bordism category will depend on a choice of n+1
(possibly empty) sets, Dk, k = 0, . . . , n. The elements of Dk serve as defect conditions
for k-dimensional defects.

• Objects: the objects are (n−1)-dimensional compact oriented manifolds U with empty
boundary, together with a disjoint decomposition into submanifolds. That is, U =⋃n−1
i=0 Ui, where each Ui is an i-dimensional oriented submanifold of U and Uk∩Ul = ∅

for k 6= l.2 The orientation of Un−1 is induced by that of U .

For example, Un−1 = U and Uk = ∅ for k < n−1 would be a possibility, or, if Ui
(i < n−1) is a closed submanifold of U , then we can take Un−1 = U \ Ui and Uk = ∅
for k 6= i, n−1.

Finally, each connected component of Uk is decorated with a defect condition from
Dk+1, i.e. we have a collection of maps dk+1 : π0(Uk)→ Dk+1; the reason for the shift
in k is that the Uk will appear as boundaries of (k + 1)-dimensional submanifolds in
the n-dimensional manifold making up a morphism.

• Morphisms: a morphism M : U → V has a structure analogous to objects, except
in one dimension higher. In more detail, M is an n-dimensional compact oriented
manifold, together with a decomposition M =

⋃n
i=0Mi, where each Mi is an i-

dimensional oriented submanifold, possibly with non-empty boundary ∂Mk, and Mk∩
Ml = ∅ for k 6= l (and footnote 2 applies analogously). The orientation of Mn is
induced by that of M . Each connected component of Mk is labelled by a defect
condition, but this time from Dk, that is, we have maps d̂k : π0(Mk)→ Dk.

The boundary ∂M is identified via an orientation preserving diffeomorphism (which
is part of the data of a morphism) with the disjoint union −U t V ; we require that
∂Mk ⊂ ∂M , and that the resulting decomposition and labelling of ∂M agrees with
the one induced by −U t V .

operation; objects and morphisms could carry extra geometric data such as a metric, a spin structure, etc.;
we should work with families to have a natural notion of continuous or smooth dependence of the functor
on the bordism; the functor from bordisms to vector spaces is symmetric monoidal; the target category
of the functor consists of topological vector spaces with an appropriate tensor product. These issues are
treated carefully in [ST].

2 We also demand that the partial union
⋃k

i=0 Ui is a closed subset of U for k = 0, . . . , n−1; this ensures
that Ūk \ Uk (the difference of Uk and its closure) is contained in the union

⋃k−1
i=0 Ui of lower dimensional

pieces. Let us give a non-example in U = S3, which we present as the one-point compactification of
R3. Take U0 = ∅, U1 = (−1, 1) × {(0, 0)}, U2 = S2 ⊂ R3, U3 = U \ (U1 ∪ U2). In this case, all Ui are
submanifolds, but U0 ∪ U1 is not closed, which is not allowed. (But U0 ∪ U1 ∪ U2 is closed). To turn this
into an allowed decomposition, take instead U ′0 = {(±1, 0, 0)} and U ′2 = S2 \ {(±1, 0, 0)}. Then U ′0, U1,
U ′2, U3 is an allowed decomposition of U .
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Figure 1: Figures a)–c) show open subsets of a bordism in dimension n = 1 and n = 2. They give
our orientation convention in the compatibility condition for the assignment of defect conditions
in the case n = 1 (figs. a, b) and n = 2 (fig. c). The arrows represent positively oriented ordered
bases.

For example, in n = 3 dimensions, a generic morphism would look like a foam, where the
interior of each bubble is ‘coloured’ by an element of D3, the walls between two bubbles
by elements of D2, lines along which the walls between bubbles meet by elements of D1,
and points where these lines meet by elements of D0 (somewhat problematic in the foam
analogy, but nonetheless allowed, are 1- and 0-dimensional submanifolds not attached to
any walls).

While we have given the overall name ‘defect conditions’ to elements of the sets Dk,
more descriptive names in the various dimensions 0 ≤ k ≤ n would be that they are
conditions for

• Dn: domains (or phases of the field theory)

• Dn−1: domain walls (or phase boundaries)

• Dn−2, . . . , D0: junctions

The sets Dk are equipped with additional structure describing in which geometric config-
urations the domains can occur. This is complicated in general, but it is easy to state for
domain walls. Since the n-dimensional manifold underlying the morphism and the (n−1)-
dimensional submanifold underlying the domain wall are oriented, we can speak of the ‘left
and right side’ of the domain wall. Accordingly, there are two maps

s, t : Dn−1 −→ Dn (2.1)

(for ‘source’ and ‘target’), and a domain wall of type x ∈ Dn−1 must have a domain labelled
by s(x) on its left and t(x) on its right. This gives a restriction on the allowed maps dn, dn−1

in objects and d̂n, d̂n−1 in morphisms. In this work, we will only discuss the cases n = 1
and n = 2 and our orientation conventions are shown in figure 1.

2.2 One-dimensional topological field theory with domain walls

Before passing to the more interesting two-dimensional situation, let us briefly discuss the
simplest one-dimensional field theory with domain walls, namely the case where the field
theory is topological.
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We fix two sets D1 and D0, together with two maps s, t : D0 → D1. The objects in the
bordism category are finite sets of oriented points U , together with a map d1 : U → D1.
The morphisms M : U → V are (diffeomorphism classes of) 1-dimensional manifolds M
with a finite set W of marked points in the interior of M . Each connected component of
M \W is labelled by an element of D1, and each element of W by an element of D0. On
the boundary ∂M the D1-labels have to agree with those of U , resp. V .

A symmetric monoidal functor from this bordism category to (necessarily finite dimen-
sional) k-vector spaces for some field k is then determined

• on objects: by a collection of vector spaces (Vi)i∈D1 . The value of the functor on a
point with orientation ‘+’ and label i is given by Vi, while a point with orientation
‘−’ gets mapped to V ∗i . On 0-dimensional manifolds with more than one point the
functor is fixed by the monoidal structure as usual.

• on morphisms: by two collections of linear maps (L+
x )x∈D0 and (L−x )x∈D0 , where

L+
x : Vs(x) → Vt(x) and L−x : Vt(x) → Vs(x). Let ε ∈ {±1}. The map Lεx is the value

of the functor on the interval [−1, 1] with standard orientation, together with the
0-dimensional submanifold {0} with orientation ε and label x ∈ D0. If ε = +, the
sub-interval [−1, 0) is labelled by s(x) ∈ D1 and (0, 1] by t(x) ∈ D1, while for ε = −,
the label of [−1, 0) and (0, 1] is t(x) and s(x), respectively, as in figure 1 a, b). An
arbitrary morphism can be obtained by composing and tensoring the above maps,
as well as the cup and cap bordisms, which the functor maps to evaluation and
co-evaluation.

We can collect this data in a category D, together with a distinguished subset of arrows,
as follows. Take D1 as objects of D. As space of morphisms i → j, for i, j ∈ D1, take
D(i, j) := Homk(Vi, Vj), the linear maps from Vi to Vj. Finally, fix a map D0 × {±} →
Mor(D), which assigns to (x,±) the arrow L±x , with source and target as described above.

2.3 Two-dimensional metric bordisms with defects

Let us look in more detail at an instance of a bordism category with defects in two dimen-
sions; the exposition essentially follows [RS, Sec. 3]. A note on convention: by manifold
we mean smooth manifold, and by a map between manifolds we mean a smooth map; a
finite or countable disjoint union has an ordering of its factors, so that for two sets A, B
the disjoint unions A tB and B t A are isomorphic but not equal.

Sets of defect conditions

We start with the three sets D2, D1, and D0, which are the sets of world sheet phases,
domain wall conditions, and junction conditions, respectively. As above we have two maps
s, t : D1 → D2 giving the phase to the left and right of a domain wall; our orientation
conventions are shown in figure 1 c). For a junction in D0 we need to specify which domain
walls can meet with which orientations at a junction point.
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Figure 2: Illustration of the condition of cyclic composability of domain walls. Given the n-
tuple ((x1, ε1), . . . , (xn, εn)), the i’th domain wall (counted anti-clockwise) is labelled by xi and
is pointing towards the junction point if εi = + and away from the junction point if εi = −. In
the present example the 6-tuple is ((x1,+), (x2,−), (x3,−), (x4,+), (x5,−), (x6,+)). The images
under the maps s and t to D2 have to agree as shown, e.g. s(x1) = s(x2) and t(x2) = s(x3). The
junction point has orientation ‘+’ and is labelled by u ∈ D0.

The combinatorial description thereof is a bit lengthy: Let D
(n)
1 be the set of tuples

of n cyclically composable domain walls. By this we mean the subset of n-fold cartesian
product (D1 × {±})×n selected by the following condition: For ((x1,+), . . . , (xn,+)) we
require t(xi+1) = s(xi) and t(x1) = s(xn). If some of the ‘+’ are changed for ‘−’, the role
of s and t is exchanged as in figure 2. The group Cn of cyclic permutations acts on the
n-tuples in D

(n)
1 . The set D0 is equipped with a map

j : D0 −→
∞⊔
n=0

(
D

(n)
1 /Cn

)
. (2.2)

In words, for each element u of D0, the map j determines how many domain walls can end
at a junction labelled by u and what their orientations and domain wall conditions are, up
to cyclic reordering.

The map j is similar in spirit to the relation between D1 and D2. There, we can combine
the ‘source’ and ‘target’ maps into a single map (s, t) : D1 → D2 ×D2, which determines
the world sheet phases that must lie on the two sides of a domain wall labelled by a given
element of D1. There is no need to divide by the symmetric group in two elements, because
the orientations allow one to distinguish the ‘left’ and ‘right’ side of a domain wall.

Objects

In short, an object is a disjoint union of a finite number of unit circles S1 with marked
points, together with a germ of a collar.3

In more detail, for a single S1 the structure is as follows. Take U = S1 to be the unit
circle in C, decorated as in section 2.1: a 0-dimensional submanifold U0 ⊂ S1 (i.e. a set of

3 This is more restrictive than allowing general one-dimensional manifolds as in section 2.1 but does
not lose any generality and has the advantage that objects form a set, and that the connected components
of an object are already ordered by our convention on disjoint unions.
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Figure 3: Illustration of a collar which forms part of the data for an object in the bordism
category. In the notation of the text, the solid (blue) circle is a unit circle U = S1, the shaded
area is an open neighbourhood A, the solid (red) short lines form the oriented submanifold A1

of A which intersects S1 in U0. Our convention for the orientation of A1 induced by that of U0

(the signs ‘±’) is as shown. The elements a, b, c, d ∈ D2 label connected components of U1 and
their extension A2; these labels have to agree with the source and target maps of the domain wall
labels w, x, y, z ∈ D1 as shown. E.g. t(w) = a = s(x).

points decorated by signs ±), a map d1 : π0(U0) = U0 → D1, and a map d2 : π0(U1)→ D2,
where U1 = S1 \ U0. The maps d1, d2 have to be compatible with s, t as in section 2.1 (cf.
figure 1 a, b)).

A collar is, in short, an extension of the above structure to an open neighbourhood
of S1 in C, see figure 3. Let A be an open neighbourhood of S1, and let A1 be a one-
dimensional submanifold, closed in A, which intersects S1 transversally (the tangents to
A1 and S1 are linearly independent at intersection points). Set A2 = A \ A1. There are
maps d̂i : π0(Ai)→ Di, i = 1, 2, compatible with s, t as in figure 1 c). The restriction of A2

and A1 to S1 has to reproduce U1 and U0 with labelling and orientation, with conventions
as in figure 3. Finally, A carries a metric in conformal gauge, i.e. g(z)ij = eσ(z)δij for a
real-valued function σ on A.

Two collars are equivalent if they agree in some open neighbourhood of S1; an equiva-
lence class is called a germ of collars.

For a disjoint union U of such S1 with collars, write Uin for the subset obtained by
taking only points |z| ≥ 1 in the collar of each S1, and Uout when taking only points with
|z| ≤ 1.

Morphisms

Morphisms M : U → V are equivalence classes of surfaces with extra structure as in section
2.1, together with a metric. Thus we have a decomposition M = M2 ∪M1 ∪M0, maps
d̂i : π0(Mi) → Di, i = 0, 1, 2. The map d̂1 is compatible with s, t as in figure 1 c). Going
beyond the level of detail in section 2.1, we also require the following:
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u
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x1

x2

x3
x4

x5

Figure 4: Some domain walls and two junctions placed on S2; we only display a fragment
after projection to the plane. The two junctions are labelled by the same junction condition
u ∈ D0 but with opposite orientation ‘±’. Here, j(u) is the cyclic permutation equivalence class
of ((x1,+), (x2,+), (x3,−), (x4,+), (x5,−)). Thus, the junction labelled by u with orientation ‘+’
must have domain walls (x1,+), (x2,+), (x3,−), (x4,+), (x5,−) attached in anti-clockwise order,
where for (xi,+) the domain wall is oriented towards the junction and for (xi,−) it is oriented
away from the junction. The junction labelled by u with orientation ‘−’ must have domain walls
(x5,+), (x4,−), (x3,+), (x2,−), (x1,−) attached in anti-clockwise order.

compatibility condition for d̂0: For a point p ∈M0 labelled by u ∈ D0 (i.e. d̂0(p) = u), let
((x1, ε1), . . . , (xn, εn)) denote the domain wall conditions and orientations in anti-clockwise
order (with arbitrary starting point). We require that j(u) is the cyclic permutation
equivalence class of ((x1, ε1), . . . , (xn, εn)) if the junction point has orientation ‘+’, cf.
figure 2, and that it is in the class of ((xn,−εn), . . . , (x1,−ε1)) if the junction orientation
is ‘−’. Junctions with opposite orientation are dual in the following sense (figure 4): if
the bordism is a 2-sphere with two antipodal junction points both labelled by u but with
orientations ‘+’ and ‘−’, the domain walls starting at the two junctions can be joined up
(intersection-free) by half-circles around the S2.

boundary parametrisation: A choice U ′, V ′ of collars representing the germs U , V , to-
gether with injective maps fin : Uin → M and fout : Vout → M which preserve the orienta-
tion, metric, boundary, 1-dimensional submanifold (with orientation) and labelling. The
images of the factors S1 in U ′ and V ′ are disjoint and cover the boundary of M .

Two surfaces are equivalent if they are isometric and the isometry preserves the decom-
position M = M2 ∪M1 ∪M0 together with orientations and labelling, and commutes with
the boundary parametrisation in some open neighbourhood of ∂M .

Composition of morphisms is defined by choosing representatives and gluing via the
boundary parametrisation; the collars ensure that this does not introduce ‘corners’ and
results again in a surface as described above. The equivalence class of the glued surface is
independent of the choice of representatives.

Identities and symmetric structure

So far there are no identity morphisms. We will add these by hand by extending the
morphisms to include permutations of the S1 factors in the disjoint union of a given object
U . If we denote the permutation by σ and the permuted disjoint union by σ(U), we add
morphisms σ : U → σ(U). Each morphism U → V is either a permutation (only possible
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if V = σ(U)) or a bordism; composing σ−1(U)
σ−→ U

M−→ V
τ−→ τ(V ) produces a bordism

σ−1(U)
M ′−→ τ(V ), where M ′ differs from M only in the boundary parametrisation maps.

This endows the bordism category with a symmetric structure (the tensor product is
disjoint union as usual).

Topological domain walls and junctions

Denote the symmetric monoidal category described above by

Borddef
2,1(D2, D1, D0) , (2.3)

or Borddef
2,1 for short. A two-dimensional quantum field theory with defects can now be

defined as a symmetric monoidal functor Q from Borddef
2,1 to topological vector spaces,

which depends continuously on the moduli (namely, the metric on a morphism M , the
decomposition M = M2 ∪M1 ∪M0, and the boundary parametrisation).

Remark 2.1. It is also easy to say when such a functor Q describes a conformal field theory
with defects. Namely, the vector space Q(U) assigned to an object U has to be independent
of the conformal factor eσ(z) giving the metric g(z)ij = eσ(z)δij on U , and the linear map
Q(M) assigned to a morphism M changes by at most a scalar factor if the metric on M
is changed by a conformal factor g  efg for some f : M → R. Thus Q would in general
only give a projective functor if one passes to conformal equivalence classes of manifolds
(it would be a true functor if the so-called central charge vanishes).

With respect to a chosen Q, we can define an interesting subset of domain walls and
junctions:

• topological domain walls are elements x of D1 such that

1. for all objects U , the vector space Q(U) is unchanged under isotopies moving
components of U0 labelled by x (and their extension into the collars with them)
such that no point of U0 crosses the point −1 ∈ S1. This condition renders the
space of such isotopies contractible (on germs of collars). In particular, a full 2π-
rotation is excluded, as it would in general induce a non-trivial endomorphism
of Q(U). The metric on U stays fixed.

2. for all morphisms M , Q(M) is invariant under isotopies moving components
of M1 labelled by x while leaving M0 fixed and restricting on ∂M to isotopies
respecting the condition in 1.

• topological junctions are elements u of D0 such that j(u) only contains elements of D1

labelling topological domain walls, and such that Q(M) is invariant under isotopies
moving components of M1 labelled by topological domain wall conditions and points
in M0 labelled by u.

From now on we will concentrate on topological domain walls and junctions. We will
denote the corresponding subsets by Dtop

i (Q), i = 0, 1, or just Dtop
i .
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2.4 2-categories of defect conditions

Let us fix a two-dimensional field theory with defects as above, i.e. a continuous symmetric
monoidal functor Q from Borddef

2,1(D2, D1, D0) to an appropriate category of topological
vector spaces. The construction below will only make use of the sets D2 and D1, but not
of D0. To emphasise this, we take D0 = ∅ (i.e. no junctions are allowed).

Consider the topological domain walls s, t : Dtop
1 (Q) → D2. This is a pre-category

(which is nothing but a graph, see e.g. [ML, Ch. II.7]), and the aim of this section is to
show that Q turns the free category (with conjugates) generated by this pre-category into a
2-category. This 2-category can be thought of as capturing some of the genus-0 information
of the field theory Q. Our conventions for bicategories are collected in appendix A.

Recall (e.g. from [ML, Ch. II.7]) that the free category is generated by tuples of com-
posable arrows. By the free category with conjugates we mean the category whose objects
are D2 and whose morphisms a→ b (for a, b ∈ D2) are tuples

x ≡ ((x1, ε1), . . . , (xn, εn)) (2.4)

where xi ∈ Dtop
1 , εi ∈ {±}. As for cyclically composable domain walls, if all signs εi = +,

then we require s(xi) = t(xi+1) and s(xn) = a, t(x1) = b. If some εi = −, the roles of s
and t change as in figure 2. Composition of x : a→ b and y : b→ c is by concatenation,

y ◦ x = ((y1, ν1), . . . , (ym, νn), (x1, ε1), . . . , (xn, εn)) . (2.5)

Let us denote this category by D ≡ D[D2, D
top
1 ]. Morphism spaces a → b are written as

D(a, b). The conjugation is the involution ∗ : D(a, b)→ D(b, a) given by

((x1, ε1), . . . , (xn, εn))∗ = ((xn,−εn), . . . , (x1,−ε1)) . (2.6)

Note that endomorphisms x : a→ a in D are precisely the tuples of cyclically composable
domain walls. In particular, for any x, y : a → b, the morphism y ◦ x∗ is cyclically
composable.

To define the 2-category structure on domain walls, we need the notion of translation
and scale invariant families of states. Their definition will take us a few paragraphs.

We will only need to know Q on a subset of bordisms, each of which consists of a
single disc in R2 from which a number of smaller discs have been removed (if there were
no domain walls, these bordisms would form the little discs operad, see e.g. [Ma]). The
metric on the bordism is the one induced by R2 and the boundaries are parametrised by
linear maps that are a combination of a translation and a scale transformation x 7→ rx+v,
where x, v ∈ R2 and r ∈ R>0.

The objects which serve as source and target of these bordisms are described as follows.
Let x be cyclically composable and denote by O(x; r) an object in the bordism category
consisting of a single S1 with 0-dimensional submanifold given by n points not containing
−1 ∈ S1. These are clockwise cyclically labelled x1, . . . , xn, such that x1 labels the first
point in clockwise direction from −1 ∈ S1. The collar around S1 is obtained by taking
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ψx;R = Q

( )
(ψx;r1) = Q

( )
(ψx;r2) = Q

( )
(ψx;r3)

Figure 5: Illustration of the condition for scale and translation invariant family of states: Let ψx
be such a family. The figure shows Q applied to three annuli, understood as bordisms O(x, ri)→
O(x,R), for i = 1, 2, 3, where ri denotes the radius of the inner disc of the i’th annulus shown
above. All three annuli have the same outer radius R. Applying Q to the bordism and evaluating
the resulting linear map on ψx,ri ∈ Q(O(x, ri)), i = 1, 2, 3, always results in the vector ψx;R ∈
Q(O(x,R)) of the same family.

concentric copies to fill a small neighbourhood. The conformal factor defining the metric
on the collar is eσ = r2, so that the parametrising map x 7→ rx + v, which takes the S1

(with radius 1) to a circle of radius r is an isometry. As all xi are in Dtop
1 , by definition the

vector space Q(O(x; r)) does not depend on the precise position of the n marked points on
S1, as long as they are in the prescribed ordering. However, the vector space Q(O(x; r))
may still depend on r.4

Let D(R; r, v) : O(x; r) → O(x;R) be the bordism given by a disc of radius R in R2

centred at the origin, from which a smaller disc of radius r and centre v has been removed.
The domain walls are straight lines and the boundary parametrisation is given by scaling
and translation as above (see figure 5). A scale and translation invariant family ψx is a
family of vectors {ψx;r}r∈R>0 with ψx;r ∈ Q(O(x; r)) such that

ψx;R = Q
(
D(R; r, v)

)
(ψx;r) for all r, R > 0, v ∈ R2 with r + |v| < R . (2.7)

This condition is illustrated in figure 5. The space of scale and translation invariant
families,

H inv(x) , (2.8)

is defined to be the vector space of all scale and translation invariant families ψx ≡
{ψx;r}r∈R>0 for fixed x. The space H inv(x) may be zero-dimensional.

Scale and translation invariant families have the following important property: all
amplitudes Q(M) – with M a disc in R2 with smaller discs removed – are independent
of the position and size of an in-going boundary circle O(x; r) for which ψx;r is inserted
as the corresponding argument. This can be seen by using functoriality of Q to cut out
a disc D(R; r, v) from M containing such an in-going boundary, then moving the in-going
boundary circle using the defining property (2.7), and finally gluing the resulting disc
D(R; r′, v′) back.

4 In many examples (but not always), the spaces Q(O(x; r)) for different values of r are isomorphic,
with a preferred isomorphism given by evaluating Q on an annulus with the two radii. But even in this
case we do not demand that one passes to a formulation of the theory where these state spaces are actually
equal.
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(x1,−)
(x2,+) (x3,−)

(x4,−)

(x1,+)
(x2,−) (x3,+)

(x4,+)

b)

{

{

b a

u

v

x∗

z

x1 xp

y1 yq

z1 zr

c)

{ {

{ {

c b a

x∗y∗

x′y′

x1

xp
yq

y1

x′1
x′r

y′s
y′1

q p

Figure 6: Bordisms defining the structure maps for the 2-category. a) the identity on a 1-
morphism x : a → b; b) vertical composition of 2-morphisms u ∈ D2(x, y) and v ∈ D2(y, z),
where x, y, z ∈ D(a, b) (drawing the vector inside the cut-out disc means that this vector is to be
used as the corresponding argument after applying Q); c) horizontal composition of 2-morphisms
p ∈ D2(x, x′) and q ∈ D2(y, y′), where x, x′ : a→ b and y, y′ : b→ c.

Given x, y : a→ b, we define the space of 2-morphisms from x to y to be

D2(x, y) := H inv(y ◦ x∗) . (2.9)

The identity 2-morphisms, and the horizontal and vertical composition are defined by the
bordisms shown in figure 6. The identity 1-morphism 1a : a→ a, for a ∈ D2, is the empty
tuple 1a = ( ).

Remark 2.2. (i) In order to obtain families of states from the bordisms shown in figure 6,
one uses that there is an R>0-action on metric bordisms given by rescaling the metric. For
the disc shaped bordisms in R2 relevant here, this amounts to a rescaling by some R > 0.
Consider the bordism in figure 6 b) as an example. Call this bordism M and assume that
the radius of its outer disc is 1. Thus

M : O(z ◦ y∗; r1) t O(y ◦ x∗; r2) −→ O(z ◦ x∗; 1) . (2.10)

For each R > 0 this produces a bordism RM : O(z◦y∗;Rr1)tO(y◦x∗;Rr2)→ O(z◦x∗;R).
Given two families φ1 ∈ H inv(z ◦ y∗) and φ2 ∈ H inv(y ◦ x∗), we obtain a family of vectors

ψR := Q(RM)
(
φ1;Rr1 , φ2;Rr2

)
∈ Q

(
O(z ◦ x∗;R)

)
. (2.11)

The family {ψR}R∈R>0 is again scale and translation invariant. This follows by substituting
into the defining property (2.7) and using that φ1 and φ2 are scale and translation invariant
families.

(ii) For all r > 0, v ∈ R2 with r + |v| < 1, the bordism D(1; r, v) : O(x; r) → O(x; 1)
induces the identity map on H inv(x). This is just a reformulation of the defining property
(2.7) using the prescription in (i). In other words, cylinders give the identity map on H inv,
not just idempotents. This is important when verifying that the bordism in figure 6 a) is
indeed the unit for the vertical composition in figure 6 b).

13



a) { {

x1

x2

xm
x x∗

a

b

b)

{ {x1

x2

xm
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a

c) { {

x1

x2
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x∗ x
b

a

d)
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x1

x2
xm

x∗ x
a
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Figure 7: Bordisms defining the adjunction maps in D[Q]: The left and right adjoint of x : a→ b
is x∗ : b→ a and applying Q to the bordisms shown gives the adjunction maps a) bx : 1b → x◦x∗;
b) dx : x∗ ◦ x→ 1a; c) b̃x : 1a → x∗ ◦ x; d) d̃x : x ◦ x∗ → 1b.

The fact that we are working with topological domain walls and with scale and trans-
lation invariant families of states ensures that the properties of a 2-category are satisfied
(as composition of 1-morphisms is strictly associative, and the unit 1-morphisms are strict,
we indeed have a 2-category and not only a bicategory). Let us denote this 2-category as

D[Q] ≡ D[D2, D
top
1 ;Q] . (2.12)

As was to be expected, moving one dimension up from the example in section 2.2 also in-
creased the categorial level: in this construction the pre-category Dtop

1 ⇒ D2 gets extended
to a 2-category.

Remark 2.3. (i) Actually, D[Q] carries more structure. For example, each 1-morphism
x : a→ b has a left and a right adjoint, namely x∗ : b→ a, together with adjunction maps
as shown in figure 7 (see [Gr, Sec. I.6] for more on adjunctions in bicategories). Such rigid
and related structures on the category of defects were discussed already in [Frö1, MN, CR].
Rigid and pivotal structures on the 2-category D[Q] were studied in the context of planar
algebras5 in [Go, DGG].

(ii) The 2-category D[Q] is an invariant attached to a quantum field theory with defects.
Interestingly, even though only ‘topological data’ enters its definition (topological domain
walls and scale and translation invariant families of states), general quantum field theories
do produce more general 2-categories D[Q] than topological field theories. In a nutshell,
the reason is that the rigid structure mentioned in (i) will tend to produce integer quan-
tum dimensions for topological field theories, while for example in rational conformal field
theories non-integer quantum dimensions occur.6

5 A planar algebra [Jo] can be understood as a two-dimensional theory with exactly two world sheet
phases D2 = {a, b}, exactly one topological domain wall type D1 = {a x−→ b}, and no junctions, D0 = ∅.
Furthermore, the theory is only defined on genus zero surfaces with exactly one out-going boundary circle,
that is, on discs with smaller discs removed, see figures 5–7.

6 A notion of 2d TFT with domain walls was also studied in [KPS] in relation to subfactor planar
algebras. Apart from there being exactly two world sheet phases and one type of domain wall – as is
usual in the planar algebra setting – there is one important difference: in [KPS] a bordism is in addition
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In slightly more detail, fix a topological field theory with defects and take k = C.
Consider the bordism M : ∅ → ∅ given by a torus (say [0, 1] × [0, 1] with opposite edges
identified) with a single defect line labelled x ∈ D1 wrapping a non-contractible cycle (say
[0, 1] × {1

2
}). We label the unique connected domain of the bordism by a ∈ D2, so that

x : a → a. Then Q(M) : C → C is just a number. This number can be computed in two
ways. Let M| : O(x)→ O(x) be the annulus obtained by cutting M along {0} × [0, 1], i.e.
by not identifying the vertical edges of M . Then M| is just the cylinder over O(x). We
will learn later in remark 3.12, that for a topological field theory the space of scale and
translation invariant states H inv(x) can be identified with the image of Q(M|) (which is an
idempotent in topological field theory) in Q(O(x)). Thus, using also functoriality of Q,

Q(M) = trQ(O(x))Q(M|) = trHinv(x) id = dim(H inv(x)) ∈ Z≥0 . (2.13)

On the other hand, we can consider M− : O(a) → O(a), which is obtained by cutting M
along [0, 1]×{0}, i.e. by not identifying the horizontal edges. The endomorphism Q(M−) :
Q(O(a))→ Q(O(a)) is called the defect operator for the defect x : a→ a; we will return to
this briefly in section 3.5 below. By the same reasoning as above, Q(M) = trQ(O(a))Q(M−).
Let CO(a) be the cylinder over O(a). By functoriality (and again only for topological field
theory) we have Q(M−) = Q(CO(a))◦Q(M−)◦Q(CO(a)), so that the image of Q(M−) lies in
the image of the idempotent Q(CO(a)) and Q(M−) acts trivially on the kernel of Q(O(a)).
By restriction we obtain an endomorphism Q(M−) : H inv(1a) → H inv(1a) and the trace
can be computed in this restriction,

Q(M) = trQ(O(a)) Q(M−) = trHinv(1a) Q(M−) . (2.14)

The fact that the traces (2.13) and (2.14) agree is known as the Cardy condition (because
of the paper [Ca]) and was first investigated for topological defects in [PZ] in the context
of rational conformal field theory.

In summary, for topological field theories, the trace of a defect operator over the space
of scale and translation invariant states is equal to the dimension of a vector space, and
is thus a non-negative integer. In rational conformal field theories with non-degenerate
vacuum (this means that the space H inv(1a) is one-dimensional), the defect operator acts
by multiplying with a number – the (left or right) quantum dimension of x – and the trace
trHinv(1a) Q(M−) is then equal to this number. In many examples, this quantum dimension
is not an integer (and not even rational, though still algebraic). This is the case for the
examples studied in [PZ] and [FRS1, Frö1].

3 A simple example: 2d lattice top. field theory

It is difficult to find functors from Borddef
2,1(D2, D1, D0) to topological vector spaces which

depend non-trivially on the metric. On the other hand, it is easy to construct examples

equipped with a decomposition into ‘genus 0 components’, and bordisms with different such decompositions
are considered distinct, unless they have a common refinement (see [KPS, Def. 2.7]). This excludes for
example the decomposition of a torus along different cycles to be used below (the ‘Cardy condition’). Thus
the functors constructed in [KPS] are in general not defect TFTs in our sense (cf. eqn. (3.2) below).
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where the functors are independent of the metric and boundary parametrisation. In this
section we describe such a construction.

For the remainder of this section we fix a field k.

3.1 Category of smooth bordisms with defects

Instead of posing restrictions on the functor one can modify the bordism category accord-
ingly. This leads us to define a symmetric monoidal category of smooth bordisms with
defects, which we denote as

Borddef,top
2,1 (D2, D1, D0) . (3.1)

The modifications relative to the definition in section 2.3 are as follows.

• Objects: The collar around an S1 no longer carries a metric.

• Morphisms: The manifold does not carry a metric and the parametrising maps are
only required to be smooth (rather than isometric). Two bordisms are equivalent if
there is a diffeomorphism between them which preserves orientation, decomposition,
labelling, as well as the image of the point −1 ∈ S1 in each connected component of
the boundary (rather than commuting with the parametrising maps in some neigh-
bourhood of the boundary).

The symmetric monoidal structure is as in section 2.3.
Note that this definition is different form the standard 2-bordism category for topolog-

ical field theories even in the case without domain walls (D2 = {∗} and D1 = D0 = ∅)
because we have still added the identities (and Sn-action) by hand to the space of mor-
phisms; in particular, the cylinder over a given object U is not the identity morphism (but
it is still an idempotent).

Denote by Vectf (k) the symmetric monoidal category of finite-dimensional k-vector
spaces. Fix furthermore sets Di, i = 0, 1, 2, of defect labels with maps as required. The
aim of this section is to construct examples of symmetric monoidal functors

T : Borddef,top
2,1 (D2, D1, D0) −→ Vectf (k) . (3.2)

We will do this via a lattice TFT construction which is a straightforward generalisation of
the original lattice TFT without domain walls [BP, FHK] and of the lattice construction
of homotopy TFTs in [Tu, Sec. 7]. A construction of field theory correlators on arbitrary
world sheets in the presence of domain walls first appeared in [FRS1, FRS2, Frö1], where
it was carried out in the context of two-dimensional rational conformal field theory. The
construction for TFTs given in this section can be extracted from this in the special case
that the modular category underlying the CFT is that of vector spaces.

Note, however, that this will not give the most general such functor T (as it does
not even do this in the case without domain walls); a classification of functors (3.2) akin
to the one in the situation without domain walls in [Di, Ab] is at present not known.
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A classification of 2d TFTs with defects that can be extended down to points has been
reported in [SP]; related results are given in [Lu1, Ex. 4.3.23]. Two dimensional homotopy
TFTs over X = K(G, 1), which in the present language correspond to defect TFTs with
invertible defects labelled by a group G,7 have been classified in [Tu, Thm. 4.1]. The
classification in the case of simply connected X is given in [BT, Thm. 4.1].

The construction works in two steps. In the first step, we introduce a larger category,
Borddef,top,cw

2,1 , where objects and morphisms are in addition endowed with a cell decompo-

sition (section 3.2). It comes with a forgetful functor F : Borddef,top,cw
2,1 → Borddef,top

2,1 , which
is surjective (not just essentially surjective) and full (but not faithful). We then construct
a symmetric monoidal functor T cw : Borddef,top,cw

2,1 → Vectf (k) (section 3.5). In the second
step, we show that T cw is independent of the cell-decomposition in the sense that there
exists a symmetric monoidal functor T which makes the diagram

Borddef,top,cw
2,1

F
��

T cw
// Vectf (k)

Borddef,top
2,1

∃!T

55lllllll
(3.3)

commute on the nose (section 3.6). Since F is surjective and full, this diagram defines T
uniquely.

3.2 Category of bordisms with cell decomposition

We will use a class of cell decompositions introduced in [Ki, Def. 5.1], called PLCW decom-
positions there. These are less general than CW-complexes, which for example allow one
to decompose S2 into a 0-cell (a point on S2) and 2-cell (S2 minus that point). However,
they are more general than regular CW-complexes, where one cannot identify different
faces of one given cell, or even triangulations, where in addition each cell is a simplex. It
is shown in [Ki] that any two PLCW decompositions are related by a simple collection of
local moves.

Given a compact n-dimensional manifold M , possibly with non-empty boundary, we
will consider decompositions of M into a finite number of mutually disjoint open k-cells,
k = 0, . . . , n, with the following properties. Let Bk be the closed unit ball in Rk and let B̊k

7 By a defect TFT with only invertible defects we mean the case that D2 = {∗}, D0 = ∅ and that
D1 = G is a group (more generally we can take s, t : D1 → D2 to be a groupoid). We demand that the
linear map assigned by T in (3.2) to a bordism does not change if we replace two parallel defect lines with
opposite orientation “�” labelled by the same element of D1 by the ‘reconnected’ defect lines “⊃⊂”. Given
a bordism M with defect lines labeled by group elements in G, we can construct a principal G-bundle
on the bordism by taking the trivial G-bundle over each component of M2 and choosing the transition
functions across M1 to be multiplication with the group element labelling that component of M1. This
gives a functor from Borddef,top

2,1 ({∗}, G, ∅) to principal G-bundles with two-dimensional base.
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a) b)

Figure 8: Allowed configurations of 2-cells and defects: (a) 2-cell containing a point from M0;
here only a star-shaped pattern of domain walls is allowed and each edge has to be crossed by
precisely one domain wall. (b) 2-cell containing no point from M0 but part of M1; here only one
segment of M1 may lie in the 2-cell, and it must enter and leave the 2-cell via distinct edges.

be its interior. For each k-cell C there has to exist a continuous8 map ϕ : Bk →M such that

- C is the homeomorphic image of B̊k,

- there exists a decomposition of the boundary Sk−1 of Bk which gets mapped by ϕ to
the decomposition in M ,

- ϕ is a homeomorphism when restricted to the interior of each cell on Sk−1.

For more details we refer to [Ki]. We just note that this last condition excludes the
decomposition of S2 into a single 0-cell and a single 2-cell mentioned above.

By abuse of terminology, we will refer to a decomposition of M as just described simply
as a cell decomposition C(M). The set of i-dimensional cells (i-cells for short) will be called
Ci(M).

The category Borddef,top,cw
2,1 (D2, D1, D0) is the same as Borddef,top

2,1 (D2, D1, D0), except
that objects and morphisms are equipped with the following extra structure:

• Objects: The 1-dimensional part of an object U (the disjoint union of circles, not
their collars) is equipped with a cell decomposition C(U) such that each point of the
set U0 of marked points lies in a 1-cell (recall that a 1-cell is homeomorphic to an
open interval), and such that each 1-cell contains at most one point of U0.

• Morphisms: By a bordism with cell decomposition we mean a bordism M = M2 ∪
M1 ∪M0 in Borddef,top

2,1 , which is equipped with a cell decomposition C(M) such that

– the 1-dimensional submanifold M1 only intersects 1-cells and 2-cells, but not
0-cells. Each 1-cell intersects M1 in at most one point.

– each point of M0 lies in a 2-cell, and each 2-cell contains at most one point of
M0. A 2-cell containing a point of M0 must be homeomorphic to one of the
type shown in figure 8 a), i.e. it may only contain a ‘star-shaped’ configuration
of domain walls, such that each edge of this 2-cell is traversed by exactly one
domain wall.

8 To match [Ki] we should work in the PL setting. We thus impose the additional condition that the
manifoldM with the decomposition as defined is homeomorphic to a PLCW complex. This is automatically
satisfied if the manifold and the cell maps are already PL.
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– a 2-cell containing no point from M0 but a part of M1 must be homeomorphic
to one of the type shown in figure 8 b), i.e. its intersection with M1 is a single
open interval.

If M has non-empty boundary ∂M , we demand that ∂M is a union of 0-cells and
1-cells (and hence does not intersect 2-cells). Furthermore, the decomposition of ∂M
has to be the image of the cell decomposition of the source and target object under
the parametrising maps.

Morphisms are equivalence classes of bordisms with cell decomposition. Two bor-
disms with cell decomposition are equivalent if their underlying bordisms are equiva-
lent in Borddef,top

2,1 and if the two cell decompositions are related by an isotopy (which
at each instance has to give a bordism with cell decomposition).

All cells in C(U) and C(M) are a priori unoriented. However, the 2-cells of C(M) have an
orientation induced by that of M .

3.3 Algebraic preliminaries

By an algebra we shall always mean a unital, associative algebra over k. The centre Z(A)
of an algebra A is the (commutative, unital) subalgebra

Z(A) =
{
z ∈ A

∣∣ za = az for all a ∈ A
}
. (3.4)

Given a right A-module M and a left A-module N , the tensor product M ⊗AN is defined
as the cokernel

M ⊗ A⊗N l−r−−→M ⊗N π⊗−→M ⊗A N , (3.5)

where l(m⊗ a⊗ n) = m⊗ (a.n) and r(m⊗ a⊗ n) = (m.a)⊗ n denote the left and right
action. Given an A-A-bimodule X, we shall also require the ‘cyclic tensor product’ which
identifies the left and right action of A on X. We denote this tensor product by 	AX; it
is defined as the cokernel

A⊗X l−r−−→ X
π⊗−→	AX , (3.6)

where l(a ⊗ x) = a.x and r(a ⊗ x) = x.a. Note that 	A X is in general no longer an
A-A-bimodule; it does, however, carry a coinciding left and right action of Z(A). Denote
by [A,A] the linear subspace of A (not the ideal) generated by all elements of the form
ab− ba. Then by definition 	AA = A/[A,A].9

A Frobenius algebra is a finite-dimensional algebra A together with a linear map ε :
A→ k, called the counit, such that the bilinear pairing

〈a, b〉 := ε(ab) (3.7)

on A × A is non-degenerate. We denote by β : k → A ⊗ A the unique linear map such
that ((ε ◦m)⊗ idA) ◦ (id⊗ β) = idA. In other words, if ai is a basis of A and a′i the dual

9 The quotient A/[A,A] is not necessarily isomorphic to Z(A) – just take A to be the 3-dimensional
algebra of upper triangular 2×2-matrices in which case Z(A) ∼= k while A/[A,A] ∼= k ⊕ k.
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basis in the sense that 〈ai, a′j〉 = δi,j, then β(1) =
∑

i a
′
i ⊗ ai. The defining property can

be written as ∑
i

〈x, a′i〉 ai = x for all x ∈ A . (3.8)

By associativity of A, the pairing (3.7) is always invariant, i.e. 〈a, bc〉 = 〈ab, c〉.
For a ∈ A let La : A→ A be the left multiplication by a, La(b) = ab. We say that A is

a Frobenius algebra with trace pairing if it is a Frobenius algebra whose counit is given by10

ε(a) = trA(La). Note that ‘Frobenius’ is extra structure on an algebra, while ‘Frobenius
with trace pairing’ is a property of an algebra.

In the following we list some of the special properties of Frobenius algebras with trace
pairing. Firstly, it is automatically symmetric: 〈a, b〉 = 〈b, a〉. Consequently also β is
symmetric: β(1) =

∑
i a
′
i ⊗ ai =

∑
i ai ⊗ a′i. Next, by the definition of the counit we have

the following identity: 〈x, 1〉 = ε(x) = trA(Lx) =
∑

i a
∗
i (xai) =

∑
i〈xai, a′i〉 = 〈x,

∑
i aia

′
i〉.

Since this holds for all x ∈ A, we conclude∑
i

aia
′
i = 1 . (3.9)

For all a, b ∈ A we have∑
i

(aa′ib)⊗ ai =
∑
i

a′i ⊗ (baia) ∈ A⊗ A ; (3.10)

this can be proved by pairing both sides with an arbitrary x. On the left hand side, pairing
with x produces

∑
i〈x, aa′ib〉ai =

∑
i〈bxa, a′i〉ai = bxa by (3.8). The right hand side gives

the same result.
If we interpret β(1) as an element of the algebra Aop⊗A, the two equations above lead

to the following result:

Lemma 3.1. In the algebra Aop ⊗ A we have

(i) β(1) · (a⊗ 1) = β(1) · (1⊗ a) and (a⊗ 1) · β(1) = (1⊗ a) · β(1),

(ii) β(1) · β(1) = β(1).

Proof. By definition, the product of Aop⊗A is (a⊗ a′) · (b⊗ b′) = (ba)⊗ (a′b′). Statement
(i) is nothing but (3.10), while (ii) follows from (i) and (3.9) via β(1) · β(1) =

∑
i β(1) ·

(a′i ⊗ 1) · (1⊗ ai) =
∑

i β(1) · (1⊗ a′i) · (1⊗ ai) =
∑

i β(1) · (1⊗ (a′iai)) = β(1) · (1⊗ 1).

Consider a right A-module M and a left A-module N as above. For Frobenius algebras
with trace pairing, the tensor product M⊗AN can be canonically identified with a subspace

10 Let Ra(b) = ba denote the right multiplication by a and set ε(a) = trA(La), ε′(a) = trA(Ra). Then
(A, ε) is a Frobenius algebra if and only if (A, ε′) is a Frobenius algebra and in this case ε(a) = ε′(a). For a
proof see e.g. [FRS1, Lem. 3.9] in the special case that the tensor category is Vectf (k). Note that if (A, ε)
and (A, ε′) are not Frobenius, the statement may be false; for example, if A is the 3-dimensional algebra
of upper triangular 2×2-matrices and a =

(
0 0
0 1

)
, then trA(La) = 1 and trA(Ra) = 2.
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of M ⊗ N as follows. The tensor product M ⊗ N carries an Aop ⊗ A-action. Define the
linear map p⊗ : M ⊗N →M ⊗N to be the action of β(1) on M ⊗N :

p⊗(m⊗ n) = β(1).(m⊗ n) =
∑
i

(m.a′i)⊗ (ai.n) . (3.11)

Lemma 3.2. Let A be a Frobenius algebra with trace pairing.
(i) p⊗(m.a⊗ n) = p⊗(m⊗ a.n) holds for all a ∈ A, m ∈M , n ∈ N .
(ii) p⊗ is idempotent.
(iii) im(p⊗) = M ⊗A N .

Proof. Parts (i) and (ii) are immediate consequences of lemma 3.1. For part (iii), denote
by

e⊗ : im(p⊗) −→M ⊗N , π⊗ : M ⊗N −→ im(p⊗) , (3.12)

the embedding of the image of p⊗ into M ⊗ N and the projection from M ⊗ N to the
image. They satisfy

e⊗ ◦ π⊗ = p⊗ , π⊗ ◦ e⊗ = idim(p⊗) . (3.13)

Consider the diagram

M ⊗ A⊗N l−r // M ⊗N
π⊗ //

f

��

im(p⊗)

f◦e⊗
yyr r r r r r

V

. (3.14)

Here V is a vector space and f satisfies f ◦ (l − r) = 0. By part (i) the map π⊗ satisfies
π⊗ ◦ (l − r) = 0. From f(m.a⊗ n) = f(m⊗ a.n) it is easy to see that f ◦ p⊗ = f , and so
f = (f ◦ e⊗) ◦ π⊗. Thus the above diagram commutes and we have verified the universal
property of the cokernel.

The construction of p⊗, e⊗, π⊗ works similarly for the 	A tensor product of an A-A-
bimodule X. In this case,

p⊗(x) =
∑
i

ai.x.a
′
i . (3.15)

We use the same notation e⊗ :	A X → X and π⊗ : X →	A X as above. For multiple
tensor products, the idempotents can be combined. For the state spaces of the TFT with
defects to be constructed below, the maps

X1 ⊗X2 ⊗ · · · ⊗Xn

π⊗ //
	An,1X1 ⊗A1,2 X2 ⊗A2,3 · · · ⊗An−1,n Xn

e⊗
oo (3.16)

will be useful. Here the Xi are bimodules with left/right actions of algebras as indicated.
As above, the maps e⊗ and π⊗ satisfy π⊗ ◦ e⊗ = id and e⊗ ◦ π⊗ = p⊗. The projector p⊗ in
this case is

p⊗(x1 ⊗ x2 ⊗ · · · ⊗ xn) =
∑

i1,i2,...,in

(ai1 .x1.a
′
i2

)⊗ (ai2 .x2.a
′
i3

)⊗ · · · ⊗ (ain .xn.a
′
i1

) , (3.17)

where the aik are bases of the corresponding algebras.
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Lemma 3.3. Let A be a Frobenius algebra with trace pairing. Then

Z(A) ∼= 	AA = A/[A,A] .

Proof. Here p⊗ : A→ A is given by p⊗(x) =
∑

i aixa
′
i. By the same reasoning as in (3.14)

we conclude that the cokernel A/[A,A] is isomorphic to im(p⊗). It remains to show that
im(p⊗) = Z(A). For z ∈ Z(A) we have p⊗(z) =

∑
i aiza

′
i = z(

∑
i aia

′
i) = z, where we used

(3.9). Thus Z(A) ⊂ im(p⊗). Conversely, if x ∈ im(p⊗) then x =
∑

i aixa
′
i. Then for all

y ∈ A we have

xy =
∑
i

aixa
′
iy = m ◦ (

∑
i

ai⊗ (xa′iy)) = m ◦ (
∑
i

(yaix)⊗ a′i) =
∑
i

yaixa
′
i = yx , (3.18)

where we used (3.10) together with symmetry of β. Thus im(p⊗) ⊂ Z(A).

Remark 3.4. Recall that for a unital associative R-algebra (for R a commutative ring),
the 0’th Hochschild homology HH0(A) and cohomology HH0(A) are given by

HH0(A) = A/[A,A] and HH0(A) = Z(A) , (3.19)

see [Lo, Sec. 1.1, 1.5]. Similarly, for an A-A-bimodule X one has H0(A,X) =	A X and
H0(A,X) = {x ∈ X | a.x = x.a for all a ∈ A}. In the situation of lemma 3.3, that is if A
is a Frobenius algebra with trace pairing, one finds H0(A,X) ∼= H0(A,X). We will see in
(3.49) below that the 0’th Hochschild (co)homology provides the state space which the 2d
lattice TFT with defects assigns to a circle with a single marked point.

3.4 Data for lattice TFT with defects

Fix sets D2, D1, D0 with maps s, t : D1 → D2 and a map j as in (2.2). The data that
serves as input to the lattice TFT construction is as follows.

1. For each a ∈ D2 a Frobenius algebra Aa with trace pairing.

2. For each x ∈ D1 a finite-dimensional At(x)-As(x)-bimodule Xx.

There is also a piece of data associated to D0, but we need a bit of preparation before we
present it. For an A-B-bimodule X write X+ ≡ X and write X− for the B-A-bimodule
X∗. Recall the free category with conjugates D ≡ D[D2, D1] defined in section 2.4. For
x ∈ D(a, b) we define the Ab-Aa-bimodule

Xx = Xε1
x1
⊗A1,2 X

ε2
x2
⊗A2,3 · · · ⊗An−1,n X

εn
xn , (3.20)

where x = ((x1, ε1), . . . , (xn, εn)) and Ai,i+1 denotes the algebra which acts from the right
on Xεi

i and from the left on X
εi+1

i+1 . Note that

Xy◦x = Xy ⊗Ab Xx for c
y←− b

x←− a . (3.21)
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Let χ be an element of D
(n)
1 /Cn as in (2.2). Let x ∈ D

(n)
1 be a representative of χ, i.e.

χ = [x], and let Oχ = Cn.x be the Cn orbit of x in D
(n)
1 (which is independent of the choice

of x). Let
π : Jχ → Oχ (3.22)

be the vector bundle (with discrete base) whose fibres are given by the dual vector space

π−1(y) = Homk(	As(y)=t(y)Xy, k) , (3.23)

where Homk(U, V ) stands for the space of linear maps from U to V . Since y ∈ D(s(y), t(y))
is cyclically composable by assumption, we indeed have s(y) = t(y). An element σ of the
cyclic group Cn acts on Jχ by taking a vector ϕ ∈ π−1(y) to ϕ◦σ−1 ∈ π−1(σ(y)). By abuse
of notation, here we also denoted by σ the linear isomorphism 	As(y) Xy →	As(σy) Xσy

obtained by shifting tensor factors. Denote by Γ(Jχ)inv the space of Cn-invariant sections
of the bundle Jχ. The value of the section at y is then invariant under the action of the
stabiliser of y in Cn.

For example, if χ = [x] is such that all (xi, εi) in x are mutually distinct, then the orbit
has lengths n, all stabilisers are trivial, and Γ(Jχ)inv is isomorphic to any one of the fibres
of Jχ. If all (xi, εi) are identical, the orbit has length one and Γ(Jχ)inv consists of the Cn
invariant vectors in Homk(	As(x)Xx, k).

With this preparation, we can finally state the third piece of data for the lattice TFT
construction.

3. For each u ∈ D0, a vector ϕu ∈ Γ(Jj(u))
inv.

This complicated construction will later ensure that the junction-condition is unchanged
under ‘rotations which leave the attached domain walls invariant’, or in other words, it has
no preferred ‘starting edge’.

3.5 Functor on bordisms with cell decomposition

Fix Di, i = 0, 1, 2 and the data described in the previous subsection. We proceed to define
a symmetric monoidal functor

T cw : Borddef,top,cw
2,1 −→ Vectf (k) . (3.24)

The action of T cw on objects is as follows. Denote by O an object of the bordism category
Borddef,top,cw

2,1 consisting of a single S1. Recall that C1(O) is the set of 1-cells (i.e. edges) of
the cell decomposition of O. To each edge e ∈ C1(O) we assign the vector space

Re =

{
Aa ; e contains no marked point and carries label a ∈ D2,

Xε
x ; e contains a marked point with orientation ε and label x ∈ D1,

(3.25)
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Figure 9: Assignment of vector spaces Re to edges e ∈ C1(O): The figure shows a circle with
three domains labelled a, b, c ∈ D2 and three marked points labelled x, y, z ∈ D1. The circle is
decomposed into 5 edges, and the corresponding vector spaces are Re1 = Xx, an Ab-Aa-bimodule;
Re2 = Aa; Re3 = X∗z , an Aa-Ac-bimodule (while Xz itself is an Ac-Aa-bimodule); Re4 = Ac;
Re5 = Xy, an Ac-Ab-bimodule.

see figure 9 for an illustration. We set11

T cw(O) =
⊗

e∈C1(O)

Re . (3.26)

For an object U = O1 tO2 t · · · tOn we take12 T cw(U) = T cw(O1)⊗ · · · ⊗ T cw(On).

There are two types of morphisms in the bordism category: permutations of objects,
and bordisms. A permutation σ : U → σ(U) is mapped by T cw to the corresponding
permutation of tensor factors. The description of T cw for bordisms will take a little while.
Given a bordism M : U → V (we assume that a representative of the equivalence class has
been chosen and use the same symbol), we will write the functor as a composition of two
linear maps

T cw(M) : T cw(U)
idTcw(U)⊗P (M)
−−−−−−−−−→ T cw(U)⊗Q(M)⊗T cw(V )

E(M)⊗idTcw(V )−−−−−−−−−→ T cw(V ) . (3.27)

We will now describe the vector space Q(M), and the maps P (M) (‘propagator’) and
E(M) (‘evaluation’).

We start with the vector space Q(M). Denote by ∂inM the in-going part of the bound-
ary of M , that is, the part parametrised by U , and by ∂outM the out-going part of the
boundary of M , parametrised by V .

Consider triples (p, e, or), where p ∈ C2(M) is a 2-cell (i.e. an open polygon), e ∈ C1(M)
is a 1-cell, and ‘or’ is an orientation of e. We only allow triples which satisfy the following

11 Here, the tensor product stands for the tensor product over k of a family of vector spaces indexed
by some set I (here C1(O)). To define this tensor product it is not necessary to choose an ordering of I,
i.e. a preferred way to write out the tensor product in a linear order. The same applies to similar tensor
products below.

12 Of course we could have taken the definition (3.26) also for a general object U instead of writing
T cw(U) as a tensor product with implied ordering of the factors. However, in this way it is easier to see
that the functor is symmetric.
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a)

x

t(x) = b

s(x) = a

in

out

b)

x
a

b
eα

eγ

eβ

p

Figure 10: Denote by O(a) the circle labelled by a ∈ D2; figure a) shows a bordism A(x) :
O(a) → O(b) with a single circular domain wall labelled x. Figure b) gives a possible cell
decomposition of A(x) into a 2-cell p, 1-cells eα, eβ, eγ and two unnamed 0-cells. The edges are
oriented for convenience, so that we can describe the two possible orientations simply by ± (the
orientation is not part of the data of the cell decomposition); the orientation of the boundary
of p induced by the orientation of A(x) is indicated by the arrows placed in p. There are 4
allowed triples: (p, eα,+), (p, eβ,+), (p, eγ ,−), (p, eβ,−). The corresponding vector spaces are
Qp,eα,+ = Aa, Qp,eβ ,+ = X∗x, Qp,eγ ,− = Ab, Qp,eβ ,− = Xx. As eα lies on ∂inA(x), we have
Q(A(x)) = Qp,eβ ,+ ⊗Qp,eγ ,− ⊗Qp,eβ ,−.

condition: the orientation of M also orients p, and this in turn induces an orientation of the
boundary ∂p; we demand that (e, or) is part of ∂p as an oriented edge. This is illustrated
in figure 10. To each allowed triple (p, e, or) we assign a vector space:

Qp,e,or =



Aa ; (e, or) does not intersect M1 and is in a component
of M2 labelled a,

Xx ; (e, or) intersects a component of M1 which is labelled x
and is oriented into the polygon p,

X∗x ; (e, or) intersects a component of M1 which is labelled x
and is oriented out of the polygon p.

(3.28)

Here, the pair (e, or) is understood as part of the boundary ∂p; this is important if the
same edge e occurs twice in ∂p, see the example in figure 10. The vector space Q(M) is
given by

Q(M) =
⊗

(p,e,or), e/∈∂inM

Qp,e,or , (3.29)

where the tensor product is taken over all allowed triples (p, e, or) for which e does not lie
in ∂inM .

We now turn to the description of the map P (M) : k → Q(M) ⊗ T cw(V ). Each edge
e ∈ C1(M) in the interior of M occurs in two allowed triples, let us call them (p(e)1, e, or1)
and (p(e)2, e, or2), where or1 and or2 are the two possible orientations of e, and p(e)i is the
polygon which contains the oriented edge (e, ori) in its boundary. Note that it may happen
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that p(e)1 = p(e)2, as it does in figure 10. For each interior edge e define the linear map

Pe : k −→ Qp(e)1,e,or1 ⊗Qp(e)2,e,or2 (3.30)

according to the following two cases.

1. If M1 does not intersect e then according to (3.28) we have Qp(e)1,e,or1 = Qp(e)2,e,or2 =
Aa, where a is the label of the component of M2 containing e. We take Pe = βAa ,
with β the dual of the Frobenius pairing as in section 3.3. Since Aa has trace paring,
β is symmetric and the map Pe is independent of the choice of order of (p(e)1, e, or1)
and (p(e)2, e, or2).

2. Suppose a component of M1 labelled by x intersects e. Let ui be a basis of Xx and
let u∗i be the dual basis of X∗x. Choose the numbering ‘1’ and ‘2’ of (p(e)1, e, or1)
and (p(e)2, e, or2) so that the orientation of the domain wall M1 is such that it points
into the polygon p(e)1 at (e, or1) and out of the polygon p(e)2 at (e, or2). Then
Qp(e)1,e,or1 = Xx and Qp(e)2,e,or2 = X∗x (see figure 10) and we set Pe(λ) = λ

∑
i ui⊗u∗i .

If e is an edge on the out-going boundary ∂outM , i.e. the boundary component parametrised
by V , then there is exactly one allowed triple which contains e. Let (p, e, or) be that triple.
The parametrisation identifies e with an edge of C(V ) which we also call e. In this case
Pe is defined as in (3.30), but with Qp(e)1,e,or1 and Qp(e)2,e,or2 replaced by Qp(e),e,or and Re.
Comparing (3.25) and (3.28) (and using the conventions in figure 3), one checks that cases
1 and 2 above still apply.

Altogether, the map P (M) : k → Q(M)⊗ T cw(V ) is defined as

P (M) =
⊗

e∈C1(M), e/∈∂inM

Pe . (3.31)

Finally, we need to define E(M) : T cw(U) ⊗ Q(M) → k. Note that T cw(U) ⊗ Q(M)
contains one factor Qp,e,or for each p ∈ C2(M) and (e, or) ∈ ∂p, even if e ⊂ ∂M , such that

T cw(U)⊗Q(M) =
⊗

p∈C2(M), (e,or)∈∂p

Qp,e,or . (3.32)

For each polygon p ∈ C2(M) we define a linear map

Ep :
⊗

(e,or)∈∂p

Qp,e,or −→ k . (3.33)

Fix p ∈ C2(M). There are three cases to distinguish, depending on whether p intersects
M1 and/or M0.

1. Suppose p intersects neither M1 nor M0. Let a be the label of the component of M2

containing p. Choose an edge (e1, or1) ∈ ∂p and denote by (e1, or1), (e2, or2), . . . , (em, orm)
all oriented edges of ∂p in anti-clockwise ordering. Let further

q1 ⊗ q2 ⊗ · · · ⊗ qm ∈ Qp,e1,or1 ⊗Qp,e2,or2 ⊗ · · · ⊗Qp,em,orm . (3.34)
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Each Qp,ei,ori is equal to Aa and we set Ep(q1 ⊗ · · · ⊗ qm) = εAa(q1 · · · qm), where εAa
is the counit of Aa. By symmetry of the pairing of the Frobenius algebra Aa, the
result is independent of the choice of starting edge (e1, or1).

2. Suppose p intersects M1 but not M0. In this case there is one oriented edge where
M1 leaves p, which we take to be (e1, or1). Then we order the oriented edges of ∂p
anti-clockwise as in 1. Let (ei, ori) be the edge where M1 enters p and let x be the
label of the component of M1 in p. In the notation from (3.34), we have q1 ∈ X∗x,
qi ∈ Xx, and q2, . . . , qi−1 ∈ At(x) and qi+1, . . . , qm ∈ As(x). We set Ep(q1⊗ · · ·⊗ qm) =
q1

(
(q2 · · · qi−1).qi.(qi+1 · · · qm)

)
. Unlike case 1., case 2. did not involve an arbitrary

choice, and there is no invariance condition to check.

3. Suppose p contains a point u from M0 of orientation νu ∈ {±} and with label
d̂0(u) = t ∈ D0. As in 1., we choose an arbitrary starting edge (e1, or1) ∈ ∂p and
order the remaining edges anti-clockwise. Each edge ei, i = 1, . . . ,m is transversed by
a domain wall. For each i = 1, . . . ,m we thereby obtain a pair (xi, εi) where xi ∈ D1

is the label of the domain wall crossing ei, and εi = + if this domain wall is oriented
into the polygon at (ei, ori) and εi = − otherwise. Let x = ((x1, ε1), . . . , (xm, εm)).

If νu = +, the labelling has to satisfy j(t) = [x] =: χ. According to the construction
in section 3.4, x ∈ Oχ. Evaluating the section ϕt ∈ Γ(Jj(t))

inv at x gives an element
ψ ∈ Homk(	As(x)=t(x)Xx, k). Precomposing with the projection π⊗ : Xx →	As(x)=t((x)
Xx we obtain a linear form ψ ◦π⊗ : Xε1

x1
⊗· · ·⊗Xεm

xm → k. We set Ep(q1⊗· · ·⊗ qm) =
ψ ◦ π⊗(q1 ⊗ · · · ⊗ qm). Independence of the choice of (e1, or1) follows since Γ(Jj(t))

inv

consists of elements invariant under cyclic permutations.

If νu = −, the labelling has to satisfy j(t) = [x∗], and the above construction is
repeated with x∗ instead of x.

Figure 10 gives an example of case 2. There, (e1, or1) = (eβ,+), (e2, or2) = (eγ,−),
(e3, or3) = (eβ,−), (e4, or4) = (eα,+), and Ep(q1 ⊗ q2 ⊗ q3 ⊗ q4) = q1(q2.q3.q4), where
q2.q3.q4 is the left/right action of q2 ∈ Ab and q4 ∈ Aa on q3 ∈ Xx.

Altogether, for E(M) we take

E(M) =
⊗

p∈C2(M)

Ep . (3.35)

This completes the definition of T cw.

Let us briefly illustrate the construction in two related examples; more examples will
be computed in section 3.7. For the bordism A(x) : O(a) → O(b) considered in figure 10,
the composition of maps in (3.27) reads

T cw(A(x)) : T cw(O(a))
id⊗P−−−→ Reα⊗Qp,eβ ,+⊗Qp,eγ ,−⊗Qp,eβ ,−⊗Reγ

E⊗id−−−→ T cw(O(b)) , (3.36)
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where the edge on O(a) is identified with eα via the parametrisation, and the edge on O(b)
with eγ. Substituting the definition of these vector spaces and maps gives

T cw(A(x)) : Aa
id⊗P−−−→ Aa ⊗X∗x ⊗ Ab ⊗Xx ⊗ Ab

E⊗id−−−→ Ab

q 7−→
∑

i,j q ⊗ u∗i ⊗ b′j ⊗ ui ⊗ bj 7−→
∑

i,j u
∗
i (b
′
j.ui.q) bj .

(3.37)

This map can be defined for any two Frobenius algebras with trace pairing A,B and a
finite-dimensional B-A-bimodule X. One can check that the image of this map lies in
Z(B), and that the kernel of the projector p⊗ onto Z(A) is contained in the kernel of
T (A(x)). We therefore lose nothing if we restrict ourselves to Z(A) and Z(B) from the
start:

D(X) : Z(A) −→ Z(B) , z 7→
∑
i,j

u∗i (b
′
j.ui.z) bj . (3.38)

This is an example of a defect operator, which we already briefly mentioned in remark
2.3 (ii). Such defect operators have some nice properties13: if X ∼= X ′ as bimodules, then
D(X) = D(X ′); if Y is a C-B-bimodule, then D(Y )D(X) = D(Y ⊗B X); and for the
A-A-bimodule A one has D(A) = idZ(A).

A related example comes from the annulus as in figure 10, but without the domain wall
x, so that necessarily a = b. The map in (3.37) specialises to q 7→

∑
i,j〈a′i, a′jaiq〉 aj. By

(3.8), this is equal to q 7→
∑

i aiqa
′
i = p⊗(q), cf. lemma 3.3. Thus, T cw maps the cylinder

over O(a) to the projector onto the centre of Aa.

It is fairly straightforward to see from the above construction that T cw is compati-
ble with composition and tensor products. Since we imposed that permutations of S1-
components in an object U of the bordism category get mapped to permutations of tensor
factors in T cw(U), the functor respects identities and is symmetric.

3.6 Independence of cell decomposition

In this subsection we abbreviate Bordcw ≡ Borddef,top,cw
2,1 and Bord ≡ Borddef,top

2,1 . Objects

and morphisms in Bordcw will be decorated by a tilde (e.g. Ũ , M̃ , . . . ). Recall the forgetful
functor F : Bordcw → Bord from section 3.1. We will show that there exists a symmet-
ric monoidal functor T making the diagram (3.3) commute (consequently, this functor is
unique). This will be done in several steps, the key one being the following lemma.

Lemma 3.5. Let Ũ , Ṽ ∈ Bordcw and let M̃, M̃ ′ : Ũ → Ṽ be morphisms. If M̃ ′ is obtained
from M̃ by one of the local modifications of the cell decomposition shown in figures 11 and
12, then T cw(M̃) = T cw(M̃ ′).

13 These properties are all easily checked directly with the methods of section 3.3. They have also been
shown in arbitrary modular categories (instead of just the category Vectf (k)) in [FRS3, Lem. 2] and [KR1,
Lem. 3.1].
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a)

←→

b)

←→ ←→

Figure 11: a) A local modification of the cell decomposition which adds an edge and a vertex
turning a 2-gon into two triangles, or conversely. The two exterior vertices are allowed to be
identical. b) The same in the presence of a domain wall; there are two modifications as the vertex
can be added on either side of the domain wall.

←→ ←→ ←→ · · · ←→

Figure 12: A local modification of the cell decomposition which adds a single edge to the interior
of a 2-cell. The figure shows an exemplary situation. Alternatively, the 2-cell can be any n-gon
with n ≥ 2, the domain wall can run between other edges, or there could be no domain wall at
all.

Proof. We will show the equality T cw(M̃) = T cw(M̃ ′) in the two cases displayed in figure
13; the remaining cases are treated analogously.

The part of the cell decomposition in figure 13 a) contributes the factor Ep : X∗x⊗Xx →
k, ϕ ⊗ x 7→ ϕ(x) from (3.33) to the map E in (3.35) and (3.27). Figure 13 b) contributes
the factors Ep1 ⊗Ep2 : (X∗x ⊗Ab ⊗Xx)⊗ (X∗x ⊗Ab ⊗Xx)→ k, ϕ⊗ b⊗ x⊗ ϕ′ ⊗ b′ ⊗ x′ 7→
ϕ(b.x) · ϕ′(b′.x′) to E, and to P in (3.31) it contributes the factors Pe3 ⊗ Pe4 : k →
(Ab⊗Ab)⊗(Xx⊗X∗x), 1 7→

∑
i,j b
′
i⊗bi⊗uj⊗u∗j . The composition of Pe3⊗Pe4⊗ idX∗x⊗ idXx

and Ep1 ⊗ Ep2 (with the appropriate permutation of tensor factors) yields

ϕ⊗ x 7→
∑
i,j

ϕ(b′i.uj) · u∗j(bi.x) =
∑
i

ϕ(b′i.bi.x) = ϕ(x) = Ep(ϕ⊗ x) . (3.39)

Thus if M̃ and M̃ ′ differ only in one place as shown in figure 13 a,b), we still have T cw(M̃) =
T cw(M̃ ′).

For figure 13 c,d) the argument is the same. The 2-cell p contributes the map Ep :
X∗x ⊗Ab ⊗Ab ⊗Xx ⊗Aa → k, ϕ⊗ b1 ⊗ b2 ⊗ x⊗ a 7→ ϕ(b1.b2.x.a). The two cells p1 and p2

contribute Ep1⊗Ep2 : (X∗x⊗Ab⊗Ab⊗Xx)⊗(X∗x⊗Xx⊗Aa)→ k, ϕ⊗b1⊗b2⊗x′⊗ϕ′⊗x⊗a 7→
ϕ(b1.b2.x

′) · ϕ′(x.a). The new edge e6 gives the map Pe6 : k → Xx ⊗X∗x, 1 7→
∑

j uj ⊗ u∗j .
Composing the two as (Ep1⊗Ep2)◦(id⊗Pe6⊗id) results in a map X∗x⊗Ab⊗Ab⊗Xx⊗Aa → k
which acts as

ϕ⊗ b1 ⊗ b2 ⊗ x⊗ a 7→
∑

j(Ep1 ⊗ Ep2)(ϕ⊗ b1 ⊗ b2 ⊗ uj ⊗ u∗j ⊗ x⊗ a)

=
∑

j ϕ(b1.b2.uj) · u∗j(x.a) = ϕ(b1.b2.x.a)

= Ep(ϕ⊗ b1 ⊗ b2 ⊗ x⊗ a) .

(3.40)

29



a)

x

ab
e1

e2

p

Xx

X∗x
b)

x

ab
e1

e2

e3 e4

p1

p2

Xx

X∗x

Xx

X∗x

Ab

Ab

c)
Ab

Ab

Aa

Xx

X∗x

x
a

b

p

e1
e2

e3

e4

e5

d)
Ab

Ab

Aa

Xx

X∗x

x
a

b
p1

p2

e1
e2

e3

e4

e5

Xx

X∗x

e6

Figure 13: Two examples. Figures a,b: Adding two edges and a vertex; the vector spaces
Qp,e,or associated to triples (p, e, or) as in section 3.5 are also shown, e.g. Qp2,e4,− = X∗x and
Qp1,e4,+ = Xx. Figures c,d: Adding an edge to a 2-cell; also shown are the associated vector
spaces.

←→
fig. 12

←→
fig. 11

←→
2×fig. 12

Figure 14: The moves in figures 11 and 12 allow one to split an edge by adding a new vertex.

Hence, if M̃ and M̃ ′ differ only in one place as shown in figure 13 c,d), we have T cw(M̃) =
T cw(M̃ ′).

One immediate consequence of the above lemma is that we can insert new vertices on
edges which do not belong to the boundary of M via the sequence of moves in figure 14.
(The cell-decomposition of the boundary is fixed by the parametrisation in terms of the
source and target objects). In the absence of domain walls, the ‘elementary subdivisions’
(and their inverses) of a 2-cell (figure 12) and of a 1-cell (figure 14) have been shown in [Ki]
to relate any two cell decompositions (more precisely: two PLCW-decompositions of a com-
pact polyhedron, see [Ki] for details). The next lemma extends this to cell decomposition
in the presence of domain walls and junctions; we will only sketch its proof.

Lemma 3.6. Let Ũ , Ṽ ∈ Bordcw and let M̃, M̃ ′ : Ũ → Ṽ be two morphisms such that
F (M̃) = F (M̃ ′). Then T cw(M̃) = T cw(M̃ ′).
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Sketch of proof. A 2-cell containing a junction is by construction the same in all cell de-
compositions, so we will remove such 2-cells from M̃ and M̃ ′ and treat their boundary
edges as additional boundary components for the remaining cell complexes.

Next, use the moves in figures 12 and 14 to refine the cell decomposition of M̃ and M̃ ′

to a triangulation. The same moves allow us to make the part of the triangulation touched
by the domain walls in M̃ and M̃ ′ agree: each component of the domain wall submanifold
M1 defines a string of triangles in M̃ and M̃ ′ and one can pass to a common refinement.
(To achieve this refinement it is allowed to change the triangulation away from the domain
walls.) We now remove all triangles containing domain walls from M̃ and M̃ ′, giving rise
to yet more boundary components.

The triangulations of M̃ and M̃ ′ still remaining no longer contain any domain walls or
junctions, and the standard proof of triangulation independence applies (see [Ki] or just
check that figures 12 and 14 imply invariance under the Pachner moves).

The next step is to study the behaviour of T cw on preimages of cylinders under F . For
U ∈ Bord denote by CU : U → U the morphism given by the cylinder over U . That is,
CU = U× [−1, 1] with decomposition induced by that of U via CU = (CU)2∪ (CU)1∪ (CU)0

with (CU)i = Ui−1×[−1, 1], i = 2, 1 and (CU)0 = ∅. Orientations and labellings are induced
by U as well. Note that because morphisms of Bord are diffeomorphism classes, we have

CU ◦ CU = CU (3.41)

as morphisms in Bord. Now pick objects Ũ , Ũ ′ with F (Ũ) = F (Ũ ′) = U and a morphism
M̃ : Ũ → Ũ ′ with F (M̃) = CU . Define

ζŨ ′,Ũ := T cw(M̃) : T cw(Ũ) −→ T cw(Ũ ′) . (3.42)

By lemma 3.6, ζŨ ,Ũ ′ is independent of M̃ . As a consequence, given another preimage Ũ ′′

of U , we have
ζŨ ′′,Ũ ′ ◦ ζŨ ′,Ũ = ζŨ ′′,Ũ . (3.43)

For an object O ∈ Bord consisting of a single component S1 write x(O) for the list
((x1, ε1), . . . , (xn, εn)) of the marked points on O together with their orientation, ordered
clockwise starting from the point −1 ∈ S1. If Õ is a preimage of O, denote by e1, . . . , em
the 1-cells, again ordered clockwise starting from −1 ∈ S1. For example, figure 9 shows a
preimage Õ with m= 5 1-cells, for O a circle with x(O) = ((y,+), (x,+), (z,−)) so that
n= 3. Consider the maps

e(Õ) :=
(
	An,1Xx(O)

∼−−→ 	Am,1Re1 ⊗A1,2 Re2 ⊗A2,3 · · · ⊗Am−1,m Rem

e⊗−→ T cw(Õ)
)

(3.44)

and

π(Õ) :=
(
T cw(Õ)

π⊗−→ 	Am,1Re1 ⊗A1,2 Re2 ⊗A2,3 · · · ⊗Am−1,m Rem
∼−−→	An,1Xx(O)

)
(3.45)

Here, Xx is the notation introduced in (3.20), Re was defined in (3.25) and the intermediate

algebras Ai,i+1 are as required by the bimodules. By (3.26), T cw(Õ) consists precisely of
the tensor factors Re1 ⊗ · · · ⊗Rem , and the maps e⊗, π⊗ are as in (3.16).
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Lemma 3.7. Let Õ, Õ′ in Bordcw be preimages of O. Then π(Õ)◦e(Õ) = id	An,1Xx(O)
and

e(Õ′) ◦ π(Õ) = ζÕ′,Õ.

Proof. The first equality is the defining property of the maps π⊗ and e⊗ in (3.16).
Let C̃Ũ be the cylinder over Ũ obtained by equipping CU with the cell decomposition

induced by that of Ũ : each edge e of Ũ gets extended to the square 2-cell e × [−1, 1]. If
we apply the functor T cw to C̃Õ, a short calculation starting from the definition of T cw

(illustrated in the first example in section 3.7 below) shows that

ζÕ,Õ = p⊗ , (3.46)

where p⊗ is the idempotent on Xε1
x1
⊗ · · · ⊗Xεn

xn whose image is 	An,1Xx(O). Below we will
furthermore check that

π(Õ′) ◦ ζÕ′,Õ ◦ e(Õ) = id	An,1Xx(O)
. (3.47)

Composing this from the left with e(Õ′) and from the right with π(Õ), and using e⊗ ◦π⊗ =
p⊗ together with (3.46) and (3.43), proves the second equality of the lemma.

Let us now sketch the proof of (3.47). We identify 	An,1 Xx(O) and 	Am,1 Re1 ⊗A1,2

· · ·⊗Am−1,m Rem with the images of the corresponding projectors p⊗ in Xε1
x1
⊗· · ·⊗Xεn

xn and

Re1 ⊗ · · · ⊗Rem ≡ T cw(Õ). Let
∑

i x
(i)
1 ⊗ · · · ⊗ x

(i)
n be an element of Xε1

x1
⊗ · · · ⊗Xεn

xn in the
image of p⊗. The first arrow in (3.44) is the isomorphism mapping this to the element

v = p⊗ ◦
(∑

i

1An,1 ⊗ · · · ⊗ x
(i)
1 ⊗ 1A1,2 ⊗ · · · ⊗ x

(i)
2 ⊗ 1A2,3 ⊗ · · · ⊗ x(i)

n ⊗ · · · ⊗ 1An,1

)
(3.48)

of Re1 ⊗ · · · ⊗Rem ≡ T cw(Õ). Here one unit element has been inserted for each factor Rek

for which ek does not contain a marked point (in this case Rek = Aa for an appropriate
a, cf. (3.25)). One can convince oneself that ζÕ′,Õ maps v to an element v′ of the same

form in T cw(Õ) (i.e. v′ has same factors x
(i)
k but possibly a different number of factors

1Ak,k+1
). We omit the details of this step. The final isomorphism in (3.45) maps v′ back to∑

i x
(i)
1 ⊗ · · · ⊗ x

(i)
n .

In the last step, we define the sought-after functor T . On objects O ∈ Bord with a
single S1 component, we set

T (O) :=	Am,1Xx(O) . (3.49)

For U = O1 t · · · t On, monoidality then requires T (U) = T (O1) ⊗ · · · ⊗ T (On). For a
bordism M : U → V in Bord pick a preimage M̃ : Ũ → Ṽ under the forgetful functor.
Extend the definition of e(Õ) and π(Õ) to Ũ by taking tensor products. Define

T (M) :=
(
T (U)

e(Ũ)−−→ T cw(Ũ)
T cw(M̃)−−−−→ T cw(Ṽ )

π(Ṽ )−−→ T (V )
)
. (3.50)

The first main result of this paper is:
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Theorem 3.8. (i) T (M) is independent of the choice of preimage M̃ of M .

(ii) T (CU) = idT (U).

(iii) T : Borddef,top
2,1 → Vectf (k) is a symmetric monoidal functor.

Proof. (i) Choose another preimage M̃ ′ : Ũ ′ → Ṽ ′ in Bordcw of M : U → V , and choose
preimages C̃U : Ũ → Ũ ′ and C̃V : Ṽ → Ṽ ′ of the cylinder CU and CV . Consider the
diagram

T cw(Ũ)

ζŨ′,Ũ

��

T cw(M̃) // T cw(Ṽ )

ζṼ ′,Ṽ

��

π(Ṽ )
**UUUUUU

	Am,1Xx(U)

e(Ũ) 44iiiiiii

e(Ũ ′)
**UUUUUU

	An,1Xx(V )

T cw(Ũ ′)
T cw(M̃ ′) // T cw(Ṽ ′)

π(Ṽ ′)

44iiiiii

. (3.51)

To see that the left triangle commutes, substitute ζŨ ′,Ũ = e(Ũ ′) ◦ π(Ũ) and use that

π(Ũ) ◦ e(Ũ) = id (lemma 3.7). Commutativity of the right triangle follows analogously.
The following chain of equalities shows that also the central square commutes:

ζṼ ′,Ṽ ◦ T cw(M̃)
(1)
= T cw(C̃V ) ◦ T cw(M̃)

(2)
= T cw(C̃V ◦ M̃)

(3)
= T cw(M̃ ′ ◦ C̃U)

(4)
= T cw(M̃ ′) ◦ T cw(C̃U)

(5)
= T cw(M̃ ′) ◦ ζŨ ′,Ũ .

(3.52)

Step (1) is the definition of ζṼ ′,Ṽ in (3.42); step (2) is functoriality of T cw; step (3) follows

from lemma 3.6 since C̃V ◦ M̃ and M̃ ′ ◦ C̃U are just different cell decompositions (but
identical on the boundary) of the same bordism Ũ → Ṽ ′; steps (4) and (5) are the same
as (2) and (1). Thus the diagram (3.52) commutes, establishing (i).

(ii) By definition (3.50) and lemma 3.7, T (CU) = π(Ũ ′) ◦ T cw(C̃U) ◦ e(Ũ) = π(Ũ ′) ◦ ζŨ ′,Ũ ◦
e(Ũ) = π(Ũ ′) ◦ e(Ũ ′) ◦ π(Ũ) ◦ e(Ũ) = id.

(iii) Let U
M−→ V

N−→ W be two composable morphisms in Bord and choose a preimage

Ũ
M̃−→ Ṽ

Ñ−→ W̃ in Bordcw. To check compatibility with composition, we need to show
T (N ◦M) = T (N) ◦ T (M). Inserting the definition, this amounts to

π(W̃ ) ◦ T cw(Ñ ◦ M̃) ◦ e(Ũ) = π(W̃ ) ◦ T cw(Ñ) ◦ e(Ṽ ) ◦ π(Ṽ ) ◦ T cw(M̃) ◦ e(Ũ) (3.53)

That the two sides are indeed equal can be seen as follows. By lemma 3.7, e(Ṽ ) ◦ π(Ṽ ) =
ζṼ ,Ṽ , and, if C̃ is a preimage of CV , by functoriality of T cw the rhs is equal to π(W̃ ) ◦
T cw(Ñ ◦ C̃ ◦ M̃) ◦ e(Ũ). But F (Ñ ◦ C̃ ◦ M̃) = N ◦M , so that by lemma 3.6, the rhs is
indeed equal to the lhs.

Monoidality and symmetry of T are implied by that of T cw.

This concludes our construction of an example of a two-dimensional topological field
theory with defects.
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Figure 15: Two bordisms with defects together with a choice of cell-decomposition used in the
sample computation. As in figure 10, the orientations of the edges are chosen for convenience
and are not part of the data of the cell decomposition.

3.7 Some examples of amplitudes

Let us work through two more examples to see how the amplitude of a bordism

M : U → V (3.54)

in Bord ≡ Borddef,top
2,1 is computed in lattice TFT. As in section 3.6, we denote by M̃ : Ũ →

Ṽ a lift to Bordcw ≡ Borddef,top,cw
2,1 .

The first example is shown in figure 15 a). Using the notation of section 2.4, let U =
V = O(y◦x∗) be the object of Bord consisting of a single S1 with two marked points (x,−)
and (y,+). For Ũ = Ṽ we choose a decomposition with two 1-cells. The spaces Re are:

e e1 e2 e5 e6

Re Xy X∗x Xy X∗x

The allowed triples are:

(p, e, or) (p1, e2,−) (p1, e3,+) (p1, e6,+) (p1, e4,−)
Qp,e,or X∗x Ab Xx Aa

(p, e, or) (p2, e1,−) (p2, e4,+) (p2, e5,+) (p2, e3,−)
Qp,e,or Xy Aa X∗y Ab

We now evaluate T cw(M̃) as given in (3.27), which is a linear map from Re1 ⊗ Re2 to
Re5 ⊗Re6 , both of which spaces are equal to Xy ⊗X∗x. The map id⊗P in (3.27) maps the
element w ⊗ ϕ ∈ Re1 ⊗Re2 to (not writing all ‘⊗’-symbols)

−→ (Re1 Re2) (Qp1,e3,+ Qp1,e6,+ Qp1,e4,− Qp2,e4,+ Qp2,e5,+ Qp2,e3,−) (Re5 Re6)

7→
∑
i,j,k,l

(w ⊗ ϕ) ⊗ (b′i ⊗ uj ⊗ a′k ⊗ ak ⊗ v∗l ⊗ bi) ⊗ (vl ⊗ u∗j)

which in turn gets mapped by E ⊗ id to∑
i,j,k,l

ϕ(b′i.uj.a
′
k) v

∗
l (bi.w.ak) vl ⊗ u∗j (3.55)
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in Re5⊗Re6 . This can be simplified by carrying out the sum over the bases uj, vl and their
duals, resulting in

T cw(M̃)(w ⊗ ϕ) =
∑
i,k

(bi.w.ak)⊗ (a′k.ϕ.b
′
i) . (3.56)

Comparing to the discussion in section 3.3, we see that this is nothing but the projector
p⊗ on Xy ⊗X∗x whose image is 	AbXy ⊗Aa X∗x. Combining this with the definition (3.50)
of T , we see that T (M) = id on 	AbXy ⊗Aa X∗x. This illustrates point (ii) of theorem 3.8.

The following lemma provides a different point of view on this result which will be useful
in understanding the 2-category of defect conditions. Denote by evV : V ∗ ⊗ V → k the
evaluation of a vector space on its dual and write HomA|B(X, Y ) for the space of bimodule
maps between two A-B-bimodules X, Y .

Lemma 3.9. Let A,B be Frobenius algebras with trace pairing, and let X, Y be finite
dimensional A-B-bimodules. The map φ :	AY ⊗B X∗ → HomA|B(X, Y ),

φ(γ) :=
(
X

γ⊗idX−−−−→ (	AY ⊗B X∗)⊗X
e⊗⊗idX−−−−→ Y ⊗X∗ ⊗X idX⊗evX−−−−−→ Y

)
(3.57)

is an isomorphism.

Proof. Let γ ∈	AY ⊗BX∗. That φ(γ) is a bimodule map is a straightforward calculation
using evX(u ⊗ (a.v.b)) = evX((b.u.a) ⊗ v) and (e⊗ ◦ γ).a = a.(e⊗ ◦ γ). That φ is an
isomorphism follows by the standard argument using the corresponding coevaluation map
and the duality properties.

Via this lemma we can also think of T (O(y ◦ x∗)) as HomAb|Aa(Xx, Xy). If we identify

Xy⊗X∗x with Hom(Xx, Xy) then T cw(M̃) becomes the projection from general linear maps
to bimodule intertwiners.

The second example – figure 15 b) – is again an annulus with a domain wall, but
this time the in-going boundary sits entirely in one domain. Here, the source-object is
U = O(b), an S1 with no marked points and labelled b ∈ D2, and the target object is
V = O(x ◦ x∗). The lift Ũ we chose contains a single edge, while Ṽ contains two edges.
The spaces Re and Qp,e,or in this case are:

e e1 e4 e5

Re Ab Xx X∗x

(p, e, or) (p1, e1,−) (p1, e2,+) (p1, e5,+) (p1, e3,−) (p2, e2,−) (p2, e3,+) (p2, e4,+)
Qp,e,or Ab Ab Xx X∗x Ab Xx X∗x

The map id⊗ P takes w ∈ Ab to

−→ Re1 (Qp1,e3,− Qp1,e2,+ Qp1,e5,+ Qp2,e4,+ Qp2,e2,− Qp2,e3,+) (Re4 Re5)

7→
∑
i,j,k,l

w ⊗ (u∗i ⊗ b′j ⊗ uk ⊗ u∗l ⊗ bj ⊗ ui) ⊗ (ul ⊗u∗k) .
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This in turn is mapped to
∑

i,j,k,l u
∗
i ((w ·b′j).uk)u∗l (bj.ui) ·ul⊗u∗k by E⊗ id, which simplifies

to
T cw(M̃)(w) =

∑
j,k

(
(bjwb

′
j).uk

)
⊗ u∗k =

∑
k

(p⊗(w).uk)⊗ u∗k , (3.58)

where p⊗ : Ab → Ab is the projection to the centre of Ab, see lemma 3.3. Accordingly, the
resulting map for the bordism M is

T (M) : Z(Ab) −→ HomAb|Aa(Xx, Xx)
z 7−→ (q 7→ z.q) ,

(3.59)

where we have identified 	AbXx ⊗Aa X∗x ∼= HomAb|Aa(Xx, Xx) via lemma 3.9.

3.8 Bicategory of algebras and 2-category of defect conditions

In the construction in sections 3.4–3.6, the domain wall conditions were given by bimodules.
Bimodules naturally form a bicategory (see [Be, Sec. 2.5], [Gr, Sec. I.3] or [ML, Ch. XII.7]),
and in this subsection we want to compare this bicategory to the 2-category of defect
conditions described in section 2.4. Our conventions for bicategories can be found in
appendix A.

Definition 3.10. (i) The category Alg(k) has associative unital algebras over k as objects
and (unital) algebra homomorphisms as morphisms.

(ii) The bicategory Alg(k) has associative unital algebras over k as objects. The mor-
phism category Alg(k)(A,B) is given by the category of B-A-bimodules and bimodule
intertwiners. The composition functor Alg(k)(B,C) × Alg(k)(A,B) → Alg(k)(A,C) is
(−)⊗B (−).

We will start with a small digression which is not restricted to Frobenius algebras with
trace pairing. Namely, we will look at some properties of Alg(k).

Given a 1-category C, we denote the bicategory obtained from C by adding only identity
2-morphisms again by C. When comparing Alg(k) and Alg(k), we understand Alg(k) as
a bicategory in this sense. For an algebra map f : A → B and a right B-module M ,
we denote by Mf the right A-module with action (m, a) 7→ m.f(a). In particular, Bf is
a B-A-bimodule. The next lemma (following [Be, Sec. 5.7]) makes precise the idea that
Alg(k) contains more 1- and 2-morphisms than Alg(k).14

Lemma 3.11. (i) Let A
f−→ B

g−→ C be algebra maps. The following map is well-defined
and an isomorphism of C-A-bimodules:

mg,f : Cg ⊗B Bf −→ Cg◦f , c⊗B b 7−→ c · g(b) . (3.60)

14 Note that, while Alg(k)(A,B) is not additive (since f + g is never an algebra homomorphism if f
and g are), the category Alg(k)(A,B) has direct sums of 1-morphisms, so that we have added enough
morphisms to ‘linearise’ Alg(k).
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(ii) The assignment
i : Alg(k) −→ Alg(k) , (3.61)

which is the identity on objects and which maps A
f−→ B to Bf , is a (non-lax) functor.

The unit transformations are identities and the multiplication transformations are given
by mg,f .

(iii) Let f, g : A → B be algebra maps. Then i(f) and i(g) are 2-isomorphic in Alg(k) if
and only if f(−) = u · g(−) · u−1 for some u ∈ B×.

Proof. Abbreviate m ≡ mg,f .

(i) To see that m is well-defined, consider the map m̄ : Cg ⊗Bf → Cg◦f given by u⊗ v 7→
ug(v). We verify the cokernel condition: for b ∈ B we have m̄((u.b)⊗v) = m̄((ug(b))⊗v) =
ug(b)g(v) = ug(bv) = m̄(u⊗ (bv)). Therefore, m̄ induces a map Cg ⊗B Bf → Cg◦f , which
is precisely m. Since c 7→ c⊗B 1B is an isomorphism from Cg◦f to Cg ⊗B Bf , and since by
composing with m one obtains the identity on Cg, it follows that m is an isomorphism. It
is straightforward to check that m intertwines the C-A-bimodule structures.

(ii) We have to verify associativity and unit properties of the functor. We start with

associativity. Given algebra maps A
f−→ B

g−→ C
h−→ D, we must show commutativity of the

diagram

(Dh ⊗C Cg)⊗B Bf
∼ //

mh,g⊗B id

��

Dh ⊗C (Cg ⊗B Bf )

id⊗Cmg,f
��

Dh◦g ⊗B Bf

mh◦g,f
��

Dh ⊗C Cg◦f
mh,g◦f

��
Dh◦g◦f

= // Dh◦g◦f

(3.62)

Acting on an element d⊗C c⊗B b, the left branch gives d ·h(c) ·h(g(b)) and the right branch
gives d · h(c · g(b)). These are equal as h is an algebra map. The unit properties in turn
amount to commutativity of the following two diagrams:

B ⊗B Bf
∼ //

id
��

Bf

Bid ⊗B Bf
mid,f // Bid◦f

id

OO

,

Bf ⊗A A ∼ //

id
��

Bf

Bf ⊗A Aid
mf,id // Bid◦f

id

OO

(3.63)

In the left diagram, both branches give the map b⊗B b′ 7→ b · b′, and in the right diagram,
both branches give b⊗B a 7→ b · f(a).

Since by part (i) the m’s are isomorphisms, we do indeed obtain a functor, not just a
lax functor.

(iii) ‘⇒’: Suppose that ψ : Bf → Bg is an isomorphism of B-A-bimodules. Then for
all x, b ∈ B and a ∈ A we have ψ(b · x · f(a)) = b · ψ(x) · g(a). From this we conclude
that f(a) · ψ(1) = ψ(f(a)) = ψ(1) · g(a). Since ψ is invertible, ψ(1) ∈ B×, and so
f(a) = ψ(1) · g(a) · ψ(1)−1.
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‘⇐’: The isomorphism is given by b 7→ b · u.

Recall the construction of the 2-category D[D2, D1;T ] in (2.12), the assignment of
algebras and bimodules to elements of D2 and D1 in the beginning of section 3.4, and the
definition of the defect TFT T in theorem 3.8. We want to define a functor

∆ : D[D2, D1;T ] −→ Alg(k) , (3.64)

which on objects a ∈ D2 acts as ∆(a) = Aa and on 1-morphisms x ∈ D(a, b) as ∆(x) = Xx,
using the notation (3.20). The action on 2-morphisms will be described after the following
remark.

Remark 3.12. (i) By (2.9), the 2-morphism spaces of D[D2, D1;T ] are given by D2(x, y) :=
H inv(y ◦ x∗). One may think that in a TFT all states are scale and translation invariant,
and this is true but for one detail. Let x : a→ a and let CO(x) be the cylinder over O(x).
The defining property (2.7) of a scale and translation invariant family implies that all vec-
tors ψx;r lie in the image of the idempotent T (CO(x)) : T (O(x)) → T (O(x)). Conversely,
each vector in the image of T (CO(x)) gives rise to a scale and translation invariant family.
Indeed, for TFTs, T (O(x)) ≡ T (O(x; r)) is independent of r, and so is the family ψx;r. We
can therefore identify H inv(x) with the image of the idempotent T (CO(x)). For our lattice
TFT construction, by theorem 3.8 (iii) this does not make a difference, but for a general
TFT, T (CO(x)) may be different from the identity map on T (O(x)).

(ii) Given a TFT for which the idempotents T (CU) for objects U ∈ Borddef,top
2,1 are not

always identity maps, one can define a new TFT T ′ in which one replaces all state spaces
T (U) by the image of the corresponding idempotent T (CU). The embedding of the image
of T (CU) into T (U) provides a monoidal natural transformation from T ′ to T . One can

think of T ′ as the ‘non-degenerate subtheory’ of T , because an amplitude T (U
M−→ V )

vanishes if its argument comes from the kernel of T (CU). In principle, one can always
work with non-degenerate TFTs, but in some situations degenerate TFTs are useful as an
intermediate step (such as in the orbifold construction of [Frö2], or in a sense also the con-
struction in section 3.6, where T was defined precisely as the restriction of T cw to images
of idempotents).

According to part (i) of the above remark, in our lattice TFT example we haveH inv(x) =
T (O(x)). Substituting the definition of T on objects in (3.49), we see that for x, y : a→ b,

D2(x, y) =	AbXy ⊗Aa Xx∗ . (3.65)

Using this and lemma 3.9, we can finally state the action of the functor ∆ on morphisms.
Namely for u ∈ D2(x, y) we set ∆(u) = φ(u) : Xx → Yy.

We should now proceed to show that ∆ thus defined is indeed a functor between bicat-
egories, which in addition is locally fully faithful (since φ is an isomorphism). However, we
will not go through these details and instead turn to the next topic, the relation between
lattice TFT with defects and the centre of an algebra.
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4 The centre of an algebra

The map which assigns to an algebra A its centre Z(A) is not functorial, at least not
in the obvious sense. Namely, given A ∈ Alg(k), then also Z(A) ∈ Alg(k), but for an
algebra homomorphism f : A→ B it is in general not true that f |Z(A) lands in Z(B). For
example, if A is the algebra of diagonal 2×2 matrices, if B is all 2×2-matrices and if f is
the embedding map, then Z(A) = A, but Z(B) = k id which does not contain f(Z(A)).

For Frobenius algebras with trace pairing one could use the maps e⊗ and π⊗ between
A and Z(A) =	AA (cf. lemma 3.3 – not true for general algebras) to map f to π⊗ ◦f ◦e⊗,
but this would in general not be compatible with composition and multiplication.

The main point of this section is to define a functorial version of the centre. This is
done by first constructing a bicategory – or rather two versions thereof – whose objects are
commutative algebras. The centre is then a lax functor into this bicategory; this functor
will also be given in two versions (theorem 4.12 and remark 4.19). These constructions are
motivated by 2-dimensional TFT with defects, so we begin the discussion by highlighting
the relevant algebras and maps in the defect TFT.

4.1 Spaces and maps associated to defect TFTs

Let T : Borddef,top
2,1 (D2, D1, D0) → Vectf (k) be a defect TFT (not necessarily obtained via

lattice TFT). The functor T encodes an infinite number of state spaces and linear maps
between them. In this subsection we will pick out some of the more fundamental ones and
investigate their properties.

By remark 3.12 (ii) we are entitled to assume that all idempotents T (CU) are in fact
identity maps, and we will make this assumption for the rest of this subsection. Recall
from section 2.4 the 2-category D[D2, D1;T ] associated to a field theory with defects. By
remark 3.12 (i) and because of our assumption that T (CU) = idT (U), definition (2.9) of the
2-morphism spaces becomes

D2(x, y) = T (O(y ◦ x∗)) . (4.1)

Recall that the identity 1-morphism 1a : a → a, for a ∈ D2, is the empty tuple
1a = ( ). Consider the space of 2-endomorphisms of 1a, D2(1a,1a) = T (O(a)). This is
an associative, commutative, unital algebra; the bordisms which give the multiplication
and unit morphisms are those in figure 6 a,b), but without domain walls. Commutativity
follows since precomposing the multiplication bordism with a transposition σ : O(a) t
O(a)→ O(a) tO(a) gives a diffeomorphic bordism. In fact, by the usual arguments, it is
even a Frobenius algebra, and this Frobenius algebra defines the defect-free TFT given by
D2 = {a} and D1 = D0 = ∅.

For an arbitrary 1-morphism x : a → b, the 2-endomorphisms D2(x, x) do still form
an associative, unital algebra (even a Frobenius algebra), but this algebra need not be

commutative. The horizontal composition functors for (a
1a−→ a

x−→ b) = a
x−→ b and
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Figure 16: Manipulation of bordisms showing that L ≡ L̂(− ⊗ idx) : D2(1b,1b) → D2(x, x)
maps to the centre of D2(x, x). Here q ∈ D2(1b,1b) and w ∈ D2(x, x).

(a
x−→ b

1b−→ b) = a
x−→ b give linear maps

R̂ : D2(x, x)⊗D2(1a,1a) −→ D2(x, x) , L̂ : D2(1b,1b)⊗D2(x, x) −→ D2(x, x) . (4.2)

The bordisms for the maps L̂ and R̂ are as in figure 6 c), provided we specialise the latter to
the case where only one of the two in-going boundary circles has domain walls attached to
it. If we insert the identity 2-morphism idx, we obtain maps R := R̂(idx⊗−) : D2(1a,1a)→
D2(x, x) and L := L̂(− ⊗ idx) : D2(1b,1b) → D2(x, x). The corresponding bordisms are
obtained by gluing a disc as in figure 6 a) into the hole which has the domain walls attached.
Figure 15 b) shows a bordism obtained in this way.

With the help of bordisms, it is easy to see that R and L are algebra homomorphisms
whose images lie in the centre of D2(x, x). The bordism manipulations showing that the
image of L lies in the centre are given in figure 16.15

Next, consider the space of 2-morphisms D2(x, y) between two 1-morphisms x, y : a→
b. This is the TFT state space for a circle with sequence of marked points y◦x∗. By vertical
composition, D2(x, y) is a right D2(x, x)-module and a left D2(y, y)-module. Using R to
map D2(1a,1a) into D2(x, x) and D2(y, y), we see that D2(x, y) is also a bimodule for
D2(1a,1a). However, by an argument analogous to that in figure 16 it is easy to check
that the left and right action agree. Equally, L turns it into an D2(1b,1b)-bimodule with
identical left and right action.

Let f ∈ D2(x, y) be a 2-morphism. Pre- and post-composing with f defines maps

f ◦ (−) : D2(x, x)→ D2(x, y) , (−) ◦ f : D2(y, y)→ D2(x, y) (4.3)

Again by manipulating bordisms, one checks that f ◦ (−) intertwines the right D2(x, x)
action and (−) ◦ f intertwines the left D2(y, y)-action. All these maps are collected in
figure 17.

15Manipulating such disk-shaped bordisms reminds one of the string-diagram notation for 2-categories
[St]. Indeed, a string-diagram identity implies an identity for defect correlators on disks, but the converse
is not true – the 2-category D[D2, D1;T ] satisfies more conditions than a generic 2-category.
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Figure 17: Summary of the state spaces and maps between them as described in section 4.1.
Here only the case that x = ((x,+)) and y = ((y,+)) is shown. For tuples with more elements,
the bordisms involve the corresponding sequences of parallel lines.

Remark 4.1. In conformal (and thus in particular in topological) field theory, one has
the state-field correspondence, which says that the space of fields associated to a point on
the world sheet is the same as the space of states on a small circle obtained by cutting
out a small disc around this point; in fact, one can take this as a definition of what one
means by a field. Then D2(1a,1a) is the space of ‘bulk fields’ and D2(x, x) is the space
of ‘defect fields’ supported on the defect x. An important notion in quantum field theory
is the short distance expansion or operator product expansion (OPE). In TFT, of course,
the distance between insertion points is immaterial. The above considerations isolate the
three most important OPEs: the OPE of two bulk fields; the OPE of two defect fields; the
expansion of a bulk field close to a defect line in terms of defect fields.

4.2 The bicategory of commutative algebras, version 1

In this subsection we will use some of the structure seen in 2d TFT with defects in the
previous subsection to define a bicategory of commutative algebras in terms of cospans.
All algebras will be unital, associative algebras over a field k.

Definition 4.2. A cospan between commutative algebras, or cospan for short, is a tuple
(A,α, T, β,B), where A,B are commutative algebras, T is an algebra, and α, β are algebra
homomorphisms

T

A

α
;;vvvvv

B

β
ccHHHHH (4.4)
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such that the images of α and β lie in the centre Z(T ) of T .

The definition has no preferred ‘direction’, but we will pick one anyway: we will think
of (4.4) as going from B to A. The reason for this choice is that we will use the maps α, β
to turn T into an A-B-bimodule and the composition of cospans (to be defined in more
detail below) will be the tensor product of bimodules, just as in the bicategory Alg(k). In
the latter, A-B-bimodules serve as 1-morphisms B → A. We will write T : B → A, or just
T , to abbreviate the data in (4.4). Two different cospans T, T ′ : B → A can be compared
via algebra homomorphisms T → T ′. This leads first to a category of cospans from B
to A, and then to a bicategory CAlg(k) of cospans between commutative algebras. The
construction is almost identical to the standard construction of the bicategory of spans
for a given category with pullbacks (see [Be, Sec. 2.6] or [Gr, ML]), with the exception
that not all three objects in (4.4) are taken from the same category (we use commutative
algebras for the starting points of the cospan and not necessarily commutative algebras for
the middle term).

Definition 4.3. The category Cosp(A,B) of cospans between commutative algebras from
A to B is defined as follows.

• objects T ∈ Cosp(A,B) are cospans T : A→ B.

• morphisms f ∈ Cosp(A,B)(T, T ′) from T : A → B to T ′ : A → B are algebra maps
f : T → T ′ such that the following diagram commutes:

T

f

��
B

β
::uuuuu

β′ $$HHHHH A

α
ddIIIII

α′zzvvvvv

T ′

(4.5)

• the unit morphism in Cosp(A,B)(T, T ) is the identity map idT , and composition of
morphisms is composition of algebra maps.

The composition of two cospans A
T−→ B

S−→ C is defined by the usual pushout square,

S ⊗B T

S

id⊗B1T
::uuuuuuu

T

1S⊗B idddIIIIIII

C

γ ??~~~~~
B

β
ddIIIIIIII

β′
::uuuuuuuu

A

α
__@@@@@

(4.6)

The algebra homomorphism β turns S into a right B-module, and β′ turns T into a left
B-module; these module structures are implied when writing S⊗B T . We still need to turn
S ⊗B T into an algebra and show that A and C get mapped to the centre of this algebra.
The multiplication on S ⊗B T is given by

(s⊗B t) · (s′ ⊗B t′) := (ss′)⊗B (tt′) . (4.7)
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To check that this is well-defined, we start with the map m̄ : (S⊗T )⊗ (S⊗T )→ S⊗B T ,
which takes (s⊗ t)⊗ (s′⊗ t′) to (ss′)⊗B (tt′) and verify the cokernel condition. We present
the calculation for the first factor, the one for the second factor is similar. With b ∈ B,

m̄(s.b⊗ t⊗ s′ ⊗ t′) = (sβ(b)s′)⊗B (tt′)
(∗)
= (ss′β(b))⊗B (tt′)

= (ss′).b⊗B (tt′) = (ss′)⊗B b.(tt′) = (ss′)⊗B (β′(b)tt′) = m̄(s⊗ b.t⊗ s′ ⊗ t′)
(4.8)

The step marked ‘(∗)’ uses that the image of the algebra homomorphism β is in the centre
of S. This, by the way, is the reason not to allow general algebra homomorphisms in
definition 4.2: we want the tensor product over B to carry an induced algebra structure.
Finally, it is straightforward to check that for all a ∈ A, c ∈ C, the elements 1S ⊗B α(a)
and γ(c)⊗B 1T are in the centre of S ⊗B T .

The composition of cospans defined above forms part of a functor:

Lemma 4.4. The assignment

}C,B,A : Cosp(B,C) × Cosp(A,B) −→ Cosp(A,C)( T

g

��
C

γ
::uuuuu

γ′ $$HHHHH B

β2
ddIIIII

β′2zzvvvvv

T ′

,

S

f

��
B

β1
::uuuuu

β′1 $$HHHHH A

α
ddIIIII

α′zzvvvvv

S′

)
7−→

T ⊗B S

g⊗Bf
��

C

γ⊗B1 77oooooo

γ′⊗B1 ''OOOOOO A

1⊗BαggOOOOOO

1⊗Bα′wwoooooo

T ′ ⊗B S′

(4.9)

defines a functor.

Proof. Note that the algebra map g is automatically a C-B-bimodule map. For example,
g(t.b) = g(t · β2(b)) = g(t) · g(β2(b)) = g(t) · β′2(b) = g(t).b. Similarly, f is a B-A-bimodule
map. Thus g ⊗B f is well-defined. That the two triangles on the rhs of (4.9) commute is
immediate. Finally, functoriality of }C,B,A amounts to the statement that

(g2 ◦ g1)⊗B (f2 ◦ f1) = (g2 ⊗B f2) ◦ (g1 ⊗B f1) , (4.10)

which is a property of the tensor product over B.

We have now gathered the ingredients to define the first version of the bicategory of
commutative algebras, which we denote by

CAlg(k) . (4.11)

Its objects are commutative algebras over k. Given two such algebras A,B, the category
of morphisms from A to B is Cosp(A,B). The identity in Cosp(A,A) is

A

A

id
;;vvvvv

A

id
ccHHHHH . (4.12)

The composition functor is }C,B,A from lemma 4.4. The associativity and unit iso-
morphisms are just the natural isomorphisms T ⊗C (S ⊗B R) ∼= (T ⊗C S) ⊗B R and
R⊗A A ∼= R ∼= B ⊗B R, which we will not write out in the following. It is then clear that
the coherence conditions of a bicategory – as listed in appendix A – are satisfied.
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Remark 4.5. For a category C, we denote by C1,0 the subcategory containing only invert-
ible morphisms. Similarly, given a bicategory B, denote by B2,1 the bicategory obtained
from B by restricting to invertible 2-morphisms, and by B2,0 the bicategory consisting only
of invertible 1- and 2-morphisms (and B ≡ B2,2; see [Lu1] for more on (m,n)-categories).
If B is a k-linear bicategory, we obtain a lax functor

E : B2,1 −→ CAlg(k) , (4.13)

where ‘E’ stands for endomorphism. We will illustrate this functor in the case of the 2-
category B ≡ D[D2, D1;T ] for a fixed 2d TFT T (which need not come from the lattice
construction). On objects and 1-morphisms we set

E(a) = B(1a,1a) , E(b
x←− a) =

(
B(x, x)

B(1b,1b)
L

66lllll
B(1a,1a)
R

hhRRRRR

)
; (4.14)

the maps L and R have been given in section 4.1. To an invertible 2-morphism u : x→ y
we assign the algebra map E(u) : E(x) → E(y) given by conjugation with u. That is,
f : x→ x gets mapped to

E(u)(f) =
(
y

u−1

−−→ x
f−−→ x

u−−→ y
)
. (4.15)

We will omit the details of the proof that E is a lax functor. Note that, because (4.15)
involves an inverse, E is only defined on B2,1. Nonetheless, B2,1 is not enough to define
E, instead one requires all of B so that B(1a,1a), etc., are indeed k-algebras. Also, even
though the image E(u) of a 2-morphism is always invertible, it is not true that E is a
functor to CAlg(k)2,1, because the associativity 2-morphism E(y) } E(x) → E(y ◦ x) is
not necessarily invertible.

Denote by Alg(k)com the full subcategory of commutative algebras in Alg(k). In the
remainder of this subsection we illustrate that CAlg(k) enlarges the morphism spaces of
Alg(k)com, but that it does not add new invertible morphisms.

Lemma 4.6. The assignment

I : Alg(k)com −→ CAlg(k)2,1

B
f←− A 7−→

B

B

id
::vvvvv

A

f
ddHHHHH

(4.16)

defines a (non-lax) functor.

Proof. Clearly, the identity gets mapped to the identity. Given two algebra homomor-

phisms A
f−→ B

g−→ C, one verifies that the map mg,f from lemma 3.11 defines an isomor-
phism of cospans

C ⊗B B

mg,f

��
C

id⊗B1 77oooooo

id ''OOOOOOO A

1⊗BfggOOOOOO

g◦fwwooooooo

C

. (4.17)

44



The verification of the associativity condition works along the same lines as the proof of
lemma 3.11 (ii).

A 2-morphism between the cospans I(f) and I(g) would necessarily have to be the
identity map in order to make the left triangle in the condition (4.5) commute. This
then implies f = g. In particular, different algebra maps get mapped to non-2-isomorphic
cospans. In this sense, I is faithful.

Lemma 4.7. A cospan
T

B

β
;;vvvvv

A

α
ccHHHHH (4.18)

is invertible in CAlg(k) if and only if α and β are isomorphisms.

Proof. ‘⇐’: Suppose α and β are isomorphisms. Then

T

β−1

��
B

β
::vvvvv

id $$HHHHH A

α
ddHHHHH

β−1◦α{{vvvvv

B

(4.19)

is an isomorphism of cospans, i.e. T ∼= I(β−1 ◦α). The latter cospan has inverse I(α−1 ◦β)
by lemma 4.6. Thus also T is invertible.

‘⇒’: Suppose (A,α′, S, β′, B) is a two-sided inverse of T . This means that there are
isomorphisms f, g of cospans

S ⊗B T

f

��
A

α′⊗B1 77pppppp

id ''OOOOOOO A

1⊗BαggNNNNNN

idwwooooooo

A

and

T ⊗A S

g

��
B

β⊗A1 77pppppp

id ''OOOOOOO B

1⊗Aβ′ggNNNNNN

idwwooooooo

B

. (4.20)

Consider the left diagram. Since f is an isomorphism, it implies that also f−1 = 1S ⊗B α
is an isomorphism. Thus we have the identities

f ◦ (1S ⊗B α) = idA , (1S ⊗B α) ◦ f = idS⊗BT . (4.21)

The first of these can be rewritten as f ◦ (1S ⊗B idT ) ◦ α = idA, showing that α has
left-inverse f̂ := f ◦ (1S ⊗B idT ) : T → A. An analogous argument gives the left inverse
ĝ := g ◦ (1T ⊗A idS) : S → B of β′.

Since β′ : B → S is an algebra map and an intertwiner of right B-modules (by definition
of the right B-action on S), we can write 1S⊗B α : A→ S⊗B T as (β′⊗B idT )◦ (1B⊗B α).
Inserting this into the second identity in (4.21) gives

idS⊗BT =
(
S ⊗B T

f−→ A
α−−→ T

1B⊗B idT−−−−−→ B ⊗B T
β′⊗B idT−−−−−→ S ⊗B T

)
(4.22)
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We compose both sides with ĝ ⊗B idT and use that ĝ is left-inverse to β′. This results
in ĝ ⊗B idT = (1B ⊗B idT ) ◦ α ◦ f . Finally, composing with 1S ⊗B idT from the left and
using that ĝ(1S) = g(1T ⊗A 1S) = 1B, shows that 1B ⊗B idT = (1B ⊗B idT ) ◦ α ◦ f̂ . Since
1B ⊗B idT is an isomorphism, we see that f̂ is also a right-inverse for α, and hence α is an
isomorphism. That β is an isomorphism follows along the same lines.

From the proof we see that the cospan T in (4.18) is 2-isomorphic to I(β−1 ◦ α). Thus
every 1-isomorphism lies in the essential image of I.

Remark 4.8. An algebra isomorphism f : A → B, when restricted to Z(A), provides an
isomorphism f |Z(A) : Z(A) → Z(B). This gives a functor from Alg(k)1,0 to Alg(k)1,0

com,
which, when composed with I, gives a functor

Alg(k)1,0 Z−−→ Alg(k)1,0
com

I−−→ CAlg(k)2,0 . (4.23)

In theorem 4.12 below, we will extend this beyond the groupoid case to a lax functor
Z : Alg(k) → CAlg(k). As an aside, note that the composed functor in (4.23) is neither
full nor faithful (isomorphic centres do not imply isomorphic algebras, and different algebra
isomorphisms may restrict to the same map on the centre). However, I : Alg(k)1,0

com →
CAlg(k)2,0 is an equivalence since for invertible 1- and 2-morphisms, I is an equivalence
on the morphism categories (as those morphism categories which lie in the image of I only
contain identity 2-morphisms), and on objects it is just the identity.

4.3 Functorial centre, version 1

Given two not necessarily commutative algebras A, B and an algebra homomorphism
f : A→ B, we define the centraliser ZA,B(f) to be the centraliser of the image of f in B,

ZA,B(f) =
{
b ∈ B

∣∣ f(a) b = b f(a) for all a ∈ A
}
. (4.24)

Let ι : Z(B)→ B be the embedding map and denote the restriction of f to Z(A) also by
f .

Lemma 4.9. Let A,B be algebras and f : A→ B an algebra homomorphism. Then

ZA,B(f)

Z(B)
ι

77nnnnn
Z(A)

fggPPPPP (4.25)

is a cospan of commutative algebras.

Proof. Since Z(B) ⊂ ZA,B(f), ι is an algebra map which maps to the centre of ZA,B(f).
Next we check that the image of Z(A) under f : A→ B lies in ZA,B(f). Given z ∈ Z(A) set
b = f(z). For all a ∈ A we have f(a)b = f(a)f(z) = f(az) = f(za) = f(z)f(a) = bf(a).
Thus f(z) ∈ ZA,B(f). It is then immediate that f(Z(A)) lies in the centre of ZA,B(f).
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Remark 4.10. In the more restrictive setting of Frobenius algebras with trace pairing, the
cospan (4.25) has actually already appeared in disguise in the lattice TFT construction.
Consider the cospan forming the top of the diamond of maps in figure 17. By definition
(3.49) and lemma 3.3, T (O(a)) =	AaAa = Z(Aa) and T (O(b)) = Z(Ab). For the top entry
we have T (O(x∗ ◦ x)) =	Ab Xx ⊗Aa X∗x ∼= HomAb|Aa(Xx, Xx), where we used lemma 3.9.
To make the connection to (4.25), take A = Aa, B = Ab and let f : A→ B be an algebra
map. For Xx take the bimodule Bf defined in section 3.8. The map φ in

ZA,B(f)

φ

��

Z(B)
ι

55jjjjjjjj

act ))TTTTTTTT Z(A)
f

iiTTTTTTTT

actuujjjjjjjj

HomB|A(Bf , Bf )

, (4.26)

defined as φ(b) := (u 7→ u · b), provides an isomorphism of cospans. Here ‘act’ refers to
the map that takes b ∈ Z(B) to the bimodule map u 7→ b.u; u ∈ Bf (resp. a ∈ Z(A) to
u 7→ u.a). We omit the details.

Lemma 4.11. Let A
f−→ B

g−→ C be algebra maps. The map mg,f : ZB,C(g)⊗Z(B)ZA,B(f)→
ZA,C(g ◦ f) given by u⊗Z(B) v 7→ u · g(v) is a morphism of cospans

ZB,C(g)⊗Z(B) ZA,B(f)

mg,f

��

Z(C)
ι⊗B1

44hhhhhhhhhh

ι **VVVVVVVVVV Z(A)
1⊗Bf

jjVVVVVVVVVV

g◦ftthhhhhhhhhh

ZA,C(g ◦ f)

(4.27)

Proof. Abbreviate m ≡ mg,f and Y ≡ Z(B).

m is well-defined: That m gives a well-defined map to C is the same argument as in the
proof of lemma 3.11 (i). That the image of m lies in the centraliser ZA,C(g ◦ f) amounts
to, for all a ∈ A,

g(f(a)) ·m(u⊗Y v) = g(f(a)) · u · g(v)
(1)
= u · g(f(a)) · g(v) = u · g(f(a)v)

(2)
= u · g(vf(a)) = u · g(v) · g(f(a)) = m(u⊗Y v) · g(f(a)) ,

(4.28)

where (1) follows as u ∈ ZB,C(g) commutes with anything in the image of g, and (2) follows
analogously from v ∈ ZA,B(f).

m is an algebra map: We have

m
(
(u⊗Y v) · (u′ ⊗Y v′)

)
= m

(
(uu′)⊗Y (vv′)

)
= uu′g(vv′) = uu′g(v)g(v′)

(∗)
= ug(v)u′g(v′) = m(u⊗Y v) ·m(u′ ⊗Y v′) .

(4.29)

The only perhaps not immediately obvious step is (∗), which follows since by definition for
all u′ ∈ ZB,C(g) and v ∈ B we have u′g(v) = g(v)u′.
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The triangles commute: Acting on arbitrary elements c ∈ Z(C) and a ∈ Z(A), com-
mutativity of the two triangles amounts to the identities c = m(c ⊗Y 1B) and g(f(a)) =
m(1B ⊗Y f(a)), both of which are immediate upon substituting the definition of m.

We have now collected the ingredients to state the second main result of this paper.

Theorem 4.12. The assignment

Z : Alg(k) −→ CAlg(k)

B
f←− A 7−→

ZA,B(f)

Z(B)
ι

77nnnnn
Z(A)

fggPPPPP
(4.30)

defines a lax functor. The unit transformations are identities and the multiplication trans-
formations are given by mg,f .

In other words, on objects the lax functor acts as A 7→ Z(A), on 1-morphisms A→ B as
f 7→ ZA,B(f), and all 2-morphisms in Alg(k) are identities, which get mapped to identity
2-morphisms in CAlg(k).

Proof. It remains to verify the associativity and unit properties. The argument is identical
to that in the proof of lemma 3.11 (ii).

Remark 4.13. (i) The map mg,f in lemma 4.11 is typically not an isomorphism. For
example, take A = C = k ⊕ k and B to be upper triangular 2×2-matrices. For the map
f we take the diagonal embedding and for g the projection onto the diagonal part. By
commutativity of the underlying algebra we see Z(A) = Z(C) = ZB,C(g) = ZA,C(g ◦ f) =
k ⊕ k. The remaining algebras are Z(B) ∼= k (multiples of the identity matrix) and
ZA,B(f) ∼= k⊕k, the diagonal 2×2-matrices. Thus ZB,C(g)⊗Z(B)ZA,B(f) ∼= (k⊕k)⊗k(k⊕k)
while ZA,C(g ◦ f) = k ⊕ k. Therefore, we only have a lax functor.

(ii) If we restrict Z to commutative algebras Alg(k)com we obtain the functor I from lemma
4.6 (since then Z(B) = B, Z(A) = A and ZA,B(f) = B for all f). In this sense, Z is an
extension of I to all algebras; the price to pay is that we have to work with bicategories
and the functor becomes lax.

4.4 The bicategory of commutative algebras, version 2

Figure 17 suggests that there is an enlargement of CAlg(k), where the 2-morphisms are
also replaced by cospans. The lattice TFT construction suggests that this enlargement
becomes relevant if one wants to extend the centre functor from Alg(k) to Alg(k). This
is the topic of the present subsection, as well as of the next one.
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Definition 4.14. (i) A 2-diagram from a cospan S : A → B to T : A → B is a triple
(g,M, f), where M is a T -S-bimodule, f is a right S-module map and g is a left T -module
map such that the two squares in the diagram

S
f

��
B

β1

88

β2 &&

M A

α1

ff

α2
xx

T

g
OO (4.31)

commute, and such that the induced left and right action of A on M agree, and those of
B on M agree, i.e. that for all a ∈ A, b ∈ B, m ∈M

α2(a).m = m.α1(a) , β2(b).m = m.β1(b) . (4.32)

We will also abbreviate M : S → T .

(ii) A 3-cell between two 2-diagrams (g,M, f) and (g′,M ′, f ′) is a T -S-bimodule map
δ : M →M ′ such that the following diagram commutes:

S
f

������� f ′

��=====

M
δ // M ′

T
g

]];;;;; g′

@@�����

(4.33)

(iii) The category of 2-diagrams DiagAB(S, T ) has 2-diagrams as objects and 3-cells as
morphisms. The identity 3-cell for the object (g,M, f) is the identity map on M , the
composition of 3-cells is given by composition of bimodule maps.

Remark 4.15. (i) The categoryDiagAB(S, T ) can be used to define a bicategory Cosp(A,B)
whose objects are cospans of commutative algebras from A to B and whose morphism cat-
egories are DiagAB(S, T ); this will be done in detail in [DKR2]. Conjecturally, there is a
tricategory CALG(k) whose objects are commutative algebras and whose morphism bicat-
egories are given by Cosp(A,B); we hope to return to this in the future.

(ii) The conjectural tricategory CALG(k) of part (i) is similar (but not equal) in structure
to the tricategory of conformal nets described in [BDH]. In [BDH], the objects are con-
formal nets. An object in CALG(k), i.e. a commutative algebra, could be thought of as
a ‘topological net’ which assigns the same algebra to every interval; this algebra is then
necessarily commutative (but it is not a conformal net: the algebra does not have to be
von Neumann and in general it violates the split property). According to [BDH, Def. 3],
1-morphisms are ‘defects’, i.e. conformal nets for bicoloured intervals. In the present lan-
guage, this corresponds to the data of a cospan (A,α, T, β,B): evaluating the net on
mono-coloured subintervals produces the two commutative algebras A,B, for a bicoloured
interval one obtains T , and the inclusion of a mono– into a bicoloured interval provides
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the two maps α, β. In [BDH, Def. 4], 2-morphisms are sectors between the defect nets –
this means a Hilbert space with compatible actions of all four conformal nets involved: the
two defect nets and the two conformal nets which the defects go between. This provides
all the data and constraints of a 2-diagram as in (4.31) except for the maps f and g, which
are not part of the setting of [BDH]. We will need these two maps for the centre functor,
see lemma 4.18 below. The third level of categorical structure is constructed in [BDH] by
making conformal nets a bicategory internal to symmetric monoidal categories.

Part (i) of the above remark motivates the notation Cosp(A,B) for the category whose
objects are cospans from A to B and whose morphisms are isomorphism classes of 2-
diagrams. Composition in Cosp(A,B) is given by

� : Cosp(A,B)(S, T ) × Cosp(A,B)(R, S) −→ Cosp(A,B)(R, T )

( S
g

��
B

β2

88

β3 &&

N A

α2

ff

α3
xx

T

g′
OO ,

R
f

��
B

β1

88

β2 &&

M A

α1

ff

α2
xx

S

f ′
OO

)
7−→

R
g(1)⊗Sf ��

B

β1
00

β3 ..

N ⊗S M A

α1
nn

α3ppT

g′⊗Sf ′(1)
OO

. (4.34)

The right hand side is again a 2-diagram. Let us check explicitly the left square in (4.31)
and the first condition in (4.32). For b ∈ B,

g(1)⊗S f(β1(b))
(1)
= g(1)⊗S f ′(β2(b))

(2)
= g(1)⊗S β2(b).f ′(1)

(3)
= g(1).β2(b)⊗S f ′(1)

(4)
= g(β2(b))⊗S f ′(1)

(5)
= g′(β3(b))⊗S f ′(1) .

(4.35)
Here, (1) is commutativity of the left square in the 2-diagram (f ′,M, f), (2) is the fact that
f ′ is left S-module map, (3) is the property of ⊗S, (4) follows since g is a right S-module
map, and finally (5) is commutativity of the left square in the 2-diagram (g′, N, g). Next,
that the left action of B on N ⊗S M agrees with the right action of B follows from

b.(n⊗S m) = (β3(b).n)⊗S m = (n.β2(b))⊗S m
= n⊗S (β2(b).m) = n⊗S (m.β1(b)) = (n⊗S m).b

(4.36)

The unit morphism in Cosp(A,B)(T, T ) is

T

id
��

B

β
88

β
&&

T A

α

ee

α
yy

T

id

OO (4.37)

Lemma 4.16. A 2-diagram (g,M, f) between S, T : A → B is invertible if and only if
both f and g are invertible.
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The proof is similar to that of lemma 4.7 and we omit the details.

Lemma 4.17. The assignment

}C,B,A : Cosp(B,C) × Cosp(A,B) −→ Cosp(A,C)

( T
g

��
C

γ
88

γ′ %%

N B

β2

ff

β′2yy
T ′
g′

OO ,

S
f

��
B

β1

88

β′1 &&

M A

α

ff

α′yy
S′
f ′

OO

)
7−→

T ⊗B S
g⊗Bf ��

C

γ⊗B1
77

γ′⊗B1 &&

N ⊗B M A

1⊗Bα
gg

1⊗Bα′xx
T ′ ⊗B S′

g′⊗Bf ′
OO

(4.38)

defines a functor.

Proof. It is evident that the functor maps a pair of identity cospans (4.37) to the identity
cospan. To verify functoriality, choose another pair of 2-diagrams N ′ : T ′ → T ′′ and
M ′ : S ′ → S ′′ in the product category. First composing in the product with � × � gives
the pair (N ′⊗T ′N,M ′⊗S′M). Applying } yields X := N ′⊗T ′N⊗BM ′⊗S′M . In the other
order, by first applying}, we obtain the two 2-diagramsN ′⊗BM ′ : T ′⊗BS ′ → T ′′⊗BS ′′ and
N⊗BM : T⊗BS → T ′⊗BS ′. Applying � to this gives Y := (N ′⊗BM ′)⊗T ′⊗BS′ (N⊗BM).
We claim that the isomorphism N ′⊗N⊗M ′⊗M → N ′⊗M ′⊗N⊗M given by permuting
factors induces maps X → Y and Y → X; these are then automatically inverse to each
other. For example, the condition that the map φ : N ′ ⊗N ⊗M ′ ⊗M → Y respects the
tensor product over T ′ amounts to, for t′ ∈ T ,

φ
(
(n′.t′)⊗ n⊗m′ ⊗m

)
=
(
(n′.t′)⊗B m′

)
⊗T ′⊗BS′ (n⊗B m)

=
(
(n′ ⊗B m′).(t′ ⊗B 1)

)
⊗T ′⊗BS′

(
n⊗B m

)
=
(
n′ ⊗B m′

)
⊗T ′⊗BS′

(
(t′ ⊗B 1).(n⊗B m)

)
=
(
n′ ⊗B m′

)
⊗T ′⊗BS′

(
(t′.n)⊗B m

)
= φ

(
n′ ⊗ (t′.n)⊗m′ ⊗m

)
.

(4.39)

The other tensor product cokernel conditions are checked similarly. That the induced
isomorphism X → Y is a 3-cell is equally straightforward.

We can now define the second version of the bicategory of commutative algebras, which
we denote by

CALG(k) ; (4.40)

Objects and 1-morphisms are as in CAlg(k), but for 2-morphisms we take equivalence
classes of 2-diagrams. In other words, the morphism category A → B is Cosp(A,B).
The composition functor is given in lemma 4.17. The notation CALG(k) is motivated by
the conjectural tricategory of remark 4.15 (i). The associativity and unit isomorphisms of
CALG(k) are just those of bimodules, and the required coherence conditions are satisfied
for the same reason.

51



As compared to CAlg(k), the category CALG(k) has more 2-morphisms. This is made
precise by the observation that

I : CAlg(k) −→ CALG(k)

S

f

��
B

β
;;vvvvv

β′ ##HHHHH A

α
ccHHHHH

α′{{vvvvv

T

7−→

S
f

��
B

β
88

β′ &&

T A

α

ff

α′yy
T

id

OO

(4.41)

is a locally faithful functor from CAlg(k) to CALG(k); we skip the details. By lemma
4.16, each invertible morphism in Cosp(A,B)(S, T ) lies in the image of I (we again skip
the details). Therefore, the restriction

I : CAlg(k)2,1 ∼−−−→ CALG(k)2,1 (4.42)

is an equivalence of bicategories. In this sense, passing from CAlg(k) to CALG(k) adds
more non-invertible 2-morphisms.

4.5 Functorial centre, version 2

In this subsection we will try to extend the centre functor to Alg(k). We will see that
CALG(k) is not quite good enough as a target category, and we have to restrict ourselves
to appropriate subcategories of Alg(k).

Let A,B be algebras and let X be a B-A-bimodule. Then

HomB|A(X,X)

Z(B)
act

55kkkkkkk
Z(A)

act
iiSSSSSSS (4.43)

is a cospan of commutative algebras. As in remark 4.10, ‘act’ refers to the map that takes
b ∈ Z(B) to the bimodule map x 7→ b.x (resp. a ∈ Z(A) to x 7→ x.a).

Lemma 4.18. Let A,B be algebras, let X, Y be A-B-bimodules and let f : X → Y be a
bimodule homomorphism. Then

HomA|B(X,X)

f◦(−)
��

Z(A)

act
66

act ((

HomA|B(X,Y ) Z(B)

act
hh

actvv
HomA|B(Y, Y )

(−)◦f
OO

(4.44)

is a 2-diagram.
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Proof. We need to verify the conditions in definition 4.14. The composition of bimodule
maps turns HomA|B(X, Y ) into a right module over HomA|B(X,X) and a left module over
HomA|B(Y, Y ). The map h 7→ f ◦h from HomA|B(X,X) to HomA|B(X, Y ) is a right module
map (this translates into f ◦ (h ◦ h′) = (f ◦ h) ◦ h′). Similarly, (−) ◦ f is a left module
map. Commutativity of the left square amounts to equality of the two maps x 7→ f(a.x)
and x 7→ a.f(x) for all a ∈ Z(A), which follows since f is a bimodule map. That the right
square commutes follows analogously. Finally, consider the two conditions in (4.32). The
first condition amounts to equality of the two maps x 7→ g(x).b and x 7→ g(x.b) for all
b ∈ Z(B) and g ∈ HomA|B(X, Y ), which holds since g is a bimodule map. The second
condition can be checked similarly.

As the constructions will now get somewhat technical, let us just outline in the remark
below how the discussion continues from here, leaving the details to [DKR2].

Remark 4.19. (i) The 2-diagram in (4.44) provides a lax functor

ZA,B : Alg(k)(A,B) −→ Cosp(Z(A), Z(B)) . (4.45)

This functor is indeed lax for the following reason: The vertical composition (4.34) of two
2-diagrams of the form (4.44) belonging to bimodule maps f : X → Y and g : Y → Z
yields a 2-diagram with central term

HomA|B(Y, Z)⊗H HomA|B(X, Y ) where H ≡ HomA|B(Y, Y ) . (4.46)

This space is in general not isomorphic to HomA|B(X,Z). So we cannot obtain a functor
Alg(k)(A,B) −→ Cosp(Z(A), Z(B)) in this way, and consequently not a – lax or other-
wise – functor from Alg(k) to CALG(k). However, we conjecture that the 2-diagram (4.44)
does give rise to a lax functor Z from Alg(k) to the (conjectural) tricategory CALG(k).

(ii) If the maps f, g above are isomorphisms, the space (4.46) is isomorphic to HomA|B(X,Z).
In this way, we at least obtain a functor ZA,B : Alg(k)(A,B)1,0 −→ Cosp(A,B) and with
this also a lax functor

Z : Alg(k)2,1 −→ CALG(k) . (4.47)

(iii) Denote by F the subcategory of Alg(k) consisting of Frobenius algebras with trace-
pairing and finite-dimensional bimodules. One can show [DKR2] that the restriction

Z : F2,0 −→ CALG(k)2,0 ∼= CAlg(k)2,0 ∼= Alg(k)1,0
com (4.48)

is locally fully faithful. This has the interpretation that all isomorphisms of lattice TFTs
without defects (i.e. isomorphisms of Frobenius algebras with trace pairing) are imple-
mented by invertible domain walls (i.e. bimodules inducing Morita equivalences).

Remark 4.20. (i) There is a close link between the lattice TFTs with defects and the
centre functor just defined. Let T : Borddef,top

2,1 (D2, D1, D0) → Vectf (k) be a lattice TFT
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with defects as in theorem 3.8, and let D ≡ D[D2, D1;T ] be the 2-category of defect
conditions defined in section 2.4. Then we have the commuting square

D2,1

∆
��

E // CAlg(k)

I
��

Alg(k)2,1 Z // CALG(k)

(4.49)

where the functor ∆ was given in (3.64), E in (4.13), I in (4.41), and Z in (4.47). Indeed,
evaluating the diagram on an invertible 2-morphism f : x → y for x, y : a → b gives for
the upper path and lower path, in this order,

HomA|B(X,X)

f◦(−)◦f−1

��
Z(A)

act
66

act ((

HomA|B(Y, Y ) Z(B)

act
hh

actvv
HomA|B(Y, Y )

id

OO
,

HomA|B(X,X)

f◦(−)
��

Z(A)

act
66

act ((

HomA|B(X,Y ) Z(B)

act
hh

actvv
HomA|B(Y, Y )

(−)◦f
OO

, (4.50)

These are isomorphic 2-diagrams, and thus equal in CALG(k).

(ii) The commuting square (4.49) shows that the lattice construction of defect TFTs is
an implementation of the centre functor. Conjecturally, the restriction to invertible 2-
morphisms can be dropped if one replaces both bicategories on the right hand side with
the (equally conjectural) tricategory CALG(k).

4.6 Generalisation motivated by 2d conformal field theory

Rational conformal field theories can be built in two steps. In the first step one starts from
a rational vertex operator algebra V and finds its modules and the corresponding spaces of
conformal blocks. The category Rep(V ) of V -modules is a modular category in this case
[HL, Hu].

The second step is combinatorial and consists of assigning a correlator to each world
sheet, i.e. choosing a particular vector in the space of conformal blocks corresponding to
the world sheet, such that the factorisation and locality constraints are satisfied. In the
context of vertex operator algebras and for world sheets of genus zero and certain world
sheets of genus one, such correlators were constructed in [HK] – see also the overview
[KR2].

The second step can also be solved elegantly for world sheets of arbitrary genus with
the help of three-dimensional topological field theory – provided one assumes that this 3d
TFT correctly encodes the factorisation and monodromy properties of conformal blocks
at arbitrary genus. The 3d TFT in question is the Reshetikhin-Turaev 3d TFT obtained
from the modular category Rep(V ). This combinatorial construction of CFT correlators
in terms of 3d TFT was carried out in [FRS1, Fj1] – see also the overview [RFFS] –
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and in particular allows for a description of CFT correlators for world sheets with defects
[FRS1, Frö1].

Generalising the considerations in section 4.1 from 2d TFT to 2d CFT suggests an
interesting generalisation of the centre construction, which we now sketch.

Let us start with the (bi)categories Alg(k) and Alg(k). Instead of working with al-
gebras and bimodules over a field k, that is, with algebras in the symmetric monoidal
category of k-vector spaces, one considers algebras and bimodules in a general monoidal
category C (in the CFT-context, this is the category Rep(V )). In particular, we do not
demand that C is symmetric or braided (though in the CFT context it is braided).

To generalise CAlg(k) and CALG(k), we need to be able to talk about commutative
algebras, so here we consider cospans of commutative algebras in a braided monoidal
category.

There is one major new ingredient when passing from vector spaces to more general
categories, which is based on the following observation. For an algebra A in a general
monoidal category C it makes no sense to talk about its centre as a subalgebra commuting
with the entire algebra, because the formulation of this condition needs a braiding. A
natural candidate to take the role of the centre in the case of general monoidal categories
is the so-called full centre Z(A) of A [Fj2, Da]. This is a commutative algebra which
lives in the monoidal centre Z(C) (see [JS]) of the category C. Since Z(C) is braided, we
can talk about commutative algebras there. If C is the category of k-vector spaces, one
has the degenerate situation that Z(C) ∼= C, and so many of the subtleties of the centre-
construction are not visible. (In the context of rational CFT, and for modular categories
in general, one has Z(C) = C � C̄, see [Mü2, Thm. 7.10].)

The constructions and results of sections 4.2–4.5 all have analogues in the more gen-
eral setting of algebras in monoidal categories. For example, an instance of the equiva-
lence (4.48), with the corresponding interpretation in terms of domain walls implementing
equivalences of CFTs, has been found in [DKR1, Thm. 3.14]. More details will appear in
[DKR2].

Remark 4.21. As an aside, let us recall an observation from [SFR] which illustrates the
usefulness of the 2-category of defect conditions defined in section 2.4 in the context of
rational CFT. Namely, consider a fixed rational CFT (i.e. restrict your attention to only
one world sheet phase) and consider only topological defects from this world sheet phase
to itself, which in addition commute with the holomorphic and anti-holomorphic copy of
the rational vertex operator algebra V . Then the 2-category D from section 2.4 has only
one object (and so is a monoidal category). It turns out that D is Morita equivalent (in
the sense of [Mü1, Def. 4.2]) to Rep(V ); this follows since D is monoidally equivalent to
the category of A-A-bimodules in Rep(V ) for an appropriate Frobenius algebra A with
trace pairing [Frö1, Sec. 2]. It also follows (from [Sch, Thm. 3.3]) that the monoidal centre
Z(D) is braided monoidally equivalent to the monoidal centre Z(Rep(V )) = Rep(V ) �
Rep(V ). Thus, quite remarkably, if one knows the one-object 2-category of chiral symmetry
preserving topological defects in a rational CFT, one obtains for free the braided monoidal
category of representations of its chiral symmetry V ⊗ V̄ .
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5 Outlook

In this final section we would like to show some further directions that we find interesting
and point out some open questions. From the perspective of this article, there are two
evident problems which we left untouched:

1. In the introduction we claimed that there are two natural ways in which higher
categories arise in field theory: by demanding that the functor defining the field
theory assigns data to manifolds of codimension larger than one, or by working with
defects of various dimensions. Clearly, one should study these two constructions in
unison. We are aware of three works in this direction: one in 2d TFT [SP], and two
in arbitrary dimension – [Lu1, Sec. 4.3] and [MW, Sec. 6.7] – both ‘extended down
to points’. A better understanding of the relation between the two appearances of
higher categories should allow one to make precise the idea that n-dimensional TFT
extended down to points is in some sense dual to n-dimensional TFT which has
defects in all dimensions.

2. A symmetric monoidal functor defining a 2d TFT or 2d CFT without defects has a
well-known presentation in terms of generators and relations which provides a link
with Frobenius algebras [So, Di, Ab, FRS1, HK]. This connection has been useful
in the construction of examples and in classification questions. For field theories
with defects in 2d (let alone higher dimensions) such a generators and relations
presentation is presently not known. Nonetheless, progress has been made on related
questions: an algebraic description of 2d TFT with defects which extends down to
points was presented in [SP], and for planar algebras, generators are given in [KS] and
a construction in terms of a 1-morphism in a pivotal strict 2-category is presented
in [Go]. For 2d homotopy TFTs over spaces with at least one of π1 or π2 trivial, a
classification in terms of Frobenius algebras with extra structure is given in [Tu, BT].

Apart from these two points, let us list some further miscellaneous points to complement
the material presented in this paper.

One nice application of quantum field theories with topological defects is the orbifold
construction. Here, one introduces a domain wall which implements the ‘averaging over
the orbifold group’, together with a selection of lower-dimensional junctions which allow
one to glue these domain walls together. The orbifold theory is then defined in terms of
a cell-decomposition of the original theory with the ‘averaging domain wall’ placed on the
codimension-1 cells. The advantage of this point of view is that the ‘averaging domain wall’
need not actually be given by a sum over group symmetries, giving rise to a generalisation
of the orbifold construction. In the case of 2d rational CFTs, this is described in [Frö2].
It is proved there that any two rational CFTs over the same left/right chiral symmetry
algebra can be written as a generalised orbifold of one another.

In the application of field theories to questions in cohomology one considers field theories
‘over a space X’, see e.g. [Tu, BT, ST]. This means that objects and morphisms of the
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bordism category are in addition equipped with continuous maps to X. For each point
x ∈ X, a field theory over X gives a field theory for undecorated bordisms by choosing
these continuous maps to be constant with value x. The role of X is reminiscent of our
Dn, the set labelling the top-dimensional domains Mn for an n-dimensional field theory
with defects. However, in our setting the Dn label attached to a point in Mn is locally
constant and may change only across Mn−1, and each such change has to be accompa-
nied by specifying a domain wall which mediates this change. It would be interesting to
have a continuous formulation of the framework presented here to be able to incorporate
continuously changing domain conditions via ‘smeared-out’ domain walls and junctions.

While the general setup in section 2.1 allows for non-topological defects, in this paper we
only studied the topological case. Theories with non-topological defects are much harder
to treat and are much less studied. We mention here four examples in 2d CFT:

- There are only two 2d CFTs in which all conformally invariant domain walls (this
includes the topological ones) from the CFT to itself are known16: the Lee-Yang
model and the Ising model, see [OA, QRW].

- In [QRW], a transmission coefficient was introduced which measures the ‘non-topo-
logicality’ of a domain wall.

- In [BB], the fusion product of certain non-topological domain walls in the free boson
CFT (found in [BBDO]) was computed, showing that at least in these theories the
notion of fusion makes sense for non-topological domain walls despite the short-
distance singularities.

- In the operator-algebraic approach of [BDH], non-topological domain walls are in-
cluded from their start and also their fusion is defined. The definition is via Connes’
fusion of bimodules and does not involve a short-distance limit.

The centre of an algebra can be interpreted as a ‘boundary-bulk map’ in the follow-
ing sense. When considering 2d TFT on surfaces with (unparametrised) boundaries, in
addition to ‘closed states’ associated to circles there are ‘open states’ associated to inter-
vals. The open states form a non-commutative Frobenius algebra and the closed states
form a commutative Frobenius algebra, which one can take to be the centre of A (see e.g.
[Laz, MS]). Thus, the centre defines a theory in one dimension higher (here in dimen-
sion two) for which the starting theory is a boundary theory (and the boundary is one-
dimensional). The construction in section 4 can be understood as turning this boundary-
bulk map into a functor. There are a number of situations in which such a boundary-bulk
map occurs: In 2d rational CFT one finds that the boundary theory determines a unique
bulk theory [Fj2]; algebraically this amounts to the construction of the full centre of an
algebra in a monoidal category as briefly mentioned in section 4.6. In [DKR2] we will

16 Here ‘known’ means that one has a list of defect operators satisfying a selection of consistency
conditions. Conjecturally, this uniquely specifies all conformally invariant defects, at least in ‘semi-simple
theories’. Only defects whose field content (the space Q(O(x ◦ x∗))) has discrete (L0 + L̄0)-spectrum are
considered.
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show that the bulk-boundary map is functorial also in the rational CFT case. For cer-
tain two-dimensional quantum spin-lattices (which are three-dimensional models because
of the time direction), edge excitations determine the bulk excitations, see [KK]. Finally,
an analogous (but much more general) result exists for E[k]-algebras (related to algebras
over the little-discs operad in k dimensions). Namely, in [Lu2] a construction is presented
which assigns to an E[k]-algebra (in a symmetric monoidal ∞-category) its centre, which
is an E[k+1]-algebra in the same category, see [Lu2, Cor. 2.5.13].17 It would be interesting
to understand the precise relation to the constructions presented here.
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A Appendix: Bicategories and lax functors

In this appendix we recall the definition of bicategories and related notions, see [Be] or
[Gr, Le].

Definition A.1. A bicategory S consists of a set of objects (in a given universe) and a
category of morphisms Mor(A,B) for each pair of objects A and B together with

1. identity morphism: 1A : 1 → Mor(A,A) for all A ∈ S, where 1 is a category with
only one object and only the identity morphism. We will abbreviate 1A ≡ 1A(1) ∈
Mor(A,A),

2. composition functor:

}C,B,A : Mor(B,C)×Mor(A,B) −→ Mor(A,C) , (T, S) 7−→ T ◦ S ,

3. associativity isomorphisms: for A,B,C,D ∈ S, there is a natural isomorphism be-
tween functors Mor(C,D)×Mor(B,C)×Mor(A,B)→Mor(A,D):

α : }D,B,A ◦ (}D,C,B × id) −→ }D,C,A ◦ (id×}C,B,A) ,

4. left and right unit isomorphisms: for A,B ∈ S there are natural transformations
between functors 1×Mor(A,B)→Mor(A,B) andMor(A,B)× 1→Mor(A,B):

l : }B,B,A ◦ (1B × id) −→ id , r : }B,A,A ◦ (id× 1A) −→ id ,

17IR would like to thank Owen Gwilliam for discussions on this point.

58



satisfying the following coherence conditions:

1. associativity coherence:

((S ◦ T ) ◦ U) ◦ V α(S,T,U)◦idV //

α(S◦T,U,V )

��

(S ◦ (T ◦ U)) ◦ V
α(S,T◦U,V )

��
(S ◦ T ) ◦ (U ◦ V )

α(S,T,U◦V )
))TTTTTTTTTTTTTTT

S ◦ ((T ◦ U) ◦ V )

idS◦α(T,U,V )
uujjjjjjjjjjjjjjj

S ◦ (T ◦ (U ◦ V ))

(A.1)

2. identity coherence:

(S ◦ 1B) ◦ T

r(S)◦idT &&NNNNNNNNNNN

α(S,1B ,T ) // S ◦ (1B ◦ T )

idS◦l(T )xxppppppppppp

S ◦ T

(A.2)

Definition A.2. Let C and D be two bicategories. A lax functor F : C → D is a
quadruple F = (F, {F(A,B)}A,B∈C, i,m) where

1. F is a map of objects X 7→ F (X) for each object X in C,

2. F(A,B) : MorC(A,B) → MorD(F (A), F (B)) is a functor for each pair of objects
A,B ∈ C,

3. unit transformation: natural transformations iA : 1F (A) → F(A,A) ◦ 1A between two
functors 1→MorD(F (A), F (A)) for all A,

4. multiplication transformation: m : }D ◦ (F(B,C) × F(A,B)) → F(A,C) ◦ }C, i.e. a
collection of morphisms mS,T : F(B,C)(S) ◦ F(A,B)(T ) → F(A,C)(S ◦ T ) natural in
S ∈MorC(B,C), T ∈MorC(A,B),

satisfying the following commutative diagrams:

1. associativity: for S ∈MorC(C,D), T ∈MorC(B,C), U ∈MorC(A,B),

(F(C,D)(S) ◦ F(B,C)(T )) ◦ F(A,B)(U)
αD //

m◦id
��

F(C,D)(S) ◦ (F(B,C)(T ) ◦ F(A,B)(U))

id◦m
��

F(B,D)(S ◦ T ) ◦ F(A,B)(U)

m

��

F(C,D)(S) ◦ F(A,C)(T ◦ U)

m

��
F(A,D)((S ◦ T ) ◦ U)

F(A,D)(αC)
// F(A,D)(S ◦ (T ◦ U)) ,
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2. unit properties: for S ∈MorC(A,B),

1F (B) ◦ F(A,B)(S)
l(F (S)) //

iB◦id
��

F(A,B)(S)

F(B,B)(1B) ◦ F(A,B)(S) m // F(A,B)(1B ◦ S) ,

F(A,B)(l(S))

OO

F(A,B)(S) ◦ 1F (A)
r(F (S)) //

id◦iB
��

F(A,B)(S)

F(A,B)(S) ◦ F(A,A)(1A) m // F(A,B)(S ◦ 1A) .

F(A,B)(r(S))

OO

If we reverse all arrows, we obtain the notion of oplax functor. Given a lax functor F, if
the natural transformations i and m are actually isomorphisms, then F is called a functor.

Let P be a property of a functor between 1-categories like full, faithful, essentially
surjective, etc. We say that a (lax, oplax or neither) functor is locally P if, for all objects
A,B, the functors F(A,B) have property P .
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