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1 Introduction

Extending holography to settings that go beyond the original AdS-setup has received con-

siderable attention in recent years. This has been motivated in part by applying holo-

graphic ideas to the study of strongly coupled condensed matter systems, which often

exhibit non-relativistic scaling, and thus necessitate the consideration of bulk space-times

with asymptotics different from AdS [1–4]. These include in particular Schrödinger, Lif-

shitz and hyperscaling violating geometries, which have in common that they exhibit a

dynamical exponent z characterizing the anisotropic scaling ratio between time and space

on the boundary.

Besides the interest in such space-times in view of their application to non-relativistic

field theories, examining to what extent holography is applicable in spaces with different

asymptotics is also of intrinsic importance. It may provide hints towards flat-space hologra-

phy and, more generally, shed light on the nature of quantum gravity and elucidate puzzles

in black hole physics. Moreover, generalizing holographic techniques to non-AdS settings

has the potential to reveal novel geometric structures on the boundary, which are inter-

esting in their own right and at the same time present new perspectives on field theories

when coupling to these structures.

There is thus an extra, perhaps unusual, but rather important motivation for studying

exotic theories for gravity, including those that we consider in this paper. This stems

from the fact that such theories can be viewed as the Schwinger source functionals of

non-relativistic quantum field theories (e.g. those used in condensed matter systems). The

sources in question are the various components of the metric and the relevant operator is

the (non-relativistic) stress tensor. Once the symmetries of the quantum field theory above

are specified, the symmetries of the relevant gravitational theory follow, and constraint the

form of such source functionals. The usefulness of this procedure, beyond the realm of

holography (which is a concrete realization of this idea), has been recently emphasized also

in [5]. This paper is a direct implementation of these ideas in a specific class of examples

characterized by Lifshitz scaling symmetry and extended Schrödinger symmetry.

In particular, it was recently found that the boundary geometry for Lifshitz space-times

is described by a new extension of Newton-Cartan (NC) geometry1 with a specific torsion

tensor, called torsional Newton-Cartan (TNC) geometry. This was first observed [13, 14]

for a specific action supporting z = 2 Lifshitz geometries, and generalized to a large class

of Lifshitz models for arbitrary value of z [15, 16]. These works identified the Lifshitz UV

1We refer to [6–12] for earlier work on Newton-Cartan geometry.
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completion and resulting boundary geometry by solving for the most general solution near

the Lifshitz boundary using a vielbein formalism along with well-chosen linear combinations

of the timelike vielbein and bulk gauge field. By considering the coupling of this geometry

to the boundary field theory the vevs dual to the sources were computed, and moreover

their Ward identities were written down in a TNC covariant form. In parallel, in [17] it

was shown in detail how TNC geometry arises by gauging the Schrödinger algebra. The

coupling of non-relativistic field theories to TNC geometry was also considered in [18] from

a non-holographic perspective.

The work of [17] was used in the holographic context to show [15, 16] that for Lifshitz

space-times there is an underlying Schrödinger symmetry that acts on the sources and

vevs, strongly suggesting that the boundary theory can have a global Schrödinger invari-

ance. This observation was supported in the Letter [19] by a complimentary analysis of

bulk versus boundary Killing symmetries (employing the TNC analogue of a conformal

Killing vector [14]), by considering the conditions for the boundary theory to admit con-

served currents. Crucially, it was shown that for field theories on a TNC background the

interplay between conserved currents and space-time isometries is markedly different from

the relativistic case. The purpose of the present paper is to provide an in-depth analysis

and discussion of this new mechanism, which, in its most general sense, shows that Lifshitz

holography describes a dual version of field theories on TNC backgrounds.

Our results are of relevance to understanding the holographic dictionary in case of

tractable examples of non-AdS space-times, first and foremost for Lifshitz space-times [13–

16, 19–27], but possibly also for other cases, e.g. Schrödinger and warped AdS3 space-

times [28–35]. While this is interesting in its own right, there are also concrete direct

applications to condensed matter type systems. In particular, there is a growing body of

recent work on using TNC geometry in relation to field theory analyses of problems with

strongly correlated electrons, such as the quantum Hall effect (see e.g. [36–40] following the

earlier work [5] that introduced NC geometry to this problem). See also the works [41–43]

for a different approach to NC geometry.

1.1 Outline and summary

An outline and summary of the present paper is as follows. Our presentation below al-

ternates between short summaries of the sections and putting the results in context along

with presenting the main conclusions.

One of our key points is that in order to understand holography for Lifshitz space-times

one must understand field theories on torsional Newton-Cartan (TNC) geometries. This is

one of the reasons we spend a large fraction of this paper, sections 3 and 4, entirely on that

subject. The evidence for this is by now rather substantial. We have the null reductions

on the AdS boundary of [13, 14], the general structure of the sources for asymptotically

Lifshitz space-times as discussed in [15, 16] and in section 2 of this paper and finally we

have the discussion of exact (vacuum) Lifshitz space-times given in [19] and section 5 of

this paper that in the appropriate coordinates reflects all properties of flat NC space-times

from a bulk point of view.
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Summary of section 2. We start in section 2 with a brief review of the definition of the

sources for asymptotically Lifshitz space-times in the Einstein-Proca dilaton model. This

includes a derivation of the action of local bulk transformations such as diffeomorphisms,

etc. on the sources. The resulting local transformations of the sources are given in (2.43)

which is in agreement with the way background fields transform in TNC geometry [17].

In [17] it shown that the transformations (2.43) can be written such that they make a

local Schrödinger algebra acting on the sources manifest. In order to do this one must

choose certain Schrödinger covariant curvature constraints that make local time and space

translations equivalent to diffeomorphisms. The resulting TNC geometry on the boundary

is discussed in subsection 2.4 and readers who are not interested in the holographic origin

of this geometry may immediately jump to this subsection.

TNC geometry. TNC geometry was found for the first time in [13, 14] and a geometrical

foundation for it has been given in [15, 17, 19] which appeared simultaneously with [18]2

(how [18] fits into our framework will be commented on below). It is well-known that the

geometrical framework on which general relativity is based can be obtained by gauging the

Poincaré algebra and imposing so-called curvature constraints to make local space-time

translations equivalent to diffeomorphisms. In much the same way it is shown in [17] that

TNC geometry can be seen as arising from gauging the Schrödinger algebra and imposing

suitable curvature constraints, following the earlier work [45] that showed how to get NC

geometry from gauging the Bargmann algebra. The resulting geometrical framework pro-

vides us with various connections such as the affine connection which carries torsion and

is TNC metric compatible (see eq. (2.48)), but also for example the spin connections for

local rotations and Galilean boosts (see section 2.4.1) and finally a dilatation connection

(see section 3.3). As an aid to our discussion below, we remark here that the relevant ge-

ometric structures in TNC are a time-like vielbein τµ, space-like vielbeins eaµ and a vector

field Mµ, that will play an important role. The fields transform under local tangent space

transformations, namely local spatial rotations and Galilean boosts (Milne transformations

in [18]) and diffeomorphisms and local scale transformations. Crudely speaking we need

the vector field Mµ because mass and energy are not equivalent and Mµ can be thought as

the source for the mass current while τµ sources the energy current. The precise definition

of the energy-momentum tensor which contains the energy and momentum currents and

the definition of the mass current will be given in section 3.

TNC geometry and its coupling to non-relativistic field theories. The natural

framework to consider the covariant coupling of non-relativistic field theories to a space-

time background is TNC geometry. Thus, armed with these geometrical tools we can write

down actions for field theories that are coupled to a TNC background (section 3) and in

particular study their global space-time symmetry properties on a flat NC background

(section 4). The coupling should be done with respect to the so-called geometric invariants

that are invariant under the local tangent space transformations3 as discussed in [18, 19]

2See also the recent work [44], where the relation with relativistic field theories was revisited using

non-relativistic limits.
3These are called Milne boost invariants in [18].
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and further elaborated on in section 3. These are certain combinations of τµ, e
a
µ and Mµ

that are invariant under the local tangent space transformations. Essentially all of Mµ

disappears into these geometric invariants with the exception of one scalar combination

that we denote by Φ̃, which is closely related to the Newtonian potential.

Summary of section 3. In section 3 we first discuss the definition of the energy-

momentum tensor Tµ
ν and mass current Tµ that result from our coupling prescriptions

and derive various Ward identities such as local scale and diffeomorphism Ward identities.

There are also Ward identities for the local tangent space transformations, i.e. the local

spatial rotations and Galilean boosts. These reduce the number of independent compo-

nents of Tµ
ν and Tµ, e.g. the only independent component in Tµ is the mass density τµT

µ

that couples to Φ̃ whereas Tµ
ν contains the energy and momentum currents as well as the

symmetric spatial stress tensor.

The diffeomorphism Ward identity will also enables to define the notion of TNC Killing

vectors Kν by demanding that KνTµ
ν is a conserved current. For scale invariant theories

this leads to the notion of a TNC conformal Killing vector. In order to gain some intuition

about field theories on TNC geometries, in particular with regards to global space-time

symmetries, we introduce a number of field theory toy models. The lessons learned from

these toy models will be insightful when discussing global space-time symmetries in the

holography setting. In particular, we introduce the z = 2 Schrödinger model (see sec-

tion 3.3.1) and a deformation of it (see section 3.3.2). Then we will show that these models

realize some global space-time symmetries in a manner that has no relativistic counterpart

and that crucially depends on the coupling to the background field Mµ. We show that Mµ

can become a gauge connection making a global U(1) invariance into a local symmetry,

and we discuss how this is done in the deformed Schrödinger model (see section 3.4.1) and

how this allows for global space-time symmetries. The important role of Mµ is further

commented on in section 3.5 (see also below). We also show in section 3.6 that, again by

choosing the coupling to Mµ in a special way, namely such that we do not couple to the

invariant Φ̃, one can couple the z = 2 Lifshitz scalar field model to TNC geometry, which

is interesting to contrast to the Schrödinger model. We also comment there on how TNC

structures can be used to describe other situations, including the case considered in [46] as

well as actions that only couple to a Lorentzian metric.

We end section 3 with some remarks concerning the use of local tangent space Galilean

boost invariance in cases where one deals with non-Galilean invariant field theories such as

Lifshitz field theories.

Summary of section 4. Section 4 specializes to the case of flat NC space-time. We

start by defining what we mean by flat NC space-time in section 4.1 and show in particular

that this implies that the vector field Mµ is a total derivative of a function M . We will

define the notion of a flat NC space-time in what are called global inertial coordinate

systems. We subsequently compute the residual coordinate transformations that preserve

the choice of global inertial coordinates up to local scale transformations in section 4.2.

The analogous calculation for a flat Minkowski space-time would give us the conformal

group. Here we show that the resulting set of transformations forms a realization of the
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Schrödinger algebra onM . The flat NC space-time conformal Killing vectors are computed

in the later section 4.5 and shown to agree with those residual transformations that leave

M invariant. We show that there are three different functions M for which the conformal

Killing vectors span the Lifshitz algebra and that there does not exist an M for which they

generate the Schrödinger algebra. These three families of M are related by the action of

the Schrödinger group on M .

Global symmetries in non-relativistic field theories. We study scale invariant field

theories on a flat NC space-time and the role played by M in section 4.3. The two toy

models that we consider are: i). the deformed Schrödinger model and ii). the Lifshitz

model. Both these models are scale invariant but due to the way M appears in these

models they have various degrees of additional global space-time symmetries. The deformed

Schrödiger model comes with two parameters a and b and we show that on a flat NC space-

time with a = b = 0 the model has full z = 2 Schrödinger symmetry which for a 6= 0 and

b = 0 gets broken to Lifshitz plus Galilean boosts and when b 6= 0 it gets broken to

Lifshitz. The real scalar Lifshitz model on the other hand is just Lifshitz invariant and

differs from the deformed Schrödinger model in that it is higher order in derivatives (2nd

order time derivatives as opposed to 1st order ones). Another important difference between

the Lifshitz model and the deformed Schrödinger model with b 6= 0 is that the former has

no notion of particle number, i.e. τµT
µ = 0, whereas the latter has a particle number

current Tµ whose conservation is explicitly broken by the b term.

Elimination of M . The different amounts of global space-time symmetries thus ranges

for scale invariant from Lifshitz to Schrödinger and this is controlled by M . In section 4.4

we define the notion of the orbit of M . This is defined to be all M related to M = cst that

upon someM -dependent field redefinition lead to the same action. These field redefinitions

‘eat up M ’ in that they remove M from the action, so that it is no longer a background

field. For example we will see that for the scalar Lifshitz model all M lead to inequivalent

actions while for the Schrödinger model any M related to M = cst by a Schrödinger

transformation leads to the same action. In general, the size of the orbit of M depends on

the couplings to the background fields.

As remarked above, one cannot view all elements of the Schrödinger group as confor-

mal Killing vectors of a flat NC space-time. The global space-time symmetries that are

outside a Lifshitz subalgebra of the Schrödinger group become global symmetries only in

situations where we have a non-trivial orbit of M . This is because there are space-time

diffeomorphisms that act on Mµ as a gauge transformation, i.e. δMµ = ∂µσ̃ which takes

one from element of the orbit to another one and this transformation gets compensated

by a local phase rotation of some complex scalar field, say. This is the basic mechanism

by which field theories are Galilean boost and/or special conformal invariant. The special

conformal symmetry requires also a local scale transformation of the scalar field.

Summary of section 5. After this long detour on field theory on TNC geometries we

return to the subject of holography for Lifshitz geometries in section 5. We first show

in section 5.1 that the Lifshitz vacuum in a coordinate system such that the boundary

– 5 –
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geometry is a flat NC space-time also comes with a function M which on the boundary

corresponds to Mµ = ∂µM . The M dependent Lifshitz metric is given in equation (5.8).

This is not written in the same gauge in which we defined the boundary conditions (sources)

in section 2.2. We show that one can perform a coordinate transformation that does

not affect the sources which brings (5.8) into radial gauge. In deriving these coordinate

transformations we use a coordinate independent definition of a Lifshitz space-time given

in appendix A. We then continue to show in section 5.3 that the bulk Penrose-Brown-

Henneaux (PBH) diffeomorphisms are exactly the same as those of section 4.2, i.e. the bulk

PBH transformations realize the Schrödinger algebra on M . Hence the Lifshitz vacuum is

the holographic dual of flat NC space-time.

We therefore have the right structure for the dual field theory to show global

Schrödinger invariance. Just like in the toy models of section 4.3 this requires fields living

on a Lifshitz space-time to have a local symmetry that can be used to remove M from the

equation of motion. We will demonstrate in section 5.5 that one can indeed construct such

probes on a Lifshitz space-time.

Particle number symmetry. The existence of a local Schrödinger symmetry by which

M gets shifted, as it does under the bulk PBH transformations, can correspond to a particle

number symmetry of the dual field theory. This is shown in section 5.4. Put another way

we show that the residual bulk diffeomorphisms that realize a Schrödinger algebra on M

can lead to a conserved particle number current that relates to Tµ by an improvement.

This is quite an uncommon feature. The bulk Einstein-Proca-dilaton theory has no local

gauge symmetry, still the dual field theory can have a conserved particle number current.

This can happen because Mµ plays a double role: it is part of the geometry through its

appearance in the geometric invariants but it also sources the particle number current.

Hence it can happen that bulk PBH transformations act non-trivially onMµ which in turn

has implications for the properties of Tµ.

On the role of the Stückelberg scalar χ. We stress that in our formulation of TNC

geometry the massive vector Mµ does not by itself have any gauge transformations under

particle number. This only happens when we choose our couplings to the TNC geometry

appropriately. Formulating the construction this way is forced upon us by the holographic

dual model we are using which contains a massive vector field so that there is no local U(1)

in the bulk. One can go to a formulation with an internal particle number transformation

by making a Stückelberg decomposition of Mµ via Mµ = m̃µ−∂χ where χ is a Stückelberg

scalar and where m̃µ can be related to the gauge connection mµ of the particle number

symmetry inside the local Schrödinger algebra under which the background TNC fields

transform [17] (for z = 2 we have m̃µ = mµ). In cases where the coupling to the TNC

background fields is chosen such that there is an additional local symmetry acting on Mµ

of the form δMµ = ∂µα (combined with some local transformation in field space) we can

fix the α gauge transformation to remove χ and doing so our formalism becomes identical

to that of [18]. However we would like to emphasize that, independent of the holographic

setup, our way of describing TNC geometries allows for much more general field theories

than discussed in [18]. As discussed above it also allows us to study cases such as Lifshitz

– 6 –
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invariant theories. In fact the conformal Killing vectors of flat NC space-time span just

the Lifshitz algebra and nothing more.

The enhancement to Galilean boost invariance is a property of the model just like it

is for the case of scale symmetries. Not every field theory on a Minkowski space-time is

scale invariant. In much the same way we see that not every theory on flat NC space-time

is Galilean boost invariant (scale invariance is likewise not guaranteed). If we restrict to

the class of scale invariant theories, TNC geometries form the natural habitat of Lifshitz

invariant field theories. The geometrical framework then must include χ because there

is no notion of particle number and χ allows us to deal with that kind of situations (see

sections 3.5 and 3.6). One should not conclude that when χ appears in the formalism that

this implies absence of particle number symmetries as we can have either an extra local

shift symmetry that allows us to remove χ or because we can perform an improvement of

the current Tµ sourced by Mµ such that we get a conserved particle number current (see

sections 5.4 and B).

In summary, our main results and findings are as follows

• Non-relativistic field theories coupled to TNC geometry, depending on the couplings

of the field theory, exhibit a new mechanism, tied to the TNC vector Mµ, by which

a global U(1) becomes local with gauge connection Mµ.

• We elucidate the role of the mass current Tµ that couples to Mµ and its relation to

a conserved particle number current, in different field theory setups.

• We provide a characterization of flat NC space in global inertial coordinates that

emphasizes the relevance of the free function M (in Mµ = ∂µM).

• We work out the residual transformations preserving our notion of flat NC space-time

and show that these realize a Schrödinger algebra on M , with a Lifshitz subalgebra

spanned by the conformal Killing vectors.

• When coupling a field theory to a flat NC space-time there can be a non-trivial orbit

of M , i.e. a set of M ’s related to M = cst by the action of the Schrödinger group,

such that for each of these M we can write down the same action. This involves an

M -dependent field redefinition of the mater fields, i.e. the matter fields eat up M so

that it is no longer a source, i.e. background field.

• When there is a non-trivial orbit the theory exhibits extra global space-time sym-

metries (Galilean boost and/or special conformal symmetries) beyond the generic

Lifshitz symmetries, allowing for an enhancement to Schrödinger symmetries.

• In the holographic context, we find a general form of the (bulk) Lifshitz metric that

exhibits the source M . The bulk PBH transformations realize a Schrödinger algebra

on M . Those PBH transformations that leave M invariant form a Lifshitz algebra.

This is the same manner in which Schrödinger symmetries appear in field theories on

a flat NC background.

– 7 –
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• We construct scalar probes on a bulk Lifshitz background that are invariant under a

global Schödinger group, supporting the claim that also in the holographic setup the

background field M can be eaten up by the bulk fields.

2 Holography for Lifshitz space-times

We will be working in the bulk with a gravitational theory containing Einstein gravity

and a massive vector field (and possibly a dilaton). In this section we will show that the

geometry on the boundary of asymptotically locally Lifshitz space-time is given by Newton-

Cartan geometry with torsion. This is essentially a summary of the results found in [15]

(see also [16]). The main results of this section that will be needed in the other sections

are the definitions of the sources (the boundary conditions) and their local transformations

(that preserve the boundary conditions). These are given in section 2.3. In section 2.4 we

will review the properties of Newton-Cartan geometry with torsion.

2.1 The Einstein-Proca-dilaton model

We will work with a bulk theory consisting of a metric gMN , a massive vector field BM

and a scalar Φ (Einstein-Proca-dilaton (EPD) theory) whose dynamics is governed by the

following action4

S =

∫

d4x
√−g

(

R− 1

4
Z(Φ)F 2 − 1

2
W (Φ)B2 − 1

2
(∂Φ)2 − V (Φ)

)

, (2.1)

where F = dB. The equations of motion are

1√−g∂M
(√−gZFMN

)

= WBN , (2.2)

�Φ =
1

4
Z ′F 2 +

1

2
W ′B2 + V ′ , (2.3)

RMN =
1

2
V gMN +

1

2
Z

(

FMPFN
P − 1

4
F 2gMN

)

+
1

2
WBMBN . (2.4)

The Lagrangian has a broken U(1) gauge symmetry signaled by the mass term of BM . The

functions Z(Φ) and W (Φ) are positive but otherwise arbitrary functions of the scalar field

Φ and the potential V (Φ) is negative close to a Lifshitz solution.

This model admits Lifshitz solutions (with z > 1)

ds2 = − 1

r2z
dt2 +

1

r2
(

dr2 + dx2 + dy2
)

, B = A0
1

rz
dt , Φ = Φ⋆ , (2.5)

where Φ∗ is constant, A2
0 = 2(z − 1)/(zZ0) and

V0 = −(z2 + z + 4) ,
W0

Z0
= 2z , V1 = (za+ 2b)(z − 1) , (2.6)

with a = Z1/Z0, b =W1/W0 and Zi,Wi, Vi the Taylor coefficients of the functions Z,W, V

around Φ∗, the value of which, together with z, is determined by the first two equations

in (2.6). The third equation in (2.6) is a constraint on the potential making Lifshitz a

non-generic solution of (2.1).

4Capital roman indices M = (r, µ) denote four-dimensional bulk space-time, with boundary space-time

indices µ. The boundary tangent space indices will be 0, a with a = 1, 2.
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2.2 Boundary conditions

Because of the anisotropy of the Lifshitz metric, which is a property that will be retained

in the definition of asymptotically locally Lifshitz space-times, it is very convenient to

define the boundary conditions using bulk vielbeins [21]. Further we define a holographic

coordinate r by demanding that the metric is asymptotically (conformally) radial.5 We

can always write for the metric

ds2 =
dr2

Rr2
− E0E0 + δabE

aEb , (2.7)

where E0
r = Ea

r = 0. We will think of r as the holographic coordinate with the boundary

at r = 0. By asymptotically locally Lifshitz we will mean the following metric boundary

conditions6

R = O(1) , (2.8)

E0
µ = O(r−z) , (2.9)

Ea
µ = O(r−1) , (2.10)

where z > 1.

For the massive vector field B = Brdr +Bµdx
µ we have

Bµ = O(r−z) , (2.11)

where the leading order behavior of Br is determined by the metric and Bµ via the equation

∂M
(√−gWBM

)

= ∂r
(√−gWBr

)

+ ∂µ
(√−gWBµ

)

= 0 (2.12)

which follows from (2.2). Integrating over r we see that Br is determined up to a term of

the form f(x)
r2RW

√
−g

where f is an arbitrary function of the boundary coordinates, i.e.

Br = grrB
r =

f(x)

r2RW
√−g +

1

r2RW
√−g

∫ r

0
dr′∂µ

(√−gWBµ
)

. (2.13)

The f term contributes for the first time to the expansion of rBr at order rz+2. The

freedom of adding f(x) does not affect the leading order behavior of Br. The boundary

condition for Bµ is not a choice but enforced by the equations of motion. It is necessary

in order to support the leading order behavior of E0
µ. We will phrase this by saying that

there exists a function α such that

Bµ − αE0
µ = o(r−z) , (2.14)

where α is O(1) near r = 0. By little o(1) we mean anything that goes to zero as r goes to

zero.
5The need for this was observed in [14] and will be further elaborated on in [16]. It plays no crucial role

in this work. We just keep R for generality.
6We note that these boundary conditions differ from those in [21], which employs a radial gauge (R = 1)

and assumes that τµ in (2.16) is hyper surface orthogonal. When requiring the latter condition in our setup,

the boundary geometry is called twistless torsional Newton-Cartan (TTNC) [13, 14].
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The boundary condition for the dilaton will simply be the statement that

Φ ≃ r∆φ , (2.15)

where ∆ ≥ 0. The symbol ≃ refers to the leading order term in the near-boundary r-

expansion. Here φ is the boundary value of the dilaton which is an arbitrary function of x.

Going back to the boundary conditions for the metric we will impose

E0
µ ≃ r−zα

1/3
(0) τµ , Ea

µ ≃ r−1α
−1/3
(0) eaµ , R ≃ R(0) , (2.16)

where α(0) is the leading term in the expansion of α which is defined in (2.14), an equation

that will be made more precise later in equation (2.31). As derived in [16] for 1 < z ≤ 2,

which is the range we will work with from now on, it turns out that the equations of

motion fix the form of R(0) and α(0) either by fixing them to be specific constants or as

certain functions of the boundary field φ (this depends on z and the functions Z, W and

V ), so these are not independent sources.7 We will treat the functions R and α as scalars

depending on Φ.

For the inverse vielbeins the boundary conditions read

Eµ
0 ≃ −rzα−1/3

(0) vµ , Eµ
a ≃ rα

1/3
(0) e

µ
a , (2.17)

where we have the orthogonality relations

vµτµ = −1 , vµeaµ = 0 , eµaτµ = 0 , eµae
b
µ = δba . (2.18)

The completeness relation is eµaeaν = δµν + vµτν .

The boundary conditions for the vielbeins (2.16) tell us that the light cones flatten

out as we approach the boundary. The bulk vielbeins E0
µ and Ea

µ transform under local

Lorentz transformations. If we ask that these respect our boundary conditions we find that

the boundary vielbeins transform as

δτµ = 0 , (2.19)

δeaµ = λaτµ + λabe
b
µ . (2.20)

This has been shown in [14] for z = 2 and is easily generalized to any value of z (see

also [16]). These transformations will be referred to as local Galilean boosts (λa) and local

rotations (λab). The boundary values of the inverse vielbeins transform as

δvµ = λaeµa , (2.21)

δeµa = λa
beµb , (2.22)

7The way in which α(0) appears in (2.16) is explained in [16] and is not essential for what follows. They

are nothing but convenient rescalings of the boundary vielbeins that enable us to write expressions (see

the next subsection) for the transformations of the sources, that preserve the boundary conditions and are

independent of α(0).
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as follows from (2.18). All terms in the near boundary expansion of the metric when ex-

pressed in terms of the boundary vielbeins should be invariant under these transformations.

If we look at the expansion of (2.7) at order r−2 we see that we get

α
−2/3
(0) δabe

a
µe

b
ν + . . . (2.23)

where the dots denote contributions from the expansion of E0
µE

0
ν . The complete term at

order r−2 should be Galilean invariant. However the first term coming from the leading

term of δabE
a
µE

b
ν is not invariant because

δ
(

δabe
a
µe

b
ν

)

= λaτµe
a
ν + λaτνe

a
µ , (2.24)

under (2.20). Hence it must be that there is a contribution coming from E0
µE

0
ν at order

r−2 that compensates for this non-invariance. In other words it must be that

E0
µ = r−zα

1/3
(0) τµ + . . .+ rz−2α−1

(0)Xµ + . . . (2.25)

so that the complete order r−2 term in the metric reads

α
−2/3
(0)

(

δabe
a
µe

b
ν − τµXν − τνXµ

)

, (2.26)

with Xµ transforming as

δXµ = eaµλa , (2.27)

under local Galilean boosts.8

What we are asking for is that for any configuration of sources we can write down

a vector Xµ that makes the metric at order r−2 Galilean boost invariant. The vector

Xµ must involve a new source because we cannot create such a transformation out of the

vielbein sources τµ and eaµ. Thus there must exist a boundary vector field Mµ such that

Xµ =Mµ+ Iµ where Iµ is invariant under local Galilean boosts and local rotations so that

δXµ = δMµ. The invariant part of Xµ is therefore of no interest to us where it concerns

this problem. All we will assume about Iµ is that it can be written as Iτµ where I is a

scalar invariant. We stress that this assumption is not essential as it will not affect the

properties of Mµ. Even though we say that the relation Iµ = Iτµ is an assumption, we not

have not managed to find a counterexample using vevs and derivatives of sources that make

up a Galilean invariant object that has the right scaling dimension to appear at order r2−z.

Nevertheless we are not aware of a general proof that it should always be that Iµ = Iτµ. As

mentioned already it does not affect the properties of Mµ which is we are after, it merely

changes slightly the presentation of some equations. We will comment on this as we go on.

We thus have

E0
µ = r−zα

1/3
(0) τµ + . . .+ rz−2α−1

(0) (Mµ + Iτµ) + . . . . (2.28)

Because the massive vector is Galilean boost invariant at each order in r we can write

Bµ = r−zα
4/3
(0) τµ + . . .+ rz−2Ĩτµ + . . . , (2.29)

8We thank Matthias Blau for useful discussions on this point.
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where Ĩ is also rotation and Galilean boost invariant. Here the same comment applies; we

could have written Ĩµ but we take it to be Ĩτµ. For a suitably chosen function α that has

an expansion of the form

α = α(0) + r2z−2α
−1/3
(0)

(

Ĩ − I
)

+ . . . , (2.30)

we can obtain9

Bµ − α(Φ)E0
µ ≃ −rz−2Mµ . (2.31)

We think of this as the boundary condition that defines the source Mµ. We note that

this definition is intimately related to what we mean with α, as can be seen from (2.28)

and (2.29).

Using (2.31) we find that

B0 = Eµ
0Bµ = O(1) , Ba = Eµ

aBµ = O(rz−1) , (2.32)

so that

Bµ = Eµ
0B

0 + Eµ
aB

a = O(rz) . (2.33)

Using (2.13) it follows that

Br = O(rz−1) . (2.34)

One can make a Stückelberg decomposition of BM , i.e.

BM = AM − ∂MΞ , (2.35)

and we can do the same for Mµ, i.e.

Mµ = m̃µ − ∂µχ . (2.36)

To this end we need to take for Ξ the boundary condition

Ξ ≃ −rz−2χ . (2.37)

The boundary condition for Ξ is a choice. We fixed the choice by demanding that χ has

the right scaling dimension to combine with Mµ as in (2.36). In general one can put

anything for the boundary condition of Ξ since it is just a Stückelberg scalar. Since using

equation (2.34) we know that

Br = Ar − ∂rΞ = O(rz−1) , (2.38)

we get

Ar ≃ −(z − 2)rz−3χ . (2.39)

9If we had not assumed Iµ = Iτµ and similarly for Ĩµ we would have found

Bµ − α(Φ)E0
µ ≃ −r

z−2(Mµ + Īµ) ,

where Īµ is yet another invariant. We can fix α in the same way by demanding the component of Īµ along

τµ vanishes. Since Īµ is an invariant this does not affect the properties of the source Mµ.

– 12 –



J
H
E
P
0
8
(
2
0
1
5
)
0
0
6

This condition for Ar is a necessary condition in order that Br = O(rz−1). One might

wonder what about subleading terms. The fact that AM and Ξ always appear in the

combination that gives BM via (2.35) guarantees that the subleading orders in Ar and Ξ

will cancel such that Br = O(rz−1). From (2.31), (2.35) and (2.37) it follows that we have

Aµ − α(Φ)E0
µ ≃ −rz−2m̃µ . (2.40)

We will formulate the boundary conditions in terms of the metric and the massive

vector field, i.e. without reference to vielbeins and Stückelberg decompositions, at the end

of section 2.4.

2.3 Local transformations of the sources

We already discussed how the sources transform under local tangent space transformations,

i.e. the Galilean boosts and spatial rotations. These transformations are a consequence of us

choosing to work with vielbeins. Towards the end of the previous section we introduced yet

another local symmetry: the Stückelberg U(1) which acts on AM and Ξ as δAM = ∂MΛ and

δΞ = Λ. The boundary conditions (2.37) and (2.39) are preserved by the bulk Stückelberg

gauge transformations for which Λ ≃ −rz−2σ. The sources m̃µ and χ defined in (2.40)

and (2.37), respectively, then simply transform as δm̃µ = ∂µσ and δχ = σ.

However, by far the most relevant local symmetries are the bulk diffeomorphisms that

preserve our conformally radial gauge choice made in (2.7). These will play a prominent

role in this work and we will refer to them as the Penrose-Brown-Henneaux (PBH) trans-

formations [47, 48]. They are defined as those transformations that preserve the form of

the metric (2.7) and boundary conditions, i.e. they are such that RgMN remains in radial

gauge after acting on it with a diffeomorphism. From this condition we can conclude that

the PBH transformations are generated by a bulk vector ζM which is of the form

ζr = −rΛD , (2.41)

ζµ = ξµ +O(r2) , (2.42)

where ΛD and ξµ are arbitrary functions of the boundary coordinates. We note that when

ΛD is not constant we necessarily need to have a term of order r2 and possibly higher order

terms as well in the expansion of ζµ. For later purposes we highlight the fact that for

any local rescaling ΛD of r and any boundary diffeomorphism ξµ there exists corrections

to ζµ starting at order r2 such that we maintain a radial gauge. We can think of the

PBH transformations as consisting of two parts: 1). the transformations generated by

ζr = −rΛD and ζµ = ξµ and 2). the transformations generated by ζr = 0 and ζµ = O(r2).

The first transformation takes us possibly out of radial gauge and acts non-trivially on the

sources while the second one takes us back to radial gauge and does not act on the sources.10

10For more background on the role of PBH transformations in AdS/CFT we refer the reader to [49]

(see also [50]). In a situation where we have full control over the asymptotic expansion in the sense that

the full asymptotic solution space is determined by the sources and the vevs, the knowledge of the PBH

transformations together with the Fefferman-Graham expansion is sufficient to compute the asymptotic

symmetry algebra.
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We act on all bulk fields such as E0
µ, Bµ − αE0

µ, χ, etc with a bulk diffeomorphism. From

this we can read off how the sources transform under ΛD and ξµ.

Combining all local transformations we conclude that the sources transform as [15]

δτµ = Lξτµ + zΛDτµ ,

δeaµ = Lξe
a
µ + λaτµ + λabe

b
µ + ΛDe

a
µ ,

δMµ = LξMµ + eaµλa + (2− z)ΛDMµ ,

δχ = Lξχ+ σ + (2− z)ΛDχ ,

δvµ = Lξv
µ + λaeµa − zΛDv

µ ,

δeµa = Lξe
µ
a + λa

beµb − ΛDe
µ
a ,

δMa = LξMa + λa
bMb + λa + (1− z)ΛDMa ,

(2.43)

where Ma = eµaMµ. Here λa correspond to Galilean boosts (G), λa
b to spatial rotations

(J), ΛD to dilatations (D) and σ to Stückelberg gauge transformations (N). The fields

Ma and χ undergo shift transformations with respect to Galilean boosts and Stückelberg

gauge transformations. The fields Ma and χ play a special role in field theories on TNC

backgrounds as we will see in subsection 3.

We emphasize that the transformations (2.43) are not special to sources in Lifshitz

holography. This is the way in which TNC background fields must transform as shown

in [17]. In [15, 17] it is shown that the transformations (2.43) can be written such that

they make a local Schrödinger algebra acting on the sources manifest. In order to do this

one must choose certain Schrödinger covariant curvature constraints that make local time

and space translations equivalent to diffeomorphisms.

2.4 Torsional Newton-Cartan geometry

As explained in detail in [15–17] the boundary geometry is described by torsional Newton-

Cartan geometry. Here we collect the basic elements of such a geometry that will be

needed later when we study symmetries of the Lifshitz vacuum and its Newton-Cartan

boundary geometry. We will divide the local symmetries (2.43) into two groups. The first

contain diffeomorphisms and dilatations and the second what we might call the internal

symmetries. The latter are G, J and N . The local Galilean boosts are what are called

Milne boosts in [18]. If one wishes to draw an analogy with Lorentzian geometry then the

local rotations play the role of the local Lorentz transformations, but there is no relativistic

counterpart for the presence of the G and N local shift symmetries that act on the fields

Ma and χ. We will further elaborate on this in the next subsection.

It will prove very convenient to define what we call geometric invariants by which we

mean tensors that transform covariantly under the local transformations of the first group

and that are invariant under the internal symmetries. The invariants one can build out of
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τµ, e
a
µ and Mµ are

v̂µ = vµ − hµνMν ,

h̄µν = hµν − τµMν − τνMµ ,

Φ̃ = −vµMµ +
1

2
hµνMµMν ,

(2.44)

together with the degenerate metric invariants τµ and hµν = eµaeνb δ
ab and the determinant

e = det(τµ , e
a
µ). We will also make use of the G and N invariant vielbein êaµ defined as

êaµ = eaµ − τµM
a . (2.45)

The objects êaµ, v̂
µ, τµ, e

µ
a form an orthonormal set. Useful relations are

hνρh̄ρµ = δνµ + v̂ντµ , v̂µh̄µν = 2τνΦ̃ , êaµêνa = h̄µν + 2Φ̃τµτν , −v̂ντµ + êaµe
ν
a = δνµ .

(2.46)

In section 4.1 we will see that Φ̃ is closely related to the Newton potential denoted by Φ

when the space-time is flat (see also [17]). We use the same symbol for the Newton potential

as for the bulk space-time dilaton. We hope that this does not cause any confusion.

There is a unique affine connection that is invariant under the internal symmetries G,

J , N that is metric compatible by which we mean

∇µτν = 0 , ∇µh
νρ = 0 , (2.47)

and it is given by [15, 17] (see also [18, 51])11

Γρ
µν = −v̂ρ∂µτν +

1

2
hρσ

(

∂µh̄νσ + ∂ν h̄µσ − ∂σh̄µν
)

. (2.48)

This connection has torsion since the first term is not symmetric in µ and ν. This is why

we call the geometry torsional Newton-Cartan (TNC) [13, 14].

2.4.1 Spin connections for rotations and Galilean boosts

Although we will not need them in this work we mention for completeness that one can

define spin connections for local rotations and Galilean boosts. This is useful for example

when coupling fields with spin to a TNC background.

We define the following covariant derivatives [17]

Dµτν = ∂µτν − Γρ
µντρ ,

Dµeν
a = ∂µeν

a − Γρ
µνeρ

a − Ωµ
aτν − Ωµ

a
beν

b ,

Dµv
ν = ∂µv

ν + Γν
µρv

ρ − Ωµ
aeνa ,

Dµe
ν
a = ∂µe

ν
a + Γν

µρe
ρ
a +Ωµ

b
ae

ν
b ,

(2.49)

11To be precise, the uniqueness of this connection requires the additional assumption that it is linear in

Mµ which is a natural property from the point of view of gauging the Schrödinger algebra [17]. If we drop

this condition we can write down a one parameter family of G, J , N invariant connections that are metric

compatible in the sense of (2.47) that are of the form

Γρ
µν = −v̂

ρ
∂µτν +

1

2
h
ρσ (∂µXνσ + ∂νXµσ − ∂σXµν) ,

where Xµν = h̄µν + αΦ̃τµτν where α is an arbitrary constant (see section 3.6).
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and impose the following vielbein postulates

Dµτν = 0 , Dµeν
a = 0 ,

Dµv
ν = 0 , Dµe

ν
a = 0 ,

(2.50)

and take Γρ
µν as in (2.48). The connections Ωµ

a and Ωµ
ab can be solved for in terms of

Γρ
µν . It can be shown by either using the covariance of the Dµ derivative or by solving

the vielbein postulates in terms of the vielbeins that the rotation and Galilean boost

connections transform as

δΩµ
ab = LξΩµ

ab + ∂µλ
ab + 2λc[aΩµ

b]
c , (2.51)

δΩµ
a = LξΩµ

a + ∂µλ
a + λabΩµ

b + λbΩµb
a , (2.52)

respectively.

2.4.2 Bulk metric boundary conditions and TNC invariants

Now that we have the invariants at our disposal we can formulate the boundary con-

ditions of section 2.2 in a metric/massive vector field language as follows (use equa-

tions (2.7), (2.13), (2.16), (2.28)–(2.31))

ds2 =
dr2

Rr2
− α

2/3
(0) r

−2zτµτνdx
µdxν + . . .

+α
−2/3
(0) r−2

(

h̄µν + Iτµτν
)

dxµdxν + . . . , (2.53)

B = Brdr + α
4/3
(0) r

−zτµdx
µ + . . .+ rz−2Ĩτµdx

µ + . . . . (2.54)

In here I and Ĩ are invariants defined in (2.28) and (2.29), respectively, with dilatation

weight12 2(z − 1). One such object is Φ̃, but it may happen that I and Ĩ also involve

certain scalar vevs associated with the presence of the dilaton (see for example appendix

D of [14]). The dots on the first line of (2.53) originate from the product −E0
µE

0
ν . The

first set of dots of (2.54) allow for the possibility that terms involving derivatives of the

sources may appear between the orders r−z and r2−z. The structure of the terms on the

dots, also those at the end of (2.53) and (2.54), are determined by the equations of motion.

It would be interesting to compute these expansions for an exact Lifshitz background. In

appendix A we provide a coordinate independent definition of a Lifshitz space-time, so we

could approach this problem by solving equations (A.45)–(A.50) all of whose solutions are

locally Lifshitz. We hope to report on such an analysis in the future.

Having introduced our model and setup for Lifshitz holography and the relation of the

sources to TNC geometry, we first take a step back in the coming two sections, where we

will present a purely field-theory discussion of properties of non-relativistic field theories

coupled to a TNC background. We return to holography in section 5, where we discuss

the symmetries of the Lifshitz vacuum and its implications for the symmetries of the dual

field theory, using the insights gained from sections 3 and 4.

12A field X has dilatation weight w if it transforms as δX = −wΛDX under ΛD transformations.
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3 Scale invariant field theories on TNC backgrounds

In this and the next section we consider scale invariant field theories on TNC backgrounds

with particular focus on their symmetries. Our analysis is at the classical level, and hence

we ignore possible quantum anomalies. We emphasize that the toy models that we construct

and discuss are not expected to be directly related to the dual field theories that arise in

Lifshitz holography, but they will serve as analogue models to illustrate the symmetry

properties that we observe in the holographic context.

We work in this section and onwards with an arbitrary number of spatial dimensions.

We couple a field theory to a TNC geometry by writing an action whose background fields

are the geometric invariants discussed in section 2.4, i.e. we write

S = S[v̂µ, hµν , Φ̃] . (3.1)

When varying the background fields we can choose to vary either v̂µ, hµν and Φ̃ or the

background fields vµ, eµa and Mµ (and even instead of Mµ the fields m̃µ and χ via Mµ =

m̃µ − ∂µχ). We will discuss below the effect of either of these variations. We can also

couple to the invariants h̄µν and τµ but these are not independent

δτµ = τµτνδv̂
ν − h̄µρτνδh

νρ , (3.2)

δh̄µν = −2τµτνδΦ̃ +
(

τµh̄νρ + τν h̄µρ
)

δv̂ρ − h̄µρh̄νσδh
ρσ . (3.3)

as follows from (2.46).

3.1 The energy-momentum tensor and mass current

The variation with respect to the background (bg) fields is written as

δbgS =

∫

dd+1xe
[

−S0
µδv

µ + Sa
µδe

µ
a + T 0δm̃0 + T aδm̃a + 〈Oχ〉δχ

]

, (3.4)

where m̃0 = −vµm̃µ and m̃a = eµam̃µ. Using that m̃µ =Mµ+∂µχ this can also be written as

δS =

∫

dd+1xe

[

−
(

S0
ν + T 0∂νχ

)

δvµ + (Sa
ν + T a∂νχ) δe

µ
a

+T 0δM0 + T aδMa +

(

〈Oχ〉 −
1

e
∂µ (eT

µ)

)

δχ

]

, (3.5)

where Tµ is given by

Tµ = −T 0vµ + T aeµa . (3.6)

Just like for the TNC geometry it is useful to find invariants, i.e. G, J , N invariant

quantities built out of S0
µ, S

a
µ, T

0, T a and 〈Oχ〉 that transform as tensors. In order to find

these we rewrite the variations with respect to vµ, eµa and Mµ by using that (3.4) can, by
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using the relations of the previous subsection, equivalently be written as

δbgS =

∫

dd+1xe

[

− τνT
ν
µδv̂

µ − (êaν v̂
µT ν

µ) êσaτρδh
ρσ

+
1

2

(

êbνe
µ
aT

ν
µ

)

êρbê
a
σδh

ρσ + τµT
µδΦ̃

+

(

〈Oχ〉 −
1

e
∂µ (eT

µ)

)

δχ+
(

êaµT
µ − τνe

µaT ν
µ

)

δMa

−1

2
ê[aν e

b]µT ν
µ

(

êρaδe
ρ
b − êρbδe

ρ
a

)

]

, (3.7)

where we defined the energy momentum tensor Tµ
ν via [15, 19]

Tµ
ν = −

(

S0
ν + T 0∂νχ

)

vµ + (Sa
ν + T a∂νχ) e

µ
a . (3.8)

The vielbein components of Tµ
ν with respect to eaµ, v

µ, τµ, e
µ
a give us the energy density,

energy flux, momentum density and stress, whereas the vielbein component T 0 = τµT
µ is

the mass density and T a = eaµT
µ the mass flux. The Ward identities for the Stückelberg

U(1) (the transformation δm̃µ = ∂µσ and δχ = σ) and local Galilean boosts are

e−1∂µ (eT
µ) = 〈Oχ〉 , (3.9)

êaµT
µ − τνe

µaT ν
µ = 0 . (3.10)

These are associated with the local shift transformations acting on Ma and χ. Further

since we only couple to v̂µ, hµν and Φ̃ the last line of (3.7) should vanish. This gives us

the Ward identity associated with local rotational symmetries (and is the non-relativistic

analogue of the fact the energy momentum tensor obtained by coupling to a Lorentzian

metric is symmetric)

ê[aν e
b]µT ν

µ = 0 . (3.11)

Since (3.9)–(3.11) are satisfied off-shell we can simplify (3.7) to

δbgS =

∫

dd+1xe

[

− τνT
ν
µδv̂

µ − (êaν v̂
µT ν

µ) êσaτρδh
ρσ

+
1

2

(

êbνe
µaT ν

µ

)

êρbêσaδh
ρσ + τµT

µδΦ̃

]

, (3.12)

where only the symmetric part of êbνe
µaT ν

µ features.

For applications to field theory on TNC geometries discussed here it will sometimes

prove convenient to treat S as a functional of vµ, hµν and Mµ. With respect to these

background fields the variation can be written as

δbgS =

∫

dd+1xe

[

−Tµδvµ +
1

2
Tµνδhµν + TµδMµ

]

, (3.13)

where Tµ and Tµν = Tνµ are given by

Tµ = τν (T
ν
µ + T νMµ) , (3.14)

Tµν = −2
(

êaρv̂
σT ρ

σ

)

êa(µτν) +
(

êbρe
σ
aT

ρ
σ

)

êb(µê
a
ν)

+2τρT
ρ
(µMν) + τρT

ρMµMν +Xτµτν , (3.15)

– 18 –



J
H
E
P
0
8
(
2
0
1
5
)
0
0
6

where X is undetermined due to the identity τµτνδh
µν = 0. We can fix X for example by

demanding that vµvνTµν = 0. We do not lose information by fixing X, since with X fixed

there are as many components in Tµ, Tµν as there are in Tµ
ν which obey (3.11). The boost

Ward identity relating Tµ and Tµ reads

Tµeµa = Tµeµa . (3.16)

Making frequent use of the relations (2.46) and the Ward identities (3.10) and (3.11) it can

be shown that

Tµν = −2τ(µhν)ρv
σ (T ρ

σ + T ρMσ) + hµρh
σ
ν (T

ρ
σ + T ρMσ) , (3.17)

where the last term is symmetric due to the Ward identities (3.10) and (3.11). This

equation together with (3.14) shows that Tµ, Tµν are fully determined by T ν
µ + T νMµ.

Combining (3.14) and (3.17) gives

hνρTρµ − vνTµ = T ν
µ + T νMµ . (3.18)

We will study the difference between Tµ
ν and Tµ, Tµν for the case of a point particle in

section 4.1.

3.2 Diffeomorphisms and TNC Killing vectors

So far we have only looked at general variations of the background fields. We will next

discuss two different types of global TNC space-time symmetries. We start with the first

set which is the more conventional set of global TNC space-time symmetries in the sense

that they have a relativistic counterpart. By this we mean we will look for transformations

that leave the background fields invariant so that δbgS = 0. The most convenient way of

writing the variation for this type of question is (3.12) because it is written in terms of

invariants. This means that the quantities τνT
ν
µ, ê

a
ν v̂

µT ν
µ, ê

b
νe

µaT ν
µ and τµT

µ are not

related by any of the Ward identities that are due to local G, J or N transformations. The

variation of S with respect to diffeomorphisms acting only on the background fields is

δbg[ξ]S =

∫

dd+1xe

[

− τνT
ν
µLξ v̂

µ − (êaν v̂
µT ν

µ) êσaτρLξh
ρσ

+
1

2

(

êbνe
µaT ν

µ

)

êρbêσaLξh
ρσ + τµT

µLξΦ̃

]

. (3.19)

Hence demanding that we get zero leads to global symmetries that are determined by the

following equations

Lξ v̂
µ = 0 , Lξh

µν = 0 , LξΦ̃ = 0 , (3.20)

whose solutions ξµ = Kµ define the notion of a Killing vector for a TNC geometry. The

variation (3.19) can also be written as

δbg[ξ]S = −
∫

dd+1x∂ν (eξ
µT ν

µ) +

∫

dd+1xeξρ
[

e−1∂ν (eT
ν
ρ) + τµT

µ∂ρΦ̃

+T ν
µ (v̂

µ∂ρτν − eµa∂ρê
a
ν)

]

. (3.21)
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If we include the variation of the fields under a diffeomorphism our action remains invari-

ant. The variation with respect to the fields gives a boundary term plus a variation that

is proportional to the equations of motion. Hence on-shell we have the diffeomorphism

Ward identity

0 = e−1∂ν (eT
ν
µ) + T ρ

ν

(

v̂ν∂µτρ − eνa∂µê
a
ρ

)

+ τνT
ν∂µΦ̃ , (3.22)

where we note the extra force term due to the potential Φ̃. Since the variation in (3.21)

vanishes for ξµ = Kµ satisfying (3.20) it follows that we have the on-shell conserved currents

∂ν (eK
µT ν

µ) = 0 . (3.23)

One can check that this is indeed the case by using (3.20) and (3.22).

3.3 Local scale transformations: the dilatation connection bµ

We now turn our attention to scale transformations. If we assume that the theory under

consideration is scale invariant, we can assign an appropriate set of dilatation weights to

the fields such that the combined transformation of the background fields transforming

with their canonical weights and fields leaves the action invariant.

We first briefly recall how one might derive a conserved dilatation current in the case

of a relativistic field theory. We assume that the metric gµν has been introduced following

the minimal coupling prescription. Next we introduce a new connection bµ, the dilatation

connection, which transforms as

δbµ = Lξbµ + ∂µΛD , (3.24)

where the metric gµν has dilatation weight −2 under ΛD. We introduce bµ by the method

of Weyl gauging, i.e. we replace the covariant derivative ∇µ (containing the Levi-Cività

connection) acting on some tensor T ρ···
ν··· with dilatation weight w, i.e. δT ρ···

ν··· = −wΛDT
ρ···
ν··· ,

by (∇̃µ + wbµ)T
ρ···
ν··· . Here ∇̃µ contains a connection Γ̃ρ

µν that is invariant under local

ΛD transformations obtained from the Levi-Cività connection by replacing the ordinary

derivative on the metric by the dilatation covariant one (∂µ − 2bµ)gνρ. This procedure

makes the action invariant under a local ΛD transformation. The response of the action

with respect to a variation of bµ defines what is called the virial current V µ. For a relativistic

theory we would thus have

δbg[ΛD]S[g
µν , bµ] =

∫

dd+1x
√−g

(

1

2
TµνδΛD

gµν + V µδΛD
bµ

)

=

∫

dd+1x
√−gΛD

(

Tµνg
µν − 1√−g∂µ

(√−gV µ
)

)

, (3.25)

where we ignored a boundary term since we are only interested in on-shell identities. If

we would also transform the matter fields we have a vanishing variation since the action

is by construction invariant under local ΛD transformations. The variation of the matter

fields contains a boundary term and a term that is proportional to the equations of motion.

Hence on-shell we have

Tµνg
µν =

1√−g∂µ
(√−gV µ

)

. (3.26)
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It is not automatic that the theory is also conformally invariant. There exist classical

relativistic theories that are scale but not conformally invariant such as Maxwell theories

in dimensions different from 4 [52]. Adding non-minimal coupling terms to the action leads

to improvement transformations of both Tµν and V µ.

Turning to scale invariant field theories on a TNC background, we note that the TNC

analogue of the dilatation connection bµ and the dilatation invariant connection Γρ
µν has

been constructed in [17] (section 4.3). The dilatation connection reads

bµ =
1

z
v̂ρ (∂ρτµ − ∂µτρ)− v̂ρbρτµ . (3.27)

and this field transforms under (2.43) as

δbµ = Lξbµ + ∂µΛD , (3.28)

i.e. the same as in the relativistic case. However, an important difference with the rel-

ativistic case is that there bµ is an independent field whereas here only the part v̂ρbρ is

independent. The dilatation invariant affine connection is [17]

Γ̃ρ
µν = −v̂ρ (∂µ − zbµ) τν +

1

2
hρσ

(

(∂µ − 2bµ) h̄νσ + (∂ν − 2bν) h̄µσ − (∂σ − 2bσ) h̄µν
)

.

(3.29)

Because (3.27) is partially a dependent gauge connection the details of the (anisotropic)

Weyl gauging procedure are quite different. To get a flavor of what the differences are we

consider a few scale invariant examples.

3.3.1 The Schrödinger model

Consider the following action that we will refer to as the Schrödinger model for reasons

that will become clear in section 4.3

S =

∫

dd+1xe

(

−iφ⋆v̂µ∂µφ+ iφv̂µ∂µφ
⋆ − hµν∂µφ∂νφ

⋆ − 2Φ̃φφ⋆ − V0(φφ
∗)

d+2
d

)

. (3.30)

This action is scale invariant under the ΛD transformations of the background fields as

given in (2.43) and for δφ = −d
2ΛDφ with z = 2 and ΛD constant. We can now apply the

Weyl gauging method to this model, i.e. we replace ∂µφ by
(

∂µ + d
2bµ

)

φ where in (3.27)

we set z = 2. This gives

S =

∫

dd+1xe

(

−iφ⋆v̂µ∂µφ+ iφv̂µ∂µφ
⋆ − hµν

(

∂µ +
d

2
bµ

)

φ

(

∂ν +
d

2
bν

)

φ⋆

−2Φ̃φφ⋆ − V0(φφ
∗)

d+2
d

)

. (3.31)

Nothing happens with the v̂µ∂µ derivatives because the bµ drops out. The bµ connection

thus only enters via the part hµνbν which is fully determined in terms of the invariants. We

have thus managed to construct a local dilatation invariant action that only depends on the

usual background fields v̂µ, hµν , Φ̃ as well as the complex scalar φ. Adding bµ to the action

has the effect of changing the energy momentum tensor Tµ
ν . Clearly if we vary (3.31) with

– 21 –



J
H
E
P
0
8
(
2
0
1
5
)
0
0
6

respect to v̂µ, hµν , Φ̃ we get a different answer for Tµ
ν than if we vary these fields in (3.30).

Varying the background fields in (3.31) under a local ΛD transformation we get

δbg[ΛD]S =

∫

dd+1xeΛD

[

−zτν v̂µT ν
µ + êaνe

µaT ν
µ + 2(z − 1)τµT

µΦ̃
]

. (3.32)

If we use the fact that the contribution to the total variation of (3.31) under a local ΛD

transformation that comes from φ vanishes on-shell we get the z = 2 version of the on-shell

Ward identity [15]

− zτν v̂
µT ν

µ + êaνe
µaT ν

µ + 2(z − 1)τµT
µΦ̃ = 0 . (3.33)

The ΛD transformation of the background fields is induced by diffeomorphisms in the form

of conformal Killing vectors. This defines the notion of a conformal Killing vector as the

solution ξµ = Kµ and ΛD = Ω to the equations

Lξτµ = −zΛDτµ , (3.34)

Lξ v̂
µ = zΛDv̂

µ , (3.35)

Lξh̄µν = −2ΛDh̄µν , (3.36)

Lξh
µν = 2ΛDh

µν , (3.37)

LξΦ̃ = 2(z − 1)ΛDΦ̃ , (3.38)

where here we take z = 2.

For a Newton-Cartan background, i.e. ∂µτν−∂ντµ = 0, the Ward identity (3.33) where

the T ν
µ is the one associated with (3.31) can be rewritten as follows. We do this by

isolating the contributions from the variation of bµ
13 to T ν

µ in (3.33) and putting these

terms on the right hand side. This gives

− zτν v̂
µT̃ ν

µ + êaνe
µ
a T̃

ν
µ + 2(z − 1)τµT

µΦ̃ = e−1∂µ (eV
µ) , (3.39)

where V µ is given by

V µ =
d

2
hµν∂ν (φφ

⋆) , (3.40)

and where T̃ ν
µ in (3.39) is the one associated with (3.30). Even though this scale Ward

identity looks very similar to (3.26) in the relativistic case, the way we get to it in the

non-relativistic setting is quite different.

3.3.2 Deformations of the Schrödinger model

If we set φ = 1√
2
ϕeiθ the action (3.31) can be written as

S =

∫

dd+1xe

[

ϕ2

(

v̂µ∂µθ −
1

2
hµν∂µθ∂νθ − Φ̃

)

−1

2
hµν

(

∂µϕ+
d

2
bµϕ

)(

∂νϕ+
d

2
bνϕ

)

− V0ϕ
2(d+2)

d

]

(3.41)

13Even though bµ vanishes on a Newton-Cartan background its variation evaluated on a NC background

is nonzero and responsible for the occurrence of the virial current V µ.
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We note that we can change the potential to a non-U(1) invariant function with dilatation

weight d + 2 and all this would still be true, i.e. we can take e.g. V = V0ϕ
2(d+2)

d (1 + bθ2).

Another deformation of (3.41) that preserves local scale invariance is to add to (3.41)

the term

− a

∫

dd+1xeϕ2hµν∇̃µ∂νθ = 2a

∫

dd+1xeϕ

(

∂µ +
d

2
bµ

)

ϕhµν∂νθ , (3.42)

where ∇̃µ contains the dilatation invariant connection (3.29). The field θ has dilatation

weight zero so these terms are manifestly invariant under local scale transformations. In

terms of the complex scalar φ this term is given by

− i
a

4

∫

dd+1xe

(

φ⋆

φ
hµν

(

∂µ +
d

2
bµ

)

φ

(

∂ν +
d

2
bν

)

φ+ c.c.

)

. (3.43)

In all these cases the scale Ward identity is of the form (3.33). Yet, we do not expect

this to be the answer in general. The examples we have considered all have the property

that the v̂µbµ component, which is the independent component of bµ, drops out. This does

not always need to happen and in those cases we expect modifications of (3.33), see for

example (3.52) and just below (3.56).

3.4 Local U(1) transformations: promoting Mµ to a gauge connection

So far we have looked at symmetries that relate to the invariant Tµ
ν . There is another

such invariant which is Tµ that naturally appears when we vary with respect to vµ, hµν

and Mµ as in (3.13). As we have seen, the scale symmetries come about by combining

diffeomorphisms that act on the background fields v̂µ, hµν and Φ̃ with scale transformations

that act on the fields living on the TNC background. We will now see that there is a second

natural way in which symmetries can occur that relates to the presence of the background

fieldMµ. We will show that it can happen that diffeomorphisms together with local boosts

(and possibly local scale transformations) via (2.43) induce a transformation of the type

Ñ : δvµ = 0 , δhµν = 0 , δMµ = ∂µσ̃ , (3.44)

with a specific σ̃ leaving the action invariant (due to diffeomorphism invariance of the

theory). We denote this transformation by Ñ . It is similar but not identical to the

transformation denoted by N in section 2.3.14 The diffeomorphisms that lead to (3.44)

are of the form

Lξv
µ = −λaeµa + zΛDv

µ , (3.45)

Lξh
µν = 2ΛDh

µν , (3.46)

LξMµ = −eaµλa − (2− z)ΛDMµ + ∂µα , (3.47)

14At the beginning of section 2.3 we write m̃µ = Mµ + ∂µχ for the vector that transforms as a gauge

connection under the N transformation because δNm̃µ = ∂µσ. However m̃µ does not transform nicely

under dilatations. In [17] it is shown that it is rather the field mµ defined as mµ = Mµ + ∂µχ− (2− z)χbµ
with bµ the dilatation connection, that is the natural N gauge connection because this is how it appears in

the gauging of the Schrödinger algebra. In this work we will have no need for mµ. We just mention it for

the sake of completeness.
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whose solution we write as ξµ = Lµ, ΛD = Ω and α = σ̃. If the theory has a global U(1)

invariance that can be made local in which Mµ transforms as a gauge field the diffeomor-

phisms leading to (3.44) can become global symmetries. The reason is that we can now do

a sequence of two transformations that leaves the background fields invariant, namely first

we perform a diffeomorphism of the type (3.45)–(3.47) and then we perform a compensat-

ing internal local U(1) transformation. The combined effect of these two transformations

leaves Mµ invariant and acts on the fields charged under the global U(1). Since this sym-

metry crucially relies on the presence of the field Mµ it has no counterpart in a relativistic

setting. We will see that the global U(1) can be made local by carefully engineering the

couplings to the TNC background such that the gauge connection becomes Mµ.

3.4.1 Local U(1) invariance of the deformed Schrödinger model

To make all this more explicit we consider the case of the z = 2 scale invariant model (3.41)

to which we add the deformation term (3.42), i.e. we consider

S =

∫

dd+1xe

[

ϕ2

(

v̂µ∂µθ −
1

2
hµν∂µθ∂νθ − Φ̃− ahµν∇̃µ∂νθ

)

−1

2
hµν

(

∂µϕ+
d

2
bµϕ

)(

∂νϕ+
d

2
bνϕ

)

− V0ϕ
2(d+2)

d

]

. (3.48)

To make the role of Mµ manifest we write it in terms of the vµ, hµν and Mµ background

fields leading to

S =

∫

dd+1xe

[

ϕ2

(

vµ (∂µθ +Mµ)−
1

2
hµν (∂µθ +Mµ) (∂νθ +Mµ)

−ahµν∇̃µ (∂νθ +Mν) + ahµν∇̃µMν

)

−1

2
hµν

(

∂µϕ+
d

2
bµϕ

)(

∂νϕ+
d

2
bνϕ

)

− V0ϕ
2(d+2)

d

]

. (3.49)

We see that this theory has a local symmetry δMµ = ∂µα, δθ = −α. However there is a

term that spoils it. This is the ahµν∇̃µMν term on the second line. This problem can be

cured by adding the following term to the action

−a
∫

dd+1xeϕ2eµaDµM
a = −a

∫

dd+1xeϕ2
(

−e−1∂µ (ev̂
µ) + dv̂µbµ

)

(3.50)

= −2a

∫

dd+1xeϕv̂µ
(

∂µϕ+
d

2
bµϕ

)

= −a
∫

dd+1xe

(

2ϕvµ
(

∂µϕ+
d

2
bµϕ

)

+ ϕ2hµν∇̃µMν

)

.

The notation DµM
a is borrowed from [17] and involves a dilatation covariant connection for

local Galilean boosts to make the expression boost invariant. Since we have the identity [17]

eµaDµM
a = −e−1∂µ (ev̂

µ) + dv̂µbµ , (3.51)

it suffices for us to use the right hand side which is written in terms of quantities we already

defined. The addition of this term can be compared to the introduction of the term −ϕ2Φ̃
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in (3.30). That term played no role until we started writing things in terms of vµ, hµν and

Mµ and its purpose is to create the local symmetry δMµ = ∂µα, δθ = −α.
We are thus led to consider the following model

S =

∫

dd+1xe

[

ϕ2

(

v̂µ∂µθ −
1

2
hµν∂µθ∂νθ − ahµν∇̃µ∂νθ − Φ̃− aeµaDµM

a

)

−1

2
hµν

(

∂µϕ+
d

2
bµϕ

)(

∂νϕ+
d

2
bνϕ

)

− V0ϕ
2(d+2)

d

]

=

∫

dd+1xe

[

ϕ2

(

vµ (∂µθ +Mµ)−
1

2
hµν (∂µθ +Mµ) (∂νθ +Mµ)

−ahµν∇̃µ (∂νθ +Mν)

)

− 2aϕvµ
(

∂µϕ+
d

2
bµϕ

)

−1

2
hµν

(

∂µϕ+
d

2
bµϕ

)(

∂νϕ+
d

2
bνϕ

)

− V0ϕ
2(d+2)

d

]

. (3.52)

Using that (3.52) has the local symmetry

δMµ = ∂µα , δθ = −α , (3.53)

we obtain the on-shell Ward identity

∂µ (eT
µ) = 0 , (3.54)

which is a way of writing the θ equation of motion. Hence diffeomorphisms of the type (3.44)

accompanied by a local shift of θ leave the action invariant leading to additional global

space-time symmetries.

This is quite analogous to what happened in the case of the scale transformations

where diffeomorphisms ξµ = Kµ generate a specific ΛD = Ω transformation that is then

compensated by a scale transformation of the scalar field, so also there it is the combined

effect of diffeomorphism invariance plus a local scale transformation that leads to the

existence of more global symmetries. In the case of the scale transformations we generalized

the notion of Killing vectors to include the diffeomorphisms ξµ = Kµ, ΛD = Ω that

transform the background fields as a specific ΛD transformation and we called these Killing

vectors conformal in analogy with Lorentzian geometry. One might consider to do the

same for the case of the (3.45)–(3.47) diffeomorphisms that are generated by ξµ = Lµ

and ΛD = Ω. However these also involve specific local boost transformations (λa) that

have no space-time counterpart and so we will refrain from calling them Killing vectors of

some kind.15

We also note that the objects Tµ and Tµν appearing in (3.13) are gauge invariant with

respect to (3.53). So we observe that Tµ
ν is boost invariant whereas hνρTρµ − vνTµ is not

as follows from (3.18) while on the other hand Tµ
ν is not gauge invariant under (3.53)

whereas hνρTρµ − vνTµ is as follows from (3.13) (see also the example of (3.52)). Since

we have δαT
ν
µ = −T ν∂µα using (3.18), a gauge and boost invariant object for the model

of (3.52) is T ν
µ − T ν∂µθ.

15This is in agreement with the fact Lifshitz space-times can accommodate Schrödinger invariant fields

(see section 5.5) but, as we will show in section 4.5, its Killing vectors only realize the boundary TNC

conformal Killing vectors that generate the Lifshitz algebra.
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3.5 Comments on the role of Mµ

In cases where we have the local symmetry (3.53) and we write Mµ = m̃µ − ∂µχ as we did

in section 2.3, we can gauge fix the α transformation to remove χ from the formalism and

the new local symmetry becomes

δm̃µ = ∂µσ , δθ = −σ , (3.55)

where σ is the parameter of local particle number N transformations. When χ has been

removed from the action, or what is the same, in the presence of the local symmetry (3.53),

the quantity 〈Oχ〉 appearing in (3.9) vanishes. This is the situation discussed in [18] and this

can be reproduced by our formalism. The current Tµ thus corresponds to particle number

and equation (3.54) expresses its conservation. This makes the boost Ward identity (3.10)

or (3.16) physical, i.e. not just an identity that has to be true due to a built-in structure

of local symmetries, such as coming from the use of vielbeins and Stückelberg symmetries,

but one that is the consequence of global space-time symmetries of the type (3.45)–(3.47).

We stress though that the notion of coupling a field theory to a TNC background that

contains χ so that we work with Mµ rather than with m̃µ does not require the presence of

such local U(1) transformations so that our formalism also works in more general settings.

For example if we change the potential V to a function of ϕ and θ we break the U(1)

symmetry but we can still work with the general formalism of coupling to TNC geometries.

In this case Tµ no longer corresponds to a conserved particle number current because 〈Oχ〉
has becomes non-zero as a result of the potential depending on θ. To compute 〈Oχ〉 perform
an α transformation such that Mµ becomes equal to m̃µ by transforming Mµ =M ′

µ− ∂µχ.

Using subsequently that by definition Mµ = m̃µ − ∂µχ, we get the desired result. This

transformation acts on θ as θ = θ′ + χ and introduces χ into the potential because now

V (ϕ, θ) = V (ϕ, θ′ +χ). If θ in the potential is the only source of particle number breaking

we get 〈Oχ〉 = −∂χV . In such a theory the Ward identities (3.9) and (3.10) are just

to be thought of as consequences of reparametrizations that have been built-in to the

framework. The relevant quantities are now the background fields v̂µ, hµν and Φ̃ and the

on-shell Ward identities for diffeomorphisms and local scale symmetries. This allows us to

describe Lifshitz invariant field theories using TNC geometries. The response to varying

Φ̃ can be called the mass density, τµT
µ, but it does not correspond to the component of

some conserved mass current. It simply can appear in the diffeomorphism and local scale

Ward identities.

A note on our terminology: in cases where we couple to Φ̃ we call Tµ the mass current

regardless of whether or not Tµ is conserved, i.e. we call Tµ the mass current (or particle

number current) regardless of whether or not we have a local U(1) symmetry whose gauge

connection is Mµ. We do this because we can either isolate the terms responsible for the

explicit breaking of the conservation of Tµ by introducing χ in the manner just described

in the text, i.e. because we can compute 〈Oχ〉 = −∂χV or because we can show that

〈Oχ〉 = e−1∂µ (eJ
µ), so that the current Tµ − Jµ is the equation for particle number

conservation. This latter option occurs in cases where we couple to a TNC geometry

in a manner such that there is no local U(1). In the case of the model (3.52) we can
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spoil the local U(1) symmetry by removing the terms Φ̃ and eµaDµM
a in the first line

of (3.52). At the end of section 4.3 and in appendix B we explain in detail how one can

show that 〈Oχ〉 = e−1∂µ (eJ
µ) and thus find the particle number current for the case of a

flat NC background.

In section 4.3 we will study the complex scalar field theory mentioned above on a

flat Newton-Cartan background and show that we can have various degrees of space-time

symmetries such as scale invariance with or without conformal invariance and/or Galilean

boosts. Put another way TNC geometries can accommodate Schrödinger invariant field

theories just as easily as Lifshitz invariant ones. We will see that the action (3.52) on flat

space corresponds to a Schrödinger invariant theory for a = 0 but that if we change the

potential to break the U(1) symmetry while retaining scale invariance this gets reduced to

Lifshitz symmetries. The case of (3.52) with a 6= 0 breaks special conformal symmetry while

retaining Galilean boost invariance. In general the generic space-time symmetries for a scale

invariant theory are given by the Lifshitz algebra which we will show are the conventional

symmetries originating from the TNC conformal Killing vectors. The enhancement to

larger algebras can be realized by the aforementioned mechanism relating to the local

U(1) symmetry. However before we can discuss these models we need to know a bit more

about Newton-Cartan space-times in particular flat NC space-times and its conformal

Killing vectors.

3.6 No coupling to Φ̃

We may also consider the situation in which we do not couple to Φ̃ and we only have v̂µ

and hµν as for example in the case of the z = 2 Lifshitz model

S =

∫

dd+1xe

[

1

2
(v̂µ∂µφ)

2 − λ

2
(hµν∇µ∂νφ)

2

]

. (3.56)

In such cases we have no need for Tµ as we can define everything in terms of the response

to varying v̂µ and hµν , i.e. T ν
µ. Here φ is a real scalar with dilatation weight (d−2)/2. We

note that we could make the model invariant under local scale transformations by replacing

∂µ by ∂µ + d−2
2 bµ.

When we do not couple to Φ̃ it is more convenient to change the affine connection to

Γ̂ρ
µν = −v̂ρ∂µτν +

1

2
hρσ

(

∂µĥνσ + ∂ν ĥµσ − ∂σĥµν

)

, (3.57)

where ĥµν = δabê
a
µê

b
ν = h̄µν + 2Φ̃τµτν . This connection is also a G, J , N invariant that is

metric compatible in the sense that ∇̂µτν = 0 = ∇̂µh
νρ in which ∇̂µ contains Γ̂ρ

µν . The

existence of this connection is explained in footnote 11. Hence when we do not couple to

Φ̃, we couple to ĥµν , τµ, v̂
µ and hµν using the affine connection Γ̂ρ

µν .

3.6.1 Lorentz invariants

It is interesting to note that the invariants τµ, h
µν , v̂µ, h̄µν and Φ̃ of section 2.4 satisfying

the relations (2.46) can be used to build non-degenerate symmetric rank 2 tensors with
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Lorentzian signature gµν that in the case of a relativistic theory we would refer to as a

Lorentzian metric. The metric gµν and its inverse gµν are given by

gµν = −τµτν + h̄µν + 2Φ̃τµτν = −τµτν + ĥµν , (3.58)

gµν = −v̂µv̂ν + hµν , (3.59)

for which we have

gµν v̂
µ = τν , (3.60)

gµνe
µ
a = êνa . (3.61)

We just discussed a subclass of field theories coupled to TNC geometries that do not

couple to Φ̃, i.e. actions of the form S = S[v̂µ, hµν ]. We can thus equally write this as

S = S[v̂µ, gµν ]. This is the situation discussed in [46]. We refrain from calling gµν a

Lorentzian metric except in cases where we do not separately couple to v̂µ and we simply

have S = S[gµν ]. When we are dealing with an action of the form S = S[gµν ] it is of course

best to use the Christoffel connection. All the connections used here, i.e. Γρ
µν of (2.48),

Γ̂ρ
µν of (3.57) and the Christoffel connection are related by redefinitions such that any two

of these connections differ by a tensor. Hence any one is as good as any other one, or

put another way they are all affine connections. The difference resides from demanding

different notions of metric compatibility conditions and dependence on Φ̃ or Mµ.

3.6.2 Local tangent space symmetries

We end this section with one final comment related to the philosophy of our approach.

The reader might be concerned that the formalism presented here has too many spurionic

symmetries such as local Galilean boost invariance in cases where we are dealing with a

non-Galilean invariant field theory such as a Lifshitz field theory. The point is that the

local tangent space symmetries are not manifest in the formalism because the coupling

prescription tells us to couple to the invariants v̂µ, hµν and Φ̃ (see e.g. equation (3.12)).

This is the language in which both the field theory and gravity dual (see e.g. equations (2.53)

and (2.54)) can be written. The invariants (sources) and their derivatives together with the

vevs, determine the near boundary expansion. This formalism works without any spurionic

symmetries both for non-Galilean invariant field theories such as Lifshitz field theories and

for Galilean invariant, e.g. Schrödinger invariant, theories. The main difference between the

two is the occurrence, in the latter case, of a local U(1) symmetry that can be realized on

the invariants directly but which takes a much simpler form if we decompose the invariants

into the objects vµ, hµν and Mµ. This step is not necessary but convenient whenever there

is a global Galilean symmetry because then Mµ transforms as a U(1) connection for the

particle number current (see e.g. equation (3.13)). Our formalism shows that various non-

relativistic field theories can be discussed within the same univeral geometrical framework

and that all depends on how one couples to the invariants v̂µ, hµν and Φ̃. Both sets of

variables, i.e. v̂µ, hµν , Φ̃ and vµ, hµν ,Mµ (with a specific description for how they transform

under local Galilean boosts) are equally fundamental. Which of these two sets of variables

is the more convenient one is context dependent. Clearly in the case of the Lifshitz scalar
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model we couple to the invariants v̂µ and hµν (with no coupling to Φ̃). In this case the

vielbeins are v̂µ and eµa which only transform under a local SO(d) group.

4 Flat Newton-Cartan space-time

Building on the general results of the previous section, we now turn to the symmetry

properties of non-relativistic field theories on flat NC space-time. To this end, we first

define our notion of flat NC space-time, after which we determine the residual coordinate

transformations that leave this invariant. These ingredients will then be used to discuss

scale invariant field theories on flat NC backgrounds, including the particular toy models

introduced in the previous section.

4.1 Definition

We first need to define what it means for a Newton-Cartan space-time to be flat. This is

a relevant question as often we are interested in field theories on flat space-time. For us

the main reason is that this will turn out to be the dual boundary geometry of a Lifshitz

space-time in a certain class of coordinates. We are not aware of a covariant definition of

such a concept and we will define it in what will be referred to as global inertial coordinates

(see also [17, 53]). We will give expressions for the variables τµ, e
a
µ and Mµ. We start with

the vielbeins. For suitably chosen coordinates (t, xi) they are

τµ = δtµ , eaµ = δiµδ
a
i . (4.1)

This implies that we have

τµ = δtµ ,

htt = hti = 0 , hij = δij ,

vµ = −δµt ,
htt = hti = 0 , hij = δij .

(4.2)

So far we did not specify yet what we should take for Mµ. In our setup the space-

time is not dynamical, but we would like things to be such that if we probe the geometry

with a standard non-relativistic particle of mass m with quadratic dispersion relation it

obeys Newton’s second law. Since we have set τµ = δtµ there is no torsion in the affine

connection (2.48) and so we are within the context of ordinary Newton-Cartan geometry.

The motion of a non-relativistic particle of mass m on a NC background is governed

by the following action [54, 55]

S =

∫

dλL =
m

2

∫

dλ
h̄µν ẋ

µẋν

τρẋρ
, (4.3)

where the dot denotes differentiation with respect to λ. This action has a world-line

reparametrization symmetry of the form δλ = ξ(λ) and δxµ = ξ(λ)ẋµ. Using this to fix a
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gauge in which τµẋ
µ = 1 it can be shown that the equations of motion are given by the

geodesic equation

d2xµ

dλ2
+ Γµ

νρ

dxν

dλ

dxρ

dλ
= 0 , (4.4)

where Γρ
µν is given by (2.48). We expect this to be the relevant geodesic equation for

any TNC geometry, however the equation of motion obtained by varying the action (4.3)

only gives rise to (4.4) when the background is NC. In our coordinates the components of

Γρ
µν are

Γt
µν = 0 ,

Γi
tt = −δij (∂tMj − ∂jMt) ,

Γi
tk = −1

2
δij (∂kMj − ∂jMk) ,

Γi
kl = 0 .

(4.5)

Hence in order that we obtain Newton’s second law we must choose

Mt = ∂tM +Φ , (4.6)

Mi = ∂iM , (4.7)

so that
d2xi

dt2
+ δij∂jΦ = 0 , (4.8)

where Φ is the Newton potential.16 Hence in a flat space we expect straight line motion in

a suitable coordinate system, which here means that we need to take Φ = 0. Consequently,

our coordinate dependent specification of flat space entails the statement

Γρ
µν = 0 →Mµ = ∂µM . (4.9)

Returning to our discussion of flat NC space-time, we have thus imposed (4.2) and (4.9)

leaving us with a function M . We now address the significance of this function M . So

far the description of flat space-time is universal. Certainly flat space should include the

case M = cst. However we will show in section 4.3 that sometimes we can allow for more

general functions M because they are identical to M by local symmetries of the theory.

The set of M ’s that are identical to each other by local transformations of the theory is

what we will call the orbit of M .

Before discussing the orbits ofM for the various scalar field theory models mentioned in

section 3.4 we study in the next subsection the most general diffeomorphisms that preserve

our choices (4.2) and (4.9) under the local TNC transformations (2.43). We will initially

set up the computation more generally including a Newton potential as this is interesting

and not more difficult than taking Φ = 0, i.e. we start with (4.6) and (4.7).

16Calling Φ the Newton potential is only justified for particle motion governed by (4.4). In general

depending on the dispersion relation one may need to consider more general geodesic equations, see e.g. [56]

in the context of Hořava-Lifshitz gravity.
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4.1.1 Energy-momentum tensors for non-relativistic particles

We pause our discussion of flat NC space-time briefly to use the opportunity to study the

various notions of energy-momentum tensors defined in section 3.1 for the case of the point

particle (4.3). By varying (4.3) with respect to v̂µ, hµν and Φ̃ using (3.2) and (3.3) we

obtain for Tµ
ν the result

Tµ
ν = −Pν ẋ

µ , (4.10)

where we used the completeness relation given at the end of (2.46) after we computed

the components of Tµ
ν with the help of (3.12). In this expression Pµ is the generalized

momentum defined by

Pµ =
∂L

∂ẋµ
= −m

2
τµ
hρσẋ

ρẋσ

(ταẋα)2
+m

hµν ẋ
ν

ταẋα
−mMµ ≡ pµ −mMµ , (4.11)

where L is given in (4.3) and where we also defined the linear momentum pµ. Next we

compute the objects Tµ and Tµν using either (3.14) and (3.15) or by directly varying with

respect to vµ, hµν and Mµ using (3.13). The result is

Tµ = −ταẋαpµ , (4.12)

Tµν = 2τ(µhν)ρẋ
ρvσpσ − hρ(µhν)σẋ

σpρ . (4.13)

As before we can fix X (see eq. (3.15)) by demanding that vµvνTµν = 0. Further we can

choose ταẋ
α = 1 by fixing the world-line reparametrization freedom. The current Tµ is

simply given by

Tµ = −mẋµ . (4.14)

We see that the difference between Tµ
ν and Tµ, Tµν is that Tµ

ν depends on Mµ whereas

Tµ, Tµν do not. In other words on a flat NC space-time with a Newton potential Φ, i.e.

assuming (4.2), (4.6) and (4.7), the energy momentum tensor Tµ
ν depends on Φ while Tµ,

Tµν only depend on the properties of the particle. For example vµTµ gives the kinetic energy

of the particle whereas −vµτνT ν
µ gives the kinetic plus gravitational potential energy of

the particle.

4.2 Residual coordinate transformations of flat NC space-time

As said we start by asking what are the transformations among (2.43) that leave (4.2), (4.6)

and (4.7) invariant. Substituting (4.2), (4.6) and (4.7) into (2.43) (where the transformation

of χ is irrelevant as we work here with Mµ and not with m̃µ) and demanding that we get

zero gives
0 = δτt = ∂tξ

t + zΛD ,

0 = δτi = ∂iξ
t ,

0 = δvi = ∂tξ
i + λi ,

0 = δvt = ∂tξ
t + zΛD ,

0 = δhtt = −2hρt∂ρξ
t ,

0 = δhti = −δij∂jξt ,
0 = δhij = −δjk∂kξi − δik∂kξ

j − 2ΛDδ
ij .

(4.15)
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This leads to

ΛD = −1

z
∂tξ

t with ξt = ξt(t) , (4.16)

λi = −∂tξi , (4.17)

0 = ∂iξj + ∂jξi + 2ΛDδij . (4.18)

Continuing with the conditions for Mµ we first consider

δMi = ∂iδM = ∂i
(

ξt∂tM + ξj∂jM + (2− z)ΛDM
)

+ λi , (4.19)

which follows from δMµ given in (2.43) together with (4.16)–(4.18). We conclude from this

that we need

λi = ∂iF , (4.20)

so that (4.17) implies that

∂iF = −∂tξi , (4.21)

leading to ∂i∂jF = −∂t∂jξi so that

∂i∂tξj − ∂j∂tξi = 0 . (4.22)

Differentiating (4.18) with respect to t and using (4.21) we get

∂i∂jF = ∂tΛDδij , (4.23)

which can be integrated to

F = A(t) +Bi(t)x
i +

1

2
∂tΛDx

ixi , (4.24)

where A and Bi are arbitrary functions of t. Equations (4.20) and (4.21) become

Bi(t) + ∂tΛDxi = −∂tξi = λi . (4.25)

By integration over t we obtain for ξi the expression

ξi = −
∫ t

dt′Bi(t′)− ΛD(t)x
i +Ai(x) , (4.26)

where (4.18) implies

∂iAj + ∂jAi = 0 , (4.27)

so that

Ai = ai + λijx
j , (4.28)

with ai and λij = −λji constants.
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We thus have now for the local parameters ΛD, λ
i and ξµ the following conditions

ΛD = −1

z
∂tξ

t , (4.29)

λi = −∂tξi , (4.30)

ξt = ξt(t) , (4.31)

ξi = −
∫ t

dt′Bi(t′) + ai + λijx
j − ΛD(t)x

i . (4.32)

Further from equations (4.19), (4.20) and (4.24) we find for δM

δM = ξt∂tM + ξj∂jM + (2− z)ΛDM +A(t) +Bi(t)x
i +

1

2
∂tΛDx

ixi . (4.33)

We still have the conditionMt = Φ+∂tM . Using δMµ given in (2.43) together with (4.16)–

(4.18) and (4.33) we find that the Newton potential transforms as

δΦ = ξρ∂ρΦ+ 2(1− z)ΛDΦ− ∂tA(t)− ∂tBi(t)x
i − 1

2
∂2t ΛDx

ixi + (z − 2)(∂tΛD)M , (4.34)

where ξµ and ΛD are given in (4.29)–(4.32). This includes the acceleration extended Galilei

symmetries (see e.g. [53]) but also transformations under dilatations and special conformal

transformations when z = 2 (which correspond to a non-constant time dependent ΛD).

These transformations are also contained in [17] (sections 2.2.3 and 2.3.2) but they were not

made explicit there because of different gauge fixing conditions.17 When (z − 2)∂tΛD 6= 0

there is an additional term in (4.34). The relevance of this term will be discussed in the

next subsection.

Going back to our notion of a flat boundary as defined in the previous subsection

we set Φ equal to zero. In order that this choice is respected by the transformations

of our holographic setup we must demand that δΦ = 0 leading for (z − 2)∂tΛD = 0 to

the conditions

A = −C , Bi = −vi , ∂2t ΛD = 0 , (4.35)

where C and vi are constants and for (z − 2)∂tΛD 6= 0 to the condition

∂tA(t) + ∂tBi(t)x
i +

1

2
∂2t ΛDx

ixi = (z − 2)(∂tΛD)M . (4.36)

We will now summarize the results regarding the residual coordinate transformations of

flat NC space-time.

4.2.1 Summary

Consider first the case (z − 2)∂tΛD = 0. Using (4.29)–(4.33) as well as (4.35) we conclude

that the conditions (4.2) and (4.9), which are necessary for a flat NC space-time, are

17We thank Eric Bergshoeff for useful discussions on this point.
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preserved by the following local transformations of our holographic model

ΛD = −λ− δz,2ct , (4.37)

ξt = a+ zλt+ δz,2ct
2 , (4.38)

ξi = vit+ ai + λijx
j + λxi + δz,2ctx

i , (4.39)

λi = −vi − δz,2cx
i , (4.40)

with M transforming as

δM = ξt∂tM + ξi∂iM − (2− z)λM − C − vixi − 1

2
δz,2cx

ixi . (4.41)

The finite versions of these transformations are

M ′(x) = M(x) + C

t′ = t+ a M ′(x′) = M(x)

x′i = xi + ai M ′(x′) = M(x)

x′i = Ri
jx

j M ′(x′) = M(x)

t′ = λzt x′i = λxi M ′(x′) = λ2−zM(x)

x′i = xi + vit t′ = t M ′(x′) = M(x)− 1

2
vivit+ vixi

(4.42)

where Ri
jR

j
k = δik. For z = 2 we also have the special conformal (K) transformation

t′ =
t

1− ct
, x′i =

xi

1− ct
, M ′(x′) =M(x) +

c

2

xixi

1− ct
. (4.43)

To go back to the infinitesimal versions note that we use x′µ − xµ = ξµ and M(x) −
M ′(x) = δM . For some parameters we use the same symbol for the finite and infinitesimal

transformations.

When (z−2)∂tΛD 6= 0 we conclude that the residual transformations are (4.29)–(4.33)

where the functions A(t), Bi(t) and ΛD must obey (4.36).

In order to get a feeling of the role of the M -changing residual coordinate transforma-

tions we will now study the toy models of section 3.4 on flat NC backgrounds.

4.3 Scale invariant field theories on flat NC backgrounds

In section 3 we studied field theories on general TNC geometries. In this section we will

take a closer look at the case of (z = 2) scale invariant field theories on a flat NC space-time

and study in particular the role played by M . To this end we consider the models (3.52)

and (3.56).

If we specify our background to a flat NC space-time as given in (4.2) and (4.9) the

action (3.52) becomes

S =

∫

dd+1x

(

−ϕ2

[

∂t (θ +M) +
1

2
∂i (θ +M) ∂i (θ +M) + a∂i∂

i (θ +M)

]

−1

2
∂iϕ∂

iϕ− V0ϕ
2(d+2)

d
(

1 + bθ2
)

)

, (4.44)
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where we discarded the term 2a
∫

dd+1xϕ∂tϕ (coming from the first term in the last line

of (3.52)) since it is a boundary term and where we have added a θ shift symmetry breaking

term to the potential. Further we will also consider the Lifshitz model (3.56) which upon

substituting (4.2) and (4.9) reads

S =

∫

dd+1x

[

1

2

(

∂tφ+ ∂iM∂iφ
)2 − λ

2

(

∂i∂
iφ
)2
]

. (4.45)

We now address the question which of the residual transformations (4.42) and (4.43)

leave (4.44) and (4.45) form invariant. For a = 0 the action (4.44) is invariant under the K

transformations (4.43) with ϕ transforming as ϕ = (1 + ct′)d/2ϕ′. However when a 6= 0 in

the action (4.44) or when we consider the action (4.45) the K transformations (4.43) are

no longer local symmetries. With respect to the transformations (4.42) both models (4.44)

(with arbitrary a and b) and (4.45) remain form invariant. The field θ transforms as a

scalar with zero dilatation weight under these residual coordinate transformations while ϕ

in (4.44) and φ in (4.45) transform as ϕ = λd/2ϕ′ and φ = λ(d−2)/2φ′, respectively.18 We

will only speak of global symmetries once we have removed M from the action as we will

do shortly.

If the models (4.44) and (4.45) really correspond to flat space we should be able

remove M somehow since we defined flat NC space-time as corresponding to M = cst

together with all other M ’s that give actions that are identical to the one with M = cst

by local transformations, i.e. field redefinitions. When b = 0 in (4.44) this can be done by

defining θ̃ = θ +M which is gauge invariant under the local α transformations discussed

in section 3.4. If we make this redefinition with b = 0 we get

S =

∫

dd+1x

(

−ϕ2

[

∂tθ̃ +
1

2
∂iθ̃∂

iθ̃ + a∂2θ̃

]

− 1

2
∂iϕ∂

iϕ− V0ϕ
2(d+2)

d

)

. (4.46)

It is straightforward to check that this theory has Lifshitz symmetries. Further it also has

Galilean boost invariance because

t = t′ , xi = x′i − vit′ , (4.47)

θ̃ = θ̃′ +
1

2
vivit′ − vix′i , (4.48)

leaves the action invariant. However, the special conformal transformation K is broken

by a 6= 0.

The fact that the model (4.44) with b = 0 has a local U(1) (whose local parameter is α)

is what enables us to removeM from the action entirely so that we have no more background

fields and we can just work with fields and their transformations. It is the combined effect of

the local U(1) (α) symmetry and the residual coordinate transformations (4.42) and (4.43)

18The models (4.44) with b 6= 0 and (4.45) both correspond to Lifshitz invariant field theories, but note

the different scaling dimensions of the scalars ϕ and φ. It is much easier to construct interacting Lifshitz

invariant theories that are of the type (4.44) with b 6= 0, which in fact is an example of an interacting

Lifshitz theory, than it is for (4.45). The model (4.44) has the property that when the interactions are

turned off, i.e. a = b = 0, it becomes Schrödinger invariant.
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that makes the model whose ‘physical’ field is θ̃ = θ +M Schrödinger invariant for a = 0

and Lifshitz plus Galilean boost invariant for a 6= 0. When we speak of flat NC space-time

in these models we mean any M that can be generated by (4.42) and for a = 0 even

including (4.43).

If we consider the model (4.44) with b 6= 0 or the Lifshitz model (4.45) there is no

local symmetry that allows us to perform a field redefinition that removes M from the

action. Hence in this case flat space corresponds to setting M = cst and the only residual

coordinate transformations are those that preserve this choice of M . From (4.42) it is

clear that these form the Lifshitz group.19 In the potential of (4.44) we can also consider

V = V0ϕ
2
d (2+d)(1 + b cos2(cθ)) so that we keep a nontrivial discrete shift symmetry while

breaking Galilean boosts.

The energy momentum tensor Tµ, Tµν of section 3.1 for the case of the model (4.44)

with b = 0 is gauge invariant (as shown in 3.4) under the α transformations and thus

depends on the field θ̃ while the M dependent object T ν
µ is better suited for the study of

conserved currents (see sections 3.2 and 3.3). When b 6= 0 in (4.44) or when we are dealing

with (4.45) on flat NC space-time we have Mµ = 0 so that Tµ, Tµν and T ν
µ become the

same object as follows from the relation (3.18).

The model (4.44) was obtained by putting the action (3.52) on a flat NC background.

The action (3.52) has a built-in local U(1) symmetry with gauge connection Mµ which was

very convenient for us to deduce that there must a exist a conserved current Tµ related to

particle number. The terms that are responsible for the extra local U(1) symmetry are the

last two terms on the first line of (3.52) involving Φ̃ and eµaDµM
a. Since one might wonder

how crucial these terms are, we have included appendix B which address this issue.

4.4 Orbits of M

We first consider the case z = 2. We have seen in the previous subsection that the orbits

of M , i.e. all M that are equivalent to M = cst depend on the theory. What is model

independent is that for sure the M ’s in an orbit are related by the transformations (4.42)

and (4.43) and that M = cst is among them. If this is all we assume we obtain the largest

possible orbit of M . As we have seen in the previous section this is the orbit that underlies

the Schrödinger invariant theories (see the a = b = 0 version of (4.44)). If we take a 6= 0

the orbit shrinks because (4.43) or no longer allowed and when b 6= 0 it collapses to the

point M = cst. In this section we will study the largest orbit, in more detail. The results

will prove useful later when we look at Lifshitz space-times.

Using the finite transformations (4.42) and (4.43) we can by starting with M = cst

generate a function that is at most quadratic in xi where the quadratic piece is a trace by

19We thank Jan de Boer for useful discussions on the roles of Lifshitz symmetries and global U(1)

transformations. For example an interesting question is the following. It is clear that the existence of a

global U(1) symmetry is a necessary condition for the occurrence of Galilean boost symmetries. Making

this a local symmetry relies on how we choose the couplings to the TNC geometry in section 3.4 such that

Mµ becomes a gauge field. An important question is then how general this mechanism is. In other words

given a global U(1), can we always promote it to a local U(1) using Mµ or are there restrictions. Put yet

another way, when does Lifshitz plus a global U(1) imply Galilean boosts?
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which we mean a term of the form xixi, i.e. M will be of the form

M = a(t) + bi(t)x
i + c(t)xixi . (4.49)

However the time dependence of the coefficients is not arbitrary. The time dependence is

fixed by the following observation. The solution M = cst and all other M obtained from

this by performing the residual transformations (4.38), (4.39) and (4.41) are solutions of

the equation

Φ̃ = ∂tM +
1

2
∂iM∂iM = 0 . (4.50)

Put another way, acting on any solution of (4.50) with a Schrödinger transformation of the

form (4.38), (4.39) and (4.41) leads to another solution of equation20 (4.50). Equation (4.50)

allows us to fix the time dependence of the form of M given in (4.49) to be either

M = C +
(xi − xi0)(x

i − xi0)

2(t− t0)
, (4.51)

when c in (4.49) is nonzero or

M = C − 1

2
V iV it+ V ixi , (4.52)

when c in (4.49) is zero. In these expressions t0 and xi0 are arbitrary constants. There are

thus three families of solutions given by i). M = cst, ii). M is linear in xi as in (4.52) and

iii). M is (trace) quadratic in xi as in (4.51). Equation (4.49) is equivalent to the following

differential equations for M

0 = ∂i∂j∂
jM , (4.53)

0 = ∂i∂jM − 1

d
δij∂k∂

kM . (4.54)

We conclude that a complete specification in terms of differential equations of the functions

M that are related to M = cst via the residual transformations (4.42) and (4.43) is given

by (4.50), (4.53) and (4.54). These differential equations allow us to treat all three cases

of functions M in a uniform manner.

As a curiosity we mention that when (4.53) (but not necessarily (4.54)) holds there is

a map from solutions to (4.50) to solutions of the Schrödinger equation. This follows from

the fact that21
(

i∂t + ∂2
)

exp

[

i

2
M − 1

2

∫ t

dt′∂2M

]

= 0 , (4.55)

for any M satisfying (4.50) and (4.53) where ∂2 = ∂i∂
i. This includes solutions to (4.50)

and (4.53) that are not in the M = cst orbit because they do not solve (4.54). An example

of such a function M is

M =
x2

2t
, (4.56)

20We thank Matthias Blau for pointing this out.
21By zero we mean up to possible delta functions on the right hand side as for example the function

exp[ i
2
M − 1

2

∫ t
dt′∂2M ] for M given by (4.51) is the Green’s function of the free particle Schrödinger

equation, see e.g. [57, 58].
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where x denotes a single coordinate and not the vector xi. This solution does not

obey (4.54). To see how the Schrödinger transformations (4.38), (4.39) and (4.41) generate

new solutions to (4.50) and (4.53) one can check that there is another solution to (4.50)

and (4.53) that is in the same orbit as (4.56) given by

M =
x2

2t
− c

2

y2

1− ct
, (4.57)

where we took d = 2. This is obtained by acting on (4.56) with theK transformation (4.43).

Since the functions (4.56) and (4.57) are not in the M = cst orbit they do not correspond

to a flat NC space-time.

We now turn to the orbits of M when z 6= 2. In section 4.2 we showed that for

∂tΛD = 0 the residual transformations are given by (4.42) and that when ∂tΛD 6= 0 they

are given by (4.29)–(4.33) subject to (4.36). The latter requirement tells us that again M

can be at most quadratic in xi so that it is of the form (4.49). We conclude that (4.53)

and (4.54) also apply to the case z 6= 2.

In the z = 2 case we were able to conclude, by using the z = 2 Schrödinger transfor-

mations, that Φ̃ must vanish and that therefore (4.50) has to be obeyed. However we could

have derived it in another way as well which uses an argument that is valid for all z and

that goes as follows. The function Φ̃ is a scalar with dilatation weight 2(z − 1) under all

local transformations of our model namely (2.43), i.e. it transforms as

δΦ̃ = ξρ∂ρΦ̃ + 2(1− z)ΛDΦ̃ , (4.58)

which follows from its definition (2.44) and (2.43). For the M = cst orbit Φ̃ is zero because

Mµ = 0 so that δΦ̃ = 0. Hence Φ̃ vanishes for all solutions of the M = cst orbit because

these are generated by the δΦ̃. We conclude that for anyM in ourM = cst orbit it must be

that Φ̃ = 0. Hence also when z 6= 2 we must obey (4.50). Therefore for z 6= 2 the function

M must obey the same set of equations, namely (4.50), (4.53) and (4.54) as for z = 2.

It is crucial that for each M which solves these three equations we can find a residual

transformation that makes it equivalent to M = cst. Going between M = cst and a linear

M of the form (4.52) is achieved by (4.42) with z 6= 2. For transformations from M = cst

or the linear M of (4.52) to the trace quadratic M of (4.51) we need to use (4.29)–(4.33)

subject to (4.36). We can solve the latter equation separately for the three families of M .

For example if we take the quadratic M of (4.51) we get22

A = −1

2
cxi0x

i
0(t− t0)

z−2 , (4.59)

Bi = cxi0(t− t0)
z−2 , (4.60)

ΛD = − c

z − 1
(t− t0)

z−1 , (4.61)

22We will not explicitly write the other solutions of (4.36) for M = cst and a linear M and the corre-

sponding residual transformations (4.29)–(4.33).
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in which case we obtain the residual transformation

ξt =
c

z − 1
(t− t0)

z , (4.62)

ξi =
c

z − 1
(xi − xi0)(t− t0)

z−1 , (4.63)

δM = ξt∂tM + ξj∂jM + (2− z)ΛDM − 1

2
c(xi − xi0)(x

i − xi0)(t− t0)
z−2 . (4.64)

These transformations with parameter c look like a z 6= 2 version of a special conformal

transformation. However we will see in the next subsection that the generic ξµ in (4.38)

and (4.39) does not combine with the ξµ given in (4.62) and (4.63) under the action of the

Lie bracket to give a residual transformation. This only works if we set a = ai = 0. Hence

the residual transformations with a = ai = 0 form a group with the c 6= 0 transformations

(that will be shown to be isomorphic to the Lifshitz algebra in the next subsection) and the

residual transformations with c = 0 form the z 6= 2 Schrödinger algebra without particle

number.

4.5 Conformal Killing vectors of flat NC space-time

Now that we have the residual transformations of flat NC space-time at our disposal,

namely (4.37)–(4.41) and (4.62)–(4.64), we can ask which of these transformations corre-

spond to conformal Killing vectors. Since M is the only field left that is still transforming

we simply need to set δM = 0. In this section we will show that we can get the same

answer by solving the TNC conformal Killing equations (3.34)–(3.38). To this end we

substitute (4.2) and (4.9) into the TNC conformal Killing equations.

Substituting the above choices into (3.34) we get

∂tK
t = −zΩ , (4.65)

∂iK
t = 0 . (4.66)

It follows that

∂iΩ = 0 . (4.67)

Doing the same with equation (3.37) we find

∂iKj + ∂jKi = −2Ωδij . (4.68)

The t component of equation (3.37) is equivalent to (4.65) while the i component leads to

∂tKi = ∂i (LKM − (z − 2)ΩM) . (4.69)

The most general solution to (4.68) can be written as

Ki = Ai(t) + λij(t)x
j − Ω(t)xi , (4.70)

where λij(t) is antisymmetric so that

∂tK
i = ∂tA

i(t) + ∂tλ
i
j(t)x

j − ∂tΩx
i , (4.71)
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Differentiating (4.71) with respect to xj and using (4.69) to establish symmetry in i and j

we get

∂tλ
i
j = 0 . (4.72)

Using (4.71) with (4.72) on the left hand side of equation (4.69) we can integrate the right

hand side of (4.69) to obtain

LKM = xi∂tA
i − 1

2
xixi∂tΩ+ (z − 2)ΩM + C(t) , (4.73)

where C(t) is an arbitrary function of t. The ti and ij components of equation (3.36) give

nothing new but the tt component tells us that

∂t (LKM) = (z − 2)Ω∂tM . (4.74)

Substituting (4.73) into (4.74) we find

xi∂2tA
i − 1

2
xixi∂2tΩ+ (z − 2)∂tΩM + C ′(t) = 0 . (4.75)

Equation (3.35) gives nothing new.

When (z − 2)∂tΩ = 0 equation (4.75) is solved by

Ai = ai + vit , (4.76)

Ω = −λ− δz,2ct , (4.77)

C = cst , (4.78)

and equation (4.73) becomes

LKM = vixi +
1

2
δz,2cx

ixi + (2− z)λM + C , (4.79)

and from (4.65) and (4.70) we see that the Killing vectors become

Kt = a+ zλt+ δz,2ct
2 , (4.80)

Ki = ai + vit+ λijx
j + λxi + δz,2ctx

i , (4.81)

provided we can solve (4.79). We thus see that the conformal Killing vectors Kµ agree

with the residual diffeomorphisms ξµ given in (4.38) and (4.39) whenever M is such

that (4.41) vanishes.

Next we consider the case (z − 2)∂tΩ 6= 0. As we saw in the previous subsection there

are three families of functions M . If we take M = cst and a linear M and we substitute

this into (4.73) and (4.75) it follows that ∂tΩ = 0 and so these cases have already been

covered. However if we take the quadratic M of (4.51) we find a new solution to (4.73)

and (4.75) which reads

Ω = −(t− t0)
z−1 , (4.82)

Kt = (t− t0)
z , (4.83)

Ki = (xi − xi0)(t− t0)
z−1 . (4.84)

This can also be found by setting δM = 0 in equation (4.64) with M given by (4.51).
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What we find is that for each of the three families of M the Killing vectors that

obey (4.73) and (4.75) always form the Lifshitz algebra.

M = cst H,D,Pi, Jij , (4.85)

M =
x2 + y2

2t
K,D,Gi, Jij , (4.86)

M = −1

2
V iV it+ V ixi H,D,Pi, Jij , (4.87)

where V i is some constant velocity and where we set t0 = 0 = xi0 in (4.51). The last one

requires

C = −1

2
V iVia+ V iai , (4.88)

vj = V iλij + (z − 1)λVj , (4.89)

in (4.79) for a KV of the form

aH + aiPi +
1

2
λijJij + λD . (4.90)

The Killing vectors H, Pi, Gi, Jij , D, K are given by

H = ∂t , Pi = ∂i ,

Gi = t∂i , Jij = xi∂j − xj∂i ,

D = zt∂t + xi∂i , K = tz∂t + tz−1xi∂i ,

(4.91)

where the latter requires Ω = −tz−1. For z 6= 2 this has the property ∂tΩ 6= 0.

4.5.1 A local realization of the Schrödinger algebra on M

We can use these vectors to generate the maximal orbit studied in section 4.4. To this end

we denote by Ñ the operator that shifts M by a constant (see equation (3.44)). We can

write down the following Schrödinger algebra of vectors

H = ∂t , Pi = ∂i ,

Gi = t∂i + xiÑ , Jij = xi∂j − xj∂i ,

D = zt∂t + xi∂i ,

(4.92)

where for z = 2 we also have

K = t2∂t + txi∂i +
1

2
xixiÑ . (4.93)

These generate the transformation of M as given in (4.41). Solving δM = 0 for a given M

always leads to a Lifshitz subgroup of the Schrödinger algebra. The generators that do not

leave M invariant were denoted by Lµ below (3.47). In order that these orbit generators

become global symmetries we need to consider couplings to TNC geometries for which Mµ

becomes a gauge connection as explained in sections 3.4 and 4.3.
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We have not studied any field theory models with z 6= 2, so it is more difficult to say

what happens in that case. Again, when z 6= 2 we get a Lifshitz algebra of conformal

Killing vectors for every choice of M . It would be interesting to extend the analysis of

section 4.3 to the z 6= 2 cases and see how the Galilean boosts can be added. In particular

it would be interesting to understand the status of the K transformation which for z 6= 2

cannot be added to the Schrödinger algebra.

5 The Lifshitz vacuum

In section 2 we have shown that the sources in Lifshitz holography transform under a

local action of the Schrödinger algebra. Here we will derive this for the case of an exact

Lifshitz space-time, i.e. the sources that describe the Lifshitz vacuum transform under

a local Schrödinger group consisting entirely of bulk PBH transformations. The Killing

symmetries are always given by a Lifshitz subalgebra of the Schrödinger algebra spanned

by the PBH generators. In a suitable set of bulk coordinates and seen from the boundary

point of view this corresponds to a flat Newton-Cartan geometry whose conformal Killing

vectors span the Lifshitz algebra with the Schrödinger symmetries being realized locally

on the Newton-Cartan vector Mµ = ∂µM .

We have shown by studying field theory on Newton-Cartan geometries in sections 3.4

and 4.3 that this is the natural way in which field theories realize global Schrödinger in-

variance through a mechanism in which the fields eat up the background field M in such

a way that M disappears from the theory. This involves an M -dependent field redefini-

tion. The resulting field theory has a global Schrödinger symmetry in which always those

generators outside a Lifshitz subalgebra are realized as projective transformations. In the

example of section 4.3 it is the field φ = 1√
2
ϕeiθ̃ that transforms projectively under the

non-centrally extended Schrödinger group, i.e. the Schrödinger group without the particle

number generator. These are obtained from unitary representations of the centrally ex-

tended Schrödinger group [59, 60]. This is based on the fact that the unitary irreducible

representations of the Galilei group require the central extension to the Bargmann alge-

bra [61]. Here the central element corresponds to shifting M which is not a space-time

coordinate. Hence the representations become projective. This is what we see in the case

of the toy models of section 4.3. These projective realizations of space-time symmetries

cannot be predicted by only looking at Killing vectors. To this end we study probe fields

on a z = 2 Lifshitz background in section 5.5 and show that we can construct probe actions

that are invariant under the entire z = 2 Schrödinger algebra. We take this to suggest that

holographic realizations of Schrödinger invariant field theories involve dynamics on Lifshitz

geometries in the bulk. The role of particle number is tied to the manner in which the

fields couple to the Newton-Cartan vector Mµ = ∂µM . Before we get to those results we

start by explaining how the function M appears in the Lifshitz metric.

5.1 One Lifshitz metric for all M

It is well-known that the Lifshitz metric can be written in Poincaré type coordinates as

ds2 =
dr2

r2
− dt2

r2z
+

1

r2
dxidxi . (5.1)
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The Killing vectors of this metric agree with (4.85) where for the dilatations we need to

add an obvious r∂r to the conformal Killing vector D in (4.91). It is thus tempting to

suggest that this form of the metric corresponds to M = cst. Another possibility is to

consider a trace quadratic M . From (4.86) we read off that in that case the boundary

conformal Killing vectors are given by G, J , D and K in (4.91). These form a Lifshitz

algebra, and we now address the question how these can be realized in the bulk. We make

a naive suggestion which is to add r to the boundary conformal Killing vectors that are

not also Killing vectors, i.e. D and K in (4.91) as if it were another xi coordinate. That

is, following [19] we try

Gi = t∂i , (5.2)

Jij = xi∂j − xj∂i , (5.3)

D = zt∂t + xi∂i + r∂r, , (5.4)

K = tz∂t + tz−1
(

xi∂i + r∂r
)

. (5.5)

Imposing that these are the Killing vectors of a metric leads to the following expression

ds2 =

(

dr

r
− dt

t

)2

− dt2

r2z
+

1

r2

(

dxi − xi

t
dt

)2

. (5.6)

To see that this is indeed a Lifshitz metric one can use the transformation (for z = 2)

t = − 1

t′
, r = −r

′

t′
, xi = −x

′i

t′
, (5.7)

which brings the metric to the usual form. The general z transformation will be given below.

The metric (5.6) depends on boundary coordinates and it is suggestive to rewrite this

in terms of M = xixi

2t via ∂iM = xi/t and ∂i∂
iM = d/t. We never need to use time

derivatives of M as these are determined via (4.50) in terms of spatial derivatives. Doing

so we get

ds2 =

(

dr

r
− 1

d
∂i∂

iMdt

)2

− dt2

r2z
+

1

r2
(

dxi − ∂iMdt
)2
. (5.8)

In section 4.4 we have shown that the orbit of M relevant for flat NC space-time contains

only three cases: constant, linear and trace quadratic M functions. Hence it may well be

that (5.8) is indeed a Lifshitz metric for any M in the maximal orbit of section 5.8. We

will now show this to be the case.

Define

ei = exp

[

− 1

d

∫ t

dt′∂2M

]

(

dxi − ∂iMdt
)

. (5.9)

One can show that

dei = 0 (5.10)

provided that (4.53) and (4.54) hold. Hence we can write

dxi − ∂iMdt = exp

[

1

d

∫ t

dt′∂2M

]

dx′i , (5.11)
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where x′i are some new coordinates. In order that

1

r

(

dxi − ∂iMdt
)

=
1

r′
dx′i (5.12)

we define

r′ = r exp

[

− 1

d

∫ t

dt′∂2M

]

. (5.13)

This also turns dr
r − 1

d∂i∂
iMdt into dr′

r′ . Finally in order that r−zdt = r′−zdt′ we define

dt′ = exp

[

− z

d

∫ t

dt′∂2M

]

dt . (5.14)

We conclude from this that the metric (5.8) is pure Lifshitz for any M satisfying (4.53)

and (4.54) but that (4.50) is not needed. Further the massive vector field is for any metric

of the form (5.8) always simply B = dt
rz .

In section 2 we defined the sources for asymptotically locally Lifshitz space-times in

a (conformally) radial gauge (2.7). For an exact Lifshitz space-time R = 1 and we are in

radial gauge. However (5.8) is not in radial gauge. Suppose that somehow the off-diagonal

drdt term in (5.8) was not there. Then we can use the dictionary of section 2 to read off

that the sources are
τµ = δtµ ,

htt = hti = 0 , hij = δij ,

vµ = −δµt ,
htt = hti = 0 , hij = δij ,

Mµ = ∂µM ,

Φ̃ = 0 .

(5.15)

where we used (4.50) to conclude that Mt = ∂tM and where M obeys (4.53)–(4.54). In

the next section we will show that there always exists a coordinate transformation that

brings (5.8) to radial gauge without modifying the sources. We remind the reader that this

is exactly the two step way of viewing a PBH transformation as explained in section 2.3.

First we perform a boundary dependent rescaling of the radial coordinate possibly together

with a boundary diffeomorphism as in (5.7) (corresponding to choose ΛD and ξµ in (2.41)

and (2.42) and then we perform a second transformation which is subleading in that it does

not act on the sources that brings the metric back to radial gauge. In the next subsection

we construct this transformation for the case M = xixi

2t . Once we have established it for

that case it is straightforward to generalize it to any trace quadratic M as in (4.51). For

linear M the metric (5.8) is already in radial gauge so there is nothing to do.

5.2 Coordinate transformation to radial gauge

Consider the metric (5.6) for M = xixi/2t and z = 2 with the massive vector given by

B =
dt

r2
. (5.16)
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We know how to transform this to the standard Lifshitz metric. This goes via the trans-

formation (5.7) leading to

ds2 = −dT
2

R4
+
dR2

R2
+

1

R2
dXidXi , (5.17)

where the massive vector is

B =
dT

R2
, (5.18)

where we replaced primed coordinates by capitalized coordinates.

Next perform the following coordinate transformation23

T = −1

t

1

1− 1
4
r4

t2

, (5.19)

R = −r
t

1
(

1− 1
4
r4

t2

)1/2
, (5.20)

Xi = −x
i

t
. (5.21)

This leads to the following radial gauge metric

ds2 =
dr2

r2
− dt2

r4
+

1

r2
δij

(

1− 1

4

r4

t2

)(

dxi − xi

t
dt

)(

dxj − xj

t
dt

)

(5.22)

and massive vector

B =
1 + 1

4
r4

t2

1− 1
4
r4

t2

dt

r2
−

r2

t

1− 1
4
r4

t2

dr

r
. (5.23)

We have thus obtained a radial gauge metric with the sources corresponding to a flat NC

space-time with M = xixi/2t.

We see that close to the boundary at r = 0 the coordinate transformation (5.19)–(5.21)

becomes the inverse of (5.7). In fact the transformation (5.7) is of the form of a (t, xi)-

dependent rescaling of the radial coordinate r accompanied by a boundary diffeomorphism

which is precisely what a PBH transformation is at leading order (see section 2.3). What a

PBH transformation does on top of this is that it ensures that the radial gauge form of the

metric is preserved. In other words for every ΛD and ξµ that constitute the leading order

part of a PBH transformation (2.41) and (2.42) there exists a trivial bulk diffeomorphism

that brings it back to radial gauge. By a trivial bulk diffeomorphism we mean those

coordinate transformations that do not act on the sources which therefore are of order

r2 and higher in (2.41) and (2.42). This is precisely what happens in (5.19)–(5.21); it

is a combination of the inverse of (5.7) followed by a trivial bulk diffeomorphism which

are subleading in r to maintain the radial gauge form of the metric. Hence the residual

coordinate transformations of (5.22) act in exactly the same manner on the sources as

those of (5.6).24

23The (T,R) to (t, r) coordinate transformation is an isometry of the AdS2 metric − dT2

R4 + dR2

R2 .
24Since we are dealing with the Lifshitz vacuum there are no vevs turned on. If one defines the vevs

via certain coefficients in the near boundary expansion in the gauge (2.7) it is important to maintain the

conformally radial gauge of (2.7) at least up to orders where the vevs appear in order to find out how they

transform under a PBH transformation.
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The way in which we obtain the coordinate transformation (5.19)–(5.21) is as follows.

The metric (5.6) has manifest K, Ga, D and Jab Killing vectors. In radial gauge we have

to drop manifest K invariance. We thus make an ansatz for the most general metric with

manifest Ga, Jab and D Killing vectors. This ansatz is of the form

ds2 =
dr2

r2
− F1

dt2

r4
+

1

r2
δijF2

(

dxi − xi

t
dt

)(

dxj − xj

t
dt

)

(5.24)

and massive vector

B = H1
dt

r2
+H2

dr

r
, (5.25)

with F1, F2, H1 and H2 arbitrary functions of r2

t (as follows from Ga, Jab, D invariance).

The equations (A.45)–(A.50) provide us with a coordinate independent definition of a

Lifshitz space-time. We solve equations (A.45)–(A.50) with the boundary condition that F1

and F2 go to unity as r goes to zero. The solution we obtain is (5.22). By comparing (5.22)

and (5.18) with (5.17) and (5.23) we obtain (5.19)–(5.21).

One can perform a similar calculation for z 6= 2 and the structure of the PBH trans-

formations guarantees that a transformation to radial gauge should exist, so we leave the

explicit construction of this transformation for general z for future work.

5.3 Symmetries of the Lifshitz space-time

In section 4.2 we derived the residual coordinate transformations that preserve the gauge

choice in which we defined flat NC space-time. These transformations are (4.37)–(4.41).

We now want to understand what these correspond to from a bulk perspective. The trans-

formations used to derive the residual transformations (4.37)–(4.41) were (2.43) which have

been shown in section 2.3 to correspond to the local bulk transformations that preserve

the boundary conditions. Since we can bring (5.8) to radial gauge without changing the

sources, the bulk duals of the transformations are (4.37)–(4.41) must be the bulk diffeo-

morphisms that preserve the form of the metric (5.8). As a check of this statement we will

show that this is the case for z = 2.

The residual bulk diffs are generated by a ζM that obeys

δgrr = Lζgrr = 0 ,

δgrt = Lζgrt = −1

d

1

r
∂2δM ,

δgri = Lζgri = 0 ,

δgit = Lζgit = − 1

r2
∂iδM ,

δgij = Lζgij = 0 ,

δgtt = Lζgtt =
2

r2
∂iM∂iδM +

2

d2s
∂2M∂2δM .

(5.26)
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Further we need to demand that the conditions (4.53) and (4.54) that make the metric

Lifshitz are preserved, meaning we impose

∂i∂
2δM = 0 , (5.27)

∂i∂jδM − 1

d
δij∂

2δM = 0 . (5.28)

Finally, on the boundary we have imposed the conditions Γρ
µν = 0 and Φ̃ = 0. This means

that we need to preserve (4.50) as well which means

∂tδM + ∂iM∂iδM = 0 . (5.29)

Solving (5.26)–(5.29) leads to

ζr = −rΛD(t) , ζµ = ξµ , (5.30)

ξt = ξt(t) such that ∂tξ
t = −2ΛD , (5.31)

∂iξj + ∂jξi = −2δijΛD , (5.32)

∂tξi = −∂iF , (5.33)

δM = ξµ∂µM + F such that ∂tF = 0 , (5.34)

where F is defined in section 4.2, see around equation (4.21). The combination ξµ∂µM+F

was called σ̃ in (3.44). The solution to these equations is exactly given by (4.37)–(4.39)

and (4.41). In order to obtain the result (4.40) one must demand that the local Galilean

boosts only affect Mµ and not hµν , i.e. impose δhµν = 0 using the transformations (2.43).

All bulk residual coordinate transformations (5.30)–(5.34) are nothing other than or-

dinary PBH transformations. Hence they are local symmetries of the on-shell action.

Therefore to find the symmetries of the space-time we solve

δgMN = 0 = δBM (5.35)

which using (5.26)–(5.29) implies

δM = 0 (5.36)

and the resulting set of symmetries are none other than (4.79)–(4.81). For every M that

lies in the M = cst orbit the solution to δM = 0 provides us with a set of Lifshitz Killing

vectors. The condition δBM = 0 with B = dt
r2

gives nothing new as it is an invariant under

the residual coordinate transformations.

The δM transformations are generated by (4.92) that form the Schrödinger algebra.

In other words the generators of the PBH transformations that preserve the boundary

conditions (5.15) span the Schrödinger algebra. In section 5.5 we will see how this structure

can give rise to global Schrödinger invariance of certain probe fields on a Lifshitz space-time.

5.4 The particle number current

The local transformations of the source M will lead to a Ward identity for ∂µT
µ in much

the same way as we derived in appendix B. Any solution of the bulk equations of motion
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of our bulk theory (2.1) with boundary conditions such that the boundary geometry is

described by flat NC space-time, i.e. with sources fixed to be as in (5.15), will have a local

Schrödinger algebra realized on M . Since the transformations acting on M are induced by

bulk diffeomorphisms we have the result that

δSren
on-shell[M ] = −

∫

dd+1x∂µT
µδM , (5.37)

where δSren
on-shell[M ] is the variation of the on-shell action obtained after performing holo-

graphic renormalization for sources given by (5.15). This action only depends on M which

is the only source left unfixed. For details about the holographic renormalization see [16].

The precise form of the counterterms is not relevant for the discussion here. For variations

δM that obey (5.27)–(5.29) the variation (5.37) vanishes. Hence we obtain

∂µT
µ = −∂tλ1 − ∂i(λ1∂

iM)− ∂i∂j∂
jλi +

(

∂i∂j −
1

d
δij∂k∂

k

)

λij

= −∂tλ1 − ∂i(λ1∂
iM) +

(

∂i∂jΛ
ij − 1

d
∂i∂

iΛk
k

)

≡ ∂µJ
µ , (5.38)

where Λij = λij − d
d−1∂

(iλj) and where we defined a current Jµ. In appendix B we

find a similar result using the method of Lagrange multipliers. Here we argue as follows.

Consider the case M = cst and let us restrict to the case z = 2. We then have δM =

−C − vixi − 1
2cx

ixi as follows from (4.41). This tells us that

∫

dd+1x∂µT
µ

(

vixi +
1

2
cxixi

)

= 0 . (5.39)

Performing a partial integration we get
∫

dd+1xJ i
(

vi + cxi
)

= 0 , (5.40)

where Tµ = T̃µ + Jµ with T̃µ a conserved current. Consider first the case vi = 0. It must

be that25

xiJ i = ∂iF
i . (5.41)

This in turn can be written as

J i = ∂j

(

F ij − 1

d
δijF k

k

)

, (5.42)

where xi
(

F ij − 1
dδ

ijF k
k

)

= F j . This form for J i is also compatible with vi 6= 0. We do

not find any constraint on J t since
∫

dd+1x∂tJ
t

(

vixi +
1

2
cxixi

)

= 0 . (5.43)

25One way to show this goes as follows. Define F̂ (k) =
∫
ddxei

~k·~xF (x), i.e. F̂ (k) is the Fourier transform

of F (x). We then have F̂ (0) =
∫
ddxF (x). Suppose the function F is such that

∫
ddxF (x) = 0, which is

the case we are dealing with if we take F = J ixi, then we get F̂ (0) = 0. By Taylor expanding F (k) around

k = 0 we see that F̂ = kiF̂
i, so that when we do the inverse Fourier transform we obtain F = ∂iF

i.
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We have thus reproduced the expression for ∂µJ
µ in equation (5.38). By making the time

derivative ∂t Galilean boost invariant by replacing it by ∂t + ∂iM∂i we can reproduce

the result for ∂µJ
µ for the case that ∂iM is constant or in other words for a linear M of

the form (4.52). The case of a quadratic M as in (4.51) can be dealt with by observing

that ∂t + ∂iM∂i transforms homogeneously under (4.43) and that ∂tλ1 + ∂i(λ1∂
iM) can

be written as ∂t′λ
′
1 + ∂iM∂iλ

′
1 by making a redefinition of t and λ1 of the form ∂t′ =

exp[−
∫ t
dt′∂i∂

iM ]∂t and λ
′
1 = exp[

∫ t
dt′∂i∂

iM ]λ1.

We thus conclude that the local Schrödinger invariance of the on-shell action with flat

NC boundary conditions can lead to a conserved current of the form

∂µ (T
µ − Jµ) = 0 . (5.44)

We emphasize ‘can’ because there is the possibility that Tµ = Jµ plus terms that are

trivially conserved in which case there is no non-trivial conserved current. In order to

see that we can in fact have particle number conservation as well as e.g. Galilean boost

invariance we need to add matter fields just like in TNC geometries: galilean boosts are

never a symmetry of the space-time only, they require matter (see section 4.3). In the next

section we show that one can write down simple probe actions on a Lifshitz space-time

that are invariant under the full Schrödinger group.

It is interesting to observe that the transformation properties of Mµ (here M) are tied

to the boundary conditions. In our case the δM transformations result from the PBH

transformations. This means that the existence of a conserved particle number current is

in part tied to the choice of boundary conditions. This is a pretty uncommon feature and

is due to the fact that Mµ plays kind of a dual role: it is on the one hand part of the

geometry and on the other hand coupling to a current.

We have thus established that the field theory dual to Lifshitz space-times with flat

NC boundaries have global Lifshitz symmetries for every M in the M = cst orbit that is

generated by the Schrödinger algebra and that there can be a conserved particle number

current associated with the local shifts in M . The local shifts in M are generated by

Galilean (vi) and special conformal transformations (c) (see eq. (4.41)).

5.5 Schrödinger invariant probe actions

In this section we set the number of spatial dimensions d = 2. The question we wish to

address is what a natural probe field for a Lifshitz space-time looks like. A probe action

that has been considered frequently in the literature is to take a real Klein-Gordon field

on a Lifshitz background. With our new perspective on Lifshitz symmetries we will take a

fresh look at the problem of constructing probe actions and find some interesting results.

The main question connected to a probe is of course what one one precisely wants to probe.

Here we wish to write down a probe action that is Schrödinger invariant. In order to gain

some intuition about what kind of action to take, we consider the following probe action

(inspired by section 2.2 of [14])

S =

∫

d4x
√−g

(

DMφ
⋆DMφ−m2φ⋆φ

)

, (5.45)
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where DM = ∂M − iqAM . This seems to have some good ingredients such as a complex

scalar which is crucial for Schrödinger symmetries and it has a local gauge symmetry

φ = eiqΛφ′ and AM = A′
M + ∂MΛ where AM is the field appearing in the Stückelberg

decomposition BM = AM − ∂MΞ. We can thus by a local gauge transformation replace

AM by BM , and from now on we will use BM .

The equation of motion, using the metric (5.8), is

− r2Dt

(

r2Dtφ
)

+ r2∂i∂
iφ+ 2iqr2Dtφ+ r2∂2rφ− 3r∂rφ− (m2 − q2)φ = 0 , (5.46)

where we used that for a z = 2 Lifshitz background B2 = −1 and that we always have that

∇MB
M = 0 and where we denote by Dt the following operator

Dt = ∂t + ∂iM∂i +
1

2
∂2Mr∂r , (5.47)

which is covariant under the residual coordinate transformations of (5.8). The equa-

tion (5.46) looks almost like a Schrödinger equation. The term that spoils it is the first

one containing two time derivatives.

In order to determine whether it makes sense to drop this term, we recall from ap-

pendix A that every Lifshitz metric can be written as

ds2 = (−BMBN + γMN ) dxMdxN , (5.48)

where BM is the massive vector field for which B2 = −1 and γMN is orthogonal to BM .

In this language we can rewrite (5.45) as follows

S =

∫

d4x
√−g

(

γMN∂Mφ
⋆∂Nφ+ iqφ⋆BM∂Mφ− iqφBM∂Mφ

⋆

−BM∂Mφ
⋆BN∂Nφ− (m2 − q2)φ⋆φ

)

. (5.49)

The first term in (5.46) comes from the −BM∂Mφ
⋆BN∂Nφ term in the probe action, so

that it is natural to drop this term. This gives rise to the following probe action

S =

∫

d4x
√−g

(

γMN∂Mφ
⋆∂Nφ+ iqφ⋆BM∂Mφ− iqφBM∂Mφ

⋆ − (m2 − q2)φ⋆φ
)

, (5.50)

where γMN = gMN + BMBN . This is a Schrödinger invariant probe action on a Lifshitz

space-time whose equation of motion, in the coordinates of (5.8), is

r2
(

∂i∂
iφ+ 2iqDtφ

)

+ r2∂2rφ− 3r∂rφ− (m2 − q2)φ = 0 . (5.51)

We will next study how the Schrödinger invariance comes about and how this is tied

to the role of M in the Lifshitz metric (5.8). By construction (5.51) is form invariant

under the residual bulk transformations (5.30)–(5.34). Further we can remove M from the

equation of motion by the following field redefinition

φ = exp[−iqM − i

4
qr2∂2M ]φ̃ , (5.52)
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so that φ̃ satisfies

r2
(

∂i∂
iφ̃+ 2iq∂tφ̃

)

+ r2∂2r φ̃− 3r∂rφ̃− (m2 − q2)φ̃ = 0 . (5.53)

This requires using all the properties of M , i.e. equations (4.53), (4.54) and (4.50). The

redefinition implies that there is a local symmetry M = M ′ + α and φ = exp[iqα +
i
4qr

2∂2α]φ′ which is the analogue of the α symmetry of section 4.3 and is the reason we

can promote the flat NC residual transformations (4.42) and (4.43) to global symmetries.

We note that equation (5.53) is exactly the same equation of motion as that of a

complex Klein-Gordon scalar on a z = 2 Schrödinger space-time with null momentum equal

to q [1, 2]. As an interesting consequence,26 this means that these probes evade the bulk

reconstruction issues [62] that are present for minimally coupled scalars in Lifshitz space-

times. Indeed, this is what one could have expected from the fact that our probe actions

are invariant under the full Schrödinger symmetry, thus constraining the Green functions.

On a z = 2 Schrödinger space-time we can perform a coordinate transformation to

global Schrödinger coordinates [63]. It would be interesting to see if we can reproduce the

equation of a complex scalar in global Schrödinger coordinates [64] on a Lifshitz space-

time. From the Schrödinger space-time point of view the global coordinates appear as if a

Newton potential has been turned on [63] (in the sense that the time-time component of

the bulk metric near the Schrödinger boundary has a term that looks like a potential). It

therefore might be an idea to use the equations (A.45)–(A.50) to find Lifshitz space-times

that are dual to flat NC boundaries with a Newton potential turned on and to consider

the probe action (5.50) in those Lifshitz coordinates.

The equation (5.46) was inspired by the work [14] which is a case in which we obtained

the Lifshitz space-time by Scherk-Schwarz reduction along a circle that is everywhere space-

like in the bulk of an asymptotically AdS5 space-time. The resulting 4-dimensional theory

is of the same type as we discussed in this paper. From the boundary point of view the

reduction is along a null circle of N = 4 super Yang-Mills with a theta angle turned on

that is uniformly distributed along the null circle which is expected to give rise to a z = 2

Lifshitz Chern-Simons theory [65]. This is a simple way of understanding that the Lifshitz

boundary geometry is described by Newton-Cartan geometry with torsion as this is the

result of reducing Lorentzian geometry along a null circle.27 Furthermore since we are re-

ducing a CFT on a null circle we expect the dual field theory to be Schrödinger invariant in

the UV. The equation of motion of the probe (5.46) was obtained by reducing the equation

of a real Klein-Gordon scalar on the 5-dimensional asymptotically AdS space-time (which

is a z = 0 Schrödinger space-time [67–71]) that upon reduction gives a z = 2 Lifshitz

space-time. We see that (5.46) close to the boundary becomes equal to (5.51) in agreement

with our expectation that the dual field theory has a Schrödinger invariant UV fixed point.

For large r the probe (5.46) sees Lifshitz symmetries, so it seems that there is a flow to a

Lifshitz IR.

26We thank Cindy Keeler for pointing this out to us.
27We refer to [9, 11, 12, 66] for more details about null reductions of pp-waves and space-times with

hypersurface orthogonal null Killing vectors and torsionless Newton-Cartan geometry and to [14] for gener-

alizations to more general null reductions of any space-time with a null Killing vector and the importance

of including of torsion once the higher dimensional space-time is no longer a pp-wave.
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6 Outlook

We have shown that the Lifshitz vacuum dual to a flat Newton-Cartan space-time has

a local action of a Schrödinger group acting on the one remaining source which is M ,

a subgroup of which is described by Killing vectors that generate the Lifshitz algebra.

Moreover, the boundary theory can have a conserved current related to conservation of

particle number. We have exhibited that this is precisely the same manner in which a

field theory on Newton-Cartan space-time sees Schrödinger symmetries. Furthermore, in

order to show that the theory is invariant under global Schrödinger symmetries one needs

to know what type of matter fields live on the space and how they they are coupled to

the geometry. As important evidence that this is possible in the holographic setup, we

have shown that one can construct scalar probes on a bulk Lifshitz background that are

invariant under a global Schrödinger group.

There are a number of interesting future research directions that we hereby

briefly discuss.

The holographic models that have led us to consider TNC geometries have been derived

using a bulk theory containing Einstein gravity coupled to massive vector fields. In 4

dimensions there are two alternative bulk theories known that admit Lifshitz solutions.

The first is a model introduced in [4] that can be thought of as setting W = 0 in our bulk

action. This is commonly known as the Einstein-Maxwell-dilaton model (EMD). In this

case the Lifshitz geometries are supported by a Maxwell gauge field and a logarithmically

running dilaton. More general classes of solutions allow for a second exponent related to

Lifshitz scaling violation due to the matter fields [72, 73] (and the subsequent works [74–

76]). It would be very interesting to understand the role of this additional exponent from

the dual field theory perspective (see e.g. [77–79] in this context).

Further one could wonder how the TNC geometry comes about in that model and what

the role of the extra local U(1) is in this case. Once one understands holography for gen-

eral exponents z and α one can include hyperscaling violation by considering non-Einstein

frames as in [26, 27] in which the theory has only two exponents z and α. The hyper-

scaling exponent θ then comes about by transforming to the Einstein frame. The other

4-dimensional model that allows for Lifshitz solutions are of the Hořava-Lifshitz type [80–

82]. It would be interesting to see if in the context of bulk Hořava-Lifshitz models [81, 82]

one can similarly speak of boundaries described by TNC geometries.

Our results for the holographic description of Lifshitz space-times also suggest a new

perspective on existing results, notably the computation of doing perturbations around a

Lifshitz vacuum and adding temperature by looking at Lifshitz black branes.

Considering first the subject of perturbations around the Lifshitz vacuum [20–22, 83–

86]. The way this is normally done is to consider the Lifshitz metric with M = cst and

to perturb around it using radial perturbations. This is then divided in terms of pairs

of modes that form source/vev pairs that are then used as the basis for constructing

asymptotic expansions of full non-linear asymptotically Lifshitz space-times. Although the

last step is rarely carried out (see however [26, 27]). Following this approach one finds

scaling dimensions of the sources and vevs that are in general rather complicated functions
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of z and possibly parameters in the potential V . In particular the source we denote by Φ̃

was not seen by the linearized perturbations around the M = cst Lifshitz metric. Instead

another scalar source appears in the spectrum that is denoted by ψ in [21, 27] whose scaling

dimension differs from that of Φ̃. This seems at odds with our general non-linear analysis of

the sources of section 2.2 which do include Φ̃ and whose scaling dimensions have a rather

simple dependence on z with no dependence on the potential (with the exception of ∆

in (2.15)). One potential explanation is that there is a relation between Φ̃ and ψ. It would

be interesting to understand better what precisely is going on. It might also be interesting

to perform perturbations around Lifshitz for general M .

In appendix A we have constructed a coordinate independent definition of a Lifshitz

space-time. In view of the above discussion and in relation to finding the analogue of a

complex scalar on global Schrödinger space-time by consider a Schrödinger invariant probe

on a Lifshitz metric (see the discussion at the end of section 5.5) it would be interesting

to use the results of appendix A to find the most general Lifshitz metric with a flat NC

boundary but with a nonzero Newton potential, i.e. with Mt = ∂tM + Φ and Mi = ∂iM .

This might also be interesting for the study of more general Lifshitz black branes that

asymptote to such a boundary geometry.

Regarding the subject of Lifshitz black branes our analysis suggests that they should

be dual to Galilean invariant fluids. It would be interesting to consider Lifshitz black

branes, and to see if they can be boosted in such a way that the dual energy-momentum

tensor is that of a Galilean perfect fluid at leading order in some hydrodynamic expansion,

comparing with the work of [87]. We hope to report on such an analysis in the near

future. Along similar lines it would be interesting to use our machinery of coupling fields

theories to TNC geometries to study hydrodynamics of both Galilean and Lifshitz invariant

theories and to compare with [46, 87, 88]. More generally, in parallel to the renewed

development of relativistic fluid and superfluid dynamics that was initiated and inspired

by the fluid/gravity correspondence [89, 90], we expect that our holographic approach to

Lifshitz space-times will lead to further novel insights into the dynamics and hydrodynamics

of non-relativistic field theories.

Finally, especially for applications to condensed matter physics it would be interesting

to add charge into the game both in the context of field theory coupled to TNC geometries

by adding more background fields such as a vector potential but also from the holographic

point of view by adding a Maxwell type vector field.
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A Coordinate independent definition of Lifshitz space-times

For the purpose of finding Lifshitz metrics in different coordinate systems using an ansatz

based on symmetries it is useful to have a coordinate independent definition, i.e. a set of

tensor equations for the metric and the massive vector field whose only solution is a Lifshitz

space-time locally. In other words we look for the equivalent of the well known result that

all solutions to

RMNPQ = − (gMP gNQ − gMQgNP ) (A.1)

are locally AdS. Such a definition will be provided in this appendix.

Consider the equations of motion

1√−g∂M
(√−gZFMN

)

= WBN , (A.2)

�Φ =
1

4
Z ′F 2 +

1

2
W ′B2 + V ′ , (A.3)

RMN =
1

2
V gMN +

1

2
Z

(

FMPFN
P − 1

4
F 2gMN

)

+
1

2
WBMBN . (A.4)

The Einstein equation is compatible with the following statement for the Riemann tensor

RMNPQ = CMNPQ +

(

1

6
V + α1ZF

2 − 1

12
WB2

)

(gMP gNQ − gMQgNP )

+
1

4
W (BMBP gNQ −BNBP gMQ −BMBQgNP +BNBQgMP )

+α2Z (2FMNFPQ + FMPFNQ + FMQFPN ) (A.5)

+α3Z
(

FMRFP
RgNQ − FNRFP

RgMQ − FMRFQ
RgNP + FNRFQ

RgMP

)

,

where CMNPQ is the Weyl tensor and where

α1 = − 1

24
− 1

3
α3 (A.6)

α2 =
1

6
− 2

3
α3 . (A.7)

The term

2FMNFPQ + FMPFNQ + FMQFPN = 3FMNFPQ − 3F[MNFPQ] (A.8)
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has the same index structure as the Riemann tensor. We will now choose the Weyl tensor

such that

RMNPQ =

(

1

6
V − 1

24
ZF 2 − 1

12
WB2

)

(gMP gNQ − gMQgNP )

+
1

4
W (BMBP gNQ −BNBP gMQ −BMBQgNP +BNBQgMP )

+
1

6
Z (2FMNFPQ + FMPFNQ + FMQFPN ) . (A.9)

It can be checked that a pure Lifshitz space-time satisfies this equation. This expression for

the Riemann tensor is strikingly similar to the expression obtained in appendix A of [31] for

the case of a pure Schrödinger space-time. In fact the analysis in section 3 and appendix

A of [31] have been the inspiration for the coordinate independent definition of a Lifshitz

space-time that we will get to now.

For a pure Lifshitz space-time Φ is a constant and provided we choose functions Z, W

and V such that the scalar equation is satisfied the remaining equations become

1√−g∂M
(√−gF̄MN

)

= 2zB̄N (A.10)

RMN = −1

2

(

z2 + z + 4
)

gMN +
z − 1

z

(

F̄MP F̄N
P − 1

4
F̄ 2gMN

)

+2(z − 1)B̄M B̄N (A.11)

where BM = A0B̄M and FMN = A0F̄MN . We used here thatW0 = 2zZ0, V0 = −(z2+z+4)

and A2
0 =

2(z−1)
zZ0

. With these choices the Riemann tensor (A.12) can be written as28

RMNPQ = − (gMP gNQ − gMQgNP )

+(z − 1)
(

B̄M B̄P gNQ − B̄N B̄P gMQ − B̄M B̄QgNP + B̄N B̄QgMP

)

+
z − 1

z

(

F̄MN F̄PQ − F̄[MN F̄PQ]

)

. (A.12)

Further one can check that for a pure Lifshitz space-time we have

F̄[MN F̄PQ] = 0 . (A.13)

Further we also have for a pure Lifshitz space-time that

B̄2 = −1 F̄ 2 = −2z2 . (A.14)

We define XN as

XN =
1

z
B̄M F̄MN . (A.15)

We then furthermore have

X2 = 1 , X ·B = 0 , (A.16)

28The factor of −1 in front of the metric part is what motivated the choice made earlier for the Weyl

tensor.
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and
1

z
F̄MN = XM B̄N −XN B̄M . (A.17)

We define the projector γM
N as

γM
N = δM

N + B̄M B̄
N . (A.18)

Let us consider the vector equation of motion (A.10). Taking the covariant derivative

we get

∂M
(√−gB̄M

)

= 0 . (A.19)

Contracting it with B̄N gives

1√−g∂M
(√−gX̄M

)

= z + 2 . (A.20)

Using 1
z F̄MN = XM B̄N −XN B̄M together with the divergences of B̄M and XM leads to

XM∂M B̄
N − B̄M∂MX

N = −zB̄N . (A.21)

These last three equations and therefore the vector equation of motion are solved if we have

∇M B̄N = −zB̄MXN , (A.22)

∇MXN = γMN −XMXN − zB̄M B̄N , (A.23)

together with

B̄2 = −1 , X2 = 1 , X ·B = 0 . (A.24)

It can be checked that equations (A.22)–(A.24) are satisfied for a pure Lifshitz space-time.

From equation (A.22) it follows that the extrinsic curvature KMN = γM
P∇P B̄N = 0.

Equation (A.12) implies that

γA
MγB

NγC
PγD

QRMNPQ = − (γACγBD − γADγBC) . (A.25)

Since the extrinsic curvature vanishes the Gauss-Codazzi equations imply that the Riemann

tensor of the metric γMN is locally AdS. One can also show that given (A.22)–(A.25) the

rest of the Riemann tensor (A.12) follows. We have checked that Lifshitz solves (A.22)–

(A.25). Now we will show the converse, namely all solutions of (A.22)–(A.25) are locally

Lifshitz with metric given by

ds2 =
(

−B̄M B̄N + γMN

)

dxMdxN . (A.26)

From equation (A.23) we conclude that ∂MXN − ∂NXM = 0 so that

XM = ∂MΩ (A.27)

locally for some Ω. Equation (A.22) then implies that there exists a function f(Ω) such

that HM = fB̄M is a Killing vector. The function turns out to be f = ezΩ. More precisely

for B̄M = e−zΩHM equation (A.22) becomes

0 = LHgMN , (A.28)

0 = ∂M
(

e−2zΩHN

)

− ∂N
(

e−2zΩHM

)

(A.29)
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for the symmetric and anti-symmetric parts respectively. The latter equation implies that

B̄M = ezΩ∂MT . (A.30)

Equations (A.24) then imply

LHT = −1 , LHΩ = 0 , LXT = 0 , LXΩ = 1 . (A.31)

Next using that

LXB̄M = zB̄M (A.32)

we can show that the symmetric part of (A.23) is equivalent to

LXγMN = 2γMN − 2XMXN . (A.33)

By contraction with XN this implies that LXXM = 0 (which also follows from ∂MXN −
∂NXM = 0 and X2 = 1 and is hence not a new condition), so that we can also write

LX γ̄MN = 2γ̄MN , (A.34)

where

γ̄MN = γMN −XMXN . (A.35)

The metric γ̄MN is the projection of the metric γMN onto the space orthogonal to XM .

Hence we have

γ̄M
N∂NΩ = 0 , (A.36)

i.e. Ω is constant on the d dimensional space that γ̄M
N projects onto. The last relation

of (A.31) implies that we can write

LXσMN = 0 . (A.37)

where we defined

σMN = e−2Ωγ̄MN (A.38)

we can write for the metric

ds2 =
(

−e2zΩ∂MT∂NT + ∂MΩ∂NΩ+ e2ΩσMN

)

dxMdxN . (A.39)

We will finally show that γ̄MN is a flat metric and since Ω is constant on the d dimensional

space that γ̄M
N projects onto this implies that σMN is a flat metric. We have earlier argued

that the Riemann tensor of the metric γMN satisfies

R
(γ)
ABCD = − (γACγBD − γADγBC) . (A.40)

The γ-covariant derivative ∇(γ)
M of XM (which is orthogonal to B̄M ) is defined as

∇(γ)
A XB = γA

CγB
D∇CXD = γ̄AB (A.41)
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where we used (A.23). The extrinsic curvature of the co-dimension one space (inside the

space orthogonal to B̄M ) orthogonal to XM is given by

K
(γ̄)
AB = γ̄A

C∇(γ)
C XB = γ̄AB . (A.42)

Using the Gauss-Codazzi equations

R
(γ)
ABCD = R

(γ̄)
ABCD −K

(γ̄)
ACK

(γ̄)
BD +K

(γ̄)
ADK

(γ̄)
BC (A.43)

with equations (A.40) and (A.42) we obtain

R
(γ̄)
ABCD = 0 (A.44)

so that γ̄MN and thus σMN are flat Euclidean metrics of dimensionality d. This to-

gether with (A.37) and all the properties of Ω, i.e. LHΩ = 0 = γ̄M
N∂NΩ and LXΩ = 1,

makes (A.39) a Lifshitz metric.

This analysis also shows that the equations (A.22)–(A.24) are equivalent to

∂M B̄N − ∂N B̄M = z
(

XM B̄N −XN B̄M

)

, (A.45)

∂MXN − ∂NXM = 0 , (A.46)

LB̄gMN = −z
(

XM B̄N +XN B̄M

)

, (A.47)

LX γ̄MN = 2γ̄MN , (A.48)

B̄2 = −1 , X2 = 1 , (A.49)

R
(γ̄)
MNPQ = 0 . (A.50)

It is in this form that we will solve equations (A.22)–(A.24). Contracting the first of these

equations with B̄M and using B̄2 = −1 we see that the vector X is determined in terms of

B̄ via

XM =
1

z
LB̄B̄M , (A.51)

so that we automatically have B̄ ·X = 0.

B Comments on T µ and demanding Mµ to become a gauge field

In this appendix we study the question of defining the particle number current in cases

where we couple to a TNC geometry in a manner that there is no local U(1) symmetry whose

gauge connection is Mµ. Looking at the model (3.52) we see that the terms responsible for

the gauge invariance are those with Φ̃ and eµaDµM
a. We now consider what happens when

we remove these terms. If we put the resulting action on a flat NC background we obtain

instead of (4.44) the action

S =

∫

dd+1x

(

−ϕ2

[

∂tθ + ∂iM∂iθ +
1

2
∂iθ∂

iθ + a∂i∂
iθ

]

−1

2
∂iϕ∂

iϕ− V0ϕ
2(d+2)

d

)

, (B.1)

– 58 –



J
H
E
P
0
8
(
2
0
1
5
)
0
0
6

where we put b = 0 since we are not interested in explicit breaking of the θ shift symmetry

here. This action can also be written as

S = SU(1) +

∫

dd+1xϕ2

(

∂tM +
1

2
∂iM∂iM + a∂i∂

iM

)

, (B.2)

where by SU(1) we denote the action (4.44) with a local U(1) invariance. Flat NC means

that we take M = cst together with all other M that give identical actions. Clearly all

M satisfying

0 = ∂tM +
1

2
∂iM∂iM , (B.3)

0 = ∂i∂
iM , (B.4)

lead to the same action (4.46) with θ̃ = θ + M . This gives the strong suspicion that

demanding there to be a local U(1) symmetry whose gauge field is Mµ is convenient but

not strictly necessary. For example if we vary M in (4.44) we get

δbgS = −
∫

dd+1x∂µT
µδM , (B.5)

from which we can conclude that on-shell

− ∂µT
µ = ∂tϕ

2 + ∂i
(

ϕ2∂i(θ +M)− a∂iϕ2
)

= 0 (B.6)

where the conservation follows from the fact that δM = α, δθ = −α is a local symmetry.

If we vary M in (B.1) we obtain

δbgS = −
∫

dd+1x∂µT̃
µδM , (B.7)

where −∂µT̃µ = ∂i
(

ϕ2∂iθ
)

. The action (B.2) still has some local symmetry namely δM =

α̃, δθ = −α̃ where α̃ obeys

∂tα̃+ ∂iM∂iα̃ = 0 , ∂i∂
iα̃ = 0 . (B.8)

This follows from demanding that ∂tM + 1
2∂iM∂iM and ∂i∂

iM remain invariant under

shifting M . Demanding that (B.7) is zero for α̃ satisfying (B.8) leads to an equation of

the form

− ∂µT̃
µ − ∂tλ1 − ∂i(λ1∂

iM) + ∂i∂
iλ2 = 0 , (B.9)

for some undetermined functions λ1 and λ2. To prove this we add the following terms to

the action (B.1) or (B.2)
∫

dd+1x

[

λ1

(

∂tM +
1

2
∂iM∂iM

)

+ λ2∂i∂
iM

]

, (B.10)

where λ1 and λ2 are Lagrange multipliers. We can assign transformations to λ1 and λ2
such that the action (B.1) plus (B.10) is gauge invariant under any α̃, i.e. without any

constraints. Varying this new action with respect to δM = α̃ we find that off-shell the

term obtained by varying M with respect to α̃ is proportional to the equations of motion

of the Lagrange multipliers and θ, so that we get the on-shell equation (B.9). We conclude

that in the model without the local U(1) invariance the current T̃µ is not quite the particle

number current but according to (B.9) it can be improved to become equal to Tµ.
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