

University of Groningen

Fifty Seychelles warbler (Acrocephalus sechellensis) microsatellite loci polymorphic in Sylviidae species and their cross-species amplification in other passerine birds

Richardson, D.S.; Jury, F.L.; Dawson, D.A.; Salgueiro, P.; Komdeur, J.; Burke, T.

Published in: Molecular Ecology

DOI: 10.1046/j.1365-294X.2000.105338.x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Richardson, D. S., Jury, F. L., Dawson, D. A., Salgueiro, P., Komdeur, J., & Burke, T. (2000). Fifty Seychelles warbler (*Acrocephalus sechellensis*) microsatellite loci polymorphic in Sylviidae species and their cross-species amplification in other passerine birds. *Molecular Ecology*, *9*(12), 2226-2231. https://doi.org/10.1046/j.1365-294X.2000.105338.x

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Table 1 Characteristics of five microsatellite loci in samples of black bream (*Acanthopagrus butcheri*) from nine water bodies in Western Australia and from the Gippsland Lakes in Victoria, south-eastern Australia. The Western Australian samples are the same as those used by Chaplin *et al.* (1998)

Locus	GenBank accession no.	Primer sequence (5'–3')	Repeat unit*	T _a (°C)	Size range (bp)	No. of alleles	п	$H_{\rm E}$	H _O
pAb1H1	AF284351	F: GGCTTTCATTTCCCCATTTGTG R: CACCTTTCTCCACCCATTADA	(TG) ₁₅	63	132–148	5	268	0.37	0.44
pAb2B7	AF284352	F: GGTGCGTGCATTGTTAATGTGT R: GATCTGCTTTTCCTTTTGACTCAGC	(TG) ₂₄	65	98–128	14	274	0.70	0.72
pAb4D5	AF284353	F: ACCTCTTCATCTGCGTGACATCT R: GACAACACCCTCACTCACCTGA	(TG) ₆₀	54	199	1	50	0	0
pAb2A5	AF284354	F: AGTTACTTTCTCCAGAGTGGCGC R: GGCAACAGATAAGCACTGAGCATA	(TG) ₁₉	63	105–119	7	273	0.56	0.62
pAb2D11	AF284355	F: CGGTCCAGTTTCACTCTGATGTT R: AACTGCTGTCATCGCCCTGTT	(TG) ₁₅	65	106–110	4†	50	0.11	0.08

*determined from the sequenced insert; †polymorphic only within samples from the Gippsland Lakes. *n*, is the total number of individuals assayed per locus; $T_{a'}$ is the optimal annealing temperature of each primer pair; $H_{E'}$ is the expected heterozygosity, calculated as $1 - \Sigma(f_i^2)$, where f_i is the frequency of the *i*th allele; and $H_{O'}$ is the observed heterozygosity.

References

- Batargias C, Dermitzakis E, Magoulas A, Zouros E (1999) Characterization of six polymorphic microsatellite markers in the gilthead seabream, *Sparus aurata* (Linneaus 1758). *Molecular Ecology*, 8, 897–898.
- Chaplin JC, Baundais GA, Hill HS, McCulloch R, Potter IC (1998) Are assemblages of black bream (*Acanthopagrus butcheri*) in different estuaries distinct? *International Journal of Salt Lake Research*, **6**, 303–321.
- Kailola PJ, Williams MJ, Steward PC *et al.* (1993) *Australian Fisheries Resources*. Bureau of Resource Sciences and Fisheries Research and Development Corporation, Canberra.
- Shaw PW, Pierce GJ, Boyle PR (1999) Subtle population structuring within a highly vagile marine invertebrate, the veined squid *Loligo forbesi*, demonstrated with microsatellite markers. *Molecular Ecology*, **8**, 407–417.
- Takagi M, Taniguchi N, Cook D, Doyle RW (1997) Isolation and characterisation of microsatellite loci from red sea bream *Pagrus major* and detection in closely related species. *Fisheries Science*, **63**, 199–204.

Fifty Seychelles warbler (*Acrocephalus* sechellensis) microsatellite loci polymorphic in Sylviidae species and their cross-species amplification in other passerine birds

D. S. RICHARDSON, F. L. JURY, D. A. DAWSON, P. SALGUEIRO, J. KOMDEUR* and T. BURKE

Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK, *Zoological Laboratory, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands *Keywords: Acrocephalus,* microsatellite, PCR, Seychelles warbler, Sylviidae

Received 21 July 2000; revision received 2 September 2000; accepted 4 September 2000

Correspondence: T. Burke. Fax: + 44 (0) 114 222 0002; E-mail: T.A.Burke@Sheffield.ac.uk

The cooperatively breeding Seychelles warbler, *Acrocephalus sechellensis*, is a rare endemic of the Seychelles islands. By 1959, anthropogenic disturbance had pushed this species to the verge of extinction and only 26 individuals remained, confined to the island of Cousin. The population has since recovered and has been the focus of intense study since 1985 (e.g. Komdeur 1992; Komdeur *et al.* 1997).

We required a set of microsatellite markers to enable studies of mate choice, reproductive success and fitness. Genetic variability is relatively low within this species, possibly due to the recent population bottleneck. Consequently, many microsatellites had to be isolated and screened to provide sufficient polymorphic loci to enable parentage assignment and pedigree construction. We isolated 63 microsatellite loci from the Seychelles warbler and tested for their polymorphism in this and five other species of *Sylviidae*. We also examined the utility of a subset of these loci in 16 other passerine birds.

DNA was extracted following Bruford *et al.* (1998). A genomic library enriched for $(CA)_n$, $(GA)_n$ and $(TTTC)_n$ was prepared as described by Armour *et al.* (1994) using modifications suggested by Gibbs *et al.* (1997). DNA reactions were performed in a 10-µL volume containing 10–50 ng DNA, 1.0 µM of each primer, 0.2 mM of each dNTP, 0.05 units *Taq* DNA polymerase (Thermoprime Plus, Advanced Biotechnologies) and 1.0–2.0 mM MgCl₂ (Table 1) in 20 mM (NH₄)₂SO₄, 75 mM Tris-HCl pH 9.0, 0.01% (w/v) Tween. Polymerase chain reaction (PCR) amplification was performed in a Hybaid Touchdown thermal cycler. Initially, a touchdown cycle was performed with a reaction profile of 95 °C for 3 min, then 94 °C for 30 s,

Table 1 Characterization of 50* polymorphic microsatellite loci from the Seychelles warbler (Acrocephalus sechellensis), and their polymorphism in five other members of the Sylviidae

family														
	EMBL			F	MgCl ₂	Product	Numb€	er of allele r of indiv	ss/ iduals	Numb of indi	er of allé viduals	eles/num tested in	ber	
Locus	accession number	Repeat motif	Primer sequence $(5'-3')$	¹ a (°C)	conc. (mM)	(bp)	SW	$H_{\rm O}$	$H_{\rm E}$	CRW	AW	GRW	EMW	MM
Ase2	AJ287385	[(GAAA)2GCAA]3	F: TTGACAGAGTGTTATTCAATGTG	60	1.5	97	2/7	0.71	0.50	1/6	0	1/3	3/2	1/2
Ase3	AJ287386	$(CA)_{14}CCA$	K: GAGCAGATAATAGACUTIGUT F: ACAGGTATGGCGCTCAAGTC	60	1.5	101	3/7	0.86	0.60	1/6	4/4	1/3	1/2	1/2
Ase4	AJ287387	$(CA)_{11}$	R: CTGAATCTTACACAGGAGACCGT F: TCTCCATCATCACCACAAAGC	60	1.0	103	2/25	0.40	0.37	0	3/4	1/3	0	0
Ase5	AJ287388	AAA(CA) ₁ ,AAA	R: TTCCCATTGCCCTAGTTATTCCA F: TGAAACAAAATGGGATGGTCC	61	1.0	110	1/7	0.00	0.00	1/6	1/4	1/3	1/2	2/2
Ase6	AJ287389	(CA) ₃ G(CA) ₁₇	R: CCTTTCTCGGAACTGATTGCTT F: TAAAAGCCAGCAGTGGAGCC	60	1.5	119	4/25	0.76	0.70	1/6	2/4	1/3	0	0
Ase7	AJ287390	(CT) ₁₃	R: CGAGCTTGCAGGGTTTCCT F: AATCAACTTCCAAATGCTCACAG	60	1.5	123	2/7	0.83	0.53	2/6	1/4	2/3	1/2	0
Ase8	AJ287391	$({ m GT})_4{ m TTT}({ m GT})_7$	R: ACTACATGACTCCAGGCTCAG F: TACCTCTTCGCTGAGCA	TD	1.5	125	1/7	0.00	0.00	3/6	2/4	1/3	2/2	1/2
Ase 9	AJ287392	(CA) ₁₅	R: CCAGCCCTAGCTGTTTCACC F: GACTGAAGTCCTTTTCTGGCTTC	60	1.5	125	3/25	0.40	0.44	3/6	5/4	5/3	2/2	1/2
Ase10	AJ287393	$(cchtccct)_{7}$	R: CACCAGGAATACAAGTCCATTG F: CATTGGGGTACTATGGAAAGACC	TD	1.5	127	3/25	0.64	0.56	9/5	0	1/3	1/2	0
Ase11	AJ287394	$(AC)_{14}$	K: TCCTGAGTGGAAGGAACATAGG F: TCCCCAAATCTCTCCAATTCC	60	1.5	128	2/5	0.40	0.53	7/6	4/4	5/3	3/2	0
Ase12	AJ287395	$(CA)_{11}$	K: AGTTCTAAGCCTGCCTGTGC F: TCAAGGAAACACAACTACAGCC	60	1.5	128	1/7	0.00	0.00	4/6	4/4	1/3	3/2	2/2
Ase13	AJ287396	$(GT)_{11}$	K: TTTCCTCACAGCCTTGACTG F: TGTGCTCCTCTGCTTTCC R: CACATCCCAAAGCTTTCC	62	1.5	132	3/25	0.52	0.54	5/5	7/4	1/3	2/2	1/2
Ase16	AJ276374	$(TCTCC)_{13}$	R. CAGATUCCTGAGTAAATGTCC P. TCAGTTCCTGAGTAAATGTCTC D. TCAAATGCCTGAGTAAATGTCTC	58	1.5	155	4/7	100.0	0.70	5/6	0	6/3	1/2	0
Ase18	AJ276375	$(GT)_{12}$	N. 194411ACCULITATACUE F: ATCCAGTUTTCGCAAAAGCC R. TGUUTTCGCAAAAGCC	60	1.5	176	3/25	0.56	0.50	1/6	5/4	3/3	1/2	3/2
Ase19	AJ276376	$(CA)_4GA(CA)_5$	T: TAGGGTCCCAGGGGGGGGGGGGGAGGAGG	60	2.0	177	4/8	0.88	0.64	3/6	3/4	1/3	4/2	3/2
Ase20	AJ276377	$(CTTC/CTTT)_{10}$	K: TUIGUUALTAGGGAAAAAGTU F: TUTAAAGUTGUUGUGUAAA R: GUGGTTGUAGTIGGAGTTTG	DT	1.5	178	1/7	0.00	0.00	1/6	7/4	1/3	1/2	0
Ase21	AJ276378	(CTTTT)2CTC(TTTC)8	F: TTAGAACCATTTGATAGTTGCCAC	58	2.0	180	1/7	0.00	0.00	9/6	5/4	1/3	1/2	2/2
Ase22	AJ276379	$(GT)_{13}$	K: ATGGGTTTCTTGGGGGAAGAG F: TGAACCATTGTCACCAACAC	58	1.5	181	2/6	0.50	0.53	1/6	0	0	1/2	0
Ase25	AJ276382	(GAAA) ₃₁	R: GCTTTAGTTCAGATGCCCAG F: GATGGCTATATGCTTCAAATGC R: tTTAAAAGCTTTAAAGTTCAGA	58	1.5	187	5/25	0.76	0.74	1/6	6/4	0	2/2	0

Continued
L
e
P
Ta

	EMBL			E	$MgCl_2$	Product	Numbe	r of allele of indiv	s/ duals	Numbe of indiv	r of alle riduals i	eles/numl tested in	ber	
Locus	accession number	Repeat motif	Primer sequence (5'–3')	I _a (°C)	conc. (mm)	sızet (bp)	SW	$H_{\rm O}$	$H_{\rm E}$	CRW	AW	GRW	EMW	MM
Ase26	AJ276383	$(CTC)_3(TC)_{12}$	F: gcttggcctttgcaaaactttc R: aacacctccctgrccctgc	60	1.5	203	1/7	0.00	0.00	1/6	5/4	1/3	2/2	2/2
Ase27	AJ276384	$(TTTC)_{16}$	F: TTAACATTGCATGCTCCTGC R. actictaactetactactttactattact	09	1.0	204	4/25	0.64	0.60	1/6	1/4	3/3	2/2	1/2
Ase29	AJ276386	$(AC)_7TTTG(AC)_6$	F: GATCAGTTTGGGAGACGTTTTTCT R: acagacCcataacgaacgametro	62	1.5	207	2/7	0.14	0.14	1/6	1/4	1/3	1/2	2/2
Ase32	AJ276635	$(GT)_{13}(TCAC)_2(GT)_9$	R: AATGAGCAATACCATGACAGC F: AATGAGCAATACCATGACAGC R: CANTCHTTTCAATTCAAGCAATAACAA	58	1.5	218	1/7	0.00	0.00	1/6	5/4	0	0	0
Ase33	AJ289865	$(AT)_{10}$	F: CTTTGGAATGCCAGGCTGCT D: moonory accaracter	TD	1.5	220	1/7	0.00	0.00	1/6	4/4	2/3	1/2	1/2
Ase34	AJ276636	$(CT)_{11}$	N. IGUIGGAAACCACAGAAU I F: GTTAATTCTTTTTGGCCCTCAGC D: TCTAATAACCAAAAAAAAAAAAAAAAAAAAAAAAAAAA	09	1.5	220	1/7	0.00	0.00	3/5	1/4	3/3	4/2	3/2
Ase35	AJ276637	$(GT)_{10}$	F: Greenderentation	58	1.5	224	3/25	0.44	0.62	1/6	1/4	0	2/2	0
Ase36	AJ276638	$(\mathrm{TGTGG})_7$	K: GCTCCTGTTGTTCTGGGAATAG F: AAGTTCCATGGGGTGAATGC	60	1.5	225	2/5	0.20	0.20	1/6	1/4	1/3	1/2	0
Ase37	AJ276639	(AC) ₉	R: GAGCGTGTTCCTCCAATTCC F: TAATTCATGGAGAAGCCCAG	58	1.5	226	3/25	0.32	0.37	2/6	1/4	0	4/2	0
Ase38	AJ276640	$(CA)_{15}$	R: ICAAAACAACAALAACAATTICACAGC F: ATCCGAGAACCCAATCACTT D. CCAACAATTICACATTICACAGC	58	2.0	226	2/4	0.50	0.43	0	3/4	1/3	3/2	1/2
Ase40	AJ276642	$(GT)_{10}$	R. GGGGCALLLCARGAC F: CACTGCTCCAGGCACTCTG D. moon a correct of a correct	58	1.5	230	1/7	0.00	00.00	3/6	3/4	1/3	1/2	1/2
Ase42	AJ276644	$(\mathrm{GT})_4(\mathrm{AT})_6(\mathrm{GT})_8(\mathrm{AT})_2$	R: TUCAAGGETAGGETTGGGATGTG F: CATGGGTAGGTTGGGATGTC D: AUTHINITICTATATGGAATGTC	62	1.5	243	2/25	0.32	0.27	1/6	1/4	4/3	1/2	2/2
Ase43	AJ276645	$(TA)_3(CA)_8(TA)_5$	R. HURCHGERAUTTGCAT P. ATTGTGTGGGATTTTGCAT R. HURCHGERGERAUTTGCHUM	TD	1.5	250	1/7	0.00	0.00	2/6	3/4	1/3	1/2	2/2
Ase44	AJ276646	$(GT)_{18}$	F: TTCCCGTAATTATGACCTCTCTTG R: accaga actingtrangacctaga	TD	1.5	250	1/7	0.00	0.00	1/6	4/4	3/3	1/2	2/2
Ase46	AJ276775	$(TG)_{13}$	F: CTGGCTGTATCTTGGTGTGTGC R: CAGGCTGTATCTTGGTGTGTGC	62	1.5	265	3/25	0.24	0.48	1/6	2/4	1/3	1/2	1/2
Ase47	AJ276776	$(CA)_{10} \dots (CA)_4$	R. GATCACATTTGGCATTTACTGCIG P: GATCACATTTGGCATTTACTGAT R: actrictura	TD	1.5	267	1/7	0.00	0.00	4/6	0	1/3	1/2	2/2
Ase48	AJ276777	(CCTTCT) ₆	F: TTTATTTTCCTGGACTGGAACAATC R: Gaacattricctgcactractric	58	1.0	270	4/25	0.56	0.53	7/5	7/4	5/3	3/2	0
Ase49	AJ276778	$(AC)_{10}$	F: CCCCTGAAGTGTCCCAACG	58	1.5	272	2/7	0.00	0.26	1/6	2/4	1/3	1/2	2/2
Ase50	AJ276779	$(CA)_{12}$	k: autritocoascalatoride F: ctgtggaatgctgtctggc R: atggactcccgtctaacttgc	60	1.5	272	1/7	0.00	0.00	1/6	6/3	2/3	2/2	2/2

© 2000 Blackwell Science Ltd, Molecular Ecology, 9, 2155–2234

ned
ntin
ŭ
- -
5
Tat

					j L	- -	Number	of allele		Numb	er of alle	eles/num	ber	
	EMBL			Т	MgCl ₂	l ^y roduct sizet	number	of indivi	duals	of indi	viduals	tested in		
Locus	number	Repeat motif	Primer sequence (5'–3')	°C)	(mm)	(dd)	SW	$H_{\rm O}$	$H_{\rm E}$	CRW	AW	GRW	EMW	ΜM
Ase51	AJ276780	(CA) ₁₂	F: AATTCCCCTAGACAGGCAGC D. mentering and	60	1.5	277	1/7	0.00	0.00	1/6	7/4	2/3	2/2	1/2
Ase52	AJ276781	$(CA)_9(CA)_5$	R. ICACIGGAGAGAGCCTCATTICC F. TCTTAGCCTGCACTCATTICCA D. GAGMAGACGAGAA ACTUMATINA COM	09	1.5	278	1/7	0.00	0.00	1/6	2/4	1/3	1/2	1/2
Ase53	AJ276782	$(CTT)_{22}$ $(CTCCTT)_{10}$	R. LAGICACUGIAAGI I CALAGG F. ATGGAGAATTCTGGGTGGTGG R. CCCAATAATTAGGGTGGTAAA	60	1.5	285	2/7	0.43	0.54	1/6	8/4	0	0	0
Ase55	AJ276784	$(GT)_9$	F. GTGTGGACTCTGGTGGCTC	62	1.5	292	1/7	0.00	0.00	1/6	6/4	2/3	2/2	2/2
Ase56	AJ276785	$(GT)_{18}$	k: tcccaaagcactcaaactagg F: ttcactgagaagggagaatgtg	60	1.5	298	3/25	0.44	0.40	5/6	5/4	2/3	3/2	0
Ase57	AJ276786	$(AC)_{14}$	R: GTCCTTGATTGATTACAGGCT F: GCAAGTGCAGATGTTTCCCT	TD	1.5	299	1/7	0.00	0.00	6/6	3/4	4/3	1/2	0
Ase58	AJ276787	$(CTTTT)_{27}$	R: CCAAAGCAGGACAATGCTG F: ATTCCAGGGATTTGGGCAG	60	1.0	311	5/25	0.76	0.76	1/6	7/4	5/3	4/2	1/2
Ase60	AJ276789	(GT),GG(GT),	R: CTCAAAGCGAAATTGAGCAGT F: CATGAAAAGGAACTCTCCAGC	62	1.5	353	1/7	0.00	0.00	0	5/4	4/3	1/2	3/2
Ase61	AJ276790	(GAAAA) ₁₃	R: TTCCATCTCTGTTCTACTGCG F: AGGATTTTTAATGGGATATACACATCTG	54	2.0	369	2/5	0.40	0.36	0	0	3/3	0	0
Ase62	AJ276791	$(CT)_2(GT)_8$	R: AGCCACATTITTAGCCCACAG F: TCGCCAGGTCGTGTGTAGTC	58	1.5	372	1/7	0.00	0.00	1/6	1/4	1/3	2/2	0
Ase63	AJ276792	$(GAGAAA)_8(GA)_7$	R: CAAAACCGTGTCGGGGGGG F: TTTGGGGTTTAGGAATAGCAGA	09	1.0	400	2/7	0.29	0.26	2/6	8/4	2/3	4/2	1/2
Ase64	AJ276793	(AGGG) ₉ (ATGG) ₁₂	R: GGCTTCAGCCTGAGAAAGTC F: CCACCTTTTCATACTGGGGGAG	TD	1.5	412	2/8	0.50	0.40	7/6	1/4	3/3	1/2	1/2
			R: TTCAGCCAGTCAGTGTAGCC											
*An ad	ditional 13 lo	ci were monomorphic	: in all species tested (EMBL accession nun	nbers: ∕	AJ287384, ∤	AJ287397, AJ	287398 A	J276380,	AJ276381, AJ	[276385, A	J276387	, AJ2766	34, AJ2766	641,

AJ276643, AJ276647, AJ276783, AJ276788).

+Size in cloned allele. SW, Seychelles warbler, Acrocephalus sechellensis; CRW, clamorous reed warbler, Acrocephalus stentoreus australis (M. Berg, personal communication); AW, aquatic warbler, Acrocephalus paludicola (P. Hedrich, personal communication); GRW, great reed warbler, Acrocephalus arundinaceus (B. Hansson, personal communication); EMW, European marsh warbler, *Acrocephalus palustris* (B. Hansson, personal communication); WW, willow warbler, *Phylloscopus trochilus* (B. Hansson, personal communication). T_{a} , annealing temperature; TD, Touchdown cycle; H_{o} , observed heterozygosity; H_{E} , expected heterozygosity; 0, no product detected.

		Numbe	er of al	lleles/Nu	umber of	indivi	duals te	sted (n	= 4 un]	ess stai	ted)					
Family* S	pecies	Ase8 ~	4se9 /	4se13 As	e18 Ase	19 As	e29 Asi	34 As	37 A	se40 A	se42 /	Ase43 /	se46 A	se48 As	e55 Ase5	26
Malurridae 5 Pomatostomidae V Laniidae L Corvidae A Cinclidae V Sturnidae E Certhiidae B Paridae L Hirundinidae S	uperb fairy-wren, Malurus cyaneus Vhite-browed babbler, Pomatostomus superciliosus oggerhead shrike, Lanius Iudovicianus vzure-winged magpie, Cyanopica cyana Vhite-throated dipper, Cinclus cinclus intropean starling, Sturnus vulgaris Vinter wren, Troglodytes troglodytes ilue tit, Parus caeruleus ong-tailed tit, Aegithalos caudatus and martin, Riparia riparia	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 20 0	$\begin{array}{c} 0 \\ 6 \\ 1 \\ 1 \\ 1 \end{array}$			$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 16 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	1 0 0 1 1 1 1 1 (680 1 1	0. 0		11 11 11 11 11 11 11 11 11	0 1 1 0 0 1 1 0 0 1 1 1 1	1 12 1 1 1 0 1 0	0 0 1 0 0 0 0	
Pycnonotidae Pycnonotidae Sylviidae Sylviidae Sylviidae Sylviidae Sylviidae C Sylviidae C Sylviidae C C Sylviidae Sylviidae Sylviidae Sylviidae Sylviidae Sylviidae Sylviidae S Sylviidae S Sylviidae S Fringillidae S Fringillidae S Sylviidae S S S Sylviidae S S S S S S S S S S S S S S S S S S S	And the second second repairs Vhite-spectacted bulbul, <i>Pycnonotus xanthopygos</i> eychelles grey white-eye, <i>Zosterops modestus</i> adge warbler, <i>Acrocephalus paludicola</i> edge warbler, <i>Acrocephalus schoenobaenus</i> inropean marsh warbler, <i>Acrocephalus arundinaceus</i> intropean marsh warbler, <i>Acrocephalus stentoreus</i> anstrais intropean marsh warbler, <i>Acrocephalus stentoreus</i> austrais eychelles warbler, <i>Acrocephalus stentoreus</i> willow warbler, <i>Acrocephalus stentoreus</i> willow warbler, <i>Acrocephalus stentoreus</i> eychelles sunbird, <i>Nectarinia dussumieri</i> eychelles fody, <i>Fodia sechallarum</i> intropean greenfinch, <i>Carduelis chloris</i> dumber of species tested for amplification 6 of species in which a product was amplified dumber of species tested for variability) with ≥3 alleles	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	222 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	$\begin{array}{c} 1 \\ 4 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	+	2 3/// 2 3/// 2 3/// 2 3/// 2 1// 2 3/// 2 1// 2 1//		8 7 8 2 1 1 1 1 5 7 1 1 1 3 1 1 1	й 4 6 6	// /// /// /// /// /// /// /// /// /// /////// ///// ////////////////////////////////////	7/7 // 4 11/7 3 3 1/7 4 11/7 4 1/7 1/7 5 1/7 1/7 5 1/7 1/7 5 1/7 1/7 5 1	//4 //4 //4 //2 //2 //2 //2 //2 //2 4//2 3//2 //2 //2 //2 4//2 3//2 //2 //2 //2 4//2 3//2 //2 //2 //2 4//2 3//2 //2 //2 //2 1 1 1 //2 //2 1 1 1 /2 //2 1 1 1	25 117 25 117 26 27 27 127 2900 29	2 3/25 3 3/25 3 3/25 3 3/25 8 3 8 3	

Table 2 Cross-species utility of 15 Seychelles warbler (Acrocephalus sechellensis) microsatellite loci in 21 other passerine birds

-, sample not tested; 0, no reliable product; 1, product visualized on agarose gel (not tested for variability).

annealing temperature X for 45 s, 72 °C for 45 s for two cycles each at X = 60 °C, 57 °C, 54 °C, 51 °C then 25 cycles at X = 48 °C, followed by 72 °C for 5 min. To optimize the PCR amplification of the loci found to be polymorphic, further PCRs consisted of one cycle at 95 °C for 3 min then 35 cycles at 94 °C for 1 min, annealing temperature (Table 1) for 30 s, 72 °C for 45 s, followed by 72 °C for 5 min. For the cross-species amplifications, a touchdown cycle was performed as above.

PCR products were visualized on a 0.8% agarose gel stained with ethidium bromide. When testing for polymorphism, PCR products were run on 6% polyacrylamide gels and visualized by staining with silver (Promega) or by autoradiography (after PCR with one of the primers end-labelled with [γ^{33} P]-dATP; Sambrook *et al.* 1989).

We developed primers for 63 microsatellites, of which 50 were polymorphic in at least one of the tested species of *Sylviidae* (Table 1). Thirty loci were polymorphic, displaying up to five alleles, in a test panel of up to 25 unrelated Seychelles warblers. There was no significant difference at any locus between the observed and expected heterozygosity, though these comparisons were of limited power.

All 50 loci found to be polymorphic in the Sylviidae were tested for polymorphism in six unrelated individuals of the winter wren, *Troglodytes troglodytes* (M. Berg, personal communication). Fifteen of the loci that were also found to be polymorphic in the winter wren were selected and tested for utility in 16 other species, representing 15 passerine families (Table 2; following Sibley & Monroe 1990).

The high proportion of loci found to be polymorphic in the other *Sylviidae* will reduce or eliminate the need to develop new primers for future studies of these species. The crossspecies amplification suggests that, after further testing, many of the primers presented here may also be useful for detecting polymorphic loci in other passerine families (Table 2).

Acknowledgements

We thank M. Berg, N. Chaline, B. Hansson, P. Heidrich, R.C. Marshall and D.J. Ross for contributing data on the crossutility of primers. D. Bryant, M.C. Double, B.J. Hatchwell, J.G. Martinez, N. Mundy, J. Wetton, J. Wright, S. Yezerinac and R. Zilberman kindly supplied blood or DNA samples. This work was supported by the Natural Environment Research Council.

References

- Armour JAL, Neumann R, Gobert S, Jeffreys AJ (1994) Isolation of human simple repeat loci by hybridization selection. *Human Molecular Genetics*, 3, 599–605.
- Bruford MW, Hanotte O, Brookfield JFY, Burke T (1998) Multilocus and single-locus DNA fingerprinting. In: *Molecular Genetic Analysis of Populations: a Practical Approach*, 2nd edn (ed. Hoelzel AR), pp. 287–336. IRL Press, Oxford.
- Gibbs M, Dawson DA, McCamley C, Wardle AF, Armour JAL, Burke T (1997) Chicken microsatellite markers isolated from libraries enriched for simple tandem repeats. *Animal Genetics*, 28, 401–417.
- Komdeur J (1992) Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. *Nature*, **358**, 493–495.

- Komdeur J, Daan S, Tinbergen J, Mateman C (1997) Extreme adaptive modification in the sex ratio of Seychelles warbler's eggs. *Nature*, 385, 522–525.
- Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York.
- Sibley CG, Monroe BL (1990) Distribution and Taxonomy of Birds of the World. Yale University Press, New Haven.

Variable microsatellite loci in red swamp crayfish, *Procambarus clarkii*, and their characterization in other crayfish taxa

NATALIA M. BELFIORE and BERNIE MAY

Department of Animal Science, University of California, Davis, 95616, USA

Keywords: crayfish, heterologous, microsatellites, primers, Procambarus clarkii

Received 10 August 2000; revision accepted 7 September 2000

Correspondence: Natalia M. Belfiore. Fax: + 530 752 0175; E-mail: nmbelfiore@ucdavis.edu

The red swamp crayfish, Procambarus clarkii, is a temperate freshwater crayfish native to the south-eastern United States. It is heavily exploited as a fishery product and is used widely in aquaculture. Its economic importance led to widespread introductions on four continents. The species has been used extensively in laboratory studies, but studies of its population biology in the wild have been rare (Huner 1988). Previous population work using allozymes found low levels of genetic variation in two Procambarus species, including P. clarkii (Busack 1988). We developed two microsatellite libraries for P. clarkii (f. Cambaridae) from which 23 variable microsatellite loci were optimized. The 18 clearest markers were tested in representative taxa of the other two crayfish families (Parastacidae and Astacidae), as well as two cambarid species in Orconectes and one congeneric species; characterization is reported here.

Genomic DNA was extracted from frozen (-80 °C) tail muscle of a red swamp crayfish (Putah Creek, Yolo County California) using the Tris sodium chloride EDTA sodium dodecyl sulphate (SDS) (TNES)-urea buffer extraction protocol (Asahida et al. 1996) with the following modifications. Approximately 200 mg tissue were added to 700 µL extraction buffer, containing 4 м urea and 0.5% SDS, and 0.035 mg Proteinase K. After overnight incubation (37 °C), samples were extracted twice with phenol:chloroform:isoamyl alcohol (25:24:1) and once with chloroform:isoamyl alcohol (24:1). DNA was precipitated with 0.3 M sodium acetate pH 5.3 in a final ethanol concentration of 67%. The pellet was washed in 70% ethanol, air or vacuum dried, and resuspended in Tris low EDTA (TLE) buffer (10 mm tris + 0.1 mm EDTA, pH 8.0). Two subgenomic libraries were created by Genetic Identification Services (Chatsworth, CA) by partially digesting whole genomic DNA with a mixture of the following restriction enzymes: BsrBR1,