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Summary

Fifty years have passed since the publication of the first regression tree algorithm. New tech-
niques have added capabilities that far surpass those of the early methods. Modern classification
trees can partition the data with linear splits on subsets of variables and fit nearest neighbor,
kernel density, and other models in the partitions. Regression trees can fit almost every kind of
traditional statistical model, including least-squares, quantile, logistic, Poisson, and proportional
hazards models, as well as models for longitudinal and multiresponse data. Greater availability
and affordability of software (much of which is free) have played a significant role in helping the
techniques gain acceptance and popularity in the broader scientific community. This article surveys
the developments and briefly reviews the key ideas behind some of the major algorithms.
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1 Introduction

As we reach the 50th anniversary of the publication of the first regression tree algorithm
(Morgan & Sonquist, 1963), it seems appropriate to survey the numerous developments in the
field. There have been previous reviews, but some are dated (e.g., Murthy, 1998) and others
were written as brief overviews (e.g., Loh, 2008a; 2011; Merkle & Shaffer, 2009; Strobl et al.,
2011) or simple introductions intended for non-statistics audiences (e.g., De’ath & Fabricius,
2000; Harper, 2003; Lemon et al., 2005). Owing to the large and increasing amount of literature
(in statistics, computer science, and other fields), it is impossible, of course, for any survey to be
exhaustive. We have therefore chosen to focus more attention on the major algorithms that have
stood the test of time and for which software is widely available. Although we aim to provide a
balanced discussion, some of the comments inevitably reflect the opinions of the author.

We say that X is an ordered variable if it takes numerical values that have an intrinsic
ordering. Otherwise, we call it a categorical variable. Automatic Interaction Detection (AID)
(Morgan & Sonquist, 1963) is the first regression tree algorithm published in the literature.
Starting at the root node, AID recursively splits the data in each node into two children nodes.
A split on an ordered variable X takes the form “X � c”. If X has n distinct observed values,
there are .n � 1/ such splits on X . On the other hand, if X is a categorical variable having
m distinct observed values, there are .2m�1 � 1/ splits of the form “X 2 A”, where A is a
subset of the X values. At any node t , let S.t/ denote the set of training data in t and let

1 This paper is followed by discussions and a rejoinder.
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Nyt be the sample mean of Y in t . Let �.t/ denote the node “impurity” of t . Using the sum
of squared deviations �.t/ D

P
i2S.t/.yi � Nyt /

2, AID chooses the split that minimizes the
sum of the impurities in the two children nodes. Splitting stops when the reduction in impu-
rity is less than a preset fraction of the impurity at the root node. The predicted Y value in
each terminal node is the node sample mean. The result is a piecewise constant estimate of the
regression function.

THeta Automatic Interaction Detection (THAID) (Messenger & Mandell, 1972) extends
these ideas to classification, in which Y is a categorical variable. THAID chooses splits to
maximize the sum of the number of observations in each modal category (i.e., the cate-
gory with the most observations). Alternative impurity functions are the entropy, �.t/ D
�
P
j p.j jt / logp.j jt /, and the Gini index, �.t/ D 1�

P
j p

2.j jt /, where p.j jt / is the pro-
portion of class j observations in node t . Messenger & Mandell (1972) attributed the Gini
index to Light & Margolin (1971).

Figure 1 shows a classification tree model for the iris data that Fisher (1936) used to intro-
duce linear discriminant analysis (LDA). Four measurements (petal length and width, and
sepal length and width) were recorded on 150 iris flowers, with 50 from each of the Setosa,
Versicolour, and Virginica types. The tree splits only on petal length and width.

Despite their novelty, or perhaps owing to it, AID and THAID did not initially attract much
interest in the statistics community. Einhorn (1972) showed by simulation that AID can severely
overfit the data. Doyle (1973) pointed out that if two or more variables are highly correlated, at
most one may appear in the tree structure. This problem of masking can lead to spurious con-
clusions about the relative importance of the variables. Bishop et al. (1975) criticized AID for
ignoring the inherent sampling variability of the data. Around the same time though, the idea
of recursive partitioning was gaining steam in the computer science and engineering commu-
nities as more efficient algorithms for carrying out the search for splits began to appear (Chou
1969; Henrichon & Fu, 1973; Meisel & Michalopoulos, 1977; Payne & Meisel, 1977; Sethi &
Chatterjee, 1991).

2 Classification Trees

We begin with classification trees because many of the key ideas originate here.
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Figure 1. Classification tree model for iris data. At each intermediate node, an observation goes to the left child node if and
only if the stated condition is true. The pair of numbers beneath each terminal node gives the number misclassified and the
node sample size.
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2.1 CART

Classification And Regression Trees (CART) (Breiman et al., 1984) was instrumental in
regenerating interest in the subject. It follows the same greedy search approach as AID and
THAID, but adds several novel improvements. Instead of using stopping rules, it grows a large
tree and then prunes the tree to a size that has the lowest cross-validation estimate of error. The
pruning procedure itself is ingenious, being based on the idea of weakest-link cutting, with the
links indexed by the values of a cost-complexity parameter. This solves the under-fitting and
over-fitting problems of AID and THAID, although with increased computation cost. To deal
with missing data values at a node, CART uses a series of “surrogate” splits, which are splits on
alternate variables that substitute for the preferred split when the latter is inapplicable because
of missing values. Surrogate splits are also used to provide an importance score for each X
variable. These scores, which measure how well the surrogate splits predict the preferred splits,
can help to detect masking. CART can also employ linear splits, that is, splits on linear combi-
nations of variables, by stochastic search. Brown et al. (1996) proposed a linear programming
solution as an alternative. Breiman et al. (1984) obtained conditions for all recursive partition-
ing techniques to be Bayes risk consistent. CART is available in commercial software. It is
implemented as RPART (Therneau & Atkinson, 2011) in the R system (R Core Team 2014).

2.2 CHAID

CHi-squared Automatic Interaction Detector (CHAID) (Kass, 1980) employs an approach
similar to stepwise regression for split selection. It was originally designed for classification and
later extended to regression. To search for anX variable to split a node, the latter is initially split
into two or more children nodes, with their number depending on the type of variable. CHAID
recognizes three variable types: categorical, ordered without missing values (called monotonic),
and ordered with missing values (called floating). A separate category is defined for missing
values in a categorical variable. If X is categorical, a node t is split into one child node for each
category ofX . IfX is monotonic, t is split into 10 children nodes, with each child node defined
by an interval of X values. If X is floating, t is split into 10 children nodes plus one for missing
values. Pairs of children nodes are then considered for merging by using Bonferroni-adjusted
significance tests. The merged children nodes are then considered for division, again by means
of Bonferroni-adjusted tests. Each X variable is assessed with a Bonferroni-adjusted p-value,
and the one with the smallest p-value is selected to split the node. CHAID is currently available
in commercial software only.

2.3 C4.5

C4.5 (Quinlan, 1993) is an extension of the ID3 (Quinlan, 1986) classification algorithm.
If X has m distinct values in a node, C4.5 splits the latter into m children nodes, with one
child node for each value. If X is ordered, the node is split into two children nodes in the
usual form “X < c”. C4.5 employs an entropy-based measure of node impurity called gain
ratio. Suppose node t is split into children nodes t1; t2; : : : ; tr . Let n.t/ denote the number
of training samples in t , and define �.t/ D �

P
j p.j jt / logp.j jt /, fk.t/ D n.tk/=n.t/,

�X .t/ D
Pr
kD1 �.tk/fk.t/, g.X/ D �.t/ � �X .t/, and h.X/ D �

P
k fk.t/ log fk.t/. The

gain ratio of X is g.X/=h.X/. Although C4.5 takes almost no time on categorical variable
splits, the strategy has the drawback that if X has many categorical values, a split on X may
produce children nodes with so few observations in each that no further splitting is possible—
see Loh (2008a) for an example. C4.5 trees are pruned with a heuristic formula instead of
cross-validation.
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If there are missing values, the gain function is changed to g.X/ D F ¹�.t/��X .t/º, where
F is the fraction of observations in a node non-missing inX . The h.X/ function is extended by
the addition of a “missing value” node trC1 in its formula. If an observation is missing the value
of a split variable, it is sent to every child node with weights proportional to the numbers of non-
missing observations in those nodes. Empirical evidence shows that C4.5 possesses excellent
speed and good prediction accuracy, but its trees are often substantially larger than those of
other methods (Lim et al., 2000; Loh, 2009).

Source code for C4.5 can be obtained from www.rulequest.com/Personal/c4.5r8.tar.gz. It is
also implemented as J48 in the WEKA (Hall et al., 2009) suite of programs.

2.4 FACT and QUEST

Fast and Accurate Classification Tree (FACT) (Loh & Vanichsetakul, 1988) is motivated
by recursive LDA, which generates linear splits. As a result, it splits each node into as many
children nodes as the number of classes. To obtain univariate splits, FACT uses analysis of
variance (ANOVA) F -tests to rank theX variables and then applies LDA to the most significant
variable to split the node. Categorical X variables are transformed first to dummy 0–1 vectors
and then converted to ordered variables by projecting the dummies onto the largest discriminant
coordinate. Splits on the latter are expressed back in the form X 2 A. Missing X values
are estimated at each node by the sample means and modes of the non-missing ordered and
categorical variables, respectively, in the node. Stopping rules based on the ANOVA tests are
used to determine the tree size.

One weakness of the greedy search approach of AID, CART, and C4.5 is that it induces biases
in variable selection. Recall that an orderedX variable taking n distinct values generates .n�1/
splits. Suppose X1 and X2 are two such variables with n1 and n2 distinct values, respectively.
If n1 < n2 and both variables are independent of Y , then X2 has a larger chance to be selected
than X1. The situation is worse if X2 is a categorical variable, because the number of splits
grows exponentially with n2. Breiman et al. (1984, p. 42) noted this weakness in the CART
algorithm, and White & Liu (1994) and Kononenko (1995) demonstrated its severity in C4.5.
We will say that an algorithm is unbiased if it does not have such biases. Specifically, if all X
variables are independent of Y , an unbiased algorithm gives each X the same chance of being
selected to split a node.

FACT is unbiased if all the X variables are ordered, because it uses F -tests for variable
selection. But it is biased toward categorical variables, because it employs LDA to convert them
to ordered variables before application of the F -tests. Quick, Unbiased and Efficient Statistical
Tree (QUEST) (Loh & Shih, 1997) removes the bias by using F -tests on ordered variables and
contingency table chi-squared tests on categorical variables. To produce binary splits when the
number of classes is greater than 2, QUEST merges the classes into two superclasses in each
node before carrying out the significance tests. If the selected X variable is ordered, the split
point is obtained by either exhaustive search or quadratic discriminant analysis. Otherwise,
if the variable is categorical, its values are transformed first to the largest linear discriminant
coordinate. Thus, QUEST has a substantial computational advantage over CART when there
are categorical variables with many values. Linear combination splits are obtained by applying
LDA to the two superclasses. The trees are pruned as in CART.

2.5 CRUISE

Whereas CART always yields binary trees, CHAID and C4.5 can split a node into more than
two children nodes, their number depending on the characteristics of the X variable. Classifi-
cation Rule with Unbiased Interaction Selection and Estimation (CRUISE) (Kim & Loh, 2001)
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is a descendent of QUEST. It splits each node into multiple children nodes, with their num-
ber depending on the number of distinct Y values. Unlike QUEST, CRUISE uses contingency
table chi-squared tests for variable selection throughout, with the values of Y forming the rows
and the (grouped, if X is ordered) values of X forming the columns of each table. We call
these “main effect” tests, to distinguish them from “pairwise interaction” tests that CRUISE
also performs, which are chi-squared tests cross-tabulating Y against Cartesian products of
the (grouped) values of pairs of X variables. If an interaction test between Xi and Xj , say, is
most significant, CRUISE selects Xi if its main effect is more significant than that of Xj , and
vice versa. Split points are found by LDA, after a Box–Cox transformation on the selected X
variable. Categorical X variables are first converted to dummy vectors and then to their largest
discriminant coordinate, following FACT and QUEST. CRUISE also allows linear splits using
all the variables, and it can fit a linear discriminant model in each terminal node (Kim &
Loh, 2003).

Kim & Loh (2001) showed that CART is biased toward selecting split variables with more
missing values and biased toward selecting surrogate variables with fewer missing values. The
cause is due to the Gini index being a function of the class proportions and not the class sample
sizes. CRUISE and QUEST are unbiased in this respect. CRUISE has several missing value
imputation methods, the default being imputation by predicted class mean or mode, with class
prediction based on a non-missing X variable.

2.6 GUIDE

Generalized, Unbiased, Interaction Detection and Estimation (GUIDE) (Loh, 2009) improves
upon QUEST and CRUISE by adopting their strengths and correcting their weaknesses. One
weakness of CRUISE is that there are many more interaction tests than main effect tests. As a
result, CRUISE has a greater tendency to split on variables identified through interaction tests.
GUIDE restricts their frequency by using the tests only if no main effect test is significant at a
Bonferroni-corrected level. This reduces the amount of computation as well. Further, GUIDE
uses a two-level search for splits when it detects an interaction between Xi and Xj , say, at a
node t . First, it finds the split of t onXi and the splits of its two children nodes onXj that yield
the most reduction in impurity. Then it finds the corresponding splits with the roles of Xi and
Xj reversed. The one yielding the greater reduction in impurity is used to split t .

Besides univariate splits, GUIDE can employ bivariate linear splits of two X variables at
a time. The bivariate linear splits can be given higher or lower priority over univariate splits.
In the latter case, linear splits are considered only if no interaction tests are significant after
another Bonferroni correction. Although bivariate linear splits may be less powerful than linear
splits on all X variables together, the former are still applicable if the number of X variables
exceeds the number of observations in the node.

Other improvements in GUIDE include (i) assigning missing categorical values to a “miss-
ing” category, (ii) fitting bivariate kernel or nearest-neighbor node models, and (iii) using the
node chi-squared test statistics to form an importance score for each variable (Loh, 2012).
Smyth et al. (1995) and Buttrey & Karo (2002) proposed fitting kernel density estimation and
nearest-neighbor models, respectively, in the terminal nodes of a CART tree or a C4.5 tree.
Executable codes for CRUISE, GUIDE, and QUEST are distributed free from http://www.stat.
wisc.edu/~loh/.

2.7 CTREE and Other Unbiased Approaches

Conditional Inference Trees (CTREE) (Hothorn et al., 2006b) is another algorithm with
unbiased variable selection. It uses p-values from permutation distributions of influence
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function-based statistics to select split variables. Monte Carlo or asymptotic approximations
to the p-values are employed if they cannot be computed exactly. CTREE does not use prun-
ing; it uses stopping rules based on Bonferroni-adjusted p-values to determine tree size. The
algorithm is implemented in the R package PARTY.

Shih (2004), Shih & Tsai (2004), and Strobl et al. (2007a) proposed to correct the selection
bias of CART by choosing splits based on p-values of the maximal Gini statistics. The solu-
tions are limited, however, to ordered X variables and to classification and piecewise constant
regression trees, and they increase computation cost.

2.8 Ensemble, Bayesian, and Other Methods

There is much interest recently on the use of ensembles of classifiers for predictions. In this
approach, the predicted value of an observation is based on the majority “vote” from the pre-
dicted values of the classifiers in the ensemble. Bagging (Breiman, 1996) uses an ensemble of
unpruned CART trees constructed from bootstrap samples of the data. Random forest (Breiman,
2001) weakens the dependence among the CART trees by using a random subset ofX variables
for split selection at each node of a tree. Hothorn & Lausen (2005) applied bagging to the origi-
nal variables as well as the predicted values of other classifiers, such as LDA, nearest neighbor,
and logistic regression.

Boosting (Freund & Schapire, 1997) sequentially constructs the classifiers in the ensemble by
putting more weight on the observations misclassified in the previous step. Hamza & Larocque
(2005) found random forest to be better than boosting CART, but Gashler et al. (2008) showed
that random forest can perform poorly if there are irrelevant variables in the data. Dietterich
(2000) reviewed ensemble methods in the computer science literature.

Another class of ensemble methods is Bayesian model averaging, where prior distributions
are placed on the set of tree models and stochastic search is used to find the good ones. Chipman
et al. (1998) used a prior distribution that can depend on tree size and shape, and Denison
et al. (1998) used a truncated Poisson prior that puts equal weight on equal-sized trees. For split
point selection on an ordered X variable, Chipman et al. (1998) used a discrete uniform prior
on the observed values of X , and Denison et al. (1998) used a continuous uniform distribution
on the range of X .

2.9 Importance Scores

Many tree algorithms produce importance scores of the X variables. CART bases the scores
on the surrogate splits, but because the latter are subject to selection bias, the scores are simi-
larly biased. Sandri & Zuccolotto (2008) proposed a method to correct the bias. GUIDE uses
as importance score a sum of weighted chi-squared statistics over the intermediate nodes, with
node sample sizes as weights. A chi-squared approximation to the null distribution of the
importance scores is used to provide a threshold for identifying the noise variables. Random
forest derives its importance scores from changes in prediction error after random permuta-
tion of the X variable values. Strobl et al. (2007b) showed that the scores are biased toward
correlated variables, and Strobl et al. (2008) proposed an alternative permutation scheme
as a solution.

2.10 Comparisons

Figures 2 and 3 show the tree models and their partitions given by C4.5, CHAID, CRUISE,
CTREE, GUIDE, QUEST, and Recursive PARTitioning (RPART) for the iris data. The X
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Figure 2. Classification trees for iris data. X1;X2;X3, and X4 denote petal width and length, and sepal width and length,
respectively. Functions l1 D �7� 3X1 C 9X2, l2 D �52C 11X1 C 21X2, l3 D �93C 23X1 C 25X2.

variables are restricted to petal length and width for CHAID and for the CRUISE and QUEST
linear split models to allow their partitions to be plotted in the space of these two variables. No
such restriction is necessary for the other methods because they only split on these two vari-
ables. Although the tree structures may appear different, the methods give the same predictions
for a large majority of the observations. The plots show that the CHAID split points are rather
poor and that those of C4.5 and CTREE are at observed data values.

Lim et al. (2000) compared the prediction accuracy and computation speed of 33 classifica-
tion algorithms on a large number of data sets without missing values. Twenty-two algorithms
were classification trees; two were neural networks; and the others included LDA, nearest
neighbor, logistic regression, and POLYchotomous regression and multiple CLASSification
(POLYCLASS) (Kooperberg et al., 1997), a logistic regression model based on linear splines
and their tensor products. POLYCLASS and logistic regression were found to have the lowest
and second lowest, respectively, mean error rates. QUEST with linear splits ranked fourth best
overall. POLYCLASS was, however, among the slowest. C4.5 trees had on average about twice
as many terminal nodes as QUEST.
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Figure 3. Plots of petal length versus petal width with classification tree partitions; Setosa, Versicolour, and Virginica are
marked by triangles, circles, and crosses, respectively.

Perlich et al. (2004) compared logistic regression with C4.5 and found the former to be
more accurate for small sample sizes and the latter better for large sample sizes. Loh (2009)
found that among the newer classification tree algorithms, GUIDE had the best combination of
accuracy and speed, followed by CRUISE and QUEST.

Ding & Simonoff (2010) studied the effectiveness of various missing value methods for
classification trees with binary Y variables. After comparing several types of missing value
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mechanisms, they concluded that the use of a missing category to handle missing values
(as used in CHAID and GUIDE) is best if the test sample has missing values and if missingness
is not independent of Y .

3 Regression

AID and CART construct piecewise constant regression trees by using the node mean of Y
as predicted value and the sum of squared deviations as node impurity function. Subsequent
developments fall under one of two directions: (i) piecewise linear or higher order least-squares
models and (ii) piecewise constant or linear models with other loss functions.

3.1 Least Squares

Although it is straightforward conceptually to extend the CART algorithm to piecewise lin-
ear models, this can be too time consuming in practice because it fits a linear model in each
child node for every potential split of a node. To reduce the amount of computation, Alexander
& Grimshaw (1996) proposed fitting a simple linear regression model in each node, with
the linear predictor being the X variable yielding the smallest sum of squared residuals. M5
(Quinlan, 1992) and its implementation M50 (Wang & Witten, 1996) fit a piecewise multiple
linear tree model by using a less exhaustive but much faster approach. M5 first grows a piece-
wise constant tree and then fits a stepwise multiple linear model in each node t , using as linear
predictors only those variables that are used to split the nodes below t . Thus, M5 avoids hav-
ing to fit two linear models for every potential split. But because they are originally piecewise
constant models, the M5 trees tend to be quite large. Torgo (1997) took a similar approach,
but allowed kernel regression and nearest-neighbor models in addition to linear models in the
terminal nodes.

Smoothed and Unsmoothed Piecewise POlynomial Regression Trees (SUPPORT) (Chaud-
huri et al., 1994) uses a different approach that applies classification tree techniques to the
residuals. At each node, it first fits a linear model to the data and classifies the observations into
two classes according to the signs of their residuals. Then, as in FACT, it performs two-sample
tests of differences between the class means and the class variances for each X variable. The
most significant X is selected to split the node with the split point being the average of the two
class means. As a result, only one linear model needs to be fitted at each node. Conditions for
asymptotic consistency of the function estimate and its derivatives from recursive partitioning
methods are given in Chaudhuri et al. (1994).

It is harder to achieve unbiased variable selection in piecewise multiple linear regression
trees because an X variable can be used in one or both of two roles: (a) as a candidate for
split selection (called a “split” variable) and (b) as a linear predictor in the linear model (called
a “fit” variable). Because the residuals are uncorrelated with split-and-fit variables, but are
not necessarily uncorrelated with split-only variables, the p-values of the former tend to be
stochastically larger than those of the latter. As a result, SUPPORT is biased toward selecting
split-only variables. One way to correct the bias is to scale down the p-values (or scale up the
test statistic values) of the split-and-fit variables. GUIDE (Loh, 2002) uses bootstrap calibration
to find the scale factor.

There are also extensions in other directions. CTREE (Hothorn et al., 2006b) uses permuta-
tion tests to construct unbiased piecewise constant regression trees for univariate, multivariate,
ordinal, or censored Y variables. Regression Trunk Approach (RTA) (Dusseldorp & Meulman,
2004) combines the regression tree approach with linear regression to detect interactions
between a treatment variable and ordered X variables. RTA first fits a linear main effects model

International Statistical Review (2014), 82, 3, 329–348
© 2014 The Authors. International Statistical Review © 2014 International Statistical Institute



338 W.-Y. LOH

to all the data. Then it uses the residuals to construct a piecewise constant regression tree model
for each treatment group. Simultaneous Threshold Interaction Modeling Algorithm (STIMA)
(Dusseldorp et al., 2010) improves upon RTA by estimating the linear regression and tree
models simultaneously.

Ciampi et al. (2002) proposed the use of soft thresholds (sigmoidal functions) instead of hard
thresholds (indicator functions) for splits on ordered variables. Chipman et al. (2002) extended
the Bayesian approach of Chipman et al. (1998) to piecewise linear regression trees. Fan &
Gray (2005) and Gray & Fan (2008) used a genetic algorithm for tree construction. Guerts et al.
(2006) proposed selecting splits from randomly picked subsets of split variables and split points.
Su et al. (2004) extended CART by using maximum likelihood to choose the splits in a piece-
wise constant regression model, but instead of the usual negative log-likelihood, they used
Akaike information criterion (AIC) and an independent test sample to prune the tree.

Yildiz & Alpaydin (2001, 2005a, 2005b) and Gama (2004) compared linear splitting with
linear node modeling. Their results suggest that linear splitting and linear fitting yield similar
gains in prediction accuracy, and both are superior to univariate splits and constant node models.
Loh et al. (2007) showed that the prediction accuracy of piecewise linear regression trees can
be improved by truncating or Winsorizing the fitted values. Kim et al. (2007) and Loh (2008b)
showed that using only one or two regressor variables in the node models can be useful for
data visualization.

3.1.1 Baseball example

To compare the methods, we use them to predict the 1987 salaries (in thousands of dollars)
of 263 professional baseball players. The data, from Statlib (http://lib.stat.cmu.edu), contain
22 predictor variables, of which six are categorical, as shown in Table 1. They were used for
a poster session contest at an American Statistical Association meeting. After reviewing the
submitted solutions and performing their own analysis, Hoaglin & Velleman (1995) chose the
following model fitted to log-salary:

log.Salary/ D ˇ0Cˇ1Runcr=YrsCˇ2

p
Run86Cˇ3 minŒ.Yrs�2/C; 5�Cˇ4.Yrs�7/C:

Reasons for the data transformations include dealing with the range restriction on salary,
collinearity, variance heterogeneity, and other difficulties typically encountered in linear
regression.

As tree models are not limited by these difficulties, we fit salary without transformations
to any variables. Figure 4 shows the RPART, CTREE, and two GUIDE tree models (one with

Table 1. Predictor variables for baseball data.

Bat86 # times at bat in 1986 Batcr # times at bat during career
Hit86 # hits in 1986 Hitcr # hits during career
Hr86 # home runs in 1986 Hrcr # home runs during career
Run86 # runs in 1986 Runcr # runs during career
Rb86 # runs batted in 1986 Rbcr # runs batted in during career
Wlk86 # walks in 1986 Wlkcr # walks during career
Leag86 league at end of 1986 (2 cat.) Leag87 league at start of 1987 (2 cat.)
Team86 team at end of 1986 (24 cat.) Team87 team at start of 1987 (24 cat.)
Div86 division at end of 1986 (2 cat.) Yrs # years in the major leagues
Pos86 position in 1986 (23 cat.) Puto86 # put outs in 1986
Asst86 # assists in 1986 Err86 # errors in 1986

International Statistical Review (2014), 82, 3, 329–348
© 2014 The Authors. International Statistical Review © 2014 International Statistical Institute

http://lib.stat.cmu.edu


Fifty Years of Classification and Regression Trees 339

Figure 4. Regression tree models for baseball data.

a constant fitted in each node and the other with a stepwise linear model in each node).
The initial splits of the RPART and GUIDE piecewise constant trees are identical except for
one split point. RPART, however, shows a preference for splits on the two Team variables,
which have more than eight million (223�1) splits each. None of the piecewise constant models
select Yrs, which features prominently in the Hoaglin–Velleman model. The piecewise linear
GUIDE model, in contrast, splits just once, and on Yrs. The tree is short because each node is
fitted with a multiple linear model.

Figure 5 plots the observed versus fitted values of the tree models and those from ordinary
least squares, Hoaglin and Velleman, Random forest, and GUIDE forest. The two forest meth-
ods are similar, their only difference being that Random forest uses the CART algorithm for
split selection and GUIDE forest uses its namesake algorithm. Although the ordinary least-
squares model compares quite favorably with the others, it has a fair number of negative fitted
values. The piecewise constant models are easily identified by the vertical stripes in the plots.
As every model has trouble predicting the highest salaries, we conclude these salaries cannot
be adequately explained by the variables in the data. We note that the GUIDE stepwise model
(which uses a single tree) fits the data about as well as Random forest (which uses 500 trees)
and that GUIDE forest fits the data visibly better than Random forest here.

3.2 Poisson, Logistic, and Quantile Regression

Efforts have been made to extend regression tree methods beyond squared error loss. Ciampi
(1991) extended CART to fit a generalized linear regression model in each node, choosing the
split that most reduces the sum of deviances in the children nodes. The trees are pruned by
significance tests or the AIC.
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Figure 5. Plots of observed versus fitted values for baseball data.

Chaudhuri et al. (1995) extended SUPPORT to piecewise linear Poisson and logistic regres-
sion. For Poisson regression, they used adjusted Anscombe residuals. For logistic regression,
they estimated the probability function at each node by using both logistic regression and a
nearest-neighbor method and defined the “residual” as the difference between the two estimated
values. Ahn & Chen (1997) used similar ideas to construct logistic regression trees for clustered
binomial data.

Chaudhuri & Loh (2002) and Loh (2006b) extended GUIDE to quantile and Poisson regres-
sion, respectively. LOTUS (Chan & Loh, 2004; Loh, 2006a) uses the same ideas to fit a linear
logistic regression model in each node. To attain unbiasedness, LOTUS uses a trend-adjusted
chi-squared test for X variables that are used for splitting and fitting.

Landwehr et al. (2005) constructed logistic regression trees by using the LogitBoost
(Friedman et al., 2000) technique to fit a logistic regression model to each node and the C4.5
method to split the nodes. Choi et al. (2005) used the GUIDE split selection method to con-
struct regression trees for overdispersed Poisson data. Lee & Yu (2010) employed the CART
approach to model ranking response data.

MOdel-Based recursive partitioning (MOB) (Zeileis et al., 2008) fits least-squares, logistic,
and other models, using the score functions of M -estimators. Special cases include standard
maximum and pseudo-likelihood models. It achieves unbiased variable selection by choosing
split variables on the basis of structural break tests for the score function. The split point (for
orderedX ) or split set (for categoricalX ) is obtained by maximizing the change in an objective
function. The tree is not pruned; instead, stopping rules based on Bonferroni-adjusted p-values
are used to control tree growth. MOB has been extended to psychometric models such as the
Bradley–Terry model (Strobl et al., 2011) and the Rasch model (Strobl et al., 2010) and to
generalized linear models and maximum likelihood models with linear predictors (Rusch &
Zeileis, 2013). The algorithm is not unbiased if some X variables are used for both fitting and
splitting.
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3.3 Censored Response Variables

Gordon & Olshen (1985) extended CART to censored response variables by fitting a Kaplan–
Meier survival curve to the data in each node and using as node impurity the minimum
Wasserstein distance between the fitted Kaplan–Meier curve and a point-mass function. Segal
(1988) chose splits to maximize a measure of between-node difference instead of within-node
homogeneity. The measures include two-sample rank statistics such as the logrank test (Peto
& Peto, 1972). Davis & Anderson (1989) adapted CART to fit a constant hazard to each node,
using exponential log-likelihood as impurity function.

Ciampi et al. (1986) compared stepwise Cox regression, correspondence analysis, and recur-
sive partitioning models for censored response data. Stepwise Cox regression finds a prognostic
index (a linear combination of the X variables) and then partitions the data at the quartiles
of the index. Correspondence analysis converts each ordered X into a vector of indicator
variables (one indicator for each observed value) and groups the Y values into a small num-
ber of categories. The first canonical variable is used as the prognostic index to partition the
data. Recursive partitioning converts each categorical variable into a vector of indicators and
partitions the data on the indicators. RECursive Partitioning and AMalgamation (RECPAM)
(Ciampi et al., 1988) extends these ideas to allow merging of terminal nodes. For regression
with censored response data, the split criterion is a dissimilarity measure such as likelihood ratio
or the logrank, Wilcoxon–Gehan, and Kolmogorov–Smirnov statistics. For classification, the
split criterion is the multinomial likelihood. Splits may be univariate or Boolean intersections
of univariate splits. Missing values may be given a separate category or be dealt with through
surrogates splits as in CART. Importance scores are given by the sum of the dissimilarities of
each variable over all the nodes. Tree size is determined by cross-validation or AIC.

LeBlanc & Crowley (1992) fitted a proportional hazards model with the hazard rate in
node t being �t .u/ D �t�0.u/, where �t is a constant and �0.u/ is the baseline haz-
ard function. For tree construction and pruning, the baseline cumulative hazard ƒ0.u/ is
estimated by the Nelson–Aalen estimator (Aalen, 1978). The �t is a one-step estimate
from the full maximum likelihood. Split selection and pruning are based on the one-
step deviance. The rest of the algorithm follows CART. LeBlanc & Crowley (1993) used
logrank test statistics to select splits and the sum of logrank test statistics over interme-
diate nodes as measure of goodness of split for pruning. Crowley et al. (1995) noted
that, without a node impurity measure, cross-validation pruning cannot be employed with
Segal’s (1988) approach. They also showed that the split selection method of Gordon &
Olshen (1985), based on Lp and Wasserstein metrics, can perform poorly even with mild
censoring. Bacchetti & Segal (1995) considered left-truncated survival times and splits on
time-dependent covariates, by letting each observation go into both child nodes at the same
time. This approach precludes classifying each subject in exactly one terminal node. They
noted that splits on time-dependent variables can yield unstable Kaplan–Meier estimates of the
survival functions.

Jin et al. (2004) used between-node variance of restricted mean survival time as node impu-
rity to construct survival trees. For clustered survival data, Gao et al. (2004) fitted a proportional
hazards model with subject frailty to each node; see also Su & Fan (2004) and Fan et al. (2006).
Hothorn et al. (2004) used bagging to obtain an ensemble of survival trees and obtained a
Kaplan–Meier survival curve for each subject from the bootstrap observations belonging to
the same terminal nodes as the subject. Molinaro et al. (2004) used inverse probabilities of
censoring as weights to construct trees for censored data. Hothorn et al. (2006a) employed
the idea to predict mean log survival time from random forests with case weights. Ishwaran
et al. (2004) applied the random forest (Breiman, 2001) technique to construct relative risk
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forests using piecewise proportional hazards; see also Ishwaran et al. (2006) who obtained
variable importance scores. Clarke & West (2008) fitted Bayesian Weibull tree models to uncen-
sored survival data with split criteria on the basis of Bayes factors, and Garg et al. (2011)
used a similar approach to fit exponential models. Cho & Hong (2008) constructed median
regression trees by using the Buckley–James (1979) method to estimate the survival times of
the censored observations and then fitting a piecewise constant quantile regression model to the
completed data.

Loh (1991) and Ahn & Loh (1994) extended SUPPORT to piecewise proportional hazards
models. Ahn (1994a, 1994b, 1996a, 1996b) did the same for piecewise parametric survival
models.

3.4 Longitudinal and Multiresponse Variables

Segal (1992) was among the first to extend CART to longitudinal data by using as node impu-
rity a function of the likelihood of an autoregressive or compound symmetry model. If there are
missing response values, the expectation–maximization (EM) algorithm (Laird & Ware, 1982)
is used to estimate the parameters. Abdolell et al. (2002) used the same approach, but with a
likelihood-ratio test statistic as impurity function.

Zhang (1998) extended CART to multiple binary response variables, using as node impurity
the log-likelihood of an exponential family distribution that depends only on the linear terms
and the sum of second-order products of the responses. Zhang & Ye (2008) applied the tech-
nique to ordinal responses by first transforming them to binary-valued indicator functions; see
also Zhang & Singer (2010). Their approach requires covariance matrices to be computed at
every node.

For longitudinal data observed at very many times, Yu & Lambert (1999) treated each
response vector as a random function and reduced the dimensionality of the data by fitting each
trajectory with a spline curve. Then they used the estimated coefficients of the basis functions
as multivariate responses to fit a regression tree model.

De’ath (2002) avoided the problem of covariance estimation by using as node impurity
the total sum of squared deviations from the mean across the response variables. Larsen &
Speckman (2004) used the Mahalanobis distance, but estimated the covariance matrix from the
whole data set.

Hsiao & Shih (2007) showed that multivariate extensions of CART are biased toward select-
ing variables that allow more splits. They proposed using chi-squared tests of conditional
independence (conditioning on the components of the response vector) of residual signs versus
grouped X values to select the split variables. The method may lack power if the effects of the
X variables are not in the same direction across all the Y variables.

Lee (2005) applied the GUIDE approach to multiple responses with ordered X variables
by fitting a generalized estimating equation model to the data in each node and taking the
average of the Pearson residuals over the responses variables, for each observation. The
observations are classified into two groups according to the signs of the average residuals,
and the X with the smallest p-value from two-sample t-tests is chosen to split the node.
Although unbiased, the method is not sensitive to all response trajectory shapes. Loh &
Zheng (2013) solved this problem by using the residual vector patterns, rather than their aver-
ages, to choose the split variables. The solution is applicable to data observed at random
time points.

Sela & Simonoff (2012) proposed the RE-EM method (Sela & Simonoff, 2011), which
fits a model consisting of the sum of a random effects term and a tree-structured term.
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The procedure mimics the EM algorithm (Laird & Ware, 1982) by iterating between estimat-
ing the tree structure, assuming that the random effects are correct, and estimating the random
effects, assuming that the tree structure is correct.

4 Conclusion

Research in classification and regression trees has seen rapid growth, and applications are
increasing at an even greater rate. Interpretability of the tree structures is a strong reason
for their popularity among practitioners, but so are reasonably good prediction accuracy, fast
computation speed, and wide availability of software.

Despite 50 years of progress, however, many hard problems remain. One of them is how
best to deal with missing values. Ding & Simonoff (2010) made a good start, but their results
apply only to classification with binary responses. Much of the difficulty is due to missing
value techniques interacting with other algorithm components and with the type of variables
and the causes of the missingness. Another challenging problem is how to deal with time-
varying covariates in regression trees for longitudinal and censored response data. This is not
surprising given that traditional (non-tree) solutions require various model assumptions that are
hard to justify in a tree-structured framework. Computationally efficient approaches to search
for effective linear combination splits is yet another elusive problem, especially in the regression
context. It is harder if the linear splits are coupled with linear model fits in the nodes, because
the latter are already quite effective in reducing prediction error. Thus, the linear splits need
to be so much more effective to justify the increase in computation and loss of interpretability.
In this age of large data sets, there are also new problems, such as algorithms that scale well
with sample size (Dobra & Gehrke, 2002; Gehrke, 2009) and incremental tree construction
algorithms for streaming data (Alberg et al., 2005; Potts & Sammut, 2011; Taddy et al., 2012).

The rise of ensemble and other methods has made it difficult for single-tree methods to com-
pete in terms of prediction accuracy alone. Comparisons based on real and simulated data sets
suggest that the accuracy of the best single-tree algorithm is on average about 10% less than that
of a tree ensemble, although it is certainly not true that an ensemble always beats a single tree
(Loh, 2009). An ensemble of, say, 500 trees is, however, often practically impossible to under-
stand. Importance scores can rank order the variables, but they do not explain how the variables
influence the predictions. Thus, the biggest advantage of single-tree models remains their model
interpretability, although interpretability rapidly diminishes with tree size. But because infer-
ences from the tree structures can be compromised by selection bias, future algorithms will
need to be unbiased to be useful in applications where interpretability is important.
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Carolin Strobl

Universität Zürich, Zurich, Switzerland
E-mail: carolin.strobl@psychologie.uzh.ch

With ‘Fifty Years of Classification and Regression Trees’, Wei-Yin Loh has given a concise
historical overview of the central developments in recursive partitioning. It is interesting to read
how the successive improvements were triggered by their predecessor algorithms—especially
as the author has (co-)authored many of the milestones in our field. Moreover, I appreciate his
emphasis on open-source implementations, which make the methodology available to scientists
from all disciplines and all around the world.

I have two questions to the author and would like to add a short comment about variable
importance measures.

1 Missing Value Handling

As has been pointed out for several algorithms in the paper, the treatment of missing values
is an interesting aspect that distinguishes recursive partitioning techniques from other statisti-
cal methods. The two approaches specific for recursive partitioning are (i) surrogate variables,
which are correlated with the primary splitting variable and can thus be used to replace it
for processing observations with missing values in the primary variable, and (ii) creation of
separate nodes for missing values.

Both approaches are distinct from ad hoc approaches classically—while often
unreflectedly—used in statistical analyses, such as case-wise deletion, but also from more
advanced approaches like (multiple) imputation techniques. While the advantage of preserving
observations with missing values and thus avoiding data loss is straightforward, I wonder how
these approaches relate to the concepts of missing completely at random (MCAR), missing at
random (MAR) and missing not at random (cf., e.g. Little & Rubin, 1986).

Hapfelmeier et al. (2014) systematically investigate the effects of MCAR, MAR and missing
not at random on a random forest variable importance measure modified to be able to deal with
missing values (including surrogate variables), but I am not aware of any such studies for the
approach of creating separate nodes for missing values.

Do you know of any or can you infer how this approach performs under the different miss-
ingness mechanisms? In particular, is creating a separate node for missing values informative
for predicting the response variable under the MCAR and MAR schemes, and/or could it be
informative for narrowing down the missingness mechanism itself?

2 Ignorance of Variable Selection Bias

Because both Wei-Yin Loh and I have worked in this area, I assume we both find the
development of unbiased split selection criteria to be one of the most important improvements
over the early recursive partitioning algorithms. As pointed out in the paper, variable selection
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Figure 1. Variable selection frequencies for a random forest algorithm with biased split selection (randomForest, Liaw
& Wiener, 2002). In the underlying simulation design, only the second predictor variable X2 is informative, but its selection
frequency is outperformed by the irrelevant variableX5, which is preferred only because it has more categories.

bias is defined as an artificial preference for variables offering more cutpoints—even if all
variables are noise variables containing no information.

What we should probably point out more clearly though is that this also means that when
a predictor variable offering few cutpoints is in fact associated with the response—and thus
should be found relevant by any reasonable statistical learning technique—it may still be out-
performed by a less informative or even irrelevant competitor, just because the latter offers more
cutpoints. This is illustrated in Figure 1 from Strobl et al. (2007) (for the selection frequencies
of a random forest, but of course, the same can be observed for the selection frequencies of
single trees).

In the simulation design underlying Figure 1, the predictor variables systematically differ in
the number of cutpoints they offer: X1 was generated from a normal distribution (thus offer-
ing a high number of different cutpoints), X2 from a binomial distribution (offering only one
cutpoint) and X3 to X5 from a multinomial distribution with 4, 10 and 20 categories, respec-
tively (offering again an increasing number of cutpoints). Only X2 was simulated to have a
strong effect on the response class, whereasX1,X3,X4 andX5 are entirely uninformative noise
variables.

Yet, we can clearly see in Figure 1 that the relevant variable X2 is outperformed by the
irrelevant noise variable X5, which is preferred solely because it has more categories. (If the
effect size of X2 is modelled to be more moderate, it is also outperformed by noise variables
with less categories.)

One should think that the results shown here, and in many previous studies that Wei-Yin Loh
has summarized in his paper, are so clear that any statistically educated person should never
want to use a biased recursive partitioning algorithm again. Yet I encounter so many cases
where biased recursive partitioning algorithms are still employed in both applied and method-
ological publications—including some of those cited in ‘Fifty Years of Classification and
Regression Trees’.

I really wonder why this is the case. Does it mean that the authors of those publications
do not consider variable selection bias an issue of concern or willingly ignore decades of
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research? Or rather that we have not managed to bring our results to the attention of a broader
scientific audience? Or maybe even that—at first sight—recursive partitioning looks so easy
that anyone can do it without bothering to read up on it? I would be very interested to hear
your opinion.

3 Variable Importance Measures

When giving up the interpretability of single trees for the stability of ensemble methods,
variable importance measures are the only means to tease out at least some information from
the otherwise black box. As Wei-Yin Loh has pointed out, these variable importance measures
only provide a summarized impression and cannot be interpreted with respect to the direction or
actual form of the relationship between predictor variables and response. Still, they can serve as
a valuable tool in application areas where exploratory screening (cf., e.g. Lunetta et al., 2004;
Bureau et al., 2005) is the only way to narrow down the number of candidate variables that need
to be considered in more detail.

Even though many disciplines with a strong tradition in hypothesis-driven research, such as
psychology, are still somewhat shy about these types of procedures, they have their right to
exist as one legitimate means of generating hypotheses when no other means is available, as
pointed out by Strobl (2013). What is crucial to note, however, is that when machine learning
or other statistical techniques are used for screening or automated variable selection (cf., e.g.
Diaz-Uriarte & de Andrés, 2006; Rodenburg et al., 2008, for random-forest-based approaches),
a newly drawn sample must be used to later conduct statistical significance tests on the selected
variables. In some cases, it might even be possible to experimentally test their effects (e.g. by
‘knocking out’ a previously identified candidate gene).

To conclude with the issue of variable importance measures, let me add a short specification
of the works of Strobl et al. (2007, 2008).

In Strobl et al. (2007), it is shown that—unsurprisingly—random forests built from trees with
biased split selection criteria also show variable selection bias (as was illustrated in Figure 1)
and that this bias also transfers to the Gini and permutation variable importance measures.
However, what was very surprising to us was that even when random forests are built from trees
with unbiased split selection criteria, like in the cforest function available in the R-package
party, the widely used bootstrap sampling induces another source of bias, which again affects
the variable selection frequencies but also results in an increased variance for the permutation
variable importance. This is the reason that we discourage the use of bootstrap sampling and
employ subsampling as the default in cforest.

Strobl et al. (2008), on the other hand, consider the consequences of correlations between
predictor variables, which had previously been noted by Archer & Kimes (2008) and
Nicodemus & Shugart (2007). In this situation, it is not per se clear how a good variable impor-
tance measure should behave, and even for parametric models like multiple linear regression, a
variety of variable importance measures have been suggested (cf., e.g. Azen & Budescu, 2003),
which vary in their particular treatment of correlated variables.

It is a matter of taste or philosophy—rather than an objectively defined bias in the statistical
sense—how a variable importance measure should behave in the presence of correlated
variables. My impression from speaking to applied researchers was, however, that they were
interpreting the random forest permutation importance similar to the coefficients of a multiple
regression model, which reflect the impact of a variable given all other variables in the model—
which is not how Breiman’s original permutation variable importance works. Therefore, we
developed a conditional permutation scheme available for cforest, which more closely
mimics the behaviour of multiple regression coefficients (that is, however, computationally only
feasible if the number of correlated variables is not too high).
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Fifty years ago, Morgan & Sonquist (1963) introduced the now famous AID algorithm. AID
uses a sample to construct a tree-structured predictor for a specified continuous variable y
given a specified vector of covariates x. The result is therefore, in contemporary language, a
regression tree. The first paper to introduce classification trees in the modern sense appeared
9 years later, in 1972: it presented the algorithm THAID, as mentioned in the review (REF).
We have to wait 12 more years to see both kinds of trees reunited in the very influential book
by Breiman et al. (1984), ‘Classification and Regression Trees’. This title is often abbrevi-
ated as CART, which is somewhat confusing, because the acronym CART™ also denotes the
proprietary software associated to the book. Notwithstanding the great merits of the CART
book, it is more than fair to consider the 1963 paper as the seminal work for the research area
known as ‘Classification and Regression Trees’, the object of Prof. Loh’s excellent review. One
could argue that the 1963 paper, together with the CART book, is also at the origin of flexible
statistical modelling (beyond variable selection algorithms in regression) such as MARS (Fried-
man, 1991) and PIMPLE (Breiman, 1991), and, indeed, of statistical machine learning (Hastie
et al., 2009) . Yet one cannot disagree with the author’s decision of restricting the review to
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classification and regression trees, and to draw the line at ‘forests’ and similar ensemble
learning. As the old saying goes, ‘Grab all, loose all’.

But what is exactly ‘Classification and Regression Trees’ as a research area? The answer is
open to debate. One might say that it includes research on algorithms that construct a tree from
data through some kind of recursive partitioning coupled with a rule or set of rules to determine
tree size. It should be noted that partitioning also includes some choices as regards the handling
of missing data. Choosing how to partition and how to determine tree size is not trivial, and
there is a bewildering array of perfectly respectable approaches to these tasks, often leading to
minimally divergent results. One might add that the terminal nodes (leaves) of the tree represent
a simple prediction or classification rule, depending on whether we are concerned, respectively,
with regression or classification trees. How simple? In a strict sense, the rule should be constant
on a leaf, i.e. the same prediction/classification is attached to all observational units belonging
to the same leaf.

Prof. Loh’s review goes a little beyond the strict definition. Firstly, it does include a number of
regression tree algorithms, including his own, that fit linear models at each node, thus relaxing
the requirement of a constant predictor at each leaf. A minor criticism is that it would have been
useful to explicitly note that the idea of fitting linear models in terminal nodes is not exclusive
to regression trees but can also be implemented for classification trees; however, doing this
would somewhat disrupt the scheme of the review, which is based on keeping regression and
classification separate.

Secondly, the author also considers tree construction algorithms for predicting count data,
censored data, multivariate binary data and longitudinal continuous data (functional data).
He may have included, but this is by no means an important flaw, trees for predicting multi-
variate continuous data (beyond longitudinal data) (Gillo & Shelly, 1974): indeed, in one of the
RECPAM articles (Ciampi et al., 1991) that he reviews, there are examples of such trees. Minor
details aside, the author commendably transcends the old identification of regression trees with
trees to predict a continuous, scalar variable.

Thirdly, this review also mentions, although not in great depth, that ‘hard’ partitioning may
be replaced by ‘soft’ partitioning, i.e. at a given node, an observational unit may be assigned to
the issuing branches probabilistically rather than sharply.

Finally, the author discusses some global tree-construction algorithms, which look for the
optimal tree within (a large subset of) all possible trees: an application of the genetic algorithm
(REF), as well as two Bayesian ‘model averaging’ approaches are mentioned (REF).

In developing the review, again the author shows wisdom in concentrating on algorithms that
have been extensively applied and validated. The variations in partitioning rules (including the
treatment of missing data) and size determining rules are clearly if succinctly outlined. Com-
parative work is cited, and a simple and enlightening original comparison of the performance of
several algorithms on a ‘classic’ data set is presented. The author cites in detail his own work,
and I find this totally acceptable: indeed, one of Prof. Loh’s major accomplishments is that of
having blazed a trail within all the possible variants of tree-growing algorithms obtaining supe-
rior accuracy of prediction, high computational efficiency and major reduction of the inherent
biases in the original CART (1984) approach.

One feature of this review I have particularly appreciated is the stress on tree algorithms that
were developed within the machine-learning tradition at a time when the compartmentalisation
separating statisticians from computer scientist was watertight. Indeed, Quinlan’s work was just
as influential among computer scientists as the CART book was among statisticians: the review
clearly re-establishes the balance. In my opinion, if tree research will continue to advance in
the near future, it will be because disciplinary boundaries are falling. Nowadays it is not rare
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to find, especially in the new generations, accomplished researchers who are excellent in both
statistics and computing, regardless of their disciplinary background.

And now the hard question would be, is there a future for tree research? Prof. Loh points
out that there are hard problems left to solve within the strict definition of regression and
classification trees. He cites, in particular, the handling of missing data, the inclusion in tree-
growing algorithms of longitudinal predictor variables and the introduction of splits based
not only on unique variables (monothetic splits or nodes) but also on linear combinations
of the original variables. Moreover, he hints at new developments that include incremental
tree construction algorithms for streaming data: again, such algorithms go a little beyond the
strict definition of classification and regression trees, which were originally conceived in a
static setting, with a well-defined ‘learning’ data set. However, the main message of his con-
cluding remarks is that tree-growing researchers are faced with a real dilemma: either one
sticks to the classic definition of trees, and in so doing, accepts intrinsic limitations in predic-
tive accuracy; or one pursues predictive accuracy by extending the definition of tree-growing
algorithms towards ensemble learning, and sacrifices, in exchange, the advantage of highly
interpretable predictions. It is difficult not to agree with this view, which I would define as
‘realistically pessimist’.

However, when faced with a dilemma of this importance, it may be useful to step back and
take a fresh look at the premises that have lead us to the dilemma. Here is a short list of questions
that occurred or re-occurred to me while reading Prof. Loh’s paper. I use these questions as
headings for grouping some considerations related to them.

The essential feature of tree growing, which is also the reason for its popularity, is the reduc-
tion of one global optimisation problem–given a learning set, which is considered as a sample
from a target population, find the best predictor–to a sequence of local problems of decreasing
sizes according to the general cognitive strategy of ‘divide and conquer’. However, no matter
how large our learning set is, one is led very quickly to work locally on fairly small data sets:
and this is perhaps the root of most problems. The smaller the subsamples, the more variable
and unstable are the choices of splits, and the less generalisable are the results to other future
samples from the same population. There is no way out of this, unless we broaden somewhat
the definition of tree growing, to make it a little less local. This leads to the next question.

The author and I agree on the fact that ensemble learning, at least as realised in available
algorithms, is only distantly related to tree growing. From the point of view of ‘tree growers’,
the loss in interpretability of such algorithms is too large. To take the example of random forest,
the trees of the forest are far too numerous to help developing an interpretation; moreover, there
is too much randomness in the generation of each tree.

On the other hand, some promising novel ideas have been put forward leading to algorithms
that deserve to be considered as part of the tree-growing family. The Bayesian tree approach,
although similar to ensemble learning, does recover some interpretability. Indeed, the ana-
lyst has the choice of using model averaging for prediction, while basing interpretation on a
(usually) small number of trees: the one(s) with largest posterior probability.

TARGET, a tree-growing approach based on the genetic algorithm, also yields a ‘best’ tree,
although it does not proceed by recursive partitioning. However, it is still not known whether in
practice the theoretical superiority of the global search does translate into substantially superior
predictive accuracy.
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Trees with soft nodes were proposed in an attempt to gain predictive accuracy while mitigat-
ing the inevitable loss of interpretability. Predictive accuracy is increased by using at each node,
all data–but with observational units weighted according to the probability of belonging to the
node. Loss of interpretability is mitigated by retaining the monothetic feature of classical trees
(one split, one variable). However, trees with soft nodes do not seem very useful when there are
many categorical predictors. Also, empirical results obtained so far seem to indicate that the
gain in predictive accuracy of soft trees with respect to hard trees is real but unimpressive.

All in all, it seems that the most promising ways to extend tree growing beyond its strict defi-
nition is to look for an interesting compromise between interpretability and predictive accuracy.
But. . .

Really Need?

At first sight, interpretability of a tree seems to hinge on the monothetic nature of the nodes.
However, a closer look suggests that this point of view may be misleading: monothetic splits are
not always what we need. In fact, as already noted, Prof. Loh identifies the introduction of splits
based on linear combination of variables as one of the most important open problems in tree-
growing research. When do we need to depart from monothetic splits? For instance, consider
medical data: typically, predictors are categorical variables based on qualitative observations of
symptoms and signs, and/or imprecise measurements of indices that are known to be, at best,
proxy of some underlying construct, e.g. ‘cardiovascular health’. Is it really useful to choose,
say, ‘elevated total blood cholesterol’ to create a node? Looking for splits based on a linear
combination of variables is a natural alternative to looking for a monothetic split; however, how
to do this remains problematic, and in fact, we risk to loose interpretability without improving
predictive accuracy. So, it may be that new ideas are needed to look for polythetic splits: such
ideas may arise from a creative interplay of clinical expertise and statistical modelling. Using
techniques such as PLS regression at each node (Eriksson et al., 2009), one may extract from
the data a split defining statement of the kind clinicians are used to while making diagnosis
and prognosis, e.g. ‘if the subject has one or more characteristics of the following list. . . .,
then go left’.

The other essential pillar of interpretability for a tree-based predictor is its simple architec-
ture: a hierarchy of (hard) nodes. It is possible, in my opinion, to make this framework more
flexible without completely loosing interpretability. Perhaps we may consider interpretable an
architecture consisting of hierarchically structured ‘black boxes’, each being based on a limited
number of variables that in some intuitive sense ‘go together’. Moreover, ‘soft nodes’ rather
than ‘hard nodes’ could link these black boxes. For example, suppose we want to predict car-
diovascular mortality: we may aim to construct a predictor by stringing together a black box
based on measurements of blood lipid levels, another black box based on family history data
and yet another black box based on demographics. If such a predictor works well, it is possible
that a knowledgeable user may find it interpretable. Arguably, he or she may prefer this alter-
native view, as it recognises some of the complexities of the specific predictive task. Now, such
system of black boxes linked by soft nodes already exists in machine learning, and is known
as ‘hierarchy of experts’ (Jacobs et al., 1991). However, to the best of my knowledge, there is
no popular algorithm for constructing hierarchy of experts from data, including, as possible,
domain specific knowledge. In other words, the concept of hierarchy of experts does provide
an excellent framework to imagine algorithms, but is not (yet) a ready-to-use discovery tool.
There is here a great opportunity for tree growers: they could use their unique expertise to build
problem-specific hierarchy of experts using both data and knowledge bases.
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The last question concerns the role of tree-growing research in the context of new chal-
lenges arising from the increasing complexity of available data. Volume can be seen as an
aspect of complexity; in this respect, I will not add to what Prof. Loh has already mentioned in
this review, citing, among others, recent papers on tree-growing algorithm for streaming data.
Instead, I wish to briefly discuss another type of complexity, which cannot be dealt with without
rethinking prediction and prediction accuracy.

Again, I will discuss an example from clinical biostatistics. It becomes increasingly common
to collect longitudinal data not only for a particular outcome variable but also for several clinical
indices and for several categorical outcome variables. In other words, data become available
that summarise the history of a disease as observed on a population of patients over a time
window of considerable width. Clearly, a first task for the analyst is to develop the appropriate
statistical models for the stochastic process underlying life history data: this task that has been
successfully accomplished for a broad variety of situations (REF) (Skrondal & Rabe-Hesketh,
2004; Tenenhaus et al., 2005; Vermunt, 1997). But then, typically, the analyst is also asked to
assess the impact of covariates, e.g. patient and treatment characteristics, on the type of disease
history that a patient is likely to experience. This is a prediction task, in a very true sense, but
is not a standard one: we are very far from the classical problem of predicting a continuous or
categorical variable. The statistician’s automatic reflex would be to develop some (generalised)
linear regression model that should describe the dependence of some features of the disease
history process on the covariate of interest. However, these features will be represented by a
high-dimensional parameter, so that a hypothetic regression model would be extremely hard to
interpret. In contrast, a tree-growing approach, if it could be developed, would lead to a fairly
straightforward interpretation. If it could be developed. . . Developing this approach is a serious
but not impossible task. The tree-growing approach has been formulated and reformulated in
abstract terms by several authors, leading to some of the extensions reviewed by Prof. Loh.
Further and bolder developments are possible. Conceptually, all we need to do is to define a
reasonable measure of ‘goodness of split’ for the appropriate stochastic process underlying the
available data. If this can be accomplished, then virtually any tree-growing algorithm can be
adapted to the new situation. The adaptation will be, in general, far from trivial and will require
new statistical and computational developments: in other words, a great amount of original tree
research may be produced, well beyond the present perspective.

To conclude, I wish to thank Prof. Loh for an excellent review of the status of tree research
as it celebrates its 50th anniversary. Because I recognise that it would be very hard to do bet-
ter, I have focussed on potential for future development. I am cautiously optimistic about the
next 50 years of tree research. The reason for my optimism is the increasing cooperation of
researchers from several disciplines that have in the past ignored each other, often ‘rediscover-
ing the wheel’. The reason for my caution is that the task of forming the next generation of tree
researchers is fraught with many obstacles, but a discussion of this is well beyond the scope of
my contribution.
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The author presented a nice review of classification and regression trees by providing a
discussion of major developments of the methods in the last 50 years. The author has made a
great contribution to this field through developing fast and unbiased algorithms and applying
the methods to various application areas. There has been a remarkable improvement in tree-
structured methods. Due to the rapid advancement of computing capacity, even more computer
intensive methods such as ensemble approach have been introduced.

Here, we will focus on discussing the properties of ensemble methods. There is a trade-
off between a single tree and an ensemble method. Ensemble methods give higher prediction
accuracy than a single tree in general. However, the ensemble method cannot compete with a
single tree in interpretability as the author pointed out.

Three ensemble voting approaches, bagging, boosting and random subspace (Ho, 1998), have
received attention. Because bagging and boosting were discussed in the paper, I will briefly
discuss random subspace. Random subspace method combines multiple classification trees con-
structed in randomly selected subspaces of the variables. The final classification is obtained by
an equal weight voting of the base trees. Ahn et al. (2007) proposed classification by ensem-
bles from random partitions (CERP). CERP is similar to random subspace, but the difference
is that base classifiers in an ensemble are obtained from mutually exclusive sets of predictors
in CERP to increase diversity, whilst they are obtained by a random selection with overlap in
random subspace.

The improvement in prediction accuracy in an ensemble from a single tree can be illustrated
using a binomial model. If we assume independence amongst the n classifiers and equal pre-
diction accuracy p of each classifier, where n is odd, the prediction accuracy of an ensemble
classifier with majority voting is strictly increasing when p > 0:5 and strictly decreasing when
p < 0:5 (Lam & Suen, 1997). The improvement of the prediction accuracy can be calculated
using the beta-binomial model (Williams, 1975) when the the accuracies of the classifiers are
positively correlated and using the extended beta-binomial model (Prentice, 1986) when they
are negatively correlated.
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The improvement of the ensemble accuracy illustrated earlier is valid under the assumption
of equal accuracy of the base classifiers and equal correlation amongst the classifiers. Without
these constraints, Breiman (2001) obtained the upper bound for the generalisation error. Con-
vergence of the generalisation error rate depends on the average correlation, and it converges
to zero when the classifiers are independent.

Logistic Regression Ensembles (LORENS: Lim et al., 2010) is a logistic regression ensem-
ble. LORENS uses the CERP algorithm to classify binary responses using the logistic
regression model as a base classifier. This method enables class prediction by an ensemble
of logistic regression models for a high-dimensional data set, which is impossible by a single
logistic regression model due to the restriction that the sample size needs to be larger than the
number of predictors. It is not as computer intensive as tree-based ensemble methods, whilst it
does not lose the ensemble accuracy for high-dimensional data.

Recently, Kim et al. (2011) proposed weight-adjusted voting for ensemble (WAVE of classi-
fiers). This method assigns unique voting weights to each classifier in the ensemble. Using an
iterative process, a weight vector for the classifiers and another weight vector for the instances
are obtained in the learning phase of model formation. They then proved the convergence of
these vectors. After the final iteration, hard-to-classify instances get higher weights and sub-
sequently, better performing classifiers on the hard-to-classify instances are assigned larger
weights. Because a closed-form solution of the weight vectors can be obtained, WAVE does not
need the iteration process.

In the evaluation of the performance of the classification methods, the sensitivity and speci-
ficity, positive predictive value, negative predictive value and receiver operating characteristic
(ROC) curve also need to be considered. Most of the widely used classification methods have
difficulties with unbalanced class sizes and almost always favour the majority class in order to
increase the prediction accuracy.

Classification by ensembles from random partitions uses a different threshold from 0.5 in
classification by logistic regression tree ensemble for unbalanced data. In a two-way classifica-
tion, when r is the proportion of the positive responses in a data set, a threshold of r tends to
give a better balance and a threshold of 1� r results in the highest accuracy (Chen et al., 2006).
Whilst a threshold of 1�r tends to yield the highest prediction accuracy, it worsens the balance
by predicting more samples to the majority class. Pazzani et al. (1994) and Domingos (1999)
assign a high cost to the misclassification of the minority class in order to improve a balance
between sensitivity and specificity.
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We wish to congratulate the author for a nice overview of tree-based methods, and the author
clearly highlighted the recursive partitioning technique (Friedman, 1977; Breiman et al., 1984;
Zhang & Singer, 2010) behind the tree-based methods. As the author summarized, there are
two major types of tree methods: classification trees and regression trees, as precisely reflected
in the title of the classical book by Breiman et al. (1984). In our own experience, for regression
problems, other nonparametric methods, including adaptive splines (Friedman, 1991) that are
based on a similar partitioning technique, appear more desirable than regression trees, with the
exception of survival analysis (Zhang, 1997; 2004; Zhang & Singer, 2010).

With the advent of high-throughput genomic technologies, classification trees have become
one of the most common and convenient bioinformatic tools. In what follows, we would like to
share some of the recent developments in this area.

Genome-wide association studies (GWASs) collect data for hundreds of thousands or
millions of single-nucleotide polymorphisms (SNPs) to study diseases of complex inheritance
patterns, which can be recorded qualitatively (e.g. breast cancer) or in a quantitative scale (e.g.
blood pressure). GWASs typically employ the case–control design, and the logistic regression
model is generally applied to assess the association between each of the SNPs and the disease
response, although more advanced techniques, especially nonparametric regression, have been
proposed to incorporate multiple SNPs and interactions.

A clear advantage of classification trees is that they make no model assumption and that they
can select important variables (or features) and detect interactions among the variables. Zhang
& Bonney (2000) was among the early applications of tree-based methods to genetic associa-
tion analysis. Since then, interests in tree-based genetic analyses have grown substantially. For
example, Chen et al. (2007) developed a forest-based method on haplotypes instead of SNPs
to detect gene–gene interactions, and importantly, they detected both a known variant and an
unreported haplotype that were associated with age-related macular degeneration. Wang et al.
(2009) further demonstrated the utility of this forest-based approach. Yao et al. (2009) applied
GUIDE to the Framingham Heart Study and detected combinations of SNPs that affect the
disease risk. García-Magariños et al. (2009) demonstrated that the tree-based methods were
effective in detecting interactions with pre-selected variables that were marginally associated
with the disease outcome but were susceptible to the local maximum problem when many noise
variables were present. Chen et al. (2011) combined the classification tree and Bayesian search
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strategy, which improved the power to detect high-order gene–gene interactions at the cost of
high computation demand.

Tree-based methods are extensively used in gene expression analysis to classify tissue types.
Here, the setting is very different from the GWAS applications. In GWAS applications, we deal
with a very large number of discrete risk factors (e.g. the number of copies of a particular allele).
In expression analysis, the number of variables is large but not so large, usually in the order of
tens of thousands, and the variables tend to be continuous. For example, Zhang et al. (2001)
demonstrated that classification trees can discriminate distinct colon cancers more accurately
than other methods. Huang et al. (2003) found that aggregated gene expression patterns can
predict the breast cancer outcomes with about 90% accuracy using tree models. Zhang et al.
(2003) introduced deterministic forests for gene expression data in cancer diagnosis, which have
a similar power to random forests but are easier in scientific interpretation. Pang et al. (2006)
developed a random forest method incorporating pathway information and demonstrated that it
has low prediction error in gene expression analysis. Furthermore, Díaz-Uriarte & De Andres
(2006) demonstrated that random forest can be useful in variable selection by using a smaller set
of genes and maintaining a comparable prediction accuracy. Of a related note, Wang & Zhang
(2009) attempted to address the following basic question: how many trees are really needed in
a random forest? They provided empirical evidence that a random forest can be reduced in size
so much to allow scientific interpretation.

As more and more data are generated from new technologies such as the next-generation
sequencing, tree-based methods will be very useful for analysing such large and complex
data after necessary extensions. Closely related to genomic data analysis is the personalized
medicine. Zhang et al. (2010) presented a proof of concept that tree-based methods have some
unique advantages over parametric methods to identify patient characteristics that may affect
their treatment responses. In summary, tree-based methods have thrived in the past several
decades, and they will become more useful, and the methodological developments will be more
challenging than ever, as more information increases in both size and complexity.
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1 Introduction

We thank Wei-Yin Loh for this review paper. He provides a much-needed guide to tree meth-
ods currently available as well as the main ideas behind them, indicative of his experience with
and knowledge of this topic. His contribution proves to be very valuable in bringing structure
into the vast interdisciplinary field of tree algorithms: We found 83 different tree induction algo-
rithms for different response types listed in his paper, and, along the lines of Loh’s disclaimer,
this is not even an exhaustive list.

The availability of so many different algorithms for fitting tree-structured models directly
relates to the main point of our discussion: The tree literature is highly fragmented. Loh hints at
that issue already on the first page, and we gladly take it up for discussion: There are so many
recursive partitioning algorithms in the literature that it is nowadays very hard to see the wood
for the trees.

In the remainder of our discussion paper, we identify causes for and consequences of this
fragmentation, discuss what we perceive to be advantages and disadvantages of the current state
of the tree algorithm literature and offer suggestions that might improve the situation in the
years ahead by retaining advantages and overcoming disadvantages.

2 The Fragmentation of Tree Algorithms

Currently, there is an abundance of different tree algorithms coming from different commu-
nities including statistics, machine learning and other fields. We believe that this fragmentation
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emerged from various causes and has a number of implications for the development and appli-
cation of tree models. Some of them are in our opinion good, some are not so good and some
are rather unfortunate.

2.1 The Good

The area of tree algorithms is a popular and fruitful field of research in statistics, computer
science and beyond. This leads to many people with different backgrounds contributing to the
application and development of tree algorithms for various tasks. May this be to derive a set
of if-then rules to make decisions, to analyse a large number of data relatively fast, to segment
data, to detect or select important variables and interactions or to simply have an interpretable,
visualisable, data-driven prediction machine with good performance, which is flexible and can
be adapted easily to the problem at hand. An important contributing factor to their popularity
is that recursive partitioning algorithms are easily adapted to different situations, as their core
principles are easy to understand and intuitive. Most tree algorithms comprise a couple of sim-
ilar steps, the difference between them entering at some point in the induction stage, where
during development a concrete choice must be made – usually related to the loss function or
measure of node impurity, split variable selection, split point selection or pruning. Thus by,
for example, changing the loss function used to measure node impurity, a new tailored algo-
rithm can be easily invented for a given problem. Owing to this, we now have tree algorithms
for many types of problems and variables that we might encounter, say, for online or dynamic
data, longitudinal data, big sample sizes, substantive data models, various error structures and
so forth. Looking at it this way, the fragmentation reflects in part the diversity of the problems
encountered by the community of scholars working in this field, as well as the many ideas they
have and different applications they face. Given that there is no free lunch (Wolpert, 1996), a
rich diversity in algorithmic solutions is to be welcomed as no single solution will always lead
to the best results. Thus, tree models were and are an active field of research and hopefully will
remain so in the future.

2.2 The Bad

This abundance of tree algorithms also has its dark side. For one, not only is it hard to keep
up to date with various developments, but it is even harder to choose the ‘right’ algorithm
for a given problem. Take the case of regression trees for explaining and predicting a metric
outcome and assume that there is additive Gaussian error. Which algorithm to take? There are,
among others, AID, CART, CTree, C4.5, GUIDE and M5 – all having different properties in
different settings. There is a lack of guidance as to which algorithm to select. One might narrow
the possibilities down by looking at certain additional, desirable properties like unbiasedness
in split variable selection but that still leaves one with a number of possibilities to consider.
People looking to solve their problems with tree algorithms might easily be intimidated by the
large number of possibilities and if different tree algorithms give different answers. Perhaps this
contributed to many people inventing a new algorithm for their specific problem rather than
work through different properties of existing algorithms and benchmarking them against each
other on their data, which in turn perpetuates the fragmentation problem.

The fact that tree methods can be easily adapted to new situations can backfire. First, this
sometimes leads to new tree algorithms or changes to old ones that appear ad hoc, which was
already noted by Murthy (1998). While experimentation is a necessary part of algorithm devel-
opment, we should nevertheless take care to propose and use well-motivated, well-founded,
methodologically sound procedures in the end. Second, modifications or improvements of old
algorithms are often considered to be entirely new algorithms. They may be named differently
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Figure 1. A classification tree of tree algorithms fitted with CTree (Hothorn, Hornik, Zeileis, 2006). The target variable
is the group of implementation as defined in Section 2.3. Predictor variables were the publication ‘Year’, the program-
ming ‘Language’, whether it allows fitting of a classification (‘CT’), regression (‘RT’), or model tree (‘MT’), author
names (‘FirstAuthor’, ‘SecondAuthor’, ‘LastAuthor’), ‘Community’ the algorithm is aimed at (machine learning vs. business
analytics vs. statistics) and ‘Journal’ venue.

and are often only viewed ‘as a whole’ rather than emphasising which steps in the tree induction
are similar and which are different (e.g. the loss function might change, but the split variable
selection is the same or vice versa). Hence, fragmentation is increased more than necessary, and
common properties are obscured. This seems to tie in with a third bad effect: Many authors who
propose or apply tree algorithms either are not aware of – or choose to ignore – similar work in
that area. It happens that even recent papers do not refer to work carried out from 2000 onwards,
therefore ignoring more than a decade of active development that may be highly relevant. On
the one hand, this leads to reinventing the wheel, loss of time and resources and again more
fragmentation of the literature. On the other hand, this also makes it hard for new algorithms
to be noticed in an evergrowing, dense wood – an unfortunate situation for both developers
and users alike. Perhaps all these points explain why, while there has been numerous new
developments and improvements in tree modelling since the seminal work on C4.5 and CART
in the 1980s, both remain the most popular tree algorithms for classification and regression
(Wu et al., 2008).

2.3 The Ugly

As algorithmic models, classification and regression trees are very closely tied to their
respective implementations. With few exceptions, tree models usually are their specific imple-
mentation. Hence, they can be characterised by the specific combination of the generic
computational steps that are adopted and by the way they are turned into a specific imple-
mentation – with both aspects being highly intertwined. While this algorithm–implementation
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dualism is rather natural for algorithmic models, there is also an ugly side to it: the potential
lack of free (or any) implementations of new algorithms. This potential lack of access to the
core of the actual tree model makes understanding, using, assessing and extending it much more
difficult.

To illustrate this empirically, we consider 99 algorithms – including the 83 mentioned by
Loh plus 16 very recent or less known ones. For 43 of these, we were not able to find an
implementation1 (see also Figure 2). More specifically, we placed all 99 algorithms into one of
five broad classes pertaining to the availability of (free) software:

1. Algorithms without an existing implementation: These are algorithms for which a theoret-
ical description was published, but no implementation seems to exist. Often, these are old
algorithms or algorithms that were developed for a specific problem. Examples are AID or
SUPPORT.

2. Algorithms with a closed-source, for-profit implementation: These are implementations of
particular algorithms that are sold by a company. The code and specific implementation are
kept a proprietary secret. Typical examples are M5, CHAID or CART.

3. Algorithms with a closed-source, free-of-charge implementation: These are implementations
of particular algorithms that can be obtained free of charge, usually in an executable binary
format. The code and specific implementation, however, is still kept a proprietary secret.
Examples include GUIDE, CTMBR and HTL.

4. Algorithms with an open-source, free-of-charge implementation: These are implemen-
tations of particular algorithms that can be obtained free of charge and whose source code
is open. However, these implementations either restrict or do not explicitly allow copy-
ing, adaptation and distribution of the source code. Examples currently include SECRET
and C4.5.

5. Algorithms with a free and open-source implementation: These algorithms have implemen-
tations that follow the ideas of free software (FLOSS; free, libre open-source software, see
Free Software Foundation, Inc., 2013). They are open source and give the user extensive
rights with respect to copying, modification and distribution. Examples are most algorithms
developed for FLOSS software packages like Weka or R, including re-implementations of
closed-source algorithms, e.g. RPart, M50, LMT and CTree and also C5.

We find that most algorithms belong to group 1 (43), followed by group 5 (29). The group
of open-source algorithms/implementations (classes 4 and 5) only comprises 34% of all algo-
rithms. To take a closer look at how this availability of (free) software depends on other
characteristics of the algorithms; we naturally employ a classification tree (Figure 2, built by
CTree). We see that an implementation in R, Python, Java (primarily in the packages Weka,
KNIME, RapidMiner) and Julia is predictive of belonging to group 5, whereas other lan-
guages are either predictive for group 1 (if we do not know the language), of groups 2 and 3
respectively if suggested to the statistics community, and for groups 4 and 5 for implementa-
tions directed at the machine learning and business analytics communities. At any rate, it shows
that unfortunately FLOSS is far from being the standard for tree modelling software.

As trees are inherently algorithmic, we view the implementation as an integral part of each
algorithm. In our opinion, restrictions to viewing, modifying and sharing tree implementations
are one of the main reasons for the bad sides of fragmentation discussed earlier. Depending on
which group an algorithm belongs to this has different implications. For example, for algorithms
belonging to groups 1 through 4, this leads to the need for authors proposing improvements
to existing algorithms to implement the improved algorithm from scratch. Often, this adapted
implementation is then again not FLOSS, and the problem perpetuates. Not being able to rely
on existing code also applies to using an algorithm on different platforms. Another example is
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that the restriction of distribution and modification effectively prohibits to change the specific
implementation (say, with regard to adapt it to parallel computing) or to improve it (say, with
regard to speed). This also restricts the possibilities of combining the algorithms with other
methods to form a pipeline of methods and distribute the bundle. For algorithms from groups
1 through 3, a further consequence is that specific steps that may not be well documented can
be hard to reproduce [as was the case with M5 (Quinlan, 1993), which prompted M50 (Wang &
Witten, 1997) as a ‘a rational reconstruction’].

We strongly believe that these and other implications of a lack of free implementations led to
many synergy potentials having been lost over the years, partly because conceptual similarities
and differences of various tree algorithms were not obvious enough and partly because the lack
of reusable computational tools slowed down the pace development. Furthermore, there seems
to be some confusion among practitioners as to which algorithms perform well (or even best)
for their particular problems which often leads to suboptimal algorithms being used. This view
appears to be shared increasingly by other researchers (e.g. Vukićević et al., 2012).

3 A Possible Remedy

We have a suggestion as to what we think will improve or even solve the problems discussed
in Sections 2.2 and 2.3 while retaining the advantages mentioned in Section 2.1: (Academic)
publications of tree algorithms should be accompanied by free implementations (in the FLOSS
sense). This means opening the source code of past and future implementations, giving users
permission to modify, adapt and distribute it with an appropriate free software license and mak-
ing the code/implementations easily publicly available, preferably with a low adoption threshold
(e.g. in a popular language such as Python, C, Java or R).

Specifically, we think that the following six steps should be undertaken to reduce the bad and
ugly aspects to a minimum while retaining the good:

� Every newly suggested algorithm or larger improvement should come with a FLOSS
implementation.
� The source code of currently existing implementations should be opened, and they should be

licensed with a FLOSS license.
� For algorithms for which there is no up-to-date or even existing software, any trademark

should be relinquished, and the original source code should be made freely available or re-
implemented as FLOSS (as has already happened with, e.g. J4.8 or RPart).
� All implementations should be made available on a public repository or archive, the author’s

homepages or as freely accessible supplementary material to articles.
� When a software is used, extended, modified and so on, the software (and not only the

underlying algorithm) should be referred to and cited.
� When reviewing or editing papers or algorithms, we should point out the above and demand

this as a new standard.

FLOSS software licenses should be used so that the copyright holders grant the rights to inspect,
modify and (re)distribute the software. Most FLOSS licenses preserve the original copyright in
such modified/extended versions and in an academic context citation of the software (and not
only the underlying algorithm) is appropriate.

Then, improvements to algorithms do not need to be their own algorithm but can be suggested
or submitted as patches or adaptations. Code building blocks (e.g. for split point selection, or
predictions or tree visualisations) can be reused and recombined or be made computationally
more efficient. Assessment and comparison of algorithms are facilitated, both for evaluating
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newly suggested methods and for choosing a particular model in practice. Hence, not only
users of FLOSS implementations will profit but also the authors because their work is easier to
understand, use and ultimately cite.

Finally, the aforementioned steps can also reduce the fragmentation and possibly achieve a
certain degree of standardisation through developing and reusing computational ‘tree toolk-
its’. Some effort in this vein has been made already. For example, there are two R packages
providing standardised frameworks: partykit (Hothorn & Zeileis, 2014) for representing,
summarising and plotting of various tree models from different free software sources, and
caret (Kuhn, 2008) for training, tuning and benchmarking of various tree algorithms
(among many other methods). Other efforts of providing such standardisation exist as well
(Vukićević et al., 2012).

4 Conclusion

In this discussion, we follow up on Loh’s review paper and take a closer look at the frag-
mented field of tree models. While indicative of a creative, active, and diverse community of
researchers, this fragmentation also leads to undesirable side effects making it hard to under-
stand, assess, use and compare tree algorithms. Hence, a common language for describing tree
models, both conceptually and (perhaps more importantly) computationally, is crucial to reduce
the fragmentation. In particular, making FLOSS should be an integral part of the communi-
cation about classification and regression trees. We argue that this can alleviate many of the
problems caused by or following from the fragmentation while retaining the good that comes
from having a bright and vibrant community.

Especially in light of open research areas that Loh mentions in his conclusions, FLOSS
implementations are an effective means for reducing fragmentation in the future and tackling
open hard problems in tree algorithm research faster than it was possible before. The good news
is that the tree community has already started to move into this direction, and an increase in
FLOSS implementations can already be observed. With free platforms for statistical computing
such as R or Python as well as initiatives like the ‘Foundation for Open Access Statistics’
(FOAS, http://www.foastat.org/), the conditions are now better than ever before. We should use
this momentum. Rather than not seeing the wood for the trees, the whole community can grow
a healthy, open and light forest of trees within which we can all walk with intimate familiarity.

Notes

1We searched with Google for all permutations of author names and algorithm names
combined with the words “software” and “implementation”, as well as on the main author’s
homepages.
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I thank the discussants for their thoughtful comments, which helped to fill in some gaps and
expand the scope of the review. I will address each one below.

Carolin Strobl wonders when it is helpful to create separate nodes for missing values. CHAID
seems to be the only algorithm to do this, but it has a procedure to merge some of the nodes
before they are split further. Its effectiveness has not been studied. GUIDE treats missing values
in a categorical variable as a separate category but does not assign them to a separate node. If
there are missing values at a split on an ordered variable, GUIDE sends them to the same left or
right child node, depending on which split yields the greater decrease in node impurity. Ding &
Simonoff (2010) studied a simpler version of this technique, where missing ordered values are
mapped to infinity and hence are always sent to the right child node. Using only binary-valued
variables with training and test sets having missing values where missingness in a predictor
variable depends on the values of the response variable (MAR), they found that this technique
is better than case deletion, variable deletion, grand mean/mode imputation, surrogate splits (as
used in RPART) and fractional weights (as used in C4.5). Case deletion and grand mean/mode
imputation tend to be worst, a finding supported by Twala (2009), who considered missingness
dependent on other predictor variables (MAR) and missingness due to truncation (MNAR) but
not missingness dependent on the response variable. He found that the best method was an
ensemble of classification trees constructed by multiple imputation of the missing values with
the expectation–maximization algorithm (Dempster et al., 1977; Rubin, 1987). It is not clear
whether this is either due to multiple imputation or ensemble averaging. Note that because
both studies employed C4.5 and RPART exclusively as the base classifiers, it is unknown if
the conclusions extend to other methods. Further, some other missing value techniques, such
as nodewise mean and mode imputation (FACT and QUEST) and alternative surrogate split
methods (CRUISE), were not included.

Strobl wonders whether ignorance is the reason that biassed recursive partitioning meth-
ods continue to be used frequently. Many people still associate the term ‘classification and
regression trees’ with CART and its software. Commercial software publishers perpetuate this
misconception by largely basing their offerings on CART. The availability of RPART also
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encouraged the use and extension of CART (e.g. MVPART). On the other hand, selection bias
may not cause serious harm if a tree model is used for prediction but not interpretation, in some
situations. Selection bias can increase the likelihood of spurious splits on irrelevant variables,
but if the sample size is large and there are not too many such variables, a correspondingly
large tree may subsequently split on the important variables. If the spurious splits survive after
pruning, they simply stratify the data into two or more subsets each having its own subtree, and
overall prediction accuracy may be preserved; see Martin (1997) for a related discussion. If
the sample size is small, however, then the spurious splits will increase the frequency of trivial
pruned trees.

Strobl’s comments on importance scores bring us back to the meaning of the ‘importance’
of a variable. Because it is not well defined, the concept has produced a plethora of impor-
tance measures. CART has a measure based on the efficiency of surrogates splits, and FACT
has a measure based on F-statistics. At that time, both seemed reasonable as there was not
much need for either, due to data sets being small and variables few. Now that data sets can
contain thousands and even millions of variables, the situation is different. Further, there is
evidence (e.g. Doksum et al., 2008 and Loh, 2012) that when the number of variables is
very large, some sort of preliminary variable selection can substantially improve the predic-
tion accuracy of a model. Because importance measures are well suited (and are being used)
for this task, it is time to examine the notion more carefully. As Strobl observes, some peo-
ple consider the importance of a variable ‘more or less on its own’ [e.g. random forest (RF)],
whereas others think of it as the residual effect after other variables are accounted for in a
model (e.g. linear regression). Although the latter point of view is more specific, it lacks a
sense of universality, because a variable can be important for one model but not for another.
On the other hand, perhaps universality (i.e. being model free) is not attainable. Nonetheless,
there is one property that every importance measure ought to have, namely, unbiasedness.
Strobl et al. (2007) showed that RF is biased in the ‘null’ sense that, if all the variables are
independent of the response, the frequencies with which they appear in the trees depend on
their types.

A more general definition of unbiasedness, applicable to non-forest methods as well, is that
under this null scenario, all variables are ranked equally on average. To see how RPART, RF,
Cforest (CF, from the PARTY package) and GUIDE perform by this criterion, I simulated 5000
data sets with each set consisting of 100 observations on seven mutually independent predictor
variables and one normally distributed response variable. Three predictor variables are contin-
uous (normal, uniform and chi-squared with two degrees of freedom) and four are categorical
with 2, 4, 10 and 20 equiprobable categories; all are independent of the response variable.
Figure 3 shows the average rank of each variable for each method (rank 1 is most important and
rank 7 the least). RPART and RF tend to find the variables with 10 and 20 categories the most
important (although they differ on the most important) and the binary predictor the least. CF
has a slight bias towards ranking the binary variable most important and the two variables with
10 and 20 categories least; GUIDE has a smaller bias towards ranking ordinal variables more
important than categorical variables. The biases of CF and GUIDE are negligible, however,
compared with that of the other two.

Antonio Ciampi touches on several philosophical issues. I will offer my take on some of
his main points. The ‘dilemma’ between interpretability and accuracy is a result of the human
mind’s limitations in understanding complex structure. Fortunately, if the structure is com-
prehensible, the mind is exceptionally good at drawing insights that no machine can match.
Therefore, rather than a dilemma, it is really a choice: construct simple models that humans can
use to enhance their understanding of the problem or build complex models for automatic and
accurate predictions. Both are laudable goals.
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Figure 1. Average ranks (with 1 being most important and 7 least) of variables for sample size 100 over 5000 simulation
iterations. Simulation standard errors are less than 0.03. ‘Ch2’, ‘Nor’ and ‘Uni’ denote �2

2, N.0; 1/ and U.0; 1/ vari-
ables. ‘Mk’ denotes a multinomial (categorical) variable with k equiprobable levels. The response variable is N.0; 1/ and
all variables are mutually independent. A method is unbiased if each variable has average rank 4.0, which is marked by
horizontal lines.

Ciampi mentions several ways to improve the accuracy of single trees, such as using global
model search (Bayesian and genetic algorithms) and probabilistic splits (soft nodes). The accu-
racy of Bayesian trees comes from model averaging; there is no evidence that the tree with
the largest posterior probability has comparable accuracy. Global search techniques inevitably
produce randomised solutions that may be undesirable in some applications. It is harder to fol-
low the path of an observation in a model with probabilistic splits than it is in a model with
conventional (hard) splits.

I agree that univariate (monothetic) splits are not the only ones that are interpretable. Ciampi’s
example of a (polythetic) split on the number of symptoms possessed by a patient is certainly
interpretable and can be implemented as sums of indicator variables. But because there are
numerous combinations of variables that can form the sums, this approach invites compu-
tational and selection bias problems. His idea of hierarchical tree structures is intriguing,
particularly if the predictor variables are naturally clustered.

Ciampi notes that data have become more complex. In business, biology, medicine and other
fields, predictor and response variables are increasingly observed as longitudinal series. Owing
to difficulties caused by the number and location of the observation ‘time’ points varying
between subjects, small number of subjects relative to number of time points, large number of
baseline covariates and occurrence of missing values, the traditional approach of fitting para-
metric stochastic models to the processes is seldom feasible. A more practical solution may be a
non-parametric approach that treats the longitudinal series as random functions (Loh & Zheng,
2013).

I thank Hongshik Ahn for his review of some of the more recent ensemble methods. The fact
that the accuracy of an ensemble increases as the dependence among the component classifiers
decreases, provided that the latter are equally accurate, motivates the construction of ensembles
where each classifier is built from a mutually exclusive subset of predictors. But it is difficult to
do this without destroying the requirement of equally accurate classifiers. This is obvious when
there is exactly one informative predictor variable and many irrelevant ones. Then, all but one
classifier (the one involving the informative predictor) do nothing except to dilute the accuracy
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of the ensemble. On the other hand, the classifier containing the informative variable should be
more accurate than the one built with all the variables. This may explain the behaviour of CERP
and LORENS. The WAVE method of adaptively assigning weights to classifiers seems to be a
promising direction.

I thank Chi Song and Heping Zhang for the references to genetic applications. Subgroup
identification, a key part of personalised medicine, is rapidly gaining attention. The goal is
to find patient subgroups, defined by measurable patient characteristics (such as demographic,
phenotype, genotype and protein biomarkers) prior to treatment, that respond differentially to
treatment. Negassa et al. (2005), Su et al. (2009), Foster et al. (2011), Lipkovich et al. (2011)
and Dusseldorp & Van Mechelen (2013) have proposed tree-based solutions. Alternatives that
do not have selection bias have been implemented in the GUIDE software.

While I agree with Thomas Rusch and Achim Zeileis that in an ideal world, all published
algorithms would be accompanied by free software, there are reasons why this does not always
occur in practice. Quite often, the author of the software is a student who is not the architect of
the algorithm. When the student graduates, there is no one to distribute and maintain the code.
This was the case with the SUPPORT algorithm, although its best features have since been
incorporated in GUIDE. Then, there is the author who plans only to publish a paper and move
on to other problems, with no intention to distribute and maintain the software. As a result, the
latter is developed only as far as it is needed for the examples and simulations in the paper.

Acknowledgements

This rejoinder was prepared with partial support from the National Science Foundation grant
DMS-1305725.

References

Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum likelihood estimation from incomplete data via the EM
algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol., 39, 1–38.

Doksum, K., Tang, S. & Tsui, K.-W. (2008). Nonparametric variable selection: The EARTH algorithm. J. Amer.
Statist. Assoc., 103, 1609–1620.

Dusseldorp, E. & Van Mechelen, I. (2013). Qualitative interaction trees: A tool to identify qualitative treatment–
subgroup interactions. Stat. Med., 33, 219–237, DOI 10.1002/sim.5933.

Foster, J.C., Taylor, J.M.G. & Ruberg, S.J. (2011). Subgroup identification from randomized clinical trial data. Stat.
Med., 30, 2867–2880.

Lipkovich, I., Dmitrienko, A., Denne, J. & Enas, G. (2011). Subgroup identification based on differential effect
search–a recursive partitioning method for establishing response to treatment in patient subpopulations. Stat. Med.,
30, 2601–2621.

Martin, J.K. (1997). An exact probability metric for decision tree splitting and stopping. Mach. Learn., 28, 257–291.
Negassa, A., Ciampi, A., Abrahamowicz, M., Shapiro, S. & Boivin, J.R. (2005). Tree-structured subgroup analysis

for censored survival data: Validation of computationally inexpensive model selection criteria. Stat. Comput., 15,
231–239.

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
Su, X., Tsai, C.L., Wang, H., Nickerson, D.M. & Bogong, L. (2009). Subgroup analysis via recursive partitioning.

J. Mach. Learn. Res., 10, 141–158.
Twala, B. (2009). An empirical comparison of techniques for handling incomplete data using decision trees. Appl.

Artificial Intell., 23, 373–405.

[Received March 2014, accepted March 2014]

International Statistical Review (2014), 82, 3, 367–370
© 2014 The Authors. International Statistical Review © 2014 International Statistical Institute

W.-Y. LOH


