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Abstract

The question of how soft polymers slide against hard surfaces is of significant scien-

tific interest, given its practical implications. Specifically, such sytems commonly show

interesting stick–slip dynamics, wherein the interface moves intermittently despite uni-

form remote loading. The year 2021 marked the 50th anniversary of the publication

of a seminal paper by Adolf Schallamach (Wear, 1971) that first revealed an intimate

link between stick–slip and moving detachment waves, now called Schallamach waves.

We place Schallamach’s results in a broader context and review subsequent investiga-

tions of stick–slip, before discussing recent observations of solitary Schallamach waves.

This variant is not observable in standard contacts so that a special cylindrical contact

must be used to quantify its properties. The latter configuration also reveals the oc-

currence of a dual wave—the so-called separation pulse—that propagates in a direction

opposite to Schallamach waves. We show how the dual wave and other, more general,

Schallamach-type waves can be described using continuum theory, and provide pointers

for future research. In the process, fundamental analogues of Schallamach-type waves
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emerge in nanoscale mechanics and interface fracture. The result is an on-going appli-

cation of lessons learnt from Schallamach-type waves to better understand these latter

phenomena.

1 Introduction

The question ‘How does rubber slide? ’ marks the title of a landmark paper by Adolf Schal-

lamach published 50 years ago [1]. This work investigated the basic mechanisms of sliding

friction when a soft compliant object, such as rubber, is slid against a much harder and

practically rigid object, such as glass. The question appears to be a humble one, and the

1971 paper was one of the many pinnacles of a broad research programme on rubber friction

at the Natural Rubber Producers’ Research Association in the United Kingdom. Testament

to its success is the fact that this seemingly simple question has thrown up a rich variety of

dynamic behaviour in response, spanning length and time scales, and occurring in completely

unexpected situations [2].

In order to fully appreciate this complexity, consider a simple configuration comprising

two semi-infinte solids that are in contact along the xy plane and under a remotely applied

normal force N in the z-direction. We assume that one solid is elastic (z ≤ 0) and the other

rigid (z > 0). If, at time t = 0, the elastic solid is subject to a constant remote velocity V0

parallel to its contact plane1, how does motion at the interface occur? Note that we have

posed the problem via an applied velocity in lieu of an applied remote shear force to ensure

that the solids will eventually slide against each other. Elementary mechanics tells us that

if V0 is constant, the shear force transmitted at the interface will continuously increase from

t = 0 until it reaches the static friction threshold Fs = µN , determined by a coefficient of

friction µ, presumed known for this pair of solids, and the normal force N . Beyond this

threshold, uniform sliding should ensue at constant interface shear force Fd, the so-called

‘dynamic’ friction force. This is the standard Coulomb model for friction [3].

1Note that we will henceforth use the same notation for the remote sliding velocity.
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Schallamach’s work dramatically exposed the shortcomings of this line of thought. Firstly,

it showed that the interface itself does not often move uniformly but instead only via the

propogation of localized wave-like detachment zones—now aptly named Schallamach waves

in his honour—that traverse the entire length of the contact interface. Detachment waves of

this nature can best be described by analogy with the motion of a ruck in a carpet [4]: if

a carpet is to be moved by distance ∆x, we could either simply translate the entire carpet

surface at once by ∆x, or create a localized slip zone by buckling—causing slip ∆x—that then

propagates along the carpet, progressively causing it to slip. This buckling and detachment

type mechanism is reminiscent of that proposed by Bragg for explaining how dislocations

mediate slip in crystals [5].

The most distinguishing properties of Schallamach waves are that they cause local inter-

face slip, and that they propagate significantly more slowly than any known elastic waves,

e.g., Rayleigh and Stoneley waves. It is only now being appreciated that these waves are part

of a larger class of propagating detachment fronts that arise not only in frictional interactions,

but also in nanoscale fracture [6], seismology [7, 8] and even biological locomotion [9–11].

Schallamach’s work also established the importance of elastic deformation and adhesion

in determining the frictional response of an interface. The aforementioned Coulomb friction

model for the onset of steady sliding applies only to perfectly rigid solids. When one of

the bodies is allowed to deform, the interface dynamics can change significantly [12–14].

Likewise, when the two bodies have significant interface adhesion, reattachment is easily

effected following local detachment, leading to localized pockets that can then move and

cause slip [15].

In this article, we revisit various facets of Schallamach waves, fifty years after they were

first reported. The first part of this manuscript presents a topical review of Schallamach’s

original contributions and their continued impact (Sec. 2). Our experimental results are

then presented in Sec. 3. The solitary Schallamach wave is introduced, along with another

detachment wave that moves in the opposite direction—the ‘dual’ of the Schallamach wave,
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also termed the separation pulse. By condensing and abstracting the basic features of the

Schallamach wave and its dual, we show how more general traveling waves can be grouped

together as ‘Schallamach-type’ waves. This potentially broadens the applicability of lessons

learned from studying waves in one situation to an entirely different domain. Section 4

presents results from prior and on-going theoretical investigations of Schallamach-type waves

at interfaces. Experimental observations have led to the emergence of new theoretical ideas,

even within the centuries-old framework of continuum elasticity. We conclude our manuscript

with a brief discussion and an outlook for future work in this domain.

2 Schallamach’s experiments and their primary significance

Schallamach’s original observation of detachment waves were made at a rubber–glass inter-

face, under two complementary geometries—a glass hemisphere slid at constant speed V0

against a rubber flat, and a rubber hemisphere slid against a glass flat. In either case, when

the sliding velocity was low but above a critical value V0 > V C
0 , the interface did not move

uniformly at speed V0, but instead slipped intermittently, see Fig. 1 reproduced from Schalla-

mach’s paper [1]. The left panel in this figure shows a schematic of the two sliding geometries.

The images in the right panel correspond to experiments with a glass indenter/rubber flat

and were obtained by directly observing the interface through the transparent glass hemi-

sphere and lit by a backlight source. The view here is along the normal of the plane flat

surface. The contact zone is grey and the non-contacting zones appear darker due to the

lighting.

These frames show several creases or folds traversing from right to left within the contact

zone. Each crease is a single Schallamach wave and is comprised of a local region of detach-

ment so that it appears dark in the image. The frames clearly show multiple waves within

the contact zone at any time instant. Well defined individual waves, with larger detachment

regions, occur on the right side of the contact, and become increasingly indistinguishable

towards the left. The result is an intermittent motion of the interface—each crease or wave
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causes a small amount of slip, and a point on the interface remains stationary until a wave

traverses it. This was deduced by Schallamach as follows:

Dust particles fortuitously caught in the interface were seen to be buffetted by

successive waves, and to remain motionless in the intervals. . . A (single) wave of

detachment is a fold in the rubber surface with presumably large strains around

its three curved parts. To propagate the wave, energy must be supplied to cover

the energy losses incurred when this strain configuration travels along the contact.

Strong interface adhesion between the two solids was necessary for waves to occur. Adhesion

hysteresis was identified as a source of energy loss, in addition to that needed for changing

the strain configuration in the vicinity of the propagating wave. Schallamach also noted that

the wave propagation direction w in the schematic of Fig. 1 is always against the direction

of friction force F on the rubber in either contact configuration (hemisphere or flat). This

direction of propagation has important significance that will be elaborated upon in later

sections.

Finally, Schallamach also measured propagation speeds of individual waves, along with

their frequency (no. of waves per second within the contact) and found that the latter was

nearly proportional to the imposed V0. Further, the wave speed he measured (∼ 0.01 m/s)

was much lesser than typical elastic wave speeds (∼ 100 m/s). This is after accounting for

the fact that the wave speed was ‘more difficult to assess’. Therefore, the possibility that

these waves of detachment were associated with any known elastic surface waves appeared

remote at first sight.

3 Experimental observations of Schallamach waves

The most common configuration for observing Schallamach waves is the spherical geometry

described in the previous section. We first summarize experimental observations using such

a spherical indenter geometry and use them to explain why Schallamach waves must nucleate

in the first place. This is followed by a description of a more recent configuration presented
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by Viswanathan et al. [16] that uses a cylindrical contact geometry to isolate single waves

without intervening edge effects.

3.1 Spherical contacts: Why do Schallamach waves nucleate?

Before we discuss the formation of Schallamach waves, it is first important to consider the

mechanics of the spherical contact in some detail. Here and henceforth, we assume that the

indenting object is rigid and the indented object is elastically deformable. The latter is also

assumed to be semi-infinite (half-space) as an idealization. This situation is schematically

demonstrated in Fig. 2, reproduced from an early review article on Schallamach waves [17]

. When a rigid hemisphere of radius R is pressed against an elastic surface with a load

P , the latter deforms, resulting in a contact radius of size a(P ). It is well known that the

depth of penetration δ = a2/R depends on the load P via the Hertz contact relations [18].

Additionally, the edges of the contact zone are tangential to the spherical surface (Fig. 2(b)).

In the presence of interface adhesion, the contact zone is very different [19], see Fig. 2(a).

Notably, the edge of the contact zone is now normal to the spherical indenter and its geometry

resembles that of a crack-tip [20]. This has two important consequences: firstly, the contact

radius a is now larger for the same force P , so that δ is also larger. Secondly, and more

importantly, the surface immediately outside the contact zone is depressed and surrounded

by a region that is raised. This is because rubber is essentially incompressible so that a

compressive strain in one region must be compensated by comparable tensile strain nearby.

With this background, the reason why a Schallamach wave must nucleate can be clearly

stated, see Fig. 3, adapted from Ref. [16]. Here, the indenter is a glass lens and the elastic

substrate is polydimethylsiloxane (PDMS). Since the indenter and the substrate form an

adhesive contact, the edge of this contact zone forms a crack-like interface, see frame 1 and

corresponding side-view schematic below. Upon application of a remote V0 to the elastic

polymer, the tangential force T increases monotonically while adhesion causes the interface

to remain stationary. However, at a critical load, a region immediately ahead of the contact
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undergoes surface buckling causing a bulge to form on the surface and a corresponding

depression between the points A1 and A2 (frame 2). As T is increased further, the bulge

grows and eventually makes contact with the indenter at a second location B. This detached

region between the two contact locations A1 and B constitutes a nucleated Schallamach wave

that then begins to propagate through the interface. Since V0 is maintained constant, wave

propagation is accompanied by a reduction in T and the entire process repeats again to

nucleate another wave. It is therefore clear from this sequence that each wave is nucleated by

a surface buckling instability. The result is intermittent motion of the interface—commonly

termed stick–slip—with some parts remaining stationary and others (moving wave regions)

slipping.

An analogous mechanism was also postulated by Schallamach:

On applying a steadily increasing tangential stress, sliding begins when the com-

pressive stress in front of the contact area has become great enough for buckling

It is evident from these observations that adhesion plays a key role not only in sustaining wave

motion but also in wave nucleation, both by changing the contact geometry (making buckling

more conducive) and by effecting reattachment. The existence of the critical (buckling) load

explains why Schallamach waves are only observed after a threshold velocity V C
0 is crossed.

Note that this type of constant velocity boundary loading has historically been the most

common configuration in friction experiments, as opposed to constant shear stress or force.

The reason for this is that the transition from static to dynamic motion is best observed in

this situation [21,22].

Compression-driven buckling has an additional side effect—the occurrence of secondary

features such as wrinkles on the detached surface [23]. A half-space subject to compression

inevitably shows wrinkles, folds and creases at the surface [24–26]. Sample wrinkles are shown

in the insets to frames 2, 3 of Fig. 3. The wrinkle pattern that forms first has an inherent

wavelength λ0 that is determined by the depth of the strained surface layer (inset, frame 2).

This wavelength doubles as the tangential load T is increased so that λ1 ∼ 2λ0 (inset, frame
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3). As the detached zone begins to propagate, wrinkles result in imperfect readhesion in its

wake. Consequently, the size of these pockets of imperfect readhesion is nearly equal to the

final wrinkle wavelength λ1.

The buckling-induced mechanism for Schallamach waves is qualitatively similar in most

situations, even, in the presence of a lubricant [27]. However, the presence of an interfacial

liquid film changes the nature of the resulting stick–slip process quantitatively [28]. Firstly,

the threshold V C
0 is lowered, perhaps because the increased contact pressure due to fluid

penetration inside the contact enhances the propensity for buckling. Note that this possibiliy

does not occur if the indenter is rigid (as in Fig. 2) since then the contact remains dry

with minimal fluid ingress. Secondly, at much higher velocities, the picture appears to be

fundamentally altered in liquids such as water-glycerol that can wet and dewet from rubber

surfaces [29]. Now sticking and slipping occurs not due to repeated buckling instabilities but

due to a wetting-squeezing-dewetting process. These ‘dewetting waves’ are not the same as

Schallamach waves and will not be considered further in this article. It is therefore safe to

conclude that surface buckling is well established as the underlying cause for the nucleation

of Schallamach waves [30–32].

3.2 Cylindrical vs. spherical geometry

In contrast to the most commonly used spherical contact configuration discussed above, a

second cylindrical contact geometry is now considered, see Fig. 4. This geometry is inspired

by the need for observing Schallamach wave propagation in a nearly planar interface without

any edge effects. A fully flat configuration has its own challenges, especially with respect to

aligning the indenter and the substrate [33]. The use of a large radius cylindrical indenter

compenstates for this since, at low load, contact is first initiated along the cylinder axis (line

contact) [34].

The contact geometry we describe here is adapted from Ref. [16]. A cylindrical plano-

convex lens (Edmund Optics, radius 16.25 mm, length 25 mm) is used as the indenter and
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the substrate is again polydimethylsiloxane (as in Fig. 3). The PDMS samples were produced

mixing a base (vinyl-terminated polydimethylsiloxane) with a curing agent (methylhydrosiloxane-

dimethylsiloxane copolymer) in the ratio 10:1 by weight. The resulting mixture was cured

for 12 hours at 60◦C in the form of slab-like specimens [16]. The Poisson’s ratio and Young’s

modulus of the final samples were 0.46 and 1 MPa, respectively. Constant remote V0 is

effected via the same ball-screw mechanism as before and the contact is imaged using a high-

speed camera (pco Dimax) attached to a microscope system. The right hand panel in Fig. 4

presents a typical image obtained by viewing the backlit contact through the transparent

cylindrical indenter. The lighter (darker) regions correspond to interface contact (detach-

ment) just as before.

In both cases, the polymer sample had dimensions along the x, y, z axes (Fig. 4) of 70 mm

× 22 mm × 25 mm, respectively, with the long dimension representing the sliding direction.

Prior to any experiment, the PDMS and lens are brought into contact along the x-axis and

maintained for a fixed time t = 60 s to standardize any possible contact aging effects. Contact

alignment is also checked during this period by translating the camera/light source along the

x-axis. The PDMS is then slid relative to the lens using the linear stage at constant speeds

V0 =10 µm/s to 20 mm/s, for a distance of 30 mm. Concurrent with the in situ imaging,

sliding forces were measured using a piezoelectric dynamometer (Kistler).

3.3 The solitary Schallamach wave and its opposite moving dual

One of the primary problems with the standard spherical indenter geometry used for studying

Schallamach waves is its inability to isolate single waves, as Schallamach himself noted:

The waves of detachment. . . tend to become thinner and to break up during their

travel. . . various fragments sometimes join so that individual waves gradually lose

their identity. This is one of the reasons why conditions become confused in the

rear part of the contact

This is clearly evident in the frames reproduced in Fig. 1 (right), and is primarily due to the
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nature of the spherical indenter geometry. Despite this shortcoming, Schallamach used the

spherical geometry likely because it was (and perhaps remains!) the most commonly used

contact geometry by the tribology and contact mechanics community and thus has several

analytical solutions [18, 35–37].

In order to isolate single waves and study their propagation dynamics, it is best to use the

cylindrical indenter geometry described in Sec. 3.2. An ‘adhesive’ channel forms upon contact

between the indenter and the substrate and the isolated waves can be individually imaged

using high-speed videography as described earlier. Frames from a high-speed sequence show-

ing one such wave are reproduced in Fig. 5. Note that in this sequence, the polymer/rubber

is moved from left to right at constant V0 far from the interface. A single Schallamach wave

traverses the interface in the same direction as V0. It is clear that the defining features of the

Schallamach wave remain unchanged from the spherical geometry. Firstly, the wave appears

as a dark band within the interface, due to buckling-induced interface detachment and read-

hesion. Secondly, points on the interface remain stationary until the wave appears; they then

begin to move and are displaced by a fixed amount ∆x. Finally, the wave is accompanied by

compression wrinkles, just as we observed in the case of the spherical contact geometry, cf.

Fig. 3.

In light of these single wave results, it is pertinent to revisit Schallamach’s observations

about ‘imperfections’ in the spherical contact itself:

. . . secondary effects occur at times. . . where a relatively large portion of the

contact becomes detached from the main body and suddenly fuses with it again.

This statement refers to the rear end of the contact (taken in the sliding direction). Just as

material at the front end of the contact is subject to compression and surface buckling, the

surface just outside this rear end is subject to tension. One can consequently imagine a local

‘tensile neck’ causing detachment from the indenter surface, followed by readhesion. These

are the ‘secondary effects’ that Schallamach refers to. They have since been backed up by

similar observations in spherical contacts of various dimensions [2, 17].
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The equivalent of this seemingly innocuous observation in our cylindrical contact geometry

of Fig. 4 is dramatic. If a tensile neck does indeed form just outside the contact zone, resulting

in a locally detached zone within the interface, it must propagate in the opposite direction

in the form of another, very different, wave of detachment!

One such instance is illustrated by the set of frames taken from a high–speed sequence

shown in Fig. 6. Here again, the remote sliding direction V0 is from left to right, just as in

Fig. 5. However, a detachment wave is now seen to move in the opposite direction (right to

left), yet causing slip in the same direction as before. The latter fact may be ascertained

by the fact that a fortuituously trapped dirt particle within the contact is translated in

the direction of remote V0, as is to be expected. Furthermore, this wave of detachment

is easily distinguished from the Schallamach wave by a complete absence of compression-

induced surface wrinkles—it is nucleated by a tensile instability after all—resulting in perfect

contact in its wake. This detachment wave has been christened the separation or detachment

pulse [34]. For the purposes of this article, we also refer to this as the dual of the Schallamach

wave, since it differs only in that it is tensile and propagates in the opposite direction to the

latter.

The compressive versus tensile nature of the Schallamach wave and its dual, the separation

pulse, is sufficient to explain the corresponding propagation direction observed in Figs. 5, 6,

see Ref. [38]. For wave propagation at constant speed cw along the x−axis, the tangential

displacement ux has the form ux(x − cwt). Hence, the x−derivative of the displacement

∂ux/∂x and the strain εxx can be written as

εxx =
∂ux
∂x

= −c−1w
∂ux
∂t
' −c−1w

∆x

T
(1)

where ∆x is the slip per wave and T is duration of propagation. Since the sign of ∆x is

the same as V0, the strain εxx is negative (compressive) if the wave propagates in the same

direction as V0 and is positive (tensile) if it propagates in the opposite direction. Therefore,

for the case of Schallamach waves εxx < 0 and for separation pulses εxx > 0, as is evident
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from the frames in Figs. 5 and 6.

3.4 Interface dynamics from space-time diagrams

More quantitative information about interface dynamics accompanying wave motion is ob-

tained by means of space-time diagrams, that are commonly used in wave propagation studies

to obtain spatio-temporal information [39]. A space-time diagram is constructed by stacking

a fixed horizontal line in the image sequence as a function of time. Three such fixed lines,

denoted P1, P2, P3, and their corresponding space-time diagrams are presented in Fig. 7 for

Schallamach (top row) and separation waves (bottom row). In each case, the wave itself

appears as a dark diagonal band with a constant inclination angle (red dashed line). Based

on these diagrams, we can assert that both the Schallamach wave and its dual propagate

at constant speed through the interface. The former is in the range cw ∼ 100 − 300 mm/s,

corresponding to a sliding velocity V0 = 50 − 250µm/s and the latter is in the range ∼ 10

mm/s with V0 = 10 − 50µm/s. Clearly, cw � V0 in both cases, yet is much lesser than any

elastic wave speed for the elastic material (∼ 100 m/s).

The differences between the two waves is easily seen in the sign of the slope in these

diagrams. The negative (positive) slope is due to the corresponding wave moving in the

same (opposite) direction as applied V0. Additionally, the interface slip ∆x is also self-

evident: for Schallamach waves, this can be obtained by tracking the dark patch (top panel)

in frame P1 of the space-time diagram. The patch has slipped by a constant finite distance

(between white dashed lines) due to wave motion. On the other hand, a dirt particle just

below the surface may be tracked for the separation pulse (frame P3, bottom row) which

shows the resulting slip due to wave passage (again between white dashed lines).

3.5 Wave motion leading to stick–slip friction

Since the experiments described so far have been performed with a constant remote velocity

boundary condition, it is instructive to look at the corresponding time-dependent tangential
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force. Forces for the Schallamach wave and the separation pulse are shown in Fig. 8(a)

and (b), respectively. Time on the horizontal axis is non-dimensionalized by a characteristic

sliding time t0 = L/V0, with L being the length of the contact. Force on the vertical axis

is non-dimensionalized by the product of shear modulus G and nominal contact area A. It

is clear at once that both force traces can be termed as characterizing ‘stick–slip’ motion

at the interface. At the start of sliding, both traces increase from zero to a maximum

value at which wave nucleation occurs. Ensuing wave propagation triggers a sharp reduction

in the tangential force. Once a single wave has traversed the length of the contact, the

process repeats; the attendant interface motion is thus intermittent, mediated only by the

propagation of single Schallamach waves or separation pulses. On the contrary, the two traces

have very different quantitative features, such as the frequency and reduction magnitude per

cycle, see Fig. 8.

It is indeed surprising that the tensile dual of the Schallamach wave had not been reported

for a very long time, even though signs of their nucleation were noted very early on by both

Schallamach and Barquins. In fact, tensile separation pulses have even been incorrectly

reported as Schallamach waves in the geophysics community [33]. The likely cause for this

is the widespread use of the spherical indenter geometry which obscures observations of

single/solitary wave motion.

Together, these two waves are mechanically the only possibilities for moving detachment

waves at soft elastic interfaces characterized by adhesion. If the need for physical detachment

of the interface is relaxed, one other wave is also commonly observed—the so-called slip

pulse [40,41]. This peculiar wave is also nucleated in compression so that by Eq. 1, it travels

in the same direction as a Schallamach wave but looks nothing like it. Given the absence of

any detachment, the existence of the slip pulse can only be ascertained using photoelastic

techniques to directly measure the interface shear stress [14,38].

Taken together, these three waves—the Schallamach wave, its dual the separation pulse

and the slip pulse—appear to be the sole mediators of stick–slip motion in low velocity sliding.
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The domains of occurrence of each of these waves in the V0 − a plane is shown in Fig. 9.

The control parameters in this ‘phase diagram’ are V0 and the normal load (equivalently

contact width a). At low V0 and a, stick–slip occurs via the propagation of separation

pulses, while beyond a certain velocity threshold V C
0 (vertical dashed line), Schallamach

waves predominate. The likely reason for this is the ease with which the corresponding

nucleation events can occur. On the contrary, with larger normal loads/contact widths above

a threshold aC , both tensile detachment and compressive buckling become infeasbile so that

the slip pulse is the primary cause for stick–slip. It now appears fairly certain that these

three waves are the sole mediators of low velocity stick–slip in deformable adhesive interfaces.

3.6 Similarities with elastic dislocations: Burgers’ vector and defect pinning

At this junction, it is instructive to take a step back and reconsider the basic defining feature

of a Schallamach-type wave, viz. that it propagates through the interface at a constant

speed, and causes slip in its wake. Based on this minimal description alone, one would be

hard-pressed to exclude crystal lattice dislocations from this set as well. Dislocations are also

similarly nucleated, propagate at finite speed, and cause (plastic) slip in their wake.

For concreteness, consider the solitary Schallamach wave introduced in Sec. 3.3. Three

distinct velocity scales are evident—the imposed (remote) sliding velocity V0, the local ma-

terial velocity ~vp due to the wave and the velocity cw of propagation of the wave itself.

Directions of V0 and cw are fixed by the external loading. While cw is constant as the wave

propagates through the interface (see Fig. 7), the local material velocity ~vp varies with time

from zero (as the wave approaches), to a maximum value and finally back to zero (as the

wave departs). For example, for the data in Fig. 7, instantaneous ~vp is determined by the

slope of the dirt particle curve at that time; cw is the slope of the band (constant) and both

are indeed distinct from V0.

Based on data such as that in Fig. 7, the relative displacement of material points on the

surface can be plotted as a function of time, see Fig. 10. This plot shows the displacement
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of a single point under different remote V0 due to the propagation of a single Schallamach

wave at some corresponding speed cw. Three features are immediately obvious from this

data: firstly, that the surface is displaced in the form of a unit step displacement ~b. We had

earlier denoted this slip distance as ∆x = |~b| that occurs in the direction of V0. Secondly, |~b|

is independent of both V0 and cw since curves for a range of values result in similar surface

slip. This is understandable within the buckling framework discussed in Sec. 3—the buckling

threshold is independent of V0. Finally, since the interface moves only via such slip events,

the remote V0 has to be accommodated by waves with a frequency n such that:

V0 = n|~b| (2)

The constancy of |~b| in this equation implies that n ∝ V0. This is indeed the case, as supported

by the data presented in the inset graph to Fig. 10. With V0 ranging from 10−1 − 20 mm/s,

a linear dependence between the wave generation frequency n and V0 is clearly established.

The situation summarized in Fig. 10 also applies equally well to the motion of dislocations

(via slip) on a crystal plane [42]. In this case, the displacement magnitude is given by the

dislocation Burgers vector (hence the notation ~b above) and corresponds to the jump in

Fig. 10. One can hence define this as the ‘Burgers’ vector’ of a Schallamach wave. It

is determined, for a given contact geometry, by the substrate material properties—for the

experimental configuration in Sec. 3, the mean |~b| = 255 µm. Additionally, Eq. 2 appears

analogous to the Taylor-Orowan equation for plastic strain rate due to dislocation motion.

The analogy with dislocations is further strenghtened by an interesting phenomenon ob-

served during propagation of Schallamach waves past stationary dirt particles attached to the

indenter, see Fig. 11. Here, the wavefront approaches a static dirt particle A in the contact

region and gets ‘pinned’, causing a bend in the wave profile (point B). As the front moves

away from the particle, the wave regains its original profile, leaving a residual air pocket C

around the particle. This ‘bowing’ effect also occurs when dislocations move past static ob-

stacles (e.g., solute particles), leaving behind Orowan loops [42]. Under dilute solute particle
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concentration, the bent dislocation line eventually relaxes and regains its shape.

4 How can we describe Schallamach-type waves?

We now turn our attention to continuum descriptions of Schallamach-type waves that occur at

the interface between two contacting solids. Unlike in fluids, waves at solid surfaces/interfaces

can occur in various forms/guises depending on the nature of the boundary conditions [43]. A

primer for the propagation of surface waves in elastic media is presented in the Appendix. In

this section, we explore the predictions of an elastodynamic formulation for Schallamach-type

wave propagation.

4.1 Mixed-boundary value problem for Schallamach-type waves

In addition to the simple boundary conditions discussed in the appendix, interface waves

often propagate under more complex, often mixed, boundary conditions. The occurrence

of net interface slip due to a wave further complicates this situation. Slip-less detachment

waves were analyzed by Comninou and Dundurs, and found to propagate with a range of

velocities, all comparable to the Rayleigh wave speed [44,45]. On the other hand, detachment-

free frictional waves have also been analyzed using Coulomb-friction boundary conditions.

However, these are marred by inconsistencies in enforcing the static to dynamic transition,

so that a physically valid solution does not presently exist for any combination of materials

[46–48]. In addition, the biggest common shortcoming of all these solutions is that they

cannot account for interface slip in the wake of the wave.

It is thus clear that none of these solutions can describe the primary features of Schallamach-

type waves—slow propagation velocity and net interface slip—with or without interface de-

tachment. The first feature, that the wave velocity cw � cT , cL, suggests the existence of

another velocity-scale, likely due to a velocity-dependent friction law [21, 22, 49, 50] and/or

some type of regularization [51, 52]. Yet, introducing a velocity scale via a suitable inter-

face friction law is non-trivial. While this is possible with rather simplistic 1D models [53],
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a general description for moving detachment waves with adhesion has hitherto remained

elusive.

A recently established elastodynamic framework for describing Schallamach-type detach-

ment waves has, however, shown significant promise [38]. We present a 2D version of the

quasi-3D framework presented in this work, the sequence of algebraic steps described below

may be reconstructed by taking recourse to Ref. [38]. Consider the elastic material occupying

the half-space z ≤ 0. In order to mimic the physical conditions accompanying wave propaga-

tion, this framework uses a mixed boundary condition formulation involving stationary and

detached zones on the contact interface z = 0. For a wave moving along the positive x-axis

with velocity cw, one can use co-moving coordinates η = k(x− cwt) to make the wave appear

stationary. The wave number k is related to both the wave width 2α and the parameters V0

(sliding speed), cw [38] Assuming deformation to be restricted to the xz-plane, the relevant

mixed boundary conditions are:

Detachment zone |η| < α


σzz = σzx = 0

u̇x(η), u̇z(η) 6= 0

(3)

Stationary/stick zone α < |η| < π


σzz(η), σzx(η) 6= 0

u̇x = u̇z = 0

(4)

where the σxz, σzz and u̇x, u̇z are the interface stresses and velocities, respectively. The

unknowns here are the stresses σxx, σxz in the sticking zone and the velocities u̇x, u̇z in the

detached zone. In order to obtain expressions for these unknowns, we begin with a commonly

used ansatz for surface wave solutions in the form of a dual series representation, see for e.g.,

Ref. [44]. The boundary conditions in Eq. 3 are then used to obtain coupled singular integral

equations for the interface velocities u̇x, u̇z using the procedure discussed in Ref. [38]. In

order to address the slow velocity scale issue, one exploits the fact that cw � cT , cL (elastic

wave speeds) to perform a perturbation expansion in powers of cw/cL and cw/cT . The result
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is that both Schallamach waves and the oppositely moving separation pulse can be described

within the same elastic framework. In the limit ν → 0.5 (as with incompressible rubbers),

u̇x(η), u̇z(η) can be shown to obey the following singular integral equations:

τr
G

+
2

π

[
sec2(η/2)

∫ α

−α
u̇x(η

′) cot

(
η − η′

2

)
dη′ +

π tan(η/2)V0
cw

]
= 0 (5)

σr
G

+
2

π

[
sec2(η/2)

∫ α

−α
u̇z(η

′) cot

(
η − η′

2

)
dη′
]

= 0 (6)

where σr, τr are the remote normal and shear stresses, G is the material’s shear modulus and

η = k(x− cwt) as described earlier.

Unlike most other analytical treatments of stick–slip waves, the boundary conditions Eq. 3

and final integral equations (Eq. 5) imply that a description of Schallamach-type waves does

not need either an explicit friction law (e.g., Coulomb or rate/state) or a velocity scale.

Further, since the boundary conditions in Eq. 3 are written in terms of velocities, interface

slip can be enforced by suitably setting the integration constant in the expressions for the

final displacements.

The unknowns in Eq. 5 can be obtained by inverting the singular integral equations,

resulting in expressions for the interface velocities and, upon integration, the displacements

[38]. Of particular interest are the interface stresses, which can also be expressed in closed

form using expressions for the displacements and Hooke’s law

σ

σr
=
| tan(η/2)|
sin(α/2)

1√
tan2(η/2)− 1

(7)

τ

τr
=
| tan(η/2)|
sin(α/2)

1√
tan2(η/2)− 1

−
(

V0
cw tan(α/2)

)(
2G

τr

)
| tan(η/2)|
tan(η/2)

1√
tan2(η/2)− 1

(8)

and apply to both the Schallamach wave and its dual, by suitable change in the sign of the

ratio cw/V0.

The three main predictions of this theoretical treatment are as follows: Firstly, Eqs. 7

and 8 determine interface stresses accompanying both the Schallamach wave and its dual. In
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fact, Eq. 7 shows a singularity near the detachment zone edge η → ±α, implying that some

adhesion mechanism is operative here [19]. This is noteworthy since the entire problem, from

the boundary conditions to the final integral equations did not specity an adhesion law a

priori. Adhesion is hence a necessary condition for such wave propagation. Secondly, wave

motion can occur over a range of speeds cw/V0 as opposed to a single, characteristic speed.

This shows that slow-moving Schallamach-type waves can be described without having to

introduce an explicit velocity scale.

Finally, both stress components in Eq. 7, 8 show square-root singular behaviour near the

detachment zone edges η → ±α. The normal stress component yields a stress intensity factor

that may be readily related to the work of adhesion. On the other hand, the tangential stress

results in a (mode II-type) stress intensity factor for wave propagation:

Kw ∼ (τr + 4G/π)
√
x (9)

in an appropriate singular limit. Here x is the distance from the tip of the detachment zone

as measured within the stationary/stick zone. A more general method for computing stress

intensity factors such as Eq. 9 for the case ν 6= 0.5, where closed form solutions are generally

not obtainable, is presented in Ref. [54]. The consequences of Eq. 9 are discussed further in

the next section.

4.2 Predicting the onset of stick–slip

The occurrence of a stress singularity ahead of the detachment zone, Eq. 9, represents a

necessary condition for effecting wave motion. For a sufficient condition, reattachment of

the detached interface must be considered in more detail. However, for the present, we

contrast Eq. 9 with the analogous case of transition from static-to-dynamic friction outlined

recently [55]. According to this work, dynamic sliding occurs when

Kw ∼ τr
√
x (10)
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reaches a critical value depending on the nature of the contact. The notation here is the

same as that in Eq. 9. While there has been much debate about the nature of shear cracks in

general adhesive contacts (see for instance, Ref. [56] and references therein), we nonetheless

explore the consequences of Eq. 9 by comparing it with Eq. 10, since the former naturally

emerges as the solution of a rigorous boundary value problem.

Based on these two equations, a phase diagram may be developed showing when stick–slip

motion via detachment waves (Eq. 9, orange curve) should occur at the expense of uniform

sliding (Eq. 10, blue curve), see Fig. 12. The dashed curve denotes a limiting remote stress

τ ∗r beyond which wave propagation does not occur. Likewise, ∆xC is the critical detachment

zone size below which wave propagation is not feasble.

The diagram is applicable to any material pair capable of forming adhesive contact (with

one material significantly stiffer than the other) and must be interpreted as follows. Consider

an adhesive interface that is loaded at constant remote V0 as described in Sec. 3. If a

detachment zone of size ∆x > ∆xc is nucleated, the total shear stress rises continuously since

the interface remains stationary. When it crosses the orange curve, the necessary condition

for wave motion is satisfied, however, the interface still remains stationary so that sliding

does not yet start. When the remote τr then crosses the blue curve at the corresponding

∆x value, a crack begins to propagate at which point the entire interface can slip, or, if

readhesion occurs, a single detachment wave propagates through the interface. If the latter

possibility, the shear stress can reduce significantly to any point within the orange dashed

region for continued propagation. The fact that wave motion occurs at constant speed cw

implies that the shear stress settles at a fixed value within this orange zone very soon after

nucleation.

On the other hand, if interface adhesion is not strong enough to effect reattachment, a

single rupture will likely propagate through the interface, and cause in the manner discussed

in Ref. [55]. Hence depending on the strength of adhesive interaction at the interface, either

possibility—stick–slip or steady sliding—can occur within the blue (cross-hatched) zone.
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Once we cross the wave propagation threshold τ ∗r , detachment waves are no longer possible

so that only steady sliding results. The critical value ∆xc is likewise determined by the

intersection between the threshold line and the blue curve—below this nucleation width,

wave propagation is no longer feasible.

4.3 Exploiting the dislocation analogy

An alternative theoretical development to the one discussed so far in this section is to exploit

the dislocation analogy presented in Sec. 3.6. This can be used, for instance, to compute the

shear force necessary for Schallamach wave propagation to occur using force expressions for

elastic dislocations [42]. The shear force Fs required to move the wave must be balanced by

the adhesion hysteresis in detachment and reattachment at the interface. Using this balance

principle, we obtain the relevant critical shear force as

F c
s =

aLc ∆W

|~b|
(11)

where ∆W is the adhesion hysteresis, Lc, a are the contact length and width, respectively.

Using |~b| = 255 µm, 2a = 1 mm, Lc = 2.5 cm for the data presented in Sec. 3, and ∆W ' 10

mJ/m2 for PDMS [57], F c
s is estimated to be 0.5 mN. This is the minimum force needed to

propagate a single wave through the contact region. The wave pulse can thus travel through

the interface at a much lower stress than that needed for nucleation, Fc ' 1.6 N for the data

in Fig. 8. This thus explains the steep tangential force reduction after wave propagation

begins—as the interface relaxes, the tangential force continues to decrease until it either

equals F c
s or the wave exits the contact region.

Note that in the above, we’ve explicitly discussed a solitary Schallamach wave, but these

considerations nonetheless apply to other Schallamach-type waves as well.
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5 Discussion

Having presented both experimental and theoretical results on Schallamach waves and their

properties, we now discuss several potential extensions and some unexpected implications of

our work.

5.1 Noteworthy siblings of the Schallamach wave

We have so far studied the underlying causes for nucleation—tensile necking, compressive

buckling and compression-induced slip—of Schallamach-type waves. Given the generality of

these mechanisms, one would not be hard pressed to expect similar waves at any deformable

adhesive interface. One such example that has received some attention in the past is compos-

ite interfaces [15,58]. Here adhesion is externally induced (via a thin binder layer) and relative

deformation between adjacent layers of the composite can nucleate Schallamach-type waves

at the interface. Consequently, the intriguing possibility of these interfaces being toughened

by such wave propagation events has been discussed extensively [59,60].

In this context, we draw attention to three analogous waves in the world of soft-bodied

locomotion [9–11,61]. These organisms do not possess specialized limbs for effecting motion,

so must rely on elastic deformations of their entire body structures to locomote [62]. They do

so by propagating Schallamach-type waves along the length of the zone of contact between

their body and the ground.

Direct waves—analogous to slip pulses—are compressive and used by some polychaete

worms (e.g., Arenicola) to effect motion within distinct ‘slip’ segments propagating from the

tail to the head [63]. The equivalent of the separation or detachment pulse is the retrograde

wave, which occurs in some Nemertines such as Rhynchodemus. Here, a local tensile detach-

ment zone is formed and propagates from the organism’s head to its posterior end. Finally,

the equivalent of the Schallamach wave is looping locomotion, seen in some Planaria. Here,

a detachment loop is formed at the rear end due to elastic buckling of body segments; the

loop is then propagated towards the head, effecting slip as it moves [61].
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The fact that these mechanical equivalents in biology are the only three waves that have

hitherto been recorded in the context of locomotion, begs the question of whether the three

Schallamach–type waves are the only ones capable of mediating stick–slip motion at inter-

faces. The answer, as discussed in Fig. 9 earlier, appears to be in the affirmative, atleast

for low V0 and normal loads. It is noteworthy that these biological analogues have also been

considered as conceptual models, by one of the originators of the dislocation concept, Egon

Orowan, in order to explain glide motion in metallic crystals [64].

5.2 Viscoelastic and nonlinear effects on wave propagation

Viscoelastic effects can have a significant influence on surface wave motion, yet incorporating

them within the elastic framework of Sec. 4.1 remains quite challenging. In fact, even the

elementary case of Rayleigh waves becomes remarkably complicated by the introduction of

the simplest of linear viscoelastic constitutive relations [65]. Waves corresponding to other

more complicated boundary conditions appear to be hopelessly intractable at present, bar-

ring a couple of grossly simplified examples [41,46,53]. This problem does warrant attention,

given its importance from an experimental point of view—Schallamach wave properties are

influenced by the materials’ loss and storage moduli [31, 66] as well as other rate depen-

dent properties [67, 68]. Consequently, rubber friction does obey the Williams-Landel-Ferry

relation, typically associated with viscoelastic materials [69].

5.3 Other nanoscale models for Schallamach-type waves

While interface dynamics accompanying Schallamach waves is certainly describable at the

continuum scale as discussed in Sec. 4, a number of interesting phenomena arise when a

general microscopic picture of interface friction is considered. Such a description for polymers

was, unsurprisingly, put forth by Schallamach himself in a lesser known paper from 1963 [70].

This paper was focused on the dynamics of individual bonds at the interface, and did not

consider collective effects between several bonds at once. The latter is the subject of a
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well-known model propounded by Prandtl and Tomlinson in the late 1920s [71,72].

Subsequently, several microscopic models have emerged, each treating bonds between the

sliding bodies at the interface in a statistical manner. For instance, the simplest model

consists of a network of horizontal and vertical springs that interconnect a set of rigid sliders

driven by an external force. Models such as these show traveling solitary wave solutions that,

at first glance, are remarkably reminiscent of Schallamach-type waves [73]. However, a closer

look reveals that they do not explicitly account for large interface detachment nor do they

result in interface slip. Yet, these models have found much favour within the community,

likely because they are more easily amenable to incorporating viscous damping/dissipation

effects and that their reduced dimensionality (most are quasi 1D) allows easier multi-scale

analyses and numerical solution [74]. Complexity in this approach may be introduced by

altering the nature of the springs (thereby the interaction) between the rigid sliders to more

closely represent molecular interactions [75, 76]. Unfortunately, just as with the continuum

models of Sec. 4, this often comes at the expense of tractability. Evaluating the consequences

of these models constitutes an active area of research.

The generality of this microscopic approach reveals a fundamental kinship between the

Prandtl-Tomlinson approach and two other famous discrete models—the Frenkel-Kontorova

(FK) and Burridge-Knopoff (BK) models—that have their origins in crystal physics and

tectonic fault dynamics [12, 77]. Unlike the continuum elastic theories described in Sec. 4,

statistical models of the FK/BK type are inherently nonlinear. They consequently show

very rich dynamics, such as traveling topological defects (kinks), localized breathers and even

discrete effects [13,78,79]. Whether or not these solutions share similarities with Schallamach-

type waves will only be revealed by additional experiments. We believe that the solitary

Schallamach wave will play a key role in this regard.

The microscopic approach described in this section certainly has its merits, in that it

can be applied to systems as diverse as tectonic faults and crystal lattices. Coupled with

the experimental observations and the continuum–scale descriptions discussed in the previ-
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ous section, interesting analogies between Schallamach-type waves and other traveling wave

phenomena in these diverse systems begin to emerge.

Likewise, the addition of non-linearity—both material and geometric—to the governing

equations results in the emergence of novel wave properties [39]. When the governing wave

equations are dispersive and non-linear, the possibility of the two effects exactly balancing

results in the propagation of special particle–like waves called solitons [80]. In addition to the

linear elastic waves discussed earlier, solitons can also retain their shape while propagating

over long distances. However, the importance of nonlinear effects has not yet been firmly

established and warrants additional detailed experiments.

5.4 Exploiting the fracture and dislocation analogies for Schallamach waves

The wave-dislocation analogy raises the intriguing possibility of using Schallamach-type waves

as a model to study dynamic dislocation behavior. For instance, one can contrive the use

of interacting Schallamach waves to study time-dependent nanoscale phenomena such as

dislocation coalescence. The existence of opposite moving detachment waves can then be

used to ‘simulate’ pairs of like and unlike dislocations. At present, questions such as these

have only been treated using energetics [81] or large scale molecular dynamics simulations

with significant experimental uncertainty.

Just as with the dislocation picture, the close fracture correspondence presented in Sec. 4.2

affords the possibility of using Schallamach-type waves to study fracture problems and the

transition from stick–slip to steady sliding. For instance, how do moving rupture fronts

interact with crack pairs? One can also envisage the mechanical/frictional equivalent of the

well-known Rice-Thomson model of dislocation emission from crack tips [82]. If a moving

rupture front delineating stationary and slipped zones propagates through the interface, can

it become diffuse by interacting with a Schallamach wave? How does this behaviour change

between the Schallamach wave and its dual? Finally, the length scale ∆xc introduced in

Fig. 12 places bounds on the smallest Schallamach-type waves that may be observed in any

25



Fifty years of Schallamach waves K. Viswanathan & S. Chandrasekar

system. For elastomers, we find that ∆xc ∼ 100 nm which raises the question of whether

nanoscale Schallamach waves can exist in any system. If so, detailed observations of their

propagation properties could help explain stick–slip phenomena in a much wider variety of

systems.

We believe that these fascinating questions can significantly enhance our understanding

of nanoscale phenomena using insights from seemingly unrelated Schallamach-type waves.

We end by quoting Schallach once more [1]

The discussion of our experimental observations has been mostly conjecture, but

may nevertheless suggest new approaches to the study of rubber friction.

Little did Schallamach expect that his insights have helped open doors to linking several

disparate fields together. We have every reason to believe that the legacy of Schallamach’s

discovery will endure for another fifty years.

6 Summary and future outlook

As we said at the beginning of this article, Schallamach’s humble question has opened far

reaching links between rubber friction and phenomena in domains as diverse as biological

locomotion, nanoscale mechanics and interface fracture. Let us first attempt a summary of

the salient features. We’ve seen how Schallamach waves nucleate due to a surface buckling

instability, and how they subsequently propagate through the interface at speeds much lower

than any elastic wave speed. Schallamach’s observations, followed by several others, were all

made using a spherical indenter geometry. Changing from this geometry to a cylindrical one

has allowed the isolation of single or solitary Schallamach waves. Not only do these waves

offer a clear quantitative picture of propagation dynamics, they also reveal remarkable simi-

larities with propagating waves in other systems, e.g., biological locomotion. A second major

advantage of the cylindrical geometry is that it enables observation of another slow moving

detachment wave—the separation pulse or the dual of the Schallamach wave. Together, the

Schallamach wave and its dual represent the only two possibile mechanisms for waves of
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detachment at soft adhesive interfaces. A final detachment-less wave is also observed—the

slip pulse—which completed our trio of Schallamach-type waves. We noted that there are

exact analogues of these Schallamach–type waves in biological locomotion. Based on the

two key features of Schallamach–type waves, viz. that they move at slow speed and result

in constant slip in thier wake, we explored possible continuum theories for explaining their

propagation. The failure of conventional elastodynamic models to explain both key features

was remedied—for the Schallamach wave and its dual atleast—by the use of a model-free

mixed boundary value problem framework. This approach has helped bridge the gap be-

tween theory and experiment, but left several questions unanswered. Primarily among these

is the role of viscoelasticity—that appears to completely obliterate any signs of a closed-form

solution. There remains much to be done here to explain the role of key phenomena such

as the observed Williams-Landel-Ferry relationship in rubber friction as well as the origin of

contact relaxation effects.

Moving onto smaller scales, we deliberated on the rather intimate link between friction

phenomena in general and nanoscale mechanics. Two noteworthy examples are the corre-

spondence between Schallamach-type waves and interface crack pairs, and the dislocation

analogy. This then raises the natural question of whether Schallamach-type waves can be

used to study the dynamics of nanoscale mechanics and fracture phenomena. It is presently

standard practice to treat these problems using energetics, so that even rudimentary under-

standing of their time-dependence has remained elusive. Little did Schallamach know that

the waves that are now named after him, could be the bridge that connects such diverse

areas. There is much yet to be unearthed in this matter and we hope that a reader of this

article will fire the first shots.
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Appendix: A primer on elastic surface waves

The dynamic behaviour of isotropic linear elastic materials is determined by two characteristic

material velocities—the shear cT and longitudinal cL wave speeds. The displacement field ~u

in an elastic body is determined as a suitable linear combination of an irrotational component

~uL and an incompressible component ~uT , each obeying a linear wave equation [43]

∂~uL
∂t2

= c2L∇2~uL ∇× ~uL = 0 (12)

∂~uT
∂t2

= c2T∇2~uT ∇ · ~uT = 0

These equations must be supplemented by boundary conditions (BCs) and initial conditions

(ICs) pertinent to the particular physical problem. The BCs could include specification of

either the stresses/displacements or both on part of or the entire surface of the elastic body.

Unlike surface waves, longitudinal and transverse waves desribed by ~uL, ~uT travel in the bulk

of the material (infinite space). Notably, ~uL, ~uT waves are non-dispersive—their propagation

speed does not depend on the wavelength. Specifically, linear, non-dispersive waves can

propagate without changing their shape whatsoever [39]. PDEs such as Eq. 12 govern only

wave propagation and say nothing about how or why they must nucleate in the first place.

For the elastic polymer in the experiments of Sec. 3, the wave speeds cL, cT ∼ 100 m/s.

The waves that can then propagate at or near an interface or free surface are determined

by specific boundary conditions. The simplest surface wave is the Rayleigh wave and it occurs

on a stress free surface of an elastic solid [83]. Consider a semi-infinite elastic solid z ≤ 0

with the z = 0 plane as its bounding surface. These waves are exponentially damped into

the solid z < 0 and propagate on the surface z = 0 at a fixed velocity cR < cT < cL, that

is determined by the material’s Poisson’s ratio. Rayleigh waves are well known free surface
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waves that usually accompany earthquakes; they arrive after the first acoustic signals (since

cR < cT , cL) and are non–dispersive.

In contrast, when two elastic materials are brought into contact, a Rayleigh wave cannot

propagate at the interface, because the surface is no longer stress–free. On the contrary, if

the two solids have continuous displacements and stresses at the interface (so-called ‘welded

contact’), a Stoneley wave can propagate instead [84]. The existence of Stoneley waves is tied

to the elastic properties of the two contacting materials. However, when they do exist, these

waves propagate at a fixed velocity, which is a function of the two sets of elastic properties.

Just like Rayleigh waves, Stoneley waves are also non–dispersive.

If the ‘welded’ contact described above is replaced by a frictionless contact (σxz = σyz =

0), then an Achenbach–Epstein (AE) wave or generalized Rayleigh wave can propagate in-

stead of Stoneley waves [85]. The requisite boundary conditions now involve continuous

displacements across the interface, equal normal forces and zero tangential forces on both

bodies. The existence of AE waves at an interface between two solids depends on the elas-

tic properties of the two materials. Like both Rayleigh and Stoneley waves, AE waves also

propagate at a fixed velocity, dependent on the two sets of material elastic properties, and

are non–dispersive.
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Figure 1: Panels showing Schallamach waves in an adhesive contact. (Left) The two different
experimental configurations used by Schallamach comprise of a spherical glass indenter sliding
against a rubber flat (a) and a spherical rubber indenter sliding against a glass flat (b). Note
the direction of friction force F vis-á-vis wave propagation direction w. (Rigt) Three frames
showing the propagation of multiple Schallamach waves, sliding direction is as shown in (a)
on the left. Adapted from Ref. [1]

Figure 2: Schematic comparing standard Hertzian non-adhesive contact (bottom) and JKR-
type adhesive contact (top). In the former, the rubber surface is nearly tangential to the
indenter profile. In the latter, it is normal to the surface, due to intermolecular attraction.
Adapted from Ref. [17].
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Figure 3: Nucleation of a single Schallamach wave within the spherical contact geometry.
The elastic polymer is slid at constant remote velocity V0 to the left and initially remains
stationary at the interface (frame 1). Buckling results in a pronounced bulge on the free
surface, with a corresponding surface depression between points A1 and A2 (frame 2). The
bulge eventually grows enough to reattach to the indenter at point B (frame 3). Wrinkles
accompanying a nucleating Schallamach wave show an initial wavelength λ0 (inset, frame 2)
which doubles to λ1 ' 2λ0 (inset, frame 3) just at the onset of wave propagation. The inset
locations are marked by white dashed lines in the corresponding frames.

Figure 4: Experimental schematic showing a typical cylindrical lens in adhesive contact
leading to the formation of an ‘adhesive’ channel. The schematic on the left shows a typical
configuration with a backlit source and remote applied motion V0. A sample image showing
the contact zone (light grey) and detached zones (dark grey) is presented in the right panel.
Note that the red, green and blue arrows represent the x, y, z axes, respectively.
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Figure 5: Evolution of a single Schallamach wave under remote applied V0 to the elastic
polymer. The wave propagates from left to right, in the same direction as V0 and causes slip
in its wake. The interface is stationary before and after the wave has passed. This is seen
by following the motion of a dirt particle (black line) embedded on the polymer sub-surface.
The scale bar and timestamp shows that the wavespeed is much lesser than typical elastic
wave speeds.

Figure 6: Propagation of the dual of the Schallamach wave or the separation pulse. Remote
sliding V0 occurs in the same direction as before, but the detachment wave moves in the
opposite direction. Despite this, slip occurs in the same direction as the applied V0. Note
that, just as with the Schallamach wave, this separation pulse also propagates at speeds much
lesser than elastic wave speeds.
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Figure 7: Space–time diagrams showing propagation of a Schallamach wave (top row) and its
dual (separation pulse, bottom row). The image on the left shows locations of the horizontal
lines P1, P2, P3, with corresponding space–time diagrams to the right in each row. The wave
appears as a dark band in all three diagrams with constant slope (red dashed line) equal
to the wave speed. Interface slip distance, as indicated by the trajectory of the black line
marker, is as shown between parallel white dashed lines. Analogously, the separation pulse
appears as a dark band in all three diagrams (bottom row) with constant slope (red dashed
line) equal to the wave speed. Interface slip distance, as indicated by a moving dirt particle
near the interface, is marked by parallel white dashed lines.
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Figure 8: Forces accompanying the propagation of a sequence of Schallamach waves (left)
and separation pulses (right). Both traces show oscillations, and are therefore characteristic
of what might be termed ‘stick–slip’ motion. Wave nucleation occurs at the peak in each
oscillation cycle, followed by a force reduction during propagation. The magnitude of the
reduction, as well as the wave nucleation frequency differs between the Schallamach wave
(left) and its dual (right). Note that force is non-dimensionalized by the product of shear
modulus G times contact area A and time is non-dimensionalized by t0 = L/V0 where L is
the contact length and V0 is the sliding velocity as before.

Figure 9: A two-parameter phase diagram showing domains of occurrence of the three
Schallamach-type waves discussed in the article. Schallamach waves occur above a criti-
cal sliding velocity, separation pulses occur a low V0 and normal loads while detachment-less
slip pulses mediate motion at large normal loads.
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Figure 10: Analogies between solitary Schallamach-type waves and crystal dislocations.
Time-dependent displacement curve as recorded at a single point location on the interface.
This curve shows that the point remains stationary until a wave approaches (∼ 13 ms),
following which slip occurs and reaches a maximum value ∼ 250µm. This is identical with
what happens with a gliding crystal dislocation so that the effective slip may be identified
with the magnitude of the Burgers’ vector. Inset shows the frequency of wave generation
plotted against V0, the proportionality is again reminiscent of the plastic strain rate relation
due to dislocation motion.
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Figure 11: Interaction between a solitary Schallamach wave and a large dirt particle A on
the interface. The wave approaches the particle and is bowed by it (at B), following which a
residual detachment region is left behind (C) around the dirt particle. This outcome is also
analogous to that observed during dislocation-point defect interaction.
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Figure 12: Qualitative phase diagram comparing Schallamach-type detachment waves with
shear cracks to predict when stick–slip should occur at the expense of steady sliding. The
orange curve (d-wave) represents the equivalent stress intensity factor for a moving detach-
ment wave (ν = 0.5) while the blue curve is for an equivalent shear crack of the same initial
extent. The shaded regions are labeled based on which phenomenon, stick–slip or steady
sliding/crack growth, is expected to occur.
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