
BIROn - Birkbeck Institutional Research Online

Mitton, Roger (2010) Fifty years of spellchecking. Writing Systems Research
2 (1), pp. 1-7. ISSN 1758-6801.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/1211/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/1211/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

BIROn - Birkbeck Institutional Research Online

Enabling open access to Birkbeck’s published research output

Fifty years of spellchecking

Journal Article

http://eprints.bbk.ac.uk/1211

Version: Publisher draft

Citation:

© 2010 Oxford Journals

Publisher version

__

All articles available through Birkbeck ePrints are protected by intellectual property law, including
copyright law. Any use made of the contents should comply with the relevant law.

__

Deposit Guide

Contact: lib-eprints@bbk.ac.uk

Birkbeck ePrints Birkbeck ePrints

Mitton, R. (2010) Fifty years of spellchecking – Writing Systems
Research 2 (1), pp.1-7

http://eprints.bbk.ac.uk/
http://eprints.bbk.ac.uk/1211
http://eprints.bbk.ac.uk/
mailto:lib-eprints@bbk.ac.uk

Fifty years of spellchecking

Roger Mitton

Department of Computer Science and Information Systems,

Birkbeck, University of London

By the standards of the computing industry, spellchecking has a long history. It began

in the late fifties - the days of mainframes and punched paper tape – an early

publication is (Blair, 1960), and an oft-cited paper is (Damerau, 1964).

Most of the methods used a dictionary (meaning, in this context, simply a list of

correct spellings) but some did not. One system (Morris and Cherry, 1975), when

presented with a text for checking, split it up into three-letter sequences (trigrams),

counted the number of each, and then calculated an “index of peculiarity” for each

word, based on the frequency of the trigrams it contained, finally drawing the user’s

attention to the more peculiar-looking ones. The typo exmination, for example,

contains exm and xmi, trigrams probably not shared by any other word in the text, so it

would be rated as rather peculiar and would appear near the top of the list. Of course

the user still had the job of spotting the errors in this list, and many misspellings do

not contain unusual trigrams and so would not figure in the list at all, but it often

succeeded in highlighting a typo. And, being dictionary-free, it would work just as

well for, say, Spanish or Greek.

But most systems checked a text by looking up all the words in a dictionary.

Publishers were beginning to make use of computer technology, and dictionaries for

spellchecking could be extracted from the machine-readable versions of the published

ones. A big problem, even into the eighties, was the small size of computer memories.

Holding an entire dictionary in main memory (the rapid-access part of the computer’s

storage) was out of the question. The dictionary had to be held on disc and small

portions of it read into main memory as required. Consequently much ingenuity went

into compressing the dictionary.

One technique used was affix-stripping (McIlroy, 1982). Instead of storing computes,

computed, computing, computer, computers, computable, computability, computation,

computational, you store just compute, and have a set of rules that strip suffixes and

adjust the stem if necessary. Having derived compute from, say, computability, and

having found compute in the dictionary, you conclude that computability is an

acceptable word. You can do the same with prefixes, deriving civil from uncivil.

There needs to be some ordering of the rules, to accept undoubtedly but not

undoubtlyed and some way of handling words that look as if they have affixes but

don’t, such as prosper, seabed and farthing. Though effective for the checking part of

a spellchecker’s task, this was less useful for suggesting the correct spelling, since

simply adding affixes to a stem runs the risk of generating non-existent words –

doubtedly? undoubting?

Another consequence of holding the dictionary on disc was to make the checking a

slow process (by computer standards) since a disc access is thousands of times slower

than a main-memory access. A partial solution was to hold, in main memory, a list of

the most frequent words in the language. If a spellchecker was checking the first

sentence of this paragraph, and it held just the most frequent one hundred words of

written English in main memory, it would find of, the, on, was, to, a, by, is and than

(i.e. two-fifths of the tokens) without having to consult the main dictionary; if it held

the next few hundred, it would find another, make, since and main (Leech et al.,

2001).

There was some debate about whether a spellchecker’s dictionary should be large or

small. “The larger, the better,” might be one’s first reaction. But it was pointed out

that mistyping a short word can often produce another word (Peterson, 1986), and that

people sometimes write one word for another – bigger then me, the principle function,

the teacher tort us (Mitton, 1987). These real-word errors are, of course, not detected

by dictionary look-up, and the spellchecker is more likely to let them through if its

dictionary is full of rare words. So perhaps the dictionary should not be too big?

A study of this problem established, however, that, when people use a rare word, it is

very likely to be a correct spelling and not a real-word error, so that a spellchecker

with a small dictionary, while it might occasionally detect a real-word error, would

more often be raising false alarms over correctly spelt, rare words (Damerau and

Mays, 1989). While this is clearly true for a large proportion of rare words – it’s

unlikely that someone who writes okapi did not mean okapi – there is a subset of rare

words that bear a strong resemblance to common words, and the occurrence of one of

these words is in fact more likely to be an error than a correct use. Calender (with an

e), for example, is in the dictionary (it’s a machine for smoothing cloth or paper), and

it occurs fourteen times in the BNC (British National Corpus), but all fourteen are

misspellings of calendar (though one of the two occurrences of calenders (plural) is

correct) (Mitton et al. 2007). Similarly, withe (with), ail (all), tor (for), canvasses

(canvases), posses (possess), polices (policies), abut (about), wold (world/would/wild)

and rime (time). So, while a larger dictionary is generally preferable, rare words that

resemble common words should be treated as potential errors.

Correction, as opposed to the detection, of errors consisted of generating a list of

words that somewhat resembled the error. An early algorithm, described in (Peterson,

1980), aimed to reverse any of the possible processes that might have given rise to a

single-letter typo. Take, for example, the misspelling pord. The typist might have

inserted an extra letter, so let’s look up ord, prd, pod and por. Or the typist might

have transposed two adjacent letters, so look up oprd, prod and podr. Perhaps one

letter was substituted for another, so look up aord, bord, cord and so on, then pard,

pbrd, pcrd ..., then poad, pobd..., and pora, porb ... down to porz. And finally, let’s do

something similar on the assumption that the typist omitted a letter: apord, bpord,

cpord, ..., paord, pbord, ..., poard, pobrd, ..., porad, porbd, ..., ending with porda to

pordz. If any of these variations turn out to be in the dictionary, you offer them to the

user: pod, prod, cord, ford, lord, word, pond, pore, pork, porn, port, pored. (There are

more efficient ways of achieving the same result – see, for example Oflazer (1996),

Savary (2002) or Mihov and Schulz (2004).)

This list is in no particular order – there is no notion of the spellchecker’s best guess,

second-best and so on. And it is restricted, obviously, to single-letter errors. This is

not too serious for mistyped words, the great majority of which contain just one

single-letter error (Pollock and Zamora, 1984), but it is less useful for misspellings; it

would not offer the right word, for example, for “Mother pord the tea.”

Before the arrival of the PC in the early eighties, wordprocessors were mostly used by

secretaries, who were sent on training courses to learn how to use them, so the

spellcheckers of the time were designed for people whose spelling was assumed to be

pretty good. Generating a long list of suggestions, possibly containing some very

obscure words, was seen as more important than ordering the list in a helpful way.

The earlier PC-based spellcheckers continued this policy. When offered cort, for

example, in, say, “I’ve cort a cold,” WordPerfect 5.1 (circa 1985) responded with the

following: cart, cert, coat, colt, cont, coot, copt, cor, cord, corf, cork, corm, corn,

corp, corr, cors, corti, cost, cot, court, crt, curt, carat, carate, card, cared, caret,

carried, carrot, carte, cerate, cered, ceroid, chaired, charade, chard, chariot, charred,

chart, cheered, cheroot, chert, chirred, chord, choreoid, chorioid, choroid, cirrate,

cored, corrade, corrode, corrupt, coward, cowered, curate, curd, cured, curet, curette,

curried, karate, kart, keyword, scared, scarred, scirrhoid, scored, scoured, scurried.

The complaints that most people had with spellcheckers, however, were not with the

lists of suggestions but with shortcomings in error detection. On the one hand, the

spellchecker would flag names, newly coined words and technical terms as errors –

this could be ameliorated by allowing users to build up private dictionaries to be used

as supplements to the spellchecker’s main dictionary. On the other hand, the

spellchecker failed to flag real-word errors, and this was a serious defect since errors

of this kind are surprisingly common – several studies, admittedly of handwritten text,

found that a quarter to a third of all misspelt words were real-word errors (Wing and

Baddeley, 1980; Sterling, 1983; Mitton, 1987; Brooks et al. 1993). Hence a little

poem that was in circulation, in different versions:

 I have a spelling chequer; it came with my pea sea.

 It plainly marques for my revue miss takes eye cannot sea.

 I’ve run this poem threw it, I’m sure yore pleased two no.

 It’s letter perfect in its weigh – my chequer tolled me sew.

An approach to this problem, developed in the eighties and nineties, was to use

confusion sets (e.g. Golding, 1995; Golding and Roth, 1999). A confusion set is a

small set of words – usually two but sometimes three or four – that are likely to be

confused with one another, such as {there, their, they’re} or {principle, principal}.

You provide the spellchecker with a list of confusion sets. It then scans the text,

looking for any of the words in the list. Let’s say the text contains the sentence, “The

sand-eel is the principle food for many birds and animals.” Having found an

occurrence of principle, it assesses whether any of the other members of the confusion

set (here just principal) would be more appropriate in that position. It might make this

assessment on the basis of syntax, semantics, collocation or any other information it

might have. If it decided that principal would be more appropriate here, it would flag

principle as an error and propose principal as a correction.

It is important to find a way to calibrate these assessments of appropriateness and only

to flag an error if the spellchecker is confident of its assessment, since the great

majority of occurrences of the words in confusion sets are in fact correct, and a

spellchecker that was constantly raising false alarms would be irritating and

effectively unusable.

Unfortunately, the early research with this technique used a small list of about twenty

confusion sets, and most of the subsequent experiments used the same set, to preserve

comparability with earlier work, though (Carlson et al., 2001) scaled it up to 265.

Though sufficient for proof of concept, this small list would obviously be inadequate

for use in a real-life spellchecker. Only recently, however, has a serious attempt been

made to produce a list sufficiently large to tackle unrestricted text (Pedler and Mitton,

2010). Experiments with a test corpus of errors collected from student essays, online

bulletin boards and so on, suggest that, with a list of about 6,000 confusion sets, a

spellchecker could detect around 70% of the real-word errors.

The rapid take-up of PCs in the eighties meant that the use of computers, and

particularly of wordprocessors, was no longer confined to professionals. Users could

no longer be assumed to be good spellers; in fact they increasingly looked to the

spellchecker to help them with their spelling. Poor spellers do not want a list of fifty

suggestions, with the required word buried (or possibly not) somewhere in the middle;

they want a short list of about half a dozen with the required word preferably at the

top.

To produce such a list, a spellchecker can begin by assembling a large set of possible

candidates, perhaps some hundreds of them. These are words that somewhat resemble

the error – perhaps they begin with the same letter, share a couple of consonants in

common and are roughly the same length. Each of these candidates is then compared

with the error, using some string-matching algorithm. Many algorithms have been

proposed, but a simple one would be to count the number of letters or letter-pairs that

the candidate has in common with the misspelling. This provides a kind of

measurement of how close each of the candidates is to the misspelling, and the

spellchecker offers the best few to the user.

A simple system like this works quite well for a large proportion of misspellings,

matching bicycle to, say, bycicyle. But it works less well for the misspellings of poor

spellers; for cort, it would favour court, cert or corm, though caught might well be the

target.

Another string-matching algorithm is based on the notion of edit-distance

(Levenshtein, 1966; Wagner and Fischer, 1974). In its simplest form, you take the

misspelling on the one hand and one of the candidates on the other, and you work out

how many single-letter changes are required to change the one into the other, where a

single-letter change could be the insertion of a letter or the omission of a letter or the

changing of one letter into another. (In many systems, the transposition of two

adjacent letters is also counted as a single-letter change.) For example, if the

misspelling was yot and the candidate was yoke, you could get from yoke to yot by

changing the k to a t and omitting the e – two changes, so the edit-distance is 2.

The lower the edit-distance, the closer the match. You calculate the edit-distance for

each of the candidates and then present them in order, lowest first. So if, say, we had

three candidates for yot – yoke, pot and yacht – we would calculate their edit-distance

to yot to be 2 for yoke, 1 for pot and 3 for yacht, so we would present them in the

order pot, yoke, yacht.

In a more elaborate version of edit-distance (Veronis, 1988; Mitton, 1996), you attach

costs to each of the single-letter changes; a low cost would be attached to a relatively

trivial change, such as doubling a consonant (e.g. harrass for harass), but a high one

to an unlikely change, such as changing a p to a y. Let’s suppose we attached the

following costs in our yot example:

pot p to y unlikely, say cost of 5 Total: 5

yoke k to t unlikely, say cost of 5; addition of e not

uncommon, say 2

Total: 7

yacht a to o not surprising given the pronunciation,

say 1; likewise the omission of the ch, say 2

Total: 3

So we would present these candidates in the order yacht, pot, yoke.

The costs can be held in a general table applicable to all words – you might decide,

for instance, that changing a p to a y will always have a cost of 5, while changing a c

to a k will cost 3. Or they can take account of the immediate context, e.g. changing a

p to an f is normally improbable, say cost of 4 or 5, but if it’s the p in ph, it’s a lot

more likely, say cost of 2. Or they can be tailored for individual words – omitting the t

from mortal would attract a high cost, but omitting it from mortgage a much lower

one.

This system enables a spellchecker to anticipate the sort of misspellings that are

caused by the quirks of English orthography; it can make allowance for the ch of

yacht, the c of scissors or the w of answer. Although these examples arise from the

mismatch of spelling and pronunciation, as many misspellings do, the system can deal

with other sorts of misspelling. Rember, for example, is a common misspelling of

remember, so we attach a low cost to the omission of the em. Latest is sometimes

written lastest, so we attach a low cost to the insertion of an s. (For more detail see

Mitton (2008).)

By means of these and other techniques, spellcheckers became quite good at offering

the required word at the head of the list, and this, paradoxically, gave rise to a new

sort of misspelling – the Cupertino. These are caused by people, whether from an

excess of faith or a lack of attention, choosing the first suggestion from the

spellchecker’s list without looking very closely, thus producing sentences such as,

“The Wine Bar Company is opening a chain of brassieres,” or, “The nightwatchman

threw the switch and eliminated the backyard.” They are called Cupertinos because a

version of Microsoft Word did not have the spelling cooperation in its dictionary,

only the hyphenated co-operation. If someone typed cooperation, it would, bizarrely,

offer Cupertino, the name of a suburban city in California, as its first suggestion.

There are documents on the web containing phrases such as “agreement on bilateral

Cupertino”.

When I began my research into spellchecking in the 1980’s, I gave a presentation on

my ideas to my colleagues in the Department of Computer Science at Birkbeck, and

they asked why I did not adopt the simple and direct approach of assembling a very

large database of misspellings and mapping each one onto its target word. When you

found a misspelling in the text you were checking, you would just look it up in this

database and find the target word that it was matched with. I replied that no such

collection of misspellings existed, that it would be an enormous job to create one and,

given the inventiveness that people bring to the creation of misspellings, it would be

an unmanageably huge database. Twenty five years on and something very like this

database now exists, thanks to the internet and the big search engines.

The search engine companies – Google, Yahoo and the rest – keep a log of all the

queries that people key in, and, since they have been doing this for several years and

since millions of people use these engines, the log files are enormous. Many of the

queries, of course, contain misspellings. There is, therefore, the possibility of

implementing my colleagues’ suggestion, or something like it.

The spellchecking task that faces a search engine is not the same as that faced by a

regular spellchecker. Rather than checking a text of at least a few sentences, the

search engine is trying to correct a query consisting of just a few words. The range of

possible target words is much wider than for a regular spellchecker, including names

of people, places, companies and products. Consequently the dictionary, central to

traditional spellchecking, is less useful for query checking; someone who types in

Limp Biscuit is probably not interested in biscuits but is trying to find out about the

rock group Limp Bizkit.

One technique that has been described (Cucerzan and Brill, 2004) makes use of the

observation that misspellings follow a certain pattern. Around each correct spelling

there is an extended family of potential misspellings, some of them bearing a close

resemblance to the target, others more remote. The closer the family resemblance, the

more common the misspelling. In other words, near-misses are quite common,

whereas weird misspellings, though there may be a lot of them altogether, are

individually quite rare. If, for example, you asked a hundred secondary-school

children to spell the word scissors, the most frequent effort would be the correct

spelling, then you would find quite a lot of sissors and a few each of siccors, scisors,

siscors, sisers and sissers, and then lots of wilder variations, such as cezzous,

saciarres, sisions and sorriors, but only one or two of each (Mitton, 1996).

Given a misspelled query (i.e. it does not correspond to any of the search engine’s

index terms) – let’s call it Q1 – the query checker looks for a match, or a near match,

in the log of past queries. This may itself be a misspelled query – call it Q2 – in which

case the checker repeats the process, looking for a near-match to Q2 which has also

appeared more frequently in the log and is therefore likely to be a closer

approximation to the desired search term. This may need to be repeated two or three

times until the next nearest match is not another misspelling but a valid search term,

as in the following example:

Q1: anol scwartegger

Q2: arnold schwartnegger

Q3: arnold schwarznegger

Q4: arnold schwarzenegger (the required search term)

Whether this technique can be transferred to your own computer depends on the

future of computing. You certainly could not accommodate, on your laptop, the

gigantic files required to hold the logs, even supposing that the search engine

companies were prepared to part with them. But it may be that the personal computer

of the future will do very little processing in its own right but rather will act as your

connection into the huge computing power of the internet, so that the spellchecking of

your document, along with many other processes, will not actually take place inside

your own machine but will be carried out elsewhere, with your machine just showing

you the results.

So perhaps, when you make a spelling error and the correct spelling pops into your

computer from who knows where (“cloud computing” is the term currently given to

this sort of internet based computing), it may be that you will be benefitting not so

much from the efforts of good spellers who have gone before you, patiently creating

dictionaries, but from the efforts of bad ones, misspelling the same word in a thousand

different ways.

References

Blair, C.R. (1960). A program for correcting spelling errors. Information and Control,

3: 60-7.

Brooks, G., Gorman, T. and Kendall, L. (1993). Spelling it out: the spelling

abilities of 11- and 15-year-olds. Slough: National Foundation for Educational

Research.

Carlson, A.J., Rosen, J., and Roth, D. (2001). Scaling up context-sensitive text

correction. In Proceedings of the 13
th

 Innovative Applications of Artificial Intelligence

Conference, Menlo Park, CA.: AAAI Press, 45-50.

Cucerzan, S. and Brill, E. (2004). Spelling correction as an iterative process that

exploits the collective knowledge of web users. In Proceedings of EMNLP 2004, 293-

300.

Damerau, F.J. (1964). A technique for computer detection and correction of spelling

errors. Communications of the A.C.M., 7: 171-6.

Damerau, F.J. and Mays, E. (1989). An examination of undetected typing errors.

Information Processing and Management, 25 (6): 659-64.

Golding, A.R. (1995). A Bayesian hybrid method for context-sensitive spelling

correction. In Proceedings of the Third Workshop on Very Large Corpora, Cambridge

MA.: Massachusetts Institute of Technology, 39-53.

Golding, A.R. and Roth, D. (1999). A Winnow-based approach to context-sensitive

spelling correction. Machine Learning, 34: 107-30.

Leech, G., Rayson, P. and Wilson, A. (2001). Word Frequencies in Written and

Spoken English. London: Longman.

Levenshtein, V.I. (1966). Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics – Doklady 10 (8): 707-10.

McIlroy, M.D. (1982). Development of a spelling list. IEEE Transactions on

Communications, COM-30 (1): 91-9.

Mihov, S. and Schulz, K.U. (2004). Fast approximate search in large dictionaries.

Computational Linguistics, 30 (4): 451-77.

Mitton, R. (1987). Spelling checkers, spelling correctors and the misspellings of poor

spellers. Information Processing and Management, 23 (5): 495-505.

Mitton, R. (1996). English Spelling and the Computer. London: Longman.

Mitton, R. (2008). Ordering the suggestions of a spellchecker without using context.

Natural Language Engineering, 15 (2): 173-92.

Mitton, R., Harrison, D. and Pedler, J. (2007). BNC! Handle with care! Spelling

and tagging errors in the BNC. In Davies, M., Rayson, P., Hunston, S. and Danielsson,

P. (eds), Proceedings of the Corpus Linguistics Conference CL2007, University of

Birmingham, ucrel.lancs.ac.uk/publications/CL2007/.

Morris, R. and Cherry, L.L. (1975). Computer detection of typographical errors.

IEEE Transactions on Professional Communication, PC-18 (1): 54-64.

Oflazer, K. (1996). Error tolerant finite-state recognition with applications to

morphological analysis and spelling correction. Computational Linguistics, 22 (1):

73-89.

Pedler, J. and Mitton, R. (2010). A large list of confusion sets for spellchecking

assessed against a corpus of real-word errors. In Language Research and Evaluation

Conference LREC2010, Malta.

Peterson, J.L. (1980). Computer programs for detecting and correcting spelling

errors. Communications of the A.C.M., 23 (12): 676-87.

Peterson, J.L. (1986). A note on undetected typing errors. Communications of the

A.C.M., 29 (7): 633-7.

Pollock, J.L. and Zamora, A. (1984). Automatic spelling correction in scientific and

scholarly text. Communications of the A.C.M., 27 (4): 358-68.

Savary, A. (2002). Typographical nearset-neighbour search in a finite-state lexicon

and its application to spelling correction. In Watson B.W. and Woods, D. (eds),

Proceedings of the 6
th

 International Conference on the Implementation and

Application of Automata. Lecture Notes in Computer Science 2494. Berlin: Springer,

251-60.

Sterling, C.M. (1983). Spelling errors in context. British Journal of Psychology, 74:

353-64.

Veronis, J. (1988). Computerized correction of phonographic errors. Computers and

the Humanities, 22: 43-56.

Wagner, R.A., and Fischer, M.J. (1974). The string-to-string correction problem.

Journal of the A.C.M., 21 (1): 168-73.

Wing, A.M. and Baddeley, A.D. (1980). Spelling errors in handwriting: a corpus and

a distributional analysis. In Frith U. (ed.), Cognitive Processes in Spelling. London:

Academic Press, 251-85.

	1211cover.pdf
	1211.pdf

