
FiGaRo:
Fine-Grained Software Reconfiguration

for Wireless Sensor Networks

Luca Mottola1, Gian Pietro Picco2, and Adil Amjad2

1 Department of Electronics and Information, Politecnico di Milano, Italy,
mottola@elet.polimi.it

2 Department of Information and Communication Technology, University of Trento, Italy,
{amjad,picco}@dit.unitn.it

Abstract. Wireless Sensor Networks (WSNs) are increasingly being proposed
in scenarios whose requirements cannot be fully predicted, or where the system
functionality must adapt to changing conditions. In these scenarios, the ability to
reconfigure portions of the software running on WSN nodes becomes imperative.
At the same time, recent WSN proposals often employ heterogeneous nodes (e.g.,
sensors and actuators), which require the deployment of different code on differ-
ent devices, based on their characteristics. Unfortunately, existing work in the
field largely focuses on simpler scenarios where the same, monolithic program is
distributed to all the nodes in the WSN.
In this paper we present FIGARO, a programming model supported by an effi-
cient run-time system and distributed protocols, collectively enabling an unprece-
dented fine-grained control over what is being reconfigured, and where. Using
FIGARO, the programmer can deal explicitly with component dependencies and
version constraints, as well as select precisely the subset of nodes targeted by
reconfiguration, leaving the others unaltered. We show that our run-time support
imposes a very limited processing and memory overhead, while the communica-
tion overhead lies within 9% of the theoretical optimum.

1 Introduction

The nodes of a wireless sensor network (WSN) are often deployed in large numbers
and inaccessible places, making individual code uploading an impractical solution. This
problem was early recognized in the WSN research field, leading to solutions exploiting
the wireless link for on-the-fly, untethered software reconfiguration [1]. However, these
solutions were designed to suit the needs of early WSN architectures, i.e., application-
specific systems with homogeneous devices.

Problem and Motivation. Today, WSNs are proposed in contexts where their function-
ality changes over time and/or cannot be predicted a priori. For instance, in emergency
response [2] systems the WSN must be reconfigured on-the-fly by mobile operators
which demand customized behavior to carry out their activities. In similar scenarios, an-
ticipating all expected needs, if at all possible, may lead to complex and unreliable code
cluttered with rarely-used functionality. Therefore, software reconfiguration—even if
representing a rare activity compared to the application operations—becomes a much-
needed feature. For reconfiguration to be fully effective, however, programmers must

retain fine-grained control over what is being reconfigured, by updating selected func-
tionality to minimize energy consumption. However, most platforms allow updates only
of the full application image. In the very few exceptions, programmers sorely miss
proper constructs to deal with dependencies among different functionality, versions,
and other fundamental aspects of reconfiguration [1].

Moreover, modern WSNs are typically heterogeneous, containing a mixture of sens-
ing devices and/or actuators. In building monitoring, for instance, a wide range of sensor
and actuators is deployed, e.g., to implement heating, ventilation, and air conditioning
(HVAC) control [3]. As different nodes are likely to run different application code, soft-
ware reconfiguration may be limited to a specified portion of the WSN. For instance, a
structural engineer inspecting a building may want to load a new piece of functionality
only on seismic sensors deployed in a specific location (e.g., the floor being inspected),
to process the sensed data in a previously unanticipated manner [4]. In this case, fine-
grained control over where the code is deployed, based on application attributes of the
nodes, is largely missing from existing approaches, which instead are designed to dis-
tribute the same code to all the nodes, regardless of their function [1].

Contribution. In this paper we present FIGARO (FIne Grained softwAre RecOnfigu-
ration), a novel approach enabling fine-grained control over what is reconfigured and
where, to a degree unprecedented in WSNs. FIGARO tackles the two problems in an
integrated way, spanning all the aspects from the programming model down to the node-
level run-time support and the protocols for efficient code distribution. Its programming
model, described in Section 2, has two core constituents:

– the component model defines constructs for structuring the code on the single nodes.
Differently from other component models for WSNs (e.g., [5]), ours is designed
with reconfiguration in mind, thus providing dedicated constructs to deal with com-
ponent dependencies and versions, and to simplify the reconfiguration process.

– the distribution model defines constructs to restrict component dissemination only
to a given subset of nodes—the reconfiguration target—based on programmer-
specified characteristics of the nodes or their current software configuration.

Our implementation includes a lightweight node-level run-time system, discussed
in Section 3, whose responsibility is to manage the local part of a reconfiguration pro-
cess, along with an efficient protocol for code distribution, illustrated in Section 4. Both
are evaluated in Section 5. As for the former, our results show that processing and mem-
ory overhead are almost negligible, while the energy overhead during reconfiguration
is marginal. Similarly, our distributed protocol results in a communication overhead
within 9% of the theoretical optimum, which is instead computed in a centralized man-
ner and with global knowledge of the system topology.

In Section 6 we compare FIGARO against representative state-of-the-art systems.
Finally, in Section 7 we conclude by illustrating directions for future work.

2 Programming Model

FIGARO is currently built on top of the Contiki [6] operating system, and therefore
relies on the C programming language.

DECLARE_INTERFACE(data_collection_if, {
void (* broadcast_interest)(void* data, u8_t len);
void (* report)(uip_ipaddr_t dest, void* data, u8_t len); })

Fig. 1: An example of component interface.

DECLARE_COMPONENT(tree_routing, data_collection_if, 2)
DECLARE_DEPENDENCY(radio_receptacle, radio_if, 3, MANDATORY | STATIC)
void broadcast_interest(void* data, u8_t len) {
CALL(radio_receptacle, send(&broadcast_addr, &msg, 64));
// ...

}
void report(uip_ipaddr_t dest, void* data, u8_t len) {
// ...

}
ON_RUNNING({ // ON_SUSPEND, ON_DESTROY are also available
// ...

})

Fig. 2: A component implementing the interface of Figure 1.

2.1 Specifying What is Reconfigured

Components, Interfaces, and Dependencies. In FIGARO, a component represents a
single unit of functionality and deployment. The services provided by a component are
described by its interface. For instance, Figure 1 shows the declaration of an interface
for data collection. This specifies the signature of two operations to broadcast interests
and to report the data, respectively. Components must provide the code for all the opera-
tions in the interface declaration, as in the case of Figure 2. The DECLARE COMPONENT
macro is used to specify the name of the component (tree routing), the interface it
implements (data collection if), and the component version (2).

To accomplish its goal, a component normally interacts with others on the same
node. Interaction occurs through function calls across components using CALL, as
shown in the first operation of the component in Figure 2. However, it is not for granted
that a component provides an (interface containing the) operation required by another,
while the caller component may not be able to continue its execution without a callee
component implementing the required interface. Therefore, the presence of a CALL
statement determines a dependency between caller and callee.

Sampling v.1

Tree Routing v.4

data_collection_if
Min version: 3

Deps: MANDATORY
Status: CONNECTED

logging_if
Min version: 5

Deps: OPTIONAL
Status: DISCONNECTED

interface receptacle

Fig. 3: An example of component configuration.

In FIGARO, depen-
dencies are explicitly de-
clared by the program-
mer using the DECLA-
RE DEPENDENCY macro.
The first parameter of this
macro is a receptacle, the
dual of an interface. An in-
terface specifies a set of operations provided by a component to others, while a
receptacle specifies the set of interfaces a component requires from others. In the
case of Figure 2 the dependency being declared specifies the name of the receptacle
(radio receptacle), the interface required (radio if), and the minimum com-
ponent version allowed for a component (3). Moreover, the programmer can also spec-
ify a bit-masked constant describing the nature of the dependency. In the example,
MANDATORY specifies that the component cannot run without relying on the needed

interface. Otherwise, the dependency is considered optional, and the component is ex-
pected to work correctly also in absence of the specified interface. Instead, STATIC
indicates that once a callee component is bound to the caller through the receptacle,
the callee component cannot be changed. Otherwise, a reconfiguration can take place
substituting the component with another providing the same interface.

Figure 3 shows an example of component configuration. The Sampling com-
ponent is responsible for querying the sensor, and calling the report function in
TreeRouting, which transmits the data to a sink. Note how TreeRouting sat-
isfies only the MANDATORY dependency of Sampling, while the OPTIONAL one is
currently not satisfied. This information is reflected in the receptacle descriptor inside
the run-time support, as described in Section 3.

RUNNING

SUSPENDED

DESTROYED

SUSPEND

DESTROY

RESTART

Fig. 4: The life cycle of a FI-
GARO component.

Component Life Cycle. The life cycle of a compo-
nent is illustrated in Figure 4. A component becomes
RUNNING when all its dependencies on other compo-
nents are satisfied, i.e., components implementing the
required interfaces are available on the node. Note that
dependencies are inherently recursive, i.e., a compo-
nent may depend on some others, which in turn may
depend on others, and so on. Therefore, the instanti-
ation of a component may trigger the instantiation of
an entire component closure, based on the declared
dependencies. In practice, however, WSN applications
are made of a small number of components with short
dependency chains. The instantiation of a set of components bound by dependencies
occurs atomically, i.e., control returns to the application only when the instantiation of
all components is complete. When a component providing services to others undergoes
a reconfiguration, the components exploiting those services move to the SUSPENDED
state, and revert to the RUNNING state when the reconfiguration completes. Instead, the
DESTROYED state is reached when the component has been replaced by another with
the same interface.

Programmers can intervene at each step of the life cycle by specifying code frag-
ments to be executed when entering a given state, as shown in Figure 2. When starting a
new component, for instance, the body of the ON RUNNING macro is executed. Similar
operations exist for each state. The ability to intercept run-time activities is particularly
important in the case of SUSPEND, to give programmers the ability to release resources
held by the suspended components, and avoid deadlocks and run-time faults.

Component Reconfiguration. In FIGARO, programmers do not need to manage the
reconfiguration manually, e.g., using a dedicated API as in [7]. Instead, the underlying
run-time automatically and transparently manages the reconfiguration process, based
on dependencies and component versions. When components are instantiated at start-
up, the run-time keeps track of their version, the interface they implement, and their
dependencies. Upon receipt of a new component C, reconfiguration unfolds as follows.
Provided C’s MANDATORY dependencies can be satisfied:

1. C is instantiated if there is no running component with the same interface, or

2. C replaces another component Cold implementing the same interface as C if:
(a) C’s version is greater than Cold ’s,
(b) no component currently relying on Cold has a STATIC dependency on it.

If a component cannot be instantiated because of one or more unsatisfied MANDATORY
dependencies, it is buffered in the hope that the necessary components will be received
later on. If this does not happen, the component is discarded after a timeout.

As an example, Figure 5 shows a possible evolution of the configuration shown
in Figure 3. When a Logging component is received, the node-level run-time deter-
mines that it can be used to satisfy the optional dependency of Sampling. However,
Logging has a MANDATORY dependency of its own, which cannot be satisfied. There-
fore, Logging is temporarily buffered and remains disconnected from the other com-
ponents, yielding the configuration in Figure 5(a). In Figure 5(b), a FlashWriter
component satisfying the dependency of Logging is received. The run-time deter-
mines, by recursively travelling the component graph, that all dependencies are now
satisfied, and instantiates the new components in the correct order (i.e., FlashWriter
before Logging), yielding the configuration shown in the figure.

Our automatic reconfiguration mechanism relieves the programmer from checking
the conditions for the reconfiguration to take place, changing the component intercon-
nections, and managing the coordination among the components involved. Although
similar approaches (e.g., [8]) already proved their effectiveness in other contexts, to the
best of our knowledge we are the first to enable this functionality in WSNs.

Sampling v.1

Tree Routing v.4

data_collection_if
Min version: 3

Deps: MANDATORY
Status: CONNECTED

logging_if
Min version: 5

Deps: OPTIONAL
Status: DISCONNECTED

Logging v.5

flash_writer_if
Min version: 4

Deps: MANDATORY
Status: DISCONNECTED

(a) Logging is received.

Sampling v.1

Tree Routing v.4

data_collection_if
Min version: 3

Deps: MANDATORY
Status: CONNECTED

logging_if
Min version: 5

Deps: OPTIONAL
Status: CONNECTED

Logging v.5
flash_writer_if
Min version: 4

Deps: MANDATORY
Status: CONNECTED

Flash Writer v.4

(b) FlashWriter is received.
Fig. 5: A sample evolution of the component configuration in Figure 3.

DECLARE_NODE({
Function = SENSOR
Type = TEMPERATURE
Floor = 1
Battery = getBatteryReading()

})

Fig. 6: Declaring node attributes.

DECLARE_TARGET({
Function == SENSOR && Battery >= 70 &&
(Type == TEMPERATURE || Type == VIBRATION) &&
RUNNING(TreeRouting) &&
VERSION(TreeRouting) <= 11

})

Fig. 7: Declaring the reconfiguration target.

2.2 Specifying Where Reconfiguration Occurs

FIGARO empowers programmers with the ability to delimit the portion of the WSN
where reconfiguration takes place. This is achieved with dedicated programming con-
structs that enable programmers to: i) declare the attributes characterizing a node; ii)
specify the reconfiguration target—i.e., the subset of nodes for component deployment—
by using boolean predicates over the nodes’ attributes.

Figure 6 shows an example where we use the DECLARE NODE macro to specify
that a node hosts a temperature sensor and is located on a given floor. Note how, in
principle, attributes can be assigned any legal C expression, including C functions as
in the case of the Battery field. The nodes targeted by the reconfiguration can be
specified declaratively as an (arbitrary) boolean predicate over node attributes using
the macro DECLARE TARGET. In Figure 7, we specify as reconfiguration target the
set of temperature or vibration sensors with at least 70% of battery left, and running a
TreeRouting component with version less than 11. Notably, the latter requirement
leverages off information automatically exported by our run-time layer, which describe
the current component configuration on a node. Specifically, the parametric, built-in
predicate RUNNING takes as input the name of a given component C, and yields true
when evaluated on a node where C is currently in such state. Instead, the built-in func-
tion VERSION returns the version of the component given as parameter.

3 Node-Level Run-Time Support

FIGARO provides the constructs described in Section 2.1, concerned with node-level
reconfiguration, by making extensive use of C macros, therefore moving at compilation
time most of the added complexity while not requiring any dedicated pre-processing
step. However, dynamic reconfiguration requires specialized run-time support, provided
by library functions we developed, linked against the (unmodified) Contiki kernel.

Our run-time maps FIGARO components to Contiki services [6], and leverages off
Contiki’s dynamic linking facility [9] to install new code. Consequently, the implemen-
tation of the CALL macro uses Contiki look-up functions to find a pointer to the callee
component, and perform the operation requested. Interfaces and receptacles are repre-
sented by descriptors (standard C structs) containing an array of function pointers. In
the case of interfaces, these always point to the corresponding functions in the compo-
nent currently implementing the interface. Instead, the pointers inside receptacles are
assigned the function pointer values of the associated interface, when connected, or
NULL otherwise. In addition, receptacle descriptors contain further fields to keep track
of the nature of dependency, as well as the minimum version required by any component
connected to it, as shown in Figure 5.

Based on the information gathered by our macros during the compilation phase, our
run-time maintains on every node an internal representation of the exported attributes
and current software configuration. This is represented as a graph where vertexes are
components, and edges are labeled to reflect the nature of the dependency at hand,
similarly to Figure 5. When a new component arrives, simple graph traversal algorithms
are used to check the conditions for the installation of a new piece of functionality. If the
new component can indeed be installed, the run-time fires the relevant state transitions
on all involved components, installs the new component by reconfiguring the involved
receptacles, and updates the graph accordingly.

Instead, the constructs concerned with the reconfiguration target, illustrated in Sec-
tion 2.2, require a minimal amount of pre-processing. On the user base-station, recon-
figuration is triggered using a dedicated executable, whose arguments are two files: one
containing the component binary image and one with the reconfiguration target (e.g., as
in Figure 7). A dedicated pre-processor we developed parses them together, generates
a unique reconfiguration identifier, divides the binary image into smaller chunks fitting
in single physical messages, and starts injecting them into the network. The details of
the routing protocol determining their propagation are described next.

4 A Routing Protocol for Selective Code Distribution

Our dedicated distribution scheme revolves around two base mechanisms:

– While the application is running, we exploit its message traffic to build a mesh
topology interconnecting all nodes with same attribute-value pairs, as in Figure 8,
to identify all possible alternative paths connecting the relevant nodes.

– When a reconfiguration is requested, a subset of the mesh paths are exploited to
build a tree rooted at the target node closest to the injection point, as in Figure 9.
The tree is then used to propagate the component chunks to all target nodes.

1

3

5

2

4

6

Fig. 8: A mesh connecting all
target nodes.

Injection
Point

1

3

5

2

4

6

Fig. 9: A distribution tree
exploiting the mesh.

In principle, the two mech-
anisms above could be de-
signed independently. Nonethe-
less, our solution is explic-
itly conceived to take advan-
tage of their mutual interplay.
As our objective is to build
shortest paths to the target
nodes, we make all paths in
the mesh itself bi-directional.
This allows us to exploit the
same shortest paths regardless
of where the code is injected. Moreover, our solution is designed to create a planar
mesh topology, i.e., one in which no two paths with different end-points cross at any
intermediate node, as in Figure 8. Results in graph theory indeed demonstrated how
planar graphs involve fewer routing loops [10]. As a result, the tree topology built atop
the mesh easily identifies near-optimal paths, as we demonstrate in Section 5.

Source Attribute Value Cost Bridging Bridge Cost Next Hop Timestamp
Node 3 B 3 0 null null self 4
Node 4 A 1 1 Node 1 3 Node 4 25
Node 1 A 1 2 Node 4 3 Node 2 72

Fig. 10: Routing table at node 3 in the situation of Figure 11(c).

4.1 Building the Mesh Topology

Architecture and Data Structures. As the mesh is built during normal system oper-
ation, we must minimize the impact of the mesh-building protocol on the application
behavior. We obtain this goal by designing a solution that does not generate explicit
control messages. Rather, we leverage off the application traffic by piggybacking the
current value of a node’s attributes on every outgoing message3. This is achieved by
interposing a thin software layer between the application and the underlying network
layers whose interface is the same as the original network stack, making its use trans-
parent to the application.

The information piggybacked is overheard by all nodes in range4, and used to pop-
ulate a simple routing routing table (e.g., as in Figure 10), that describes the paths of
the mesh. Each entry in the table contains a node identifier and the associated attribute-
value pair, the next hop to reach that node along with the corresponding cost in hops,
and a timestamp to discriminate stale information. In addition, the Bridging and Bridge
Cost fields are used to distinguish entries corresponding to bidirectional paths. The
former possibly contains the identifier of another node with same attribute-value pair,
representing the opposite end-point of the path itself, whereas the latter stores the total
path length in hops. Each entry in the table is associated with a lease (not shown) that,
if not refreshed, causes the entry removal.

Protocol Operation. Figure 11 describes an example of mesh construction. The ini-
tial situation, depicted in Figure 11(a), illustrates the physical network topology and
the attributes defined in the node declarations, along with their corresponding values.
Initially, all routing tables contain only entries relative to the local node. For instance,
let us focus on the nodes having attribute A equal to 1 as target. When node 1 first
sends an application message, we append a subset of node 1’s routing table entries to
it5. The nodes in range parse this information, increments all cost fields by one, and add
these entries to their routing tables provided no other entry with same attribute-value
pair but smaller or equal cost exists. By doing this at every node, node 1’s specification
spreads across multiple hops. For instance, node 5’s piggybacked information also in-
cludes node 1’s initial entry, as it was overheard from node 1’s transmissions. Assuming
node 4 and 8 eventually send some application message as well, the resulting situation
is as depicted in Figure 11(b).

To recognize when a bidirectional path can be established, we look for received en-
tries containing an attribute already stored in the local table, but from a different source
and greater or equal cost. This is the case in Figure 11(c), where node 3 receives from

3 In case a node is silent, we generate dummy messages at a pre-specified rate.
4 A simple hook within the Contiki radio layers allows us to overhear also unicast messages.
5 Entries are selected in round-robin, their number limited by a configuration parameter.

1

5

2

6

3

7

4

8

A = 1

B = 3

D = 4

D = 4

B = 3 A = 1

E = 2 E = 2

(a) Initial situation. Arrows describe
the physical topology.

1

5

2

6

3

7

4

8

A = 1

B = 3

A = 1

(b) Node 1, 4, 5 and 8 send applica-
tion messages. Bold arrows describe the
Next Hop field for A = 1.

1

5

2

6

3

7

4

8
bridge 1 4

cost 5

A = 1 A = 1
bridge 1 4

cost 3

(c) Node 3 and node 7 recognize a
chance to build a bidirectional path con-
necting node 1 and node 4.

1

5

2

6

3

7

4

8
no bridgingbridge 1 4

cost 5

A = 1 A = 1
bridge 1 4

cost 3

(d) The path through node 3 is com-
plete. The one through node 7 is pruned
as unnecessary.

Fig. 11: Example of mesh construction (grey circles are target nodes).

node 2 an entry for attribute A with value 1 and cost 2. In this situation, a bidirectional
path for the same attribute can be established, with node 1 and node 4 as end-points. To
establish the bidirectional path in both directions, we insert the newly received entry in
node 3’s routing table with the Bridging field set to the identifier of the opposite end-
point of the path (e.g., node 4 in case of node 3 in the last entry of Figure 10), and the
Bridge Cost field set to the total cost of the path itself. Similarly, we update any entry
already in the table that refers to the other end-point of the bidirectional path—as it is
the case for the second entry in Figure 10—modifying the Bridging and Bridge Cost
accordingly. Afterwards, entries with non-null Bridging fields are propagated only to-
wards the node reported in the Bridging field itself. Thus, the second entry in Figure 10
is propagated only towards node 1, whereas the last entry spreads only towards node 4.
This is as simple as appending an optional field to all outgoing messages stating what
nodes propagate what entries.

As a side-effect of the above processing, more than a single bidirectional path con-
necting node 1 and node 4 could be established. For instance, a further path is eventually
built through node 5, 6, 7 and 8, with a total cost of 5. This, however, poses unnecessary
communication overhead. To alleviate this undesirable behavior, non-null Bridging en-
tries are propagated only if the node is not aware of other (bidirectional) paths with
smaller cost. In our example, node 7 eventually stops propagating its non-null Bridging
entry after overhearing the last entry at node 3, which contains a smaller cost. This ulti-
mately yields the situation in Figure 11(d). Although this scheme does not completely
prune all redundant paths, it greatly diminishes their number. Pruning all the paths but
the shortest one would indeed require propagating the minimum cost entry multiple
hops away from the shortest path. How far to propagate is hard to determine without

knowledge of the network topology. Also, the additional paths may be used as back-ups
in case of sudden faults. We plan to investigate this in the near future.

Dynamic Attributes and Topology Changes. The protocol operation occurs when-
ever the application generates network traffic. Therefore, in the case of time-varying
attributes, the accuracy provided by the mesh topology w.r.t. the current values of at-
tributes is ultimately dictated by the amount of application traffic over time. Appli-
cations generating more traffic allow our protocol to build more accurate topologies,
whereas it is difficult to do so if the amount of traffic flowing in the network is insuf-
ficient to keep up with the dynamics of the varying attribute. As for topology changes,
e.g., due to failing nodes, invalid routes will eventually expire without being refreshed.
As soon as the application generates further messages, our protocol identifies alterna-
tive routes according to the new topology. Still, the time taken to build the new routes
is dependent on the amount of traffic generated by the application.

Enforcing Planarity. By construction, our scheme does not
1

4

3

2

5

Fig. 12: Node 3 has equal
cost to all target nodes.

generate multiple paths with different end-points crossing at
an intermediate node. Indeed, the only way this can be ob-
tained is to have, in the same routing table, more than one
non-null Bridging entry for the same attribute-value pair with
different source. Consider Figure 12: node 3 may try to es-
tablish two crossing paths, e.g., connecting node 1 to node 5
and node 2 to node 4. This cannot occur in our protocol, as
received entries with cost greater or equal to the local table
for the same attribute-value pair are ignored, end every non-
null Bridging entry can be used to establish a single bidirec-
tional path. Therefore, node 3 in Figure 12 will never be able
to generate crossing paths.

4.2 Distributing Code

When a reconfiguration takes place, code is distributed along a tree: redundant paths in
the mesh are identified based on the position of the code injection point, using a marker
message. This contains the reconfiguration identifier generated by our pre-processor,
and an encoding of the predicate defining the required reconfiguration target. The for-
mer serves to support multiple concurrent reconfigurations. The latter is used by nodes
to determine, based on their routing table, the next hop for the marker. Upon forward-
ing, target nodes add to the marker the cost accumulated along the last bidirectional
path traversed. This way, the marker eventually reaches all the target nodes, making
them aware of their distance from the injection point. This information is used at each
target node to configure a dedicated distribution tree by selecting as parent the target
node that, along the links of the mesh, is the closest to the injection point. The selection
is communicated to the parent with a message containing the identifiers of the source
target node and of the selected parent. Note how code dissemination can start before
the entire tree is built. When receiving a code chunk, a node that has not yet determined
its children simply defers forwarding and buffers the chunk. Buffering would happen in
any case, since a component cannot be reconstructed until all chunks are received.

The code distribution phase demands reliable communication, e.g., because all code
chunks must be correctly delivered. We employ a simple hop-by-hop reliability mech-
anism, based on implicit acks. Nodes on a tree path buffer every message, waiting for
the downstream node to re-send it. When this occurs, the upstream node overhears the
transmission, and concludes the message was received; otherwise, it is re-sent. Similar
techniques have already been successfully employed in WSNs [11]. However, our im-
plementation decouples this aspect, enabling the use of alternative reliability schemes.

5 Evaluation

To assess the effectiveness of our approach, in this section we separately evaluate the
performance of the node-level run-time support, and of the code distribution protocol.

5.1 Evaluating the Node-Level Run-time Support

Our objective here is to quantify the overhead imposed by FIGARO w.r.t. plain Contiki.
We consider the following performance figures:

– The memory occupation caused by our component model, w.r.t. both program and
data memory. We evaluated the former by looking at the size of binary images after
compilation. As for the latter, we manually inspected the code managing compo-
nents and their interconnections, looking for any data structure we defined.

– The additional processing time caused by the presence of components. This is af-
fected both by the installation of a new component compared to the native Contiki
dynamic linker, and by function calls across components using CALL instead of a
direct C call. As for the latter, we placed the call in a loop and repeated the operation
a million times, since the single call is too quick to be measured precisely.

– The energy consumption during reconfiguration, which may increase as a result of
the additional processing required to manage components and dependencies.

We measured processing time and energy consumption using real nodes as opposed
to simulation environments, as similar fine-grained aspects are only partially modeled
in existing simulators. Practically, we measured the processing overhead using a JTAG
programmer attached to the node to measure the time elapsed between the execution
of different instructions. Energy consumption was instead evaluated using an Agilent
54832B oscilloscope and a multimeter hooked to a node, which in our case was a TMote
Sky [12]. We repeated the experiments concerning these metrics 5 times using 3 differ-
ent nodes, and averaged the results. New components have been injected via a USB
cable attached to the node, to avoid any bias due to the radio.

To gather the above metrics, we employed a Blinker component offering a single
interface with two operations to start/stop the blinking of a led. We varied the number
of receptacles within the component itself to evaluate our performance w.r.t. a varying
number of dependencies. The processing within Blinker is the same as in [9], and is
quite simple being described by only 17 lines of C code. This choice was intentional,
as simpler components make the overhead more evident w.r.t. the above metrics.

Performance Measure Memory Footprint
Dependency Checks Program 1.1 KB
Helper Functions Program 802 bytes
Helper Data Structures Data 230 bytes
Per-Component Data Data 15 bytes
Per-Interface Data Data 8 bytes
Per-Receptacle Data Data 10 bytes

Fig. 13: Memory overhead.

Function Type Time Overhead %
Empty 157.5%
50 integer additions 20.1%
3 x 3 matrix inversion 5.4%
5 x 5 matrix inversion 0.98%
Fourier Transform (100 input values) 0.78%
Fourier Transform (1000 input values) 0.03%

Fig. 14: FIGARO calls across components vs. native C function calls.

Time (s) Energy (mJ)

D
ep

en
de

nc
ie

s

A
bs

ol
ut

e

O
ve

rh
ea

d

A
bs

ol
ut

e

O
ve

rh
ea

d

1 0.518 sec +0.019 3.45 +0.07
2 0.520 sec +0.021 3.45 +0.07
3 0.525 sec +0.026 3.47 +0.09
4 0.528 sec +0.029 3.49 +0.11
5 0.532 sec +0.033 3.5 +0.12

Fig. 15: Time and energy to install the Blinker component.

Results. Figure 13 shows the memory overhead, which turns out to be quite reasonable,
w.r.t. both program and data memory. As for the former, the binary code deployed in ad-
dition to the operating system accounts for less than 2 Kbytes in total. This cost, along
with the overhead due to helper data structures, is paid once and for all, regardless of
the number of components and the number of their interfaces/receptacles. Conversely,
the bottom section of Figure 13 reports the memory consumption incurred every time a
component, interface, or receptacle is loaded on a node. In this case as well, the over-
head is fairly limited. Based on these results, we maintain that our approach can scale
to a sizable number of components simultaneously running on the same node, presum-
ably well beyond the current needs of common WSN applications. As for the amount
of code to be deployed, we compared the size of the binary image of the plain-Contiki
Blinker process used in [9] against ours, implemented as a FIGARO component. The
size increases from 1.01 Kbytes to 1.11 Kbytes, yielding an overhead of only 9.98%.
We believe this value is good, given the little complexity of the processing at hand.

The overhead in performing calls across components against direct C function calls
is reported in Figure 14. Interestingly, when the function called does not contain any real

processing the overhead due to using CALL is high. In this case, performing the look-up
of the Contiki service implementing the requested component dominates the processing
time. In contrast, some even simple processing within the function called makes this
metric drop abruptly. For instance, in the case of a Fourier transform (e.g., employed to
perform in-network processing in WSN applications such as [4]) the overhead becomes
less than 1%. Therefore, although our programming model does introduce an overhead,
the performance penalty is expected to be negligible in real applications.

By the same token, the time for installing a new component, and hence the energy
consumed during this process, increases only marginally w.r.t. the standard Contiki dy-
namic linker, as shown in Figure 15 for a varying number of dependencies in the com-
ponent being installed. Note how these values are independent of the size of the com-
ponent being deployed, as they represent the overhead imposed by our run-time layer
in addition to the Contiki dynamic linker, which we left unmodified. Also, they scale
well with the number of dependencies, showing only a very small increase. To place
Figure 15 in context, consider that the energy overhead in the case with 5 dependencies
is equal to only about 5% of the total energy required to transmit a 32-byte message.

5.2 Evaluating the Code Distribution

In this section we assess the effectiveness of our solution for code distribution by re-
porting about simulations performed using Cooja, the Contiki simulator.

The evaluation of code distribution protocols for WSNs has hitherto focused on
metrics such as latency and message overhead [1]. However, these are usually affected
by mechanisms other than the distribution protocol itself. For instance, latency is af-
fected also by the MAC layer protocol, as back-off timers, random transmission delays,
and transmission slots in TDMA schemes are employed to reduce collisions. Similarly,
message overhead is affected by the specific reliability mechanism employed.

However, the above concerns are orthogonal w.r.t. the problem we are tackling and
the essence of the solution we presented, whose performance is determined primarily
by the shape of the tree used during the distribution phase. Indeed, the number of hops
separating the injection point from the target nodes strongly impacts both latency and
message overhead irrespective of the MAC layer and reliability mechanism employed,
which instead affect the individual 1-hop transmissions. Therefore, we chose to evaluate
our protocol by focusing on the number of links employed during the code distribution
phase6, and compared this metric against the optimal distribution tree computed with a
shortest path algorithm and global knowledge of the network topology. We also mea-
sured the convergence speed of our mesh-building algorithm, i.e., how many messages
the application must generate for the routing tables to stabilize. In both cases, we rely
on the standard Contiki MAC layer as implemented in Cooja. Moreover, we used the
reliability mechanism discussed in Section 4, for which simulations confirm a 100%
delivery in all the experiments discussed next.

As for simulation settings, each node exports a single attribute whose value is ran-
domly selected at start-up. Reconfiguration targets are defined by a single equality pred-

6 In cases where nodes can forward a message towards n neighbors with a single physical packet
we still count n links, as most reliability mechanisms would send separate messages anyway.

 10

 15

 20

 25

 30

 35

 40

 45

 50 100 150 200 250 300

N
um

be
r

of
 li

nk
s

ex
pl

oi
te

d

Nodes

FiGaRo (average)
Optimal (average)

FiGaRo (std deviation)

(a) Grid topologies.

 10

 20

 30

 40

 50

 60

 50 100 150 200 250 300

N
um

be
r

of
 li

nk
s

ex
pl

oi
te

d

Nodes

FiGaRo (average)
Optimal (average)

FiGaRo (std deviation)

(b) Random topologies.
Fig. 16: FIGARO performance vs. topology and system size (target nodes are 10% of the total).

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

N
um

be
r

of
 li

nk
s

ex
pl

oi
te

d

Percentage target nodes

FiGaRo (average)
Optimal (average)

FiGaRo (std deviation)

Fig. 17: FIGARO performance vs. number of
target nodes (100 nodes arranged in a grid).

 0

 5

 10

 15

 20

 0 10 20 30 40 50

S
en

t m
es

sa
ge

s

Number of different attribute-value pairs

FiGaRo convergence speed

Fig. 18: FIGARO convergence speed (100
nodes arranged in a grid).

icate on this attribute. During the mesh-building phase each node sends an application
message every 5 + D seconds. D is a random delay we introduced to avoid locking
effects among nodes, and to generate executions with varying traffic rates at different
nodes. Application messages are 64 bytes in size, to which we piggyback 24 bytes of
control information corresponding to 4 entries from the local routing table. During the
simulations, the mesh-building phase takes place first. The convergence speed is deter-
mined when routing tables at all nodes do not change for 5 consecutive message sends.
At this point, the mesh is considered stable: a random node is chosen as injection point
and the tree-building phase is started. We discuss results obtained in regular grids and
random topologies. In the former, each node can communicate with 4 neighbors. This
setting models some of the applications we target (e.g., indoor WSN deployments [13]).
In the latter the number of neighbors varies from 3 to 7. For each scenario, we averaged
the results over 20 repetitions with varying distribution scopes and injection points.

Results. Figure 16 shows how the number of links exploited by our solution varies
according to the system size and topology. Remarkably, the performance of our protocol
remains always within 9% of the theoretical optimum, and is almost constant as the
number of nodes increases. By examining the simulation logs, we realized that the
gap is mostly due to cases where it may be more convenient to access the mesh from
more than a single entry point. When this does not hold and the injection point is very
close to a target node (i.e., within 2-3 hops), the average gap w.r.t. the optimal solution

is even lower, around 3%. This confirms that our mesh-building algorithm, thanks to
its planarity property, yields near-optimal routes in the distribution trees relying on it.
Further, note how Figures 16(a) and 16(b) exhibit similar trends, although the results
on random networks show higher variability due to the irregularity of the topology.

Figure 17 provides a different perspective by analyzing the behavior of our proto-
col w.r.t. the percentage of target nodes. As shown in the chart, our solution is barely
affected by this parameter. The high variability observed with few target nodes is due
to cases where nodes end up aligned w.r.t. the injection point, and the distribution tree
degenerates in a chain. In these configurations, intermediate nodes are reached at es-
sentially no cost. The probability of these configurations decreases as the number of
target nodes grows. We limited our experiments to half of the nodes in the system as
targets. Beyond this point, the scenario starts bearing similarities with traditional code
distribution in homogeneous networks, where all nodes are target. In this case, existing
solutions are better suited, e.g., [14] .

Finally, we verified that the convergence speed of the mesh-building phase is not
affected by the system scale. Indeed, the extent to which routing entries are propagated
is not dictated by the overall number of nodes, rather by the amount of redundancy
among attribute-value pairs. This claim is supported by Figure 18, showing the number
of messages required to build the mesh against the number of (distinct) attribute-value
pairs in the system. When the latter is small the mesh builds quickly, as the bidirectional
paths connecting nodes with the same attribute-value pairs are likely to be short. Instead,
when attribute-value pairs are highly heterogeneous the mesh takes more time, due to
the dual argument. Overall, the values in the chart are good: only 17 messages need
to be sent when 50 different attribute-value pairs are present, i.e., only 2 nodes in the
100-node network of Figure 18 have the same attribute-value pair—a rather unusual
setting. In any case, the values in the chart should represent only a very little fraction of
the overall system lifetime, typically measured over months or even years.

6 Related Work

Single-Node Reconfiguration. Several solutions enable the installation of new code on
individual nodes. At the operating system level, besides Contiki also the SOS operating
system [15] provides dynamic linking, while FlexCup [16] enables this functionality in
TinyOS [17], where this was initially not possible. These solutions concentrate on effi-
cient dynamic linking, and are therefore complementary to our approach. In principle,
our component model can be re-applied in SOS and FlexCup with minimal modifica-
tions, as it is mostly based on standard C macros. We chose Contiki because, unlike
FlexCup, it preserves the application state as it does not require a reboot after code
loading and, in comparison to SOS, its service functionality eases the implementation
of the FIGARO component model. Alternative approaches use interpreted languages
and virtual machines (e.g., [18–20]), with some also allowing for extensible instruction
sets, e.g, [21]. Nonetheless, the trade-offs between interpreting code and executing na-
tive binaries, as discussed in [18], suggest the use of the latter for long-running systems
where reconfiguration is a rare event, as in the scenarios we target.

Most importantly, none of the above approaches provides support to the program-
mer for managing the interactions among the different functionality on a node during
reconfiguration. Indeed, even though component models for WSN programming have
already been proposed (e.g., [2, 5, 7]), they do not include any dedicated construct for
managing mutable component configurations. Conversely, we made component depen-
dencies and versions first-class citizens in the FIGARO programming model, and de-
signed the reconfiguration mechanism by balancing automation and customizability.

Code Distribution. To the best of our knowledge, we are the first to provide efficient
distribution of code to an arbitrary subset of nodes identified by programmer-provided
information. Our distribution model is inspired by Logical Neighborhoods [22], a pro-
gramming abstraction giving developers the ability to define system partitions based on
application information. A message-passing API is then provided to interact with nodes
in a given partition. Although [22] describes a generic communication layer for Logical
Neighborhoods, tackling the issues germane to code distribution required a completely
different routing support, as described in Section 4. In the field of code distribution,
the approach closest to ours is the TinyCubus framework [23], where code can be dis-
tributed to all nodes with a given role, e.g., all cluster-heads. This is far less flexible than
FIGARO’s predicate logic over programmer-defined attributes, and does not encompass
the ability to identify the target nodes based on their current software configuration, e.g.,
as provided by the RUNNING built-in-predicate. At the network level, TinyCubus as-
sumes a priori knowledge of the system topology and of the location of nodes with a
given role, as it requires to specify an upper bound on the number of hops separating
nodes with the same role. In contrast, our solution is fully dynamic and decentralized.

Network-wide distribution of code has been widely investigated, tackling different
facets of the problem. On one hand, solutions have been proposed to reduce the size of
the code to be distributed by employing differential patching and smart linking mech-
anisms, e.g., [24, 25]. Still, similar concerns are orthogonal to the problem we tackle
in this work, and the corresponding solutions may be integrated in our framework for
even better performance, e.g., by injecting a patch instead of the whole binary when the
new component is going to replace an older version. Instead, other approaches focused
on routing. Trickle [14] uses a counter-based technique called “polite gossip”, whose
objective is to suppress redundant transmissions while guaranteeing eventual delivery.
Deluge [26] uses a similar technique, with the addition of a negotiation phase to guar-
antee the proper sequencing of packets. This is also used in MNP [27] to address the
hidden terminal problem before transmitting the actual code. Sprinkler [28] and Fire-
cracker [29] instead leverage off node hierarchies, by first sending code to “core” nodes
up in the hierarchy, which then forward the code to nodes in their vicinity. As the ob-
jective of all the above solutions is to distributed code to all nodes, they can avoid any
background activity under normal operating conditions. For the same reason, however,
these mechanisms are hardly applicable in our case. For instance, it would be fairly
inefficient to add multi-hop negotiation in Deluge to address the case where the target
nodes are multiple hops away.

7 Conclusion and Future Work

In this paper we presented FIGARO, a solution enabling software reconfiguration in
WSNs at an unprecedented level of granularity, both w.r.t. the functionality to recon-
figure on single nodes, and the subset of nodes targeted by the reconfiguration. We
provide a component-based programming model with explicit support for component
dependencies and versions, along with a dedicated component life cycle, and an intu-
itive yet expressive distribution model allowing programmers to identify what part of
the network is affected by the reconfiguration. Our evaluation demonstrated how the
overhead imposed on single nodes is negligible, while the communication overhead
during reconfiguration lies within 9% from the theoretical optimum.

Our research agenda includes distributed mechanisms to provide more guarantees
(e.g., atomicity) w.r.t. the reconfiguration process. For instance, the programmer may
require that either all or none of the nodes in the reconfiguration target install the new
component, to tolerate run-time faults where a node crashes and then reboots.

Acknowledgements. The authors wish to thank Fabio Fabbri for helping with the mea-
sures gathered on real nodes, Prof. Greg Frederickson for the insightful discussions on
the shortest path problem on planar graphs, and Alessandro Ungari for his work on
the implementation of the FIGARO run-time. The work described here was partially
supported by the European Union under the IST-004536 RUNES project.

References

1. Wang, Q., Zhu, Y., Cheng, L.: Reprogramming wireless sensor networks: challenges and
approaches. IEEE Network 20(3) (2006)

2. Costa P. et al.: The RUNES middleware for networked embedded systems and its application
in a disaster management scenario. In: Proc. of the 5th Int. Conf. on Pervasive Communica-
tions (PERCOM). (2007)

3. Deshpande, A., Guestrin, C., Madden, S.: Resource-aware wireless sensor-actuator net-
works. IEEE Data Engineering 28(1) (2005)

4. Lynch, J.P., Loh, K.J.: A summary review of wireless sensors and sensor networks for struc-
tural health monitoring. Shock and Vibration Digest (Mar 2006)

5. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC language: A
holistic approach to networked embedded systems. In: Proc. of the ACM SIGPLAN Conf.
on Programming Language Design and Implementation (PLDI). (2003)

6. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system for
tiny networked sensors. In: Proc. of 1st Wkshp. on Embedded Networked Sensors. (2004)

7. Grace, P., Coulson, G., Blair, G., Porter, B., Hughes, D.: Dynamic reconfiguration in sensor
middleware. In: Proc. of Int. Wkshp. on Middleware for Sensor Networks (MidSens). (2006)

8. Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM - A component system for perva-
sive computing. In: Proc. of the 2nd Int. Conf. on Pervasive Computing and Communications
(PERCOM). (2004)

9. Dunkels, A., Finne, N., Eriksson, J., Voigt, T.: Run-time dynamic linking for reprogram-
ming wireless sensor networks. In: Proc. of 4th Int. Conf. on Embedded Networked Sensor
Systems (SenSys). (2006)

10. Frederickson, G.: Fast algorithms for shortest paths in planar graphs, with applications. Siam
J. Computing 16(6) (1987)

11. Stann, F., Hiedemann, J.: RMST: reliable data transport in sensor networks. In: Proc. of the
1st Int. Wkshp. on Sensor Network Protocols and Applications. (2003)

12. MoteIV Technology, www.moteiv.com
13. Stoleru, R., Stankovic, J.: Probability grid: A location estimation scheme for wireless sen-

sor networks. In: Proc. of the 1st Int. Conf. on Sensor and Ad-Hoc Communication and
Networks (SECON). (2004)

14. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: a self-regulating algorithm for code
propagation and maintenance in wireless sensor networks. In: Proc. of the 1st Conf. on
Networked Systems Design and Implementation (NSDI). (2004)

15. Han, C.C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating system for
sensor nodes. In: Proc. of the 3rd Int. Conf. on Mobile Systems, Applications, and Services
(MobiSys). (2005)

16. Marrón, P.J., Gauger, M., Lachenmann, A., Minder, D., Saukh, O., Rothermel, K.: FlexCup:
A flexible and efficient code update mechanism for sensor networks. In: Proc. of the 3rd

European Workshop on Wireless Sensor Networks (EWSN). (2006)
17. Hill J. et al.: System architecture directions for networked sensors. In: Proc. of the 9nt Int.

Conf. on Architectural Support for Programming Languages and Operating Systems. (2000)
18. Levis, P., Culler, D.: Maté: a tiny virtual machine for sensor networks. In: ASPLOS-X: Proc.

of the 10th Int. Conf. on Architectural Support for Programming Languages and Operating
Systems. (2002)

19. Müller, R., Alonso, G., Kossmann, D.: A virtual machine for sensor networks. In: Proc. of
the EuroSys Conf. (2007)

20. Koshy, J., Pandey, R.: VM*: synthesizing scalable runtime environments for sensor net-
works. In: Proc. of 3th Int. Conf. on Embedded Networked Sensor Systems (SenSys). (2005)

21. Levis, P., Gay, D., Culler, D.: Active sensor networks. In: Proc. of the 2nd Conf. on Net-
worked Systems Design & Implementation (NSDI). (2005)

22. Mottola, L., Picco, G.P.: Logical Neighborhoods: A programming abstraction for wireless
sensor networks. In: Proc. of the the 2nd Int. Conf. on Distributed Computing on Sensor
Systems (DCOSS). (2006)

23. Marrón, P.J., Lachenmann, A., Minder, D., Hahner, J., Sauter, R., Rothermel, K.: Tinycubus:
a flexible and adaptive framework sensor networks. In: Proc. of the 2rd European Workshop
on Wireless Sensor Networks (EWSN). (2005)

24. Reijers, N., Langendoen, K.: Efficient code distribution in wireless sensor networks. In:
Proc. of the 2nd Int. Conf. on Wireless Sensor Networks and Applications (WSNA). (2003)

25. Koshy, J., Pandey, R.: Remote incremental linking for energy-efficient reprogramming
of sensor networks. In: Proc. of 2rd European Workshop on Wireless Sensor Networks
(EWSN). (2005)

26. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for network
programming at scale. In: Proc. of 2th Int. Conf. on Embedded Networked Sensor Systems
(SenSys). (2004)

27. Kulkarni, S., Wang, L.: MNP: Multihop network reprogramming service for sensor net-
works. In: Proc. of the 25th Int. Conf. on Distributed Computing Systems (ICDCS). (2005)

28. Naik, V., Arora, A., Sinha, P., Zhang, H.: Sprinkler: A reliable and energy efficient data
dissemination service for wireless embedded devices. In: Proc. of the 26th International
Real-Time Systems Symposium (RTSS). (2005)

29. Levis, P., Culler, D.: The Firecracker protocol. In: Proc. of the 11th ACM SIGOPS European
Workshop. (2004)

