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Abstract

Background: High-throughput sequencing has become one of the primary tools for investigation of the molecular

basis of disease. The increasing use of sequencing in investigations that aim to understand both individuals and

populations is challenging our ability to develop analysis tools that scale with the data. This issue is of particular

concern in studies that exhibit a wide degree of heterogeneity or deviation from the standard reference genome.

The advent of population scale sequencing studies requires analysis tools that are developed and tested against

matching quantities of heterogeneous data.

Results: We developed a large-scale whole genome simulation tool, FIGG, which generates large numbers of whole

genomes with known sequence characteristics based on direct sampling of experimentally known or theorized

variations. For normal variations we used publicly available data to determine the frequency of different mutation

classes across the genome. FIGG then uses this information as a background to generate new sequences from a

parent sequence with matching frequencies, but different actual mutations. The background can be normal

variations, known disease variations, or a theoretical frequency distribution of variations.

Conclusion: In order to enable the creation of large numbers of genomes, FIGG generates simulated sequences

from known genomic variation and iteratively mutates each genome separately. The result is multiple whole

genome sequences with unique variations that can primarily be used to provide different reference genomes,

model heterogeneous populations, and can offer a standard test environment for new analysis algorithms or

bioinformatics tools.
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Background
This paper introduces the FIGG (Frequency-based Insilico

Genome Generator) tool, which is designed to be of use to

computational researchers who require high volumes of

artificially generated genomes that mimic the variation

seen in the natural population. FIGG is designed to use

high performance computing to rapidly generate artificial

genomes, and can be used to generate large numbers of

similar whole genome sequences by iteratively seeding

each run with new parent genomes.

In the last few years high-throughput sequencing (HTS)

has allowed researchers to sequence genomes for species

that range from bacteria and plants, to insects and verte-

brates. In the context of biomedicine HTS is being used

to: characterize complex ecologies such as the human gut

microbiome [1]; understand parasitic diseases such as

malaria [2]; identify genomic variations that may be re-

sponsible for virulence in diseases such as tuberculosis [3];

and search for the mutations that drive genomic diseases

such as cancer [4-6].

A result of this wide-ranging use of sequence informa-

tion is petabytes worth of genomic data across multiple

species, populations and diseases. New tools are con-

stantly being required to enable the management and

analysis of this information. The FIGG tool is meant to

be of use to different computational researchers working

in the area of large-scale genomics. In particular it is de-

signed to be used by those who are struggling to keep

pace with the scale and diversity of data in large-scale

genomic projects. Using FIGG to generate artificial data

has a number of advantages over downloading and stor-

ing publically available whole genome sequences as it:
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has known characteristics, so can be used for consistent

benchmarking; can be used to generate mixed popula-

tions of heterogeneous genomes for algorithm testing;

has no security requirements, so can be shared and used

more easily; and does not place undue load on local re-

sources, as genomes can be generated on the fly.

FIGG is designed to generate large volumes of poten-

tially related sequences that can be used by computational

researchers in testing their models, analysis pipelines and

informatics solutions. Simulating experimental data is a

common step in the development and evaluation of new

analysis tools [7], computational methods, and the support

infrastructure for managing such sequences. Many differ-

ent genomic simulators are available (see Table 1) and

have been described elsewhere [8], however these are not

designed to provide the high volumes of complete genome

sequences which are required for software testing and

algorithm development. They range in application from

instrument-specific sequence read simulation (e.g. ART

[9], MetaSIM [10]), to genotype simulation for case–con-

trol studies based on linkage disequilibrium patterns (e.g.

genomeSIMLA [11], GWASimulator [12]), to evaluating a

population over time to determine how genomic hotspots

or population bottlenecks affect a genome (e.g. FreGene

[13], GENOME [14]) or protein sequence (e.g. ALF [15]).

FIGG generates whole genome sequence files, in FASTA

format, by directly sampling from populations of observed

variations. Each artificial genome includes sequence muta-

tions that range from single nucleotide variations (SNV)

to small and large-scale structural variations (e.g. indels,

tandem duplications, inversions). It has been designed to

use a distributed computing framework to enable rapid

generation of large numbers of genomes while tracking

the mutations that are applied to each. Below we provide

details of the FIGG methods that enable the creation of di-

verse whole genomes which accurately model experimen-

tally derived real sequence data. The following sections

describe the methods used for analysis of background gen-

omic variation, generation of the sequences, and validation

of the models through the use of standard sequence ana-

lysis tools. Finally we discuss applications for FIGG within

the sequencing community.

Methods
FIGG requires two inputs in order to create a genome:

1) all FASTA files representing the chromosomes to be

simulated (e.g. chromosomes 1–22, X, and Y from hu-

man genome build GRCh37), and 2) a database that is

the result of the frequency analysis as described in the

next section (the full database format can be found at

the link provided in Availability). The resulting output

from FIGG is set of FASTA formatted sequence files

(one per chromosome) that can be used by any tools

which use FASTA as an input, including sequence-read

simulators and genome alignment software.

Variation frequency analysis

The public availability of large datasets that characterize

human genomic variability provide a wealth of data on

population and individual variations. In order to de-

velop an accurate estimate of the range of “normal”

variation we used Ensembl [16]. This data was mined

for all variants validated in the 1000Genomes [17] and

HapMap [18] projects, as these are generally considered

Table 1 Genome simulators

Tool Description Outputs

ART [9] Simulation of sequence reads with error models for multiple platforms
(454, Solexa, SOLiD).

Single or pair ended sequence reads.

MetaSIM [10] Simulation of sequence reads for metagenomics, particularly for highly
variable data (taxonomically distinct but related organisms).

Single or pair ended sequence reads.

GENOME [14] Population simulation within a set of alleles using genome level events
such as recombination, migration, bottlenecks, and expansions.

Alleles identified as mutated (1) or not (0) across the
simulated population.

GWASimulator [12] Simulation of loci across a population which follows a given LD structure
in case–control type studies.

SNVs per individual for input loci.

FreGene [13] Mutation simulation using a theoretical sequence of a given size with
hotspot, conversion, and selection parameters.

Mutation selection across population for a theoretical
sequence.

genomeSIMLA [11] Simulation of disease loci within a family or case–control setting using
specific LD patterns for investigations of disease.

Affy identified SNPs selected by disease association.

ALF [15] Population simulation for a specific gene set using a model for variation
at the sequence and individual level.

FASTA protein and DNA sequences for specific genes.

Example simulators used in various types of genome investigations. Many use the Wright-Fisher model of population genetics theory [8] in order to generate

populations that vary over time given some set of event frequencies such as LD, hotpots, population bottlenecks (GENOME, genomeSIMLA, FreGene), others

provide a set of sequences that could be generated by a given sequencing technology with an error model (ART and MetaSIM). The specific simulator used is

based on the type of investigation. In planning new GWAS studies for instance, a simulator that uses LD patterns and can provide predicted genomic regions for

disease related mutations would be selected. However, such a simulator would not be of use in the planning of a metagenomic study for an organism which may

not yet be fully sequenced, or is highly variable. None of these simulators provides whole genome FASTA as outputs.
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representative of normal populations. Several other sources

representing disease variations were downloaded for com-

parison, including those from the Catalogue of Somatic

Mutations in Cancer (COSMIC) [19] and small structural

variants in the Database of Genomic Variants Archive

(DGVa) [20].

In order to characterize the variant frequency across the

genome for different classes of mutations each chromo-

some was first fragmented into base-pair lengths that were

manageable for processing. For each fragment a profile of

unique variants was developed. These profiles were then

analyzed to determine the frequency of each variant class:

single point mutations being the most common, followed

by sequence alterations (defined as an uncharacterized

change in the sequence), and then insertions. Based on

these frequencies structural elements in the sequence frag-

ment were identified that can be directly observed and

which could explain the variation frequencies including: a

higher incidence of coding/non-coding regions; predicted

CpG methylation sites; and high/low GC content. A weak

correlation with SNVs was observed in segments with

high/low GC content [21,22], but no other genome-wide

structural correlation was found. When the same analysis

on “disease” variations was run (e.g. COSMIC, DGVa) as a

comparison, GC content continued to be the only clear

structural correlation for variation frequency (see Figure 1

for a description of the final output).

Based on this analysis the observed sequence fragments

were separated into bins by GC content, with variant counts

per segment recorded for each chromosome (see Figure 2

for an example of the variant and GC tables in chromo-

some 4). The result is a set of tables that can be easily sam-

pled for fragments based on a GC profile. Additionally, base

pair size probabilities were calculated for all size-dependent

variants (e.g. deletion sizes from 1–10 have a genome-wide

frequency of 0.96, and from 11–100 a frequency of 0.04),

and nucleotide mutation rates were determined for SNVs

(e.g. C- > T 0.69, C- > A 0.16, C- >G 0.15, etc.).

Implementation
The general architecture of FIGG is shown in Figure 3.

It has been designed to take advantage of distributed

computing by both breaking down the processing of the

data into a distributed model, and by separating the

functionality required into distinct steps, called “jobs”,

that can be added or altered for downstream analysis or

testing needs. FIGG is separated into three distinct jobs.

The Additional file 1 document provided describes how

to set up and run these jobs on an Amazon Web Ser-

vices cluster.

The first job fragments a reference genome and persists

it to a distributed database, which ensures that the back-

ground genomic information is highly accessible, and

only needs to be run once per reference (e.g. GRCh37).

The second job mutates each of the segments from a

parent genome, using information pulled from a variation

frequency database. This database provides the informa-

tion necessary to determine which variations should be

applied to a given fragment (e.g. SNV, deletion, insertion)

and how often these occur.

The third job assembles the mutated fragments into a

whole genome, and generates the corresponding FASTA

files. The second and third jobs are run in parallel to

each other, allowing for a means to generate large num-

bers of artificial genomes in a highly scalable manner.

Mutation rules

The generation of new, mutated sequences is achieved

through application of a ruleset based on the frequency

analysis described above. Each input chromosome is

split into fragments of the same size as those used for

the frequency analysis (e.g. 1 kb). Each fragment is then

processed stepwise (see Figure 4):

1. Determine the GC content of the fragment then fit

to the identified bins in the frequency database

based on the fragment chromosome. This provides a

set of observed fragments to sample.

2. Randomly sample an observed fragment from the set

of fragments that fit the GC bin. This fragment will

include 0..n counts for each variation type (e.g. SNV,

deletion, substitution, etc.).

3. Apply each variant type to the fragment sequentially

(e.g. deletions first, tandem duplications last). This is

achieved through sampling without replacement

random sites within the fragment for each mutation,

applying size-dependent or SNV probabilities for

that mutation to the site, and repeating until all

variants have been applied to the sequence.

The resulting fragment may vary significantly from, or

be nearly identical to, the original sequence depending

on the selected variant frequencies. Use of random site

selection for applying the mutations ensures that no spe-

cific population bias (e.g. if the population that is used

to generate the frequency data is overrepresented for a

specific variant) is introduced into the bank of resulting

sequences. The final FASTA sequence then provides a

unique variation profile.

MapReduce for multiple genomes

Applying this process to the human genome to create a sin-

gle genome is slow and inefficient on a single machine,

even when each chromosome can be processed in parallel.

In fact, a basic version of parallelization took more than

36 hours to produce a single genome. Producing banks of

such genomes this way is therefore computationally limited.

However, mutating the genome in independent fragments
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makes this a good use case for highly distributed software

frameworks such as Apache Hadoop MapReduce [23,24]

backed by distributed file systems to create and store tens,

hundreds, or more, of simulated genomes. In addition, use

of HBase [25] allows for highly distributed column-based

storage of generated sequences and mutations. This enables

rapid scale-up for management, ensures that all variations

to a given genome can be identified, and allows for the

Figure 1 Variation frequency table generation procedure. The variation analysis uses publicly available small scale variation data to generate

a set of database tables for a specific variation frequency. This is done in four separate steps. First, filter GVF or VCF files for unique variations per

chromosome location and validation status. In this analysis variation files from Ensembl were used and “normal” validation status was determined

based 1000Genomes or HapMap annotations. To generate a “highly variant” frequency, variations that were identified as being in the COSMIC

and DGVa databases were added. Next, each chromosome is segmented into defined lengths (e.g. 1 kb) and the observed variations per class

within the segment are counted. Additionally, the GC content for each segment is calculated from a corresponding FASTA sequence file. Then

the segments are separated by GC content into 10 bins per chromosome. While these bins can be more granular, the correlation of SNV to GC

content did not improve by increasing the number of bins. Finally, determine the genome-wide SNV mutation and size probabilities for variations

that can be more than a single base pair in length. A database schema describing the final tables is provided in the source for FIGG.
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Figure 3 FIGG MapReduce jobs. Three discrete MapReduce jobs have been set up to generate unique whole genome sequences. The first job

simply fragments the reference or “parent” genome into the distributed database, HBase. The second job reads all the fragments for the parent

genome from the database, mutates them using the provided frequency information and again saves them to the database to ensure

reproducibility. The final job generates FASTA formatted files, per chromosome, for the mutated genomes.

Figure 2 Variation frequency analysis. The result of the variation analysis is a table, indexed by chromosome and GC content, which provides

experimentally observed counts of the different variations for that fragment. This means that a DNA fragment from chromosome 4 with a GC

content of 25-35% has been observed 38,734 times. Each of those observed fragments is recorded with their variant counts. These observed

fragments will be sampled from directly in the generation of an artificial genome.

Killcoyne and del Sol BMC Bioinformatics 2014, 15:149 Page 5 of 10

http://www.biomedcentral.com/1471-2105/15/149



Figure 4 (See legend on next page.)
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simple regeneration of simulated FASTA files on an as-

needed basis.

MapReduce has been used effectively by us and others

in various large-scale genomics toolsets to decrease com-

putation times, and increase the scale of data that can be

processed [26-28]. FIGG uses this framework in order to

allow the rapid generation of new genomes or regener-

ation of previous mutation models. It is designed to run in

three discrete jobs: 1) breakdown input FASTA files into

fragments and save to a HBase database for use in subse-

quent jobs; 2) mutate all of the fragments from the first

job and persist these to HBase; and 3) reassemble all mu-

tated fragments as new FASTA formatted sequences.

MapReduce accomplishes these tasks by breaking each

job into two separate computational phases (see Figure 5).

The Map phase partitions data into discrete chunks and

sends this to mappers, which process the data in parallel

and emits key-value pairs. In each of the separate jobs for

FIGG the mappers deal with FASTA sequences, either

directly from a FASTA file or from HBase. Each mapper

performs a computation on these sequences, and produces

a sequence (the value) with a key that provides informa-

tion about that sequence (e.g. chromosome location).

These key-value pairs are “shuffle-sorted” and picked up

by the Reduce phase. The framework guarantees that a

single reducer will handle all values for a given key and

that the values will be ordered.

It is worth noting that not all jobs will require the use of

a reducer. In FIGG the first job which breaks down FASTA

files into fragments and saves them to HBase (Job 1) is a

“map-only” job, because we cannot further reduce these

fragments without losing the data they represent. There-

fore, the mappers output directly to HBase rather than to

the reducers. In the mutation job (Job 2) the Map phase

performs multiple tasks including applying variations to a

sequence fragment, and writing new sequences and spe-

cific variation information directly to HBase. Whereas in

Job 3 (FASTA file generation), the Map phase only does a

single task, tagging a sequence with metadata that enables

it to be ordered for the Reduce phase, which actually out-

puts the file. As each mapper is processing a subset of the

data in parallel to all other mappers the compute time

(See figure on previous page.)

Figure 4 Fragment mutation rules. As an example of the process each fragment goes through, this fragment from chromosome 4 is mutated

based on information from the tables shown in Figure 2. In step 1 the GC content of the fragment is calculated then fit to the pre-determined

bins, all observed fragments within that bin are then available to sample. Step 2 samples one of these observed fragments to get the counts of

specific variants. In this case the observed fragment had a single deletion and three SNVs. In step 3 these observed variant counts are applied in

stages. Sites for each variation are selected randomly (without replacement), and the mutation applied. For a size-dependent variant such as the

deletion, a size is determined from a probability table, for SNVs the probability of the point mutation is determined based on the nucleotide

present at that site. The resulting fragment will not replicate the sampled fragment (from step 2) in specific mutations, but only in the number

of mutations applied.

Figure 5 MapReduce framework. MapReduce provides a general framework to process partitionable data. The Map phase may either gather

metadata statistics on a sequence fragment and write them to HBase (Job 1) or apply the variation frequencies and rules to a fragment (Job 2).

The Reduce phase, if it is specified, is responsible for assembling the mutated fragments into FASTA formatted chromosome files (Job 3) or it

may simply output additional metadata to HBase for use in other processing tasks.
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required will scale directly with the number of mappers

available to the task, limited in FIGGs case only to the

organization of the data in HBase.

Results and discussion
Our primary interest in developing this tool was to pro-

vide sets of heterogeneous whole genomes in order to

benchmark cancer genome alignments. This is a special

case for alignment, as cancer genomes can vary quite

dramatically between patients and even within a single

tumor. With such a range of variation in patients, it was

important to ensure that the simulated genomes were

representative of the heterogeneity, without introducing

biases for specific mutations.

In order to ensure that FIGG was modeling heteroge-

neous genomes that fit a specific background (e.g. “nor-

mal” or “diseased”) two different frequency backgrounds

were generated (see Methods). The “normal” frequency

background was from data representative of the average

human population: 1000Genomes and HapMap. The sec-

ond, “highly variant” frequency background was based on

data from the DGVa and COSMIC databases of cancer

and other disease variations. This greatly increased the

frequency and size of the small structural variations (e.g.

millions of small deletions and insertions, up to several

hundred bp in length).

Using these two different backgrounds and GRCh37 as

the parent genome, FIGG generated six whole genome

sequences: three “normal”, two “highly variant”, and one

additional genome from the “normal” background that in-

cluded a common cancer structural variation. As expected,

for both the “normal” and the “highly variant” sequences,

the simulated genomes preserved the frequency distribu-

tion of variations observed in the background data, while

differing in the raw counts per fragment.

These simulated whole genomes were then used as

references to align a set of low-coverage paired-end se-

quencing reads from the 1000Genomes project (NCBI

Trace Archive accession ERX000272). The BWA align-

ment tool [29] was used to index the simulated genomes

and align the reads against each reference, including the

current reference genome GRCh37. Statistics regarding

read mapping accuracy (see Table 2) for each genome

were generated using SAMtools [30].

This comparison demonstrates that heterogeneous a

whole genome sequences matching specific variation

characteristics (e.g. normal, disease variant, etc.) can be

generated by this tool. In the first three genomes the

characteristics come from a “normal” population fre-

quency and fairly closely match the mapping rates of

the current public reference (GRCh37). The lower map-

ping rates in the high variation genomes are expected,

as these will have a higher number of variations as well

as longer insertions, deletions, and substitutions. This

suggests that by using distributions for variations within

distinct genomic populations, such as can be seen in differ-

ent tumor types, highly specific simulated genomes can be

generated. These specific simulated genomes could then

be used as more accurate quality control sets for testing

hypotheses or data. For instance, genome S6SV models a

breakpoint that may be found in specific types of glioma

[31-33]. This simulation could therefore be used to more

accurately align a clinically derived sequence, integrate

with proteomics data to infer a potential effect or bio-

marker, or simply provide a test sequence for breakpoint

analysis methods [34].

Finally, it is important to note the benefits of using a

highly distributed framework to generate these sequences.

Current sequencing projects are generating hundreds or

thousands of sequences from patients. In order to provide

artificial data models to assist computational researchers

working on large-scale projects, the simulation tool must

be able to rapidly generate data of similar complexity and

size. Distributed computing frameworks enable FIGG

to generate this data quickly, allowing the researcher to

simulate the scale of data they will actually be facing.

Using Hadoop MapReduce enables FIGG to scale the

mutation job nearly linearly to the number of cores

available (see Figure 6). However, as with other distrib-

uted environments optimization for large clusters must

be done on an individual basis.

Conclusions
HTS is now a primary tool for molecular biologists and

biomedical investigations. Identifying how an individual

varies from others within a population or how populations

Table 2 Sequence alignment statistics for simulated

genomes

SAMtools flagstat

Mapped Correctly paired Singletons

GRCh37 98.22% 96.34% 0.85%

S1 97.89% 95.52% 1.00%

S2 95.46% 92.95% 1.09%

S3 97.89% 95.54% 0.99%

S4H 90.09% 85.11% 2.89%

S5H 90.35% 85.45% 2.84%

S6SV 88.16% 83.22% 2.88%

A comparison of the 1000Genomes reads for ERX000272 mapped against each

genome. GRCh37 is the current reference genome. S1, S2 and S3 are genomes

generated based on normal variation data. S4H and S5H were generated with high

variation data and S6SV is based on normal variations but with the chromosome

arm 19q deleted. The table columns are statistics provided by SAMtools flagstat:

Mapped provides the total percentage of reads that mapped to the genome on the

left; Correctly Paired provides the percentage of reads that aligned to the genome in

their proper pair; and Singletons provides the percentage of reads that were

orphaned in the alignment. As expected, genomes S1-3 show mapping statistics

that are close to the reference genome, while the others show a significantly lower

statistics due to the higher frequency and larger bp size of variations used to

generate these genomes.
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vary from each other is central to understanding the mo-

lecular basis of a range of diseases from viral and parasitic,

to autoimmune and cancer. As our understanding of these

variations increases so too does the complexity of the ana-

lyses we need to undertake to find meaning in this data.

Simulation data is a common measure of the usability

and accuracy of any analysis tools, but in whole genome

studies there continues to be a lack of standard whole gen-

ome sequence data sets. This is especially problematic with

the production of hundreds or thousands sequences from

different populations. Comparing these to a single refer-

ence can lead to loss of important variation information

found in even reasonably homogenous data. Highly hetero-

geneous populations, such as those found in cancer, may

not even be represented at all by the reference. Generating

thousands of whole genome models that vary predictably

can provide highly specific test data for computational bi-

ologists investigating tumor diversity, software engineers

who are tasked with supporting the large scale data that is

being generated, and bioinformaticians who require reli-

able standards for developing new sequence analysis tools.

Central to each of these research needs is the develop-

ment and use of banks of whole genome simulation data

which will allow for the development of quality control

tools, standard experimental design procedures, and dis-

ease specific algorithm research. FIGG provides simulation

data models based on observed population information,

will enable disease sequence modeling, is designed for

large-scale distributed computing, and can rapidly scale

up to generate tens, hundreds, or thousands of genomes.

Availability and requirements
Project name: Fragment-based Insilico Genome Generator

Home page: http://insilicogenome.sourceforge.net

Operating systems: Platform independent

Language: Java

Other requirements: Java version 1.6 or higher, A com-

putational cluster running Hadoop v1.0.3 and HBase 0.92

(Amazon Web Services AMI v2.4.2), pre-computed HBase

tables for the frequency analysis, and FASTA files for a ref-

erence genome.

Open source license: Apache 2.0

Restrictions for use: None

All Hadoop MapReduce jobs for this paper were run

using Amazon Web Services MapReduce clusters. Please

see the Additional file 1 for a walkthrough of the AWS

job creation.

Additional file

Additional file 1: Amazon Web Services FIGG Walkthrough.

Abbreviations

COSMIC: Catalogue of Somatic Mutations in Cancer; DGVa: Database of

genomic variants archive; HTS: High-throughput sequencing; SNV: Single

nucleotide variation.

Figure 6 Scaling FIGG with MapReduce. The mutation process in FIGG is the most computationally intensive job in the pipeline. It was tested

on Amazon Web Services Elastic MapReduce clusters of varying sizes for scalability. MapReduce provides a near linear speed up with the addition

of nodes to this job. These genomes are saved to HBase to provide a persistent store of standard artificial genome data that can scale along with

the cluster size. This is one area where optimization will provide increased performance as defining how the HBase tables are distributed can

increase the speed of computation (e.g. more efficient row key design decreases query time and increases the number of available mappers).

This is due to the fact that region server optimization is highly specific to the data, and improves as the data size increases.
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