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Abstract: Acute pancreatitis (AP) is a prevalent clinical condition of the digestive system, with a
growing frequency each year. Approximately 20% of patients suffer from severe acute pancreatitis
(SAP) with local consequences and multi-organ failure, putting a significant strain on patients’ health
insurance. According to reports, the lungs are particularly susceptible to SAP. Acute respiratory
distress syndrome, a severe type of acute lung injury (ALI), is the primary cause of mortality among
AP patients. Controlling the mortality associated with SAP requires an understanding of the etiology
of AP-associated ALI, the discovery of biomarkers for the early detection of ALI, and the identification
of potentially effective drug treatments. Exosomes are a class of extracellular vesicles with a diameter
of 30–150 nm that are actively released into tissue fluids to mediate biological functions. Exosomes
are laden with bioactive cargo, such as lipids, proteins, DNA, and RNA. During the initial stages
of AP, acinar cell-derived exosomes suppress forkhead box protein O1 expression, resulting in M1
macrophage polarization. Similarly, macrophage-derived exosomes activate inflammatory pathways
within endothelium or epithelial cells, promoting an inflammatory cascade response. On the other
hand, a part of exosome cargo performs tissue repair and anti-inflammatory actions and inhibits the
cytokine storm during AP. Other reviews have detailed the function of exosomes in the development
of AP, chronic pancreatitis, and autoimmune pancreatitis. The discoveries involving exosomes at
the intersection of AP and acute lung injury (ALI) are reviewed here. Furthermore, we discuss the
therapeutic potential of exosomes in AP and associated ALI. With the continuous improvement of
technological tools, the research on exosomes has gradually shifted from basic to clinical applications.
Several exosome-specific non-coding RNAs and proteins can be used as novel molecular markers to
assist in the diagnosis and prognosis of AP and associated ALI.
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1. Introduction

Acute pancreatitis (AP) is a frequent occurring, acute abdominal illness. The majority
of patients present with mild AP, which may spontaneously resolve. Nonetheless, approxi-
mately 20% of patients report severe AP (SAP) that is fast progressive and aggressive [1,2].
Acute lung injury (ALI) is a life-threatening condition characterized by diffuse interstitial
and alveolar edema resulting from the damage of pulmonary microvascular endothelial
cells (PMVECs) and alveolar epithelial cells (AECs) [3,4]. ALI and its severe form, acute
respiratory distress syndrome (ARDS), are among the most prevalent consequences of SAP
and are leading causes of mortality in SAP patients [5].
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New insights into the pathogenesis of AP and associated ALI have emerged in recent
years. The systemic inflammatory response (SIRS) caused by the abnormal activation of
pancreatic enzymes, mitochondrial dysfunction, impaired autophagy, endoplasmic retic-
ulum stress, programmed cell death, intestinal mucosal barrier damage, and bacterial
translocation are the initiating factors of multiple organ dysfunction syndromes (MODS)
in AP [6]. Key molecules causing pulmonary air–blood barrier disruption and alveo-
lar edema include pancreatic, intestinal, and liver-derived non-coding RNAs (ncRNAs),
damage-associated molecular patterns (DAMPs), and pathogen-associated molecular pat-
terns (PAMPs). Cross-signaling between immune cells (such as neutrophils, macrophages,
and T cells) and parenchymal cells (such as acinar cells, intestinal epithelial cells, PMVECs,
and AECs) is a crucial mechanism for maintaining the AP cytokine storm [7]. However,
the molecular network of intercellular communication is intricate and requires immediate
clarification. Exosome-related research has expanded quickly in recent years. The basics
of exosomes, including the biogenesis, processes of secretion, and cargo they carry, have
been steadily uncovered [8,9]. We hypothesize that exosomes may be a key mediator of
communication between immune cells and parenchymal cells, mediating the local and
systemic inflammatory response during AP.

Extracellular vesicles (EVs), which include various types of vesicles such as exosomes,
microvesicles, and apoptotic vesicles ranging from 30 nm to 10 µm in diameter, were first
discovered by Erwin Chargaff and Randolph West using high-speed centrifugation; they
detected a platelet-free clotting component in plasma [10,11]. Later, Johnstone et al. discov-
ered and suggested EVs as a cellular waste disposal mechanism in the culture supernatant
of sheep erythrocytes [12]. Since the 21st century, numerous studies have reported the
importance of exosomal cargo and its function as a unique biological device [13,14]. The
biogenesis of exosomes involves both production and secretion. The process of exosome
production mainly consists of two invaginations of the plasma membrane and the formation
of a multivesicular body (MVB) containing intraluminal vesicles (ILVs). The MVBs bind
to lysosomes for degradation and fuse again with the cytoplasmic membrane to release
ILVs, completing the exosome release process. Exosome stability is a major contributing
factor to their widespread acceptance. The first thing to know about exosomes is that they
are very tiny and can thus easily pass through both blood vessels and the extracellular
matrix. Since they are released by one’s own cells, monocytes and macrophages cannot
phagocytose exosomes. Furthermore, exosomes can circulate freely in bodily fluids be-
cause CD55 and CD59 on their surface protect them from being altered by opsonin and
coagulation factors [15]. As a result of their unique vesicular structure, the contents of
exosomes may be kept reasonably stable for up to a few weeks [16]. Kalra et al. [17] showed
by proteomic analysis that the protein composition of plasma exosomes is stable for up to
90 days and may still be picked up by target cells and exert biological effects. In addition,
it has been observed that plasma exosomal microRNAs (miRNAs) are relatively stable,
even when kept in various storage settings [18]. When stored at −20 degrees Celsius for
5 weeks, the overall quantity of exosomal miRNA remained almost the same, with very
modest variations in the amounts of specific miRNAs. Thus, when exosomes are picked
up by the recipient cells and internalized, they contain cargo that can impact the recipient
cell function through triggering intracytoplasmic signaling pathways [19]. Specifically,
exosome-derived nucleic acids and proteins are widely involved in physiopathological
processes such as the inflammatory response, infection, and immune regulation, affecting
the development of AP [20].

This paper sheds light on the AP-mediated cytokine storm by describing the signaling
regulatory actions of exosomal proteins and nucleic acids. We will also show that exosomes,
which are found in all biological fluids, including blood, bronchoalveolar lavage, urine,
and pancreatic fluid, may be used as diagnostic and prognostic indicators for AP. Further-
more, exosomes are stable, non-toxic liposomes that may escape immune detection and be
absorbed by recipient cells. With the growth of exosome research and the implementation
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of new experimental procedures, it is anticipated that exosomes will also be exploited for
medication delivery in clinical study.

2. Exosomes and AP-Associated ALI

The molecular mechanisms involved in AP-associated ALI that lead to SIRS and
diffuse alveolar damage have been studied in detail. Multiple signaling pathways are
engaged during AP. To summarize, the activation of the cytokine storm is caused by the
upregulation of extracellular mediators such as DAMPs, histones, and ncRNAs during AP.
Intriguingly, emerging research has shown that the pancreas–lung axis [6] and the gut–lung
axis [21] may mediate the cytokine storm in AP-associated ALI, and that exosomes may be
major carriers of extracellular mediators transported along the signaling axis.

We hypothesize that the pancreas–lung axis is a putative signaling pathway for AP-
associated ALI based on the findings of many investigations. Zhu et al. discovered that
plasma exosomal miR-216a was considerably elevated in AP patients with ALI compared
to AP patients without ALI [22]. Exosomal miR-216a seems to be a particular modulator of
inflammation in AP-induced ALI. As shown in animal investigations, miR-216a expression
was undetectable in all organs save the pancreas, including the lung, gut, heart, and kidney.
It is possible that exosomal miR-216a is pancreas-specific. Moreover, exosomal miR-216a
enhanced the permeability of pulmonary microvascular endothelial cells, which was linked
with the degree of ALI during AP. Xu et al. discovered that cold-inducible RNA-binding
protein (CIRP) may play a crucial role in alveolar macrophage (AM) pyroptosis as well
as neutrophil recruitment during AP-associated ALI [23]. The level of CIRP was found
to be enhanced in the pancreatic tissue, serum, and lung tissue of AP rats by Xu and
his colleagues. Interestingly, immunohistochemical staining revealed that pancreatic islet
cells may be the predominant cell type that secretes CIRP, which may be an additional
inflammatory mediator secreted by injured pancreatic tissue that induces ALI. In addition,
Murao et al. discovered that CIRP may persist extracellularly as exosomes and mediate
inflammation during sepsis. Thus, we hypothesized that exosome-loaded inflammatory
mediators, such as CIRP and miR-216a, delivered along the pancreas–lung axis mediate the
development of AP-associated ALI.

The gut–lung axis is a commonly recognized pathophysiological signal of crosstalk
between intestinal and pulmonary diseases. In the case of AP-associated ALI, intestinal
damage and its subsequent response has an “amplifier” effect [24]. Firstly, intestinal barrier
damage and increased intestinal permeability are prevalent in AP patients and models
generated by a variety of causes [25,26]. Secondly, the intestinal barrier is a factor that exac-
erbates the inflammatory response to SIRS [27]. After intestinal barrier damage, the most
direct consequence may be the “second strike” of intestine-derived endotoxins entering the
circulation and lungs through the portal vein or mesenteric lymphatic system [28,29]. On
the other hand, SIRS may be promoted by exosomes released from the injured gut during AP.
Under physiological conditions, intestinal epithelial cells (IECs) or DC-derived exosomes
carrying transforming growth factor-β, MHC class I and II complexes and co-stimulatory
molecules coordinate the regulation of intestinal immunity and maintain immune home-
ostasis. However, miRNAs such as miR-122a and miR-29a released from damaged IECs
can exacerbate intestinal barrier damage and increase intestinal permeability [30].

Thus, we hypothesize that the pancreas and gut release exosomes containing pro-
inflammatory mediators during AP, with the pancreas–lung axis and the gut–lung axis
serving as the primary delivery pathways (Figure 1).
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3. Exosome-Specific ncRNAs
3.1. LncRNAs

LncRNAs, or long non-coding RNAs, are a subset of ncRNAs that are longer than
200 nucleotides and are synthesized in a manner analogous to mRNA. First dismissed as
meaningless “transcriptional noise” [31], lncRNAs have now been shown to play essential
roles in various biological processes. A growing body of evidence indicates that lncRNAs
may interact with RNA, DNA, and proteins. In particular, lncRNAs can regulate gene
expression at the epigenetic, transcriptional, and post-transcriptional levels and even
directly regulate protein activity [32–35]. The lncRNAs may also take part in chromatin
modification [36]. Many lncRNAs have been implicated in pathophysiological processes
such as cancer [37], inflammation [38], hematopoiesis [31], and metabolism [39]; the interest
in lncRNAs has grown with the advancement of high-throughput technology.

3.1.1. MALAT1

As one of the first lncRNAs discovered, metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) has been linked to the pathophysiology of inflammatory illnesses,
metabolic diseases, and cancer [40–42]. As discovered by Gu et al. [43], the early inflamma-
tory response of acinar cells may include a “MALAT1-miR-194-yes-associated protein 1
(YAP1)” mutual feedback loop. MiR-194 is a protective microRNA that dampens cerulein-
induced inflammation in AR42J cells (pancreatic acinar cells) by targeting the YAP signaling
pathway. It is interesting to note that, in vitro, YAP1 and MALAT1 enhance each other,
whereas MALAT1 and miR-194 counteract each other [43]. It has also been established
that the MALAT1/miR-181a-5p/high-mobility group box 1 (HMGB1) axis plays a role
in macrophage polarization during AP [44]. First, the researchers found elevated levels
of MALAT1 in EVs taken from the plasma of AP patients compared to those found in
healthy participants. MPC-83 cells (mouse pancreatic acinar cells) were encouraged to
generate MALAT1-carrying EVs in response to cerulein, providing further evidence that
the MALAT1-carrying EVs observed in AP patients’ plasma likely originate from inflamed
acinar cells. Mechanistic studies demonstrated that MALAT1 upregulates HMGB1 (a noto-
rious DAMP) expression by competitively binding to miR-181a-5p, stimulating the toll-like
receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway and promoting M1
macrophage polarization [44]. It is noteworthy that hepatocytes, similar to acinar cells,
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also emit exosomes containing MALAT1. Risk factors for AP include the presence of
non-alcoholic fatty liver disease. The authors hypothesized that hepatocyte injury and the
subsequent release of exosomes would foster the progression of AP [45]. Exosome-specific
MALAT1 was secreted by damaged hepatocytes, which exacerbated inflammation in acinar
cells by downregulating autophagy and upregulating the Hippo–YAP pathway [45].

In addition to AP, MALAT1 expression was elevated in the plasma of sepsis and ARDS
patients [46,47]. The expression of MALAT1 was strongly connected with illness severity,
organ damage, and death, and its diagnostic performance in patients with sepsis was found
to be excellent (AUC = 0.931) by Lu et al. [46]. MALAT1 levels in plasma and peripheral
blood mononuclear cells were considerably more significant in ARDS patients compared to
the control group. It was also shown that MALAT1 levels in plasma exosomes were higher
than in the control group, though this difference did not reach statistical significance [47].
All studies have consistently linked MALAT1 to worse outcomes in ALI/ARDS from a
mechanical standpoint. Moreover, the knockdown of MALAT1 expression significantly
inhibited the apoptosis of alveolar epithelial cells, disruption of the endothelial barrier, and
inflammatory signaling pathways in ALI.

3.1.2. TUG1

LncRNA taurine upregulated gene 1 (TUG1) consists of 7598 nucleotides and was first
discovered in the retinal cells of neonatal mice. Retinal development in mice is hampered
when TUG1 is silenced [48]. TUG1 expression was markedly downregulated in lung tissue
and airway epithelial cells in sepsis-induced-ALI animals. By blocking miR-494, TUG1
protected the airway epithelial cells and reduced lung inflammation [49]. If pulmonary
microvascular endothelial cells are under assault, TUG1 may potentially serve as a pro-
tective factor. In particular, increasing TUG1 expression suppressed lipopolysaccharide
(LPS)-induced apoptosis and inflammation in endothelial cells. Overexpressing miR-34b-5p
in rescue tests decreased TUG1’s protective impact on endothelial cells. GRB2-associated
binding protein 1, positively correlated with TUG1, was negatively regulated by miR-34b-
5p and, similarly, exerted a protective effect [50]. EVs-specific TUG1 is also protective
against sepsis-induced ALI. Ma et al. [51] reported that EVs released from endothelial
progenitor cells were rich in TUG1, promoting tissue repair, and attenuating vascular injury
by inducing macrophage polarization towards the M2 type. Mechanistically, TUG1 upregu-
lates silent information regulator 1 (SIRT1) expression by competitively binding miR-9-5p.
The latter is known as an antioxidant and anti-inflammatory deacetylase. In contrast to
ALI, TUG1 and exosomal TUG1 expression was stimulated to be upregulated in AR42J
cells and was significantly associated with Treg cell differentiation. The overexpression
of TUG1 promotes LPS/cerulein-induced apoptosis and inflammation in AR42J cells [52].
According to recent research, lncRNA TUG1 may play opposing roles in AP and ALI. As
there are no experimental investigations on the impact of exosomal TUG1 produced by
acinar cells on lung parenchymal cells, such as epithelial and endothelial cells, this piqued
our curiosity.

3.1.3. Others

Patients with AP or ARDS may potentially benefit from testing for a variety of addi-
tional lncRNAs that have been proven to have diagnostic utility. Patients with AP have an
elevated plasma plasmacytoma variant translocation gene 1 (PVT1) expression compared
to healthy volunteers; this elevated expression is correlated with various clinical characteris-
tics and has a substantial predictive value for mortality (AUC = 0.838) [46]. Similarly, PVT1
can be an independent risk factor for patients with ARDS and can help to assess the severity
of ARDS and predict mortality [53]. In addition, exosome-specific PVT1 has been shown to
have diagnostic relevance in human disease [54]. As a result, we have become more curious
about exosome-specific PVT1 and its function in AP and ALI. Other lncRNAs, such as
FBXL19-AS1 [55] and lnc-ITSN1-2 [56], have also been shown to be helpful in the diagnosis
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of AP and the evaluation of prognosis. It is essential to investigate whether such lncRNAs
are present in exosomes and, if so, what role they play in AP and the accompanying ALI.

3.2. MiRNAs

According to the current data, microRNAs (miRNAs) are the primary form of RNA
delivered by exosomes. MiRNAs are small ncRNAs that are highly conserved in organisms
and are approximately 20–24 nucleotides in length [57]. In recent years, miRNAs have
been shown to regulate gene expression at the post-transcriptional level by pairing with
mRNA 3′-untranslated regions of target genes [58]. The functions of miRNAs were more
than imagined [59,60]. At present, the synthesis process of miRNA in animals is well
understood. MiRNA is first transcribed in the nucleus by RNA polymerase II into pri-
miRNA, which is about 300–1000 bases in length. Pri-miRNA is cleaved in the nucleus
by RNase III-Drosha into precursor miRNA (pre-miRNA), at approximately 70 bases in
length. Subsequently, the pre-miRNA is transferred from the nucleus to the cytoplasm
by the action of the transporter protein exportin 5 and further cleaved by RNase III-
Dicer into a mature double-stranded miRNA (mature miRNA) of approximately 20–24 nt
in length [61,62]. The mature double-stranded miRNAs form RNA-induced silencing
complexes with Argonaute proteins to degrade target gene mRNAs or play a biological role
in translation inhibition [63]. MiRNAs have become a hot research target as regulators of
gene expression and biomarker candidates. MiRNAs in exosomes are important in disease
development, diagnosis, etc. [64]. The discovery of exosomal miRNAs in AP, a common
and dangerous acute abdominal disease, provides new ideas on the pathogenesis and
diagnosis of AP and has some reference value.

3.2.1. MiR-155

MiR-155 is a miRNA encoded by a non-coding B cell integration cluster, with two
mature forms, miR-155-3p and miR-155-5p. MiR-155 has a crucial regulatory function in
the organism’s innate immune and inflammatory response [65,66]. The miR-155 level is
often increased in the presence of severe disease [67,68]. The expression of miR-155 in
the peripheral blood of AP patients is, however, debatable. Lin et al. discovered that the
expression of miR-155 was considerably higher in the serum of AP patients and strongly
linked with the Ranson score and APACHE II score [69]. Wang et al. also found a correlation
between higher miR-155 levels and the severity of AP patients [70]. Miao et al. found
that the level of plasma-derived exosomal miR-155 in AP-associated ALI was significantly
higher than in AP without ALI. In comparison, the exosome-specific miR-155 level in the
AP without the ALI group was significantly higher than that in healthy volunteers [71].
However, Hu et al. discovered considerably lower miR-155 levels in the blood of AP
patients than in healthy participants [72]. The cause for this opposite outcome is, as yet,
unclear. More clinical research with large sample sizes is needed to assess miR-155 levels in
AP patients.

MiR-155 appears to be consistently highly expressed in the pancreas, gut, lung, and pe-
ripheral blood of AP models. Inhibition of miR-155 alleviates intestinal barrier damage [73],
immune imbalance [70], and impaired autophagy [74,75] induced by AP. For exosome-
specific miR-155, researchers discovered that plasma-derived exosomes were enriched with
inflammatory miR-155, whereas ascites-derived exosomes were not [76]. Exosome-specific
miR-155 that the liver has activated may reach the alveoli and contribute to the develop-
ment of ALI. Specifically, exosome-specific miR-155 activates alveolar macrophages and
triggers NOD-like receptor protein 3 (NLRP3)-dependent pyroptosis [77]. The inhibition of
MiR-155 alleviates ALI by inhibiting macrophage proliferation [78], antagonizing nuclear
factor kappa beta (NF-κB) signaling [79], and modulating neutrophil extracellular trap
formation [80] in the lungs.
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3.2.2. MiR-21

The miR-21 gene is found in the 10th intron region of the transmembrane protein
49 gene on chromosome 17 q23.2. MiR-21, unlike other miRNAs, has an independent pro-
moter region and is regulated by transcription factors, including AP-1, STAT3, and p53 [41].
In research including 164 patients, miR-21-3p levels in AP groups were considerably higher
than in the healthy control group [81]. The level of miR-21-3p was considerably more
significant in the SAP group compared to the MSAP and MAP groups. In patients with
autoimmune pancreatitis, the level of extracellular vesicle (EV)-specific miR-21-5p in the
plasma was considerably higher than in patients with chronic pancreatitis and healthy
volunteers [82]. Hu and colleagues discovered, similar to miR-155, that AP patients had
lower levels of miR-21 than healthy volunteers [72]. Therefore, the level of miR-21 in the
circulation of AP patients requires additional investigation.

MiR-21 is said to favor the AP procedure. Stimulation of acinar cells with cerulein
and taurolithocholic acid 3-sulfate induced significant changes in miRNA expression pro-
files, with miR-21-3p being significantly elevated [54]. The mouse AP model induced
by cerulein and L-arginine also confirmed the high level of miR-21-3p in the pancreatic
tissue [83]. Mechanistically, miR-21-3p exacerbated inflammation and lung injury by ac-
tivating transient receptor potential signaling pathways in SAP rats [84]. Knockdown of
miR-21 decreased AP-associated ALI by reducing trypsinogen activation [85] and inhibiting
the release of HMGB1. Intriguingly, miR-21-5p may prevent lung damage. In AEC cells,
the overexpression of miR-21-5p inhibited hyperoxia-induced apoptosis [86] and mito-
chondrial damage [87]. Exosomes generated from mesenchymal stromal cells decreased
ischemia/reperfusion-induced ALI in an miR-21-5p-dependent manner [88].

3.2.3. MiR-216a

Extensive research has been conducted on the function of miR-216a in diagnosing
AP [89–91]. The miR-216a level was elevated in the plasma and mesenteric lymph after
induction of AP in rats and mice and was positively correlated with the severity of the
disease [92]. In an AP dog model, elevated miR-216a levels were substantially linked
with the extent of tissue damage and showed a more dynamic response than amylase
and lipase [93]. According to a clinical investigation, the plasma miR-216a level in SAP
patients was considerably higher than in mild AP (MAP) and MSAP patients, but there
was no difference between MAP and MSAP patients [94]. This indicates that miR-216a may
serve as a biomarker for the early detection of SAP. Notably, miR-216a was tightly linked
to SAP-induced liver damage. In SAP patients with liver injury, miR-216a levels in the
peripheral blood were considerably higher than in SAP patients without liver injury [95].
Furthermore, Zhu et al. examined the differences in plasma-derived exosomal miR-216a
levels in patients with AP-associated ALI, patients with AP without ALI, and healthy
volunteers. They found that exosome-specific miR-216a levels were significantly higher in
patients in the AP-associated ALI group than in the AP without ALI group, which in turn
had significantly higher exosome-specific miR-216a levels than in healthy volunteers [22].
These results suggest that miR-216a is present in plasma-derived exosomes and plays a
vital role in the process of AP-associated ALI. Mechanistic experiments confirmed the
role of miR-216a as a risk factor for PMVEC injury in AP. Overexpression of miR-216a
increases endothelial cell permeability by altering the expression of tight junction proteins
and is associated with the development of lung injury. However, Fan et al. [96] offered
an alternative viewpoint. They discovered that miR-216a overexpression in ALI animals
dramatically decreased serum inflammatory factor levels and improved lung permeability.
The miR-216a target Janus protein tyrosine kinase 2 dramatically reduced ALI by regulating
the NF-κB signaling pathway [96]. Thus, many more experiments are needed to prove the
function of miR-216a in AP and associated ALI.
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3.2.4. Others

A recent clinical study reported that seven exosome-specific miRNAs might be po-
tential biomarkers for the diagnosis of patients with SAP [97]. Among them, the levels of
exosome-specific miR-583 and miR-603 were strongly correlated with the severity of AP [97].
MiR-583 and miR-603 are considered to be tumor suppressors, and their related studies are
mainly focused on tumors such as breast cancer [98], hepatocellular carcinoma [99], and
colorectal cancer [100]. There are no mechanistic studies on the association of miR-603 with
AP or SIRS. Exosome-specific miR-192-5p levels were downregulated in mild AP patients.
This result is similar to that of previous studies. Patients with AP with nonalcoholic fatty
liver disease had significantly lower circulating miR-192-5p levels than the healthy control
group [101]. Furthermore, the level of exosome-specific miR-122-5p was upregulated only
in the SAP group but not in the MAP group [97]. Interestingly, miR-122-5p has previously
been shown to be associated with lipopolysaccharide (LPS)-induced ALI. Knockdown
of miR-122-5p helps to attenuate the damage of PMVECs and AECs during ALI. Thus,
miR-122-5p may be the essential medium for SAP-associated ALI [102,103]. This, of course,
needs to be confirmed by further studies.

The role of exosome-specific ncRNAs in SIRS is a rapidly developing area of study in
AP. Synergistic interactions between neutrophils, macrophages, platelets, endothelial cells,
and AECs create the cytokine storm of AP and associated ALI. Several exosome-specific
lncRNAs and miRNAs have been shown to have an altered expression in AP and ALI
(Table 1), and these genes play essential roles in the AP-induced inflammatory cascade
response, AM activation, increased endothelial cell permeability, and alveolar epithelial cell
injury by targeting and regulating downstream genes and associated signaling pathways
(Figure 2).
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Table 1. Exosome-ncRNAs in AP and ALI.

NcRNAs Species Targets Expression and Role
in AP Expression and Role in ALI Reference

MALAT1 Human, mouse, and rat miR-194, miR-181a-5p Up, Aggravated Up, Aggravated [43–45,47]

TUG1 Human, mouse, and rat miR-494, miR-34b-5p,
miR-9-5p Up, Aggravated Down, Suppressive [49–52]

MiR-155 Human, mouse, and rat
Rictor, TAB2, SOCS1,

RhoA, IL17RB, IL18R1,
IL22RA2

Up/Down,
Aggravated Up, Aggravated [70–80]

miR-21-3p Human, mouse, and rat TRPs, Up/Down,
Aggravated Up, Aggravated [72,81,83–85]

miR-21-5p Human, mouse, and rat Trim33, SKP2, PGAM5 Up/Down,
Aggravated Up, Suppressive [72,82,86,87]

miR-216a Human, mouse, and rat JAK2 Up, Aggravated Up, Aggravated/Suppressive [22,92,96]

4. Exosome-Specific Proteins

Proteins, in addition to ncRNAs, are the most common exosomal cargo. Exosome-
specific proteins are mostly found on the vesicle surface and in the endolumen. Membrane
transport and fusion proteins, transmembrane proteins, and marker proteins such as CD63
and CD9 are found on the vesicle surface, while heat shock proteins, signal transduction
proteins, and backbone proteins are found in the vesicle lumen. Exosome-specific proteins
are physicochemically stable, less vulnerable to the extracellular setting, and may play an
essential role in disease development [104,105].

4.1. HMGB1

High-mobility group box 1 protein (HMGB1) is a well-known DAMP that received
its name from its high mobility in polyacrylamide gel electrophoresis [106,107]. In 2006,
Yasuda et al. discovered a link between serum HMGB1 levels and disease severity in SAP
patients. This work piqued the attention of academics in investigating the role of HMGB1
in AP [108]. Later, it was shown that serum HMGB1 levels in SAP patients might be an
essential predictor of intestinal barrier failure and infection [109], and aid in predicting
the risk of AP-related death [110]. Mechanistically, the A box of HMGB1 has an anti-
inflammatory effect and inhibits AP-induced pancreatic injury [111]. In contrast, the B box
has pro-inflammatory activity and is involved in the inflammatory response and organ
damage in AP as a late inflammatory mediator. Specifically, to activate inflammation-
related signaling pathways, promote the release of the neutrophil extracellular traps (NETs),
induce cell necrosis, and amplify pancreatic inflammation, AP stimulates pancreatic acinar
cells, pancreatic macrophages, and Kupffer cells to release HMGB1 rapidly [112–115]. The
AP inflammatory cascade response has a refueling station in the gut. SAP patients are more
susceptible to complications such as ALI/ARDS and sepsis because of disruption to the
intestinal barrier [6]. HMGB1 has been implicated in SAP-induced intestinal barrier injury
via the activation of the TLR4/9/NF-κB signaling pathway, disruption of intestinal flora,
and disruption of intestinal tight junctions, according to several research findings [116–118].
Similarly, AP-associated ALI is exacerbated by HMGB1, which promotes inflammation
by triggering nuclear translocation of NF-κB and inflammasome formation [119,120]. SAP
may cause myocardial injury, which is an uncommon yet life-threatening consequence.
Myocardial damage from SAP may be reduced if HMGB1-mediated oxidative stress is
blocked [121]. Thus, HMGB1 may be a direct inflammatory cytokine that helps begin and
sustain the inflammatory cascade response in the pancreas, gut, lungs, liver, and heart
during acute pancreatitis.

The mechanism of HMGB1 release has recently piqued the curiosity of scientists. The
main ways by which cells produce DAMPs may include PCD, and lysosomal- and exosomal-
exocytosis [105]. Exosome-specific HMGB1 became a new favorite among researchers, as
anticipated. In addition, in 2006, Liu et al. found that HMGB1, which was identified
in the vesicles of Caco-2 cells, was strongly related to inflammation-induced epithelial
hyperpermeability [122]. Later, researchers discovered that exosomal HMGB1 produced
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from the dysbiosis of the intestinal flora might be transported from the gut to the liver,
thereby causing hepatic steatosis. This finding implies that exosomal HMGB1 may be a
key modulator of the gut–liver axis [123]. The gut–liver axis is a well-known feedback
mechanism in the SAP process. During SAP, high circulating levels of HMGB1 are primarily
caused by the release of HMGB1 from hepatocytes activated by inflammatory mediators
produced from the gut. Li et al. found that the extracellular release of hepatic HMGB1 from
mice with sepsis occurs via exosomes and is dependent on the TLR4/caspase-11/GsdmD
signaling pathway [124]. Despite the lack of substantial evidence, exosomal HMGB1 may
have an inflammatory function in SAP. However, comparable disorders have provided us
with valuable clues. We speculate that exosomal HMGB1 has promise for the investigation
of SAP mechanisms and clinical diagnosis.

4.2. S100A8/A9

Solubility in 100% ammonium sulfate is a vital feature of the S100 protein family,
consisting of calcium-binding proteins with a low molecular weight [125]. Currently, a
total of 25 S100 proteins have been identified. S100A8 and S100A9, all of the S100 protein
family, are involved in a wide range of cellular signaling processes [126]. Monomeric,
homodimeric, and heterodimeric forms of S100A8 and S100A9 function as natural immune
mediators by binding to cytoplasmic membrane receptors to sustain and increase the
inflammatory response [127]. In addition, research suggests that S100A8/S100A9 may serve
as a diagnostic and prognostic marker for COVID-19 [128], inflammatory diseases [129],
and human cancers [130].

A clinical study including 246 patients found that plasma S100A8/S100A9 levels were
more significant in patients with mild and severe AP compared to healthy volunteers [131].
At the time, researchers discovered no statistically significant difference in plasma
S100A8/S100A9 levels between individuals with severe AP and those with mild AP. In-
terestingly, when exosomes were introduced into biological research, it was discovered
that the difference in exosome-specific S100A8/A9 levels from severe AP vs. mild AP was
substantial. The study by Waldron et al. was the first to give us some hints [132]. They
collected plasma from 12 patients with alcoholic AP and 12 healthy controls for proteomic
analysis. They identified 37 differentially expressed proteins, 31 of which were upregulated
and 6 of which were downregulated. Interestingly, almost all of the upregulated proteins
were associated with cellular compartments, including exosomes and extracellular spaces.
Among them, S100A8, a DAMP, previously described, which is closely associated with
the development of SAP, was also shown to be significantly up-regulated in the plasma of
AP patients [132]. The potential of exosome-specific S100A8 in predicting the severity of
SAP was also confirmed in a recent study. Exosome-specific S100A8 and S100A9 isolated
from the plasma of SAP patients promoted the activation of the NF-κB signaling pathway
and the level of inflammatory mediators in macrophages. Furthermore, the promotion
of SIRS by S100A8 and S100A9 depends on the activation mechanism of nicotinamide
adenine dinucleotide phosphate (NAPDH) oxidase. In summary, these findings suggest
that exosome-specific S100A8 and S100A9 are associated with the intensity of SIRS during
AP [133].

Mechanistic experiments further demonstrated that the exosome-specific S100A8/S100A9
protein, which exists as a heterodimer, may induce NF-κB activation and inflammatory
factor production via the activation of NADPH oxidase. These data show a link between
the severity of AP and the pro-inflammatory activity of exosome-specific S100A8/S100A9.
Nesvaderan et al. developed a four-gene signature including S100A8, S100A9, matrix
metalloproteinase (MMP)25, and MT-ND4L that predicts severe AP with 4% accuracy [134].
According to their findings, this gene panel might be used to detect severe AP at an early
stage. To summarize, exosomal S100A8/S100A9 has a unique potential in the diagnosis of
AP, and its relation to disease severity and prognosis should be explored in the future.

On the other hand, local pancreatic injury may progress to systemic inflammation
and ALI through the S100A8/A9 protein. S100A8/A9 is involved in the release of NETs
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and the activation of neutrophils [135]. S100A9 directly impacts trypsinogen activation
in pancreatic inflammation via the regulation of neutrophil infiltration. The activation
of trypsinogen is well-known as a critical step in in the early stages of AP [136]. As a
result, AP inflammation and S100A9 go hand in hand. When activated, intracellular pro-
tein complexes known as the NLRP3 inflammasome release IL-1β and IL-18, which are
proinflammatory mediators involved in cell inflammation and pyroptosis. S100A9 caused
pancreatic injury and inflammation by interacting directly with VNN1 and boosting the
enormous production of reactive oxygen species (ROS), which activated NLRP3 inflam-
masome [137], as demonstrated by Xiang et al. In ALI, S100A8/A9 promoted neutrophil
activation, damaged alveolar epithelial cells, and increased excessive inflammatory and
immune responses in the airways and lung tissue. The S100A9 blockade significantly
reduces the ALI induced by LPS or cercal ligation and puncture [138,139]. S100A8/A9
proteins are abundantly expressed in alveolar macrophages and intestinal epithelial cells
after SARS-CoV-2 infection and may be biomarkers connecting respiratory and intesti-
nal damage [140]. This discovery shows that the S100A8/A9 proteins may be essential
mediators on the gut–lung axis, a proven bridge to severe AP-associated ALI. Therefore,
exosome-specific S100A8/A9 is a crucial mediator of the inflammatory response induced
by AP, leading to the development of ALI.

4.3. CIRP

CIRP was the first cold-shock protein discovered in mammals, and it is overexpressed
in response to cold shock, oxidative stress, and hypoxia [141,142]. The function of CIRP
is inextricably linked to its localization [143]. Intracellular CIRP (iCIRP) protects RNA
from degradation while regulating RNA transcription and translation. Multiple biological
mechanisms are regulated by iCIRP, which aids cells in responding to a wide range of phys-
iological and pathological stimuli [144]. It turns out, however, that CIRP released from cells
plays an essential role in mediating innate immunity and contributing to the inflammatory
cascade reaction [142]. According to recent studies, exosome-specific CIRP may play an
“amplifier” role in the progression of AP to ALI. Serum CIRP concentrations were found to
be an independent predictor of major adverse events in patients with SAP in a clinical study
involving 252 patients in 2017. CIRP outperforms other commonly used inflammatory
markers such as procalcitonin, white blood cell count, and C-reactive protein in diagnostic
performance for SAP [145]. This finding suggests that CIRP is released into the bloodstream
during SAP and correlates with its severity, including SIRS, ALI, and MODS. CIRP levels
in the pancreas, serum, and lungs of SAP rats were also shown to be considerably elevated
by Xu et al. An antagonist of CIRP, C23, dramatically reduced the pancreatic injury and
systemic inflammation produced by SAP, as well as the resulting ALI [23]. These data imply
that SAP-induced systemic damage is mediated in part by CIRP. In addition, an experiment
in vitro showed that CIRP may target toll-like receptor (TLR) 4 of alveolar macrophages
(AMs), which activates NF-κB signaling, induces NLRP3 inflammasome-mediated py-
roptosis, and amplifies the inflammatory response. CIRP suppresses M2 macrophage
polarization by decreasing Ras superfamilies of small G proteins/erythropoietin receptor
signaling in addition to triggering pyroptosis in AMs. During ALI/ARDS, the reduction in
inflammation is greatly influenced by this inflammatory pathway [146].

Neutrophils release NETs, which are web-like extrusions that may kill microorganisms
directly. NETs play a crucial regulatory function in the development of severe inflamma-
tory illnesses [147,148]. SAP-induced MODS is hypothesized to be exacerbated by the
excessive formation of NETs [149]. Intriguingly, during SAP, CIRP strongly influences
the formation of NETs in the pancreas. The pancreatic injury produced by NETs was
significantly decreased when CIRP was targeted [150]. In addition, CIRP targets AEC as
well as macrophages and neutrophils. Triggering receptor expressed on myeloid cells-1
(TREM-1) has been shown to have a role in CIRP-induced inflammation in the AEC. The
AEC is stimulated to produce high quantities of chemokines and cytokines when CIRP
is binding to TREM-1 [151]. Alveoli are particularly vulnerable to the effects of this. The
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mechanism of CIRP’s release is also of relevance. CIRP is released after a variety of cell
deaths, according to earlier research. Lin and his colleagues, on the other hand, confirmed
an active release mechanism of CIRP [152]. CIRP concentrations in mouse serum exosomes
rose dramatically during sepsis. CIRP is present mainly on the surface of exosomes and
promotes inflammation by triggering cytokine production and neutrophil migration. As a
result, we anticipate that the injured pancreas in SAP will produce exosome-specific CIRP,
which may be capable of targeting the lung more effectively than free extracellular CIRP [78].

4.4. Histones

Histones are basic proteins in eukaryotic cells that combine with DNA to form chro-
matin and regulate gene expression. Histones may be transferred from the nucleus to the
extracellular space in response to cell stimulation, initiating the immunological response
and worsening inflammation [153,154]. There are three forms of extracellular histones:
(1) Nucleosomes are formed by histones bound to DNA. (2) NETs are composed of his-
tones, DNA, histone granule proteins, and cytoplasmic proteins, among others. (3) Free
circulatory histones [155]. Indeed, EVs have been found to carry histones, adding to their
widespread availability in normal and pathophysiological conditions. Nair et al. found that
LPS encourages macrophages to release histone-carrying microvesicles (EVs 50–1000 nm in
diameter) into the extracellular compartment. Histones, detected on the vesicle surface,
interacted with TLR4 to induce an inflammatory response [156]. N-terminally cleaved
histones H3 and H2A were also discovered in the exosomes [156]. Additionally, histones
have been previously detected in many proteomic investigations of EVs [157,158]. Al-
though no experimental investigations have demonstrated a direct link between histones
and exosomes in AP, we believe this is simply a matter of time. Since extracellular histones
are so prominent in AP pathogenesis, this makes sense.

The presence of extracellular histones, nucleosomes, and NETs in the bodily fluid of
AP patients is clinically relevant. CitH3 levels were significantly higher and diagnostically
helpful in patients with septic AP compared to healthy volunteers and non-septic AP
patients (AUC = 0.93). Correlation analysis revealed a positive correlation between serum
CitH3 and prognostic markers such as survival, duration of ICU stay, and sequential organ
failure assessment scores (SOFA), suggesting that serum CitH3 may be a prognostic marker
in patients with septic AP [159]. On the other hand, histones and nucleosomes in circulation
are crucial for the diagnosis and prognosis of SAP patients. The diagnostic significance
of plasma nucleosomes in severe AP was verified by a prospective trial of 74 patients
(AUC = 0.718), which was more significant than CRP (AUC = 0.673) [160]. Researchers
made the intriguing discovery that obesity increases nucleosome release in AP patients.
Systemic histone release may be a significant factor to in obesity-induced SAP and its
mortality [161]. Furthermore, Liu et al. found that the detection of circulating histones
in plasma within 48 h after the onset of abdominal pain onset predicted persistent organ
failure and death in AP patients (AUC = 0.92) [162]. They also discovered that the dead
immune cells might be the primary source of circulating histones.

However, Keskin and his colleagues reached a different conclusion. They discovered
that serum histone levels did not substantially vary between severe and moderate AP
and had no clinical significance [163]. They proposed two possible explanations. On
the one hand, the sample size was relatively modest. On the other hand, most of the
included patients had biliary AP, which differed from previous studies that included a
more significant proportion of AP due to alcohol abuse. Consequently, we hypothesize
that the release of circulating histones during AP may be linked to the pathophysiology of
inflammation. Additional clinical studies must confirm this.

The widespread organ toxicity of extracellular histones is amazing. There is a substan-
tial relationship between circulating histones and SOFA in patients with sepsis, SAP, and
severe trauma [164]. Experiments in vivo and in vitro verified the temporal association of
histones with multi-organ damage, particularly cardiac and pulmonary injury [164]. The
significance of histones in AP initiation was also established mechanistically. Guo et al.
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discovered that extracellular histones induce dose-dependent calcium oscillations [165].
Histones induce calcium oscillations in acinar tumor cells through activation of plasma
membrane TLR9, which is required for trypsin activation and activation of the inflammatory
signaling pathway during AP. Extracellular histones are critical mediators of AP-induced
organ damage and may have clinical value in the diagnosis and prognosis of AP. Recent
research has shown that histones may also be actively produced by live cells in the form of
EVs [156], resulting in inflammation and sepsis. However, EV-specific histones have not
been proven in AP, and additional research is needed to determine their clinical importance.

Exosome-specific proteins are increasingly being detected in bodily fluids and are
linked to AP and associated ALI (Table 2). We hypothesize that exosomes released from the
pancreas, gut, and liver, together with the proteins they contain, trigger intracellular signals
that govern the receptor cell phenotype and impact the inflammatory cascade response and
lung damage during AP. Exosomes transport inflammatory mediators via the pancreas–
lung axis and the gut–lung axis to activate AMs, enhance their polarization toward the M1
type, and cause pyroptosis. AMs amplify the inflammatory response while also secreting
exosomes, further stimulating PMVECs and AECs and disrupting the pulmonary air–blood
barrier (Figure 3).

Table 2. Exosome-proteins in AP and ALI.

Proteins Species Expression and Role in
AP

Expression and Role
in ALI Reference

HMGB1 Human, mouse, and rat Up, Aggravated Up, Aggravated [109,112–115,119,120]
S100A8/A9 Human, mouse, and rat Up, Aggravated Up, Aggravated [131–140]

CIRP Human, mouse, and rat Up, Aggravated Up, Aggravated [23,145,146,150–152]

Histones Human, mouse, and rat Up/No statistical
difference, Aggravated Up, Aggravated [159–165]
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5. The Therapeutic Potential of Exosomes in AP and Associated ALI

Aa a double-edged sword, exosomes release both anti-inflammatory and pro-inflammatory
substances into the cells to which they bind. They regulate the inflammatory cascade
response during AP by selectively binding downstream molecules and modulating receptor
cell activity. As a result, researchers are considering exosomes as possible therapeutic
targets. The first step in the chain of AP is pancreatic acinar cell damage. Recently, in vitro
experiments confirmed that exosomes produced by acinar cells were shown to drastically
lower intracellular ROS and the inflammatory factor level and ameliorate pathological
pancreatic injury [166]. These findings show that injured cells may be able to heal tissue
damage but that certain triggering elements are required. Several in vivo and in vitro
studies demonstrated emodin’s protective properties against AP-induced pancreatic injury,
intestinal barrier dysfunction, and ALI [23,167]. Emodin was discovered to boost the
differentiation and anti-inflammatory activity of regulatory T cells by stimulating the
release of exosome-specific lncRNA taurine upregulated 1 (TUG1) from pancreatic acinar
cells, hence limiting the development of AP [52]. Recent research suggests that the inflamed
pancreas may release exosomes into the circulation during SAP. These exosomes have
been shown to have a pro-inflammatory action. However, emodin may prevent “bad”
exosomes from being secreting by acinar cells. Proteomics was employed to characterize
the impact of rhodopsin on the plasma-derived exosome proteome in SAP rats. According
to the results of the enrichment study, peroxisome proliferator-activated receptors (PPAR)
signaling is the primary mechanism by which emodin influences the exosomal proteome.
Mechanistic investigations showed that emodin protected the lungs by preventing exosome-
mediated M1 polarization of alveolar macrophages via regulating PPAR signaling [168].
During AP-induced ALI, AECs are critical target cells in the lung, and their destruction
directly leads to pulmonary edema and widespread alveolar injury. Evidence suggests
that exosomes derived from AECs in ALI help to regulate the immune balance and the
inflammatory cascade response [169]. As a natural antioxidant and anti-inflammatory
agent, salidroside has been shown to protect against AP and ALI/ARDS caused by AP
in mice. Activation of NF-κB, interleukin receptor-associated kinase, and tumor necrosis
factor receptor-associated molecule 6 in AMs was inhibited by the salidroside-stimulated
release of exosomal miR-146a from AECs and improved ALI in rats [170]. DAMPs and
PAMPs activate AMs, an essential innate immune cell population during the outset of
AP. They produce significant doses of inflammatory mediators that contribute to lung
damage [171], unlike alveolar and alveolar epithelial cells. Similarly, pyroptotic AM-
derived pyroptotic bodies increased AEC damage and vascular leakage [172]. Furthermore,
the Hippo signaling pathway was activated in AECs by AMs-derived exosomal transfer
RNA-derived fragments, which caused AECs ferroptosis and aided in the establishment of
ALI [173]. Modulation of AMs-derived exosomes may therefore be a promising method for
combating AP and associated ALI.

The therapeutic potential of mesenchymal stem cell (MSC)-derived exosomes cannot
be overlooked in exosome-related treatment techniques [174–176]. Human umbilical cord
mesenchymal stem cells (hucMSC) have been frequently recognized for their capacity for
self-renewal and multilineage differentiation, particularly for the bioactive chemicals they
contain for tissue repair and the management of inflammation [177,178]. Han et al. discov-
ered that hucMSC-derived exosomes showed a remarkable tissue regeneration potential
in rats suffering from traumatic pancreatitis (trauma-induced non-infectious AP) [179]. In
particular, hucMSC-Evs injected intravenously could colonize injured pancreatic tissue and
inhibit inflammatory response and apoptosis of acinar cells, promoting damaged tissue
repair [179]. A less frequent consequence of AP is myocardial injury, which is challenging
to treat and has a high death rate [180]. MSC-derived exosomes were found to upregulate
vascular hemophilia factor and vascular endothelial growth factor through the activation of
the Akt/nuclear factor E2 related factors 2/heme oxygenase 1 signaling pathway, which led
to the amelioration of SAP-induced myocardial injury [181]. Unfortunately, the previous
research did not characterize the components transported by stem-cell-derived exosomes,
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i.e., the molecules that exert the protective effects. Xia et al., on the other hand, discov-
ered that adipose-derived MSC-derived exosome increased AM mitochondrial function by
transferring mitochondrial components to them, which led to a reduction in pulmonary
inflammation in mice [182].

Researchers have discovered that edible plants may generate nanoscale EVs with shapes
and components comparable to animal exosomes [183]. Furthermore, plant-derived exosomes
are biocompatible and safe to consume, with no side effects or possible toxicity [184,185].
Plant-derived exosomes may penetrate biological barriers to transport lipid-soluble and
hydrophilic target molecules to tissues in vivo, increasing the target molecules’ bioavail-
ability or effectiveness of the target molecules [186]. Ginger exosome-like nanoparticles
(GELN) have been found to be taken up by lung macrophages and epithelial cells, with a
preference for ACE2-positive cells. Furthermore, ginger GELN miRNA has the potential
to bind to many locations in the SARS-CoV-2 virus genome and be transported to lung
epithelial cells to decrease Nsp12 production and, consequently, lung inflammation [187].
As a result, plant-derived exosomes are potential AP therapeutic agents.

Exosomes maybe a therapeutic target for AP and related organ failures. Using novel
medications to control the levels of lipids, proteins, and nucleic acids carried by exosomes,
as well as the exosome-mediated drug delivery, offers fantastic potential to decrease the AP-
induced cytokine storm. On the other hand, stem-cell-based exosome therapies have been
in existence for some time and should be tested in AP clinical trials as soon as is feasible.

6. Exosome-Based Diagnostic Strategy

Compared with cell-free nucleic acids and proteins, exosome-specific nucleic acids
and proteins are protected by a lipid bilayer and have better stability in the extracellular
environment by avoiding degradation by RNA hydrolases [188,189]. In addition, exosomes
are more accessible than solid biopsy samples and are present in almost all biological fluids,
such as plasma, urine, saliva, ascites, breast milk, and amniotic fluid. Therefore, exosomes
have been established as ideal biomarkers and have been widely used in disease diagnosis,
prognosis evaluation, and treatment monitoring. The diagnostic and prognostic value of
exosomes in pancreatic diseases such as pancreatic cancer and chronic pancreatitis has been
widely confirmed [190–193].

Peripheral blood-derived exosomal miR-155, miR-216a, miR-21, (miR-603, miR-548ad-
5p, miR-122-5p, miR-4477a, miR-192-5p, miR-215-5p, and miR-583), lncRNA PVT1, and
MALAT1 [162] were linked with the severity of SAP and may provide new insight into the
etiology of SAP and act as biomarkers of SAP. In addition, some AP serum/mesenteric
lymph/plasma markers such as FBXL19-AS1 [55] and lnc-ITSN1-2 [56], miR-214-3p [194],
miR-27a-5p [195], miR-217-5p [196], miR-193a-5p [197], miR-375 [198], miR-148a [199],
miR-138-5p [200], miR-92b [201], miR-10a [201], miR-7 [202], miR-9 [202], miR-141 [203],
miR-551b-5p [204], miR-126-5p [205], miR-24 [206], (miR-22-3p, miR-1260b, miR-762, miR-
23b, miR-23a, miR-550a-5p, miR-324-5p, miR-484, miR-331-3p, miR-140-3p, and miR-342-
3p [207]), miR-127 [208], miR-372 [209], miR-126-5p [210], miR-146 [211], miR-153 [212],
miR-320-5p [197], Circ_0000284 [213], and Circ_0073748 [214], also exist in the exosome
(Figure 4). These potential exosomal biomarkers also provide an important direction for
the diagnosis and prognosis of AP in clinical applications.

Exosome-specific S100A8 correlates with the inflammatory response and predicts
severity in individuals with SAP. Similarly, several free proteins and DNA are elevated
in the plasma of patients with SAP, and this has implications for the diagnosis and prog-
nostic assessment of the disease [145,215,216]. Moreover, the above substances such as
HMGB1 [217], heat shock protein 70 [110], histones [162], CIRP [145], S100A12 [215],
gamma-enolase [218], and mtDNA [216] have also been proven to be essential cargoes
loaded by exosomes. Therefore, in the future, two areas of interest will be exploring whether
the above exosome-specific cargoes can recognize AP and whether exosome-specific pro-
teins or DNAs have better diagnostic performance than free proteins or DNAs.
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In addition to blood samples, many exosomes exist in biological fluids, including
urine and pancreatic juice. Urine samples are easy to obtain and non-invasive, which is
desirable for both clinicians and patients. Several studies have found that nucleic acids and
proteins carried by urine-derived exosomes have potential diagnostic value in pancreatic
diseases [219–221]. In the case of AP, a 2014 study confirmed that urinary ketone bodies,
glucose, plasma choline, and lipid levels were increased in patients’ urine, while levels
of urinary hippurate, creatine, and plasma-branched chain amino acids decreased. A
biomarker panel of guanine, hippurate, and creatine reliably identified AP with high
sensitivity and specificity [222]. Later, a proteomic study confirmed that the peak intensity
ratio of urinary β-2 microglobulin to saponin B has a better diagnostic performance in
patients with SAP, especially with renal injury and inflammation [223]. In short, urine
is also a promising biospecimen for mining AP biomarkers. Exploring the changes in
exosomal cargo in urine during AP is urgent.

Pancreatic juice is secreted by pancreatic acinar cells and duct wall cells, an alkaline
liquid with a strong digestibility. In terms of accuracy and the characterization that best
reflects the pathological mechanisms of AP, pancreatic fluid is second to pancreatic tissue
and is a biofluid superior to blood and urine [224]. In 2018, Osteikoetxea et al. found that
the detection and characterization of EVs in pancreatic juice are feasible and confirmed that
mucin, CFTR, and MDR1 proteins carried by pancreatic juice-derived EVs are potential
biomarkers of pancreatic cancer [225]. Later, Nakamura et al. found that miR-21 and miR-15
carried by pancreatic juice-derived exosomes have the potential to diagnose patients with
PDAC and CP [226]. The diagnostic value of pancreatic juice examination in pancreas-
related diseases is constantly updated. The changes in the exosomal cargo of pancreatic
juice in AP patients should be explored as soon as possible.

Bronchoalveolar lavage fluid (BALF), which is in direct contact with lung tissue, is
an ideal biologic fluid for the diagnosis of lung diseases [227]. Previous studies have
found that exosomes derived from BALF have potential diagnostic value in patients
with ALI/ARDS [228], chronic obstructive pulmonary disease [229], nodular pulmonary
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disease [230], lung cancer [231], lung infections [232], and asthma [233]. Therefore, we specu-
late that BALF-derived exosomes are a potential direction for diagnosing AP-associated ALI.

Because of their stability, exosome-specific ncRNAs and proteins have been employed
as biomarkers in AP and associated ALI research. Exosome isolation from blood, pleural
fluid, urine, ascitic fluid, alveolar lavage fluid, and pancreatic fluid is an emerging method
of fluid biopsy with broad potential clinical applications, especially for patients with AP
who are experiencing multi-organ failure. Exosome-specific ncRNA and protein detection
are complicated by several variables, as has been described. Different clinical investigations
on the expression of a specific exosomal cargo in the bodily fluids of AP patients may
find contradictory results. To further establish the sensitivity and specificity of exosomal
cargoes, substantial cohort studies are still required before their use can be advocated for in
clinical applications.

7. Conclusions

This paper sought to summarize the function of the exosomal cargo in AP and associ-
ated ALI processes. Our hypothetic pancreas–lung axis and gut–lung axis are noteworthy.
After AP begins, exosomes may be released by pancreatic acinar cells, macrophages, and in-
testinal epithelial cells. Exosomes harboring pro-inflammatory mediators such as miR-155,
miR-216a, S100A8, and CIRP are delivered through the pancreas–lung axis and gut–lung
axis to the circulation and distant lung regions in order to influence the inflammatory
cascade response to AP. We identified 45 ncRNAs from serum/plasma/mesenteric lymph
that may be useful for the diagnosis of AP based on a comprehensive literature review
spanning the last two decades. Eleven of these have been shown to be transported by exo-
somes in the presence of AP. Several questions have arisen, such as: (1) Does the diagnostic
performance of free ncRNAs, and exosome-specific ncRNAs (the same ncRNA) vary in
terms of sensitivity and specificity? (2) With so many differentially expressed miRNAs
accessible, how can their value be integrated to enhance the performance of AP diagnosis?
Certainly, exosome-specific proteins such as S100A8, HMGB1, and CIRP face comparable
difficulties. The methods used to isolate and purify exosomes are also of interest. Nu-
merous methods exist for isolating and purifying exosomes, but they are often somewhat
involved and have their benefits and drawbacks. Furthermore, many patients find the high
cost of exosome extraction unaffordable, limiting its practical use. As a result, it is crucial
to establish a reliable, productive, quick, and economical method for isolating exosomes.
Furthermore, exosomes have the potential to serve as a future therapy for AP. The initial
objective is to identify modulatory medications, such as natural products, that are based on
the pro/anti-inflammatory characteristics of the exosomal cargo. The second is loading a
part of the medicine onto exosomes to enhance its bioavailability and targeting. The final
objective is the source of exosomes. On the one hand, the production of exosomes derived
from mesenchymal stem cells has been shown to have therapeutic value. On the other
hand, plant-derived exosomes are also considered to be significant prospects.

Exosomes are involved in the development of AP and associated ALI through multiple
pathways as participants in the inflammatory and immune response. Several exosome-specific
ncRNAs and proteins have been studied in the diagnosis of AP, suggesting the possibility
of exosomes as “novel markers”. The unique vesicular structure of exosomes has inspired
researchers to develop targeted drugs. However, there is still a long way to go to promote
exosomes in clinical applications, and many issues must be addressed, such as the isolation
techniques, drug delivery methods, and potential toxicity. The application of exosomes in AP
in the future should continue to be expanded upon to overcome these issues.
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SAP severe acute pancreatitis
ALI acute lung injury
PMVECs pulmonary microvascular endothelial cells
AECs alveolar epithelial cells
ARDS acute respiratory distress syndrome
SIRS systemic inflammatory response
MODS multiple organ dysfunction syndromes
NcRNAs non-coding RNAs
DAMPs damage-associated molecular patterns
PAMPs pathogen-associated molecular patterns
MVB multivesicular body
ILVs intraluminal vesicles
MiRNAs microRNAs
CIRP cold-inducible RNA-binding protein
AM alveolar macrophage
IECs intestinal epithelial cells
LncRNAs long non-coding RNAs
MALAT1 Metastasis-associated lung adenocarcinoma transcript 1
YAP1 yes-associated protein 1
HMGB1 high-mobility group box 1
TLR4 toll-like receptor 4
NF-κB nuclear factor kappa B
TUG1 taurine upregulated gene 1
LPS lipopolysaccharide
SIRT1 silent information regulator 1
PVT1 plasmacytoma variant translocation gene 1
NLRP3 NOD-like receptor protein 3
JAK2 Janus protein tyrosine kinase 2
NETs neutrophil extracellular traps
TLR toll-like receptor
NAPDH nicotinamide adenine dinucleotide phosphate
MMP matrix metalloproteinase
ROS reactive oxygen species
TREM-1 triggering receptor expressed on myeloid cells-1
SOFA sequential organ failure assessment scores
PPAR peroxisome proliferator-activated receptor
MSC mesenchymal stem cell
GELN ginger exosome-like nanoparticles
BALF bronchoalveolar lavage fluid
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