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Abstract

Homologous recombination is central to repair DNA double-strand breaks, either accidently

arising in mitotic cells or in a programed manner at meiosis. Crossovers resulting from the

repair of meiotic breaks are essential for proper chromosome segregation and increase

genetic diversity of the progeny. However, mechanisms regulating crossover formation

remain elusive. Here, we identified through genetic and protein-protein interaction screens

FIDGETIN-LIKE-1 INTERACTING PROTEIN (FLIP) as a new partner of the previously

characterized anti-crossover factor FIDGETIN-LIKE-1 (FIGL1) in Arabidopsis thaliana. We

showed that FLIP limits meiotic crossover together with FIGL1. Further, FLIP and FIGL1

form a protein complex conserved from Arabidopsis to human. FIGL1 interacts with the

recombinases RAD51 and DMC1, the enzymes that catalyze the DNA strand exchange

step of homologous recombination. Arabidopsis flipmutants recapitulate the figl1 pheno-

type, with enhanced meiotic recombination associated with change in counts of DMC1 and

RAD51 foci. Our data thus suggests that FLIP and FIGL1 form a conserved complex that

regulates the crucial step of strand invasion in homologous recombination.

Author summary

Homologous recombination is a DNA repair mechanism that is essential to preserve the

integrity of genetic information and thus to prevent cancer formation. Homologous

recombination is also used during sexual reproduction to generate genetic diversity in the

offspring by shuffling parental chromosomes. Here, we identified a novel protein complex

(FLIP-FIGL1) that regulates homologous recombination and is conserved from plants to
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mammals. This suggests the existence of a novel mode of regulation at a central step of

homologous recombination.

Introduction

Homologous recombination (HR) is critical for the repair of DNA double-strand breaks

(DSBs) in both mitotic and meiotic cells [1]. Defects in HR repair causes genomic instability,

leading to cancer predisposition and various inherited diseases in humans [2]. During meiosis,

HR promotes reciprocal exchange of genetic material between the homologous chromosomes

by forming crossovers (COs). COs between the homologs constitute a physical link that is cru-

cial for the accurate segregation of homologous chromosomes during meiosis [3]. COs also

reshuffle parental genomes to enhance genetic diversity on which selection can act [4]. Failure

or errors in HR at meiosis lead to sterility and aneuploidy, such as Down syndrome in humans

[5,6].

During meiosis, HR is initiated by the formation of numerous programmed DSBs catalyzed

by the topoisomerase-like protein SPO11 [7]. DSBs are resected to form 3’ single-stranded

DNA (ssDNA) overhangs. A central step of HR is the search and invasion of an intact homolo-

gous template by the broken DNA end, which is catalyzed by two recombinases, RAD51 and

its meiosis-specific paralog DMC1 [8]. Both recombinases polymerize on 3’ ssDNA overhangs

to form nucleoprotein filaments that can be cytologically observed as foci on chromosomes

[9,10]. At this step, meiotic DSB repair encounters two possibilities to repair DSB by HR, either

using the sister chromatid (inter-sister recombination) or using the homologous chromo-

somes (inter-homolog recombination).

The invasion and strand exchange of ssDNA displaces one strand of the template DNA,

resulting in a three-stranded joint molecule (d-loops). D-loops are precursors for different

pathways leading to either reciprocal exchange (CO) or non-reciprocal exchange (non-cross-

overs) between the homologous chromosomes. Two pathways of CO formation, classified as

class I and class II, have been characterized, with variable relative importance in different spe-

cies [3]. Class I COs are dependent on the activity of a group of proteins collectively called

ZMM (for Zip1-4, Msh4-5, Mer3) [11], which stabilize D-loop intermediates to promote for-

mation of the double-Holliday junction intermediates [12]. MLH1 and MLH3 in conjunction

with EXO1 promote the resolution of double-Holliday junctions as class I COs [13,14]. The

formation of a Class I CO reduces the probability of another CO forming in the vicinity, a phe-

nomenon termed as CO interference [15]. Additionally, recombination intermediates can be

resolved by structure specific endonucleases including MUS81, producing class II COs, which

are not subjected to interference [16–18]. In Arabidopsis, class I COs constitute 85–90% of

COs, while remaining minority are class II COs [19][20]. Like in most eukaryotes, DSBs

largely outnumber COs in Arabidopsis [21]. This suggests that active mechanisms prevent

DSBs from becoming CO. Accordingly, several anti-CO factors are identified in different spe-

cies [10,22–31].

Previously, our forward genetic screen identified FIDGETIN-LIKE-1 (FIGL1) as a negative

regulator of meiotic COs in Arabidopsis [10]. Mutation in Arabidopsis FIGL1 increases mei-

otic CO frequency by 1.8-fold compared to wild type and modifies the number and/or dynam-

ics of RAD51/DMC1 foci. FIGL1 is widely conserved and is required for efficient HR in

human somatic cells through a direct interaction with RAD51 [32]. Altogether, this suggests

that FIGL1 is a conserved regulator of the strand invasion step of recombination, both in

somatic and meiotic cells. FIGL1 belongs to the large family of AAA-ATPase proteins that are
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implicated in structural remodeling, unfolding and disassembly of proteins and oligomer com-

plexes [33,34].

Here, we identified a new factor limiting COs in Arabidopsis that interacts directly with

FIGL1, which we named FIDGETIN-LIKE-1 INTERACTING PROTEIN (FLIP). FLIP and its

interaction with FIGL1 are conserved from plants to mammals, suggesting that the complex

was present at the root of the eukaryotic tree. While this manuscript was under evaluation, the

homologue of FLIP in rice (MEICA) was also shown to regulate meiotic recombination [35].

We further showed that FLIP and FIGL1 act in the same pathway to negatively regulate meiotic

CO formation, which appears to act on the regulation of the recombinases DMC1 and RAD51.

Finally, we showed that both Arabidopsis and human FIGL1-FLIP complexes interact with

both RAD51 and DMC1. Overall, this study identified a novel conserved protein complex that

regulates a crucial step of homologous recombination.

Results

Identification of FIDGETIN-LIKE-1 Interacting protein (FLIP), an
evolutionarily conserved partner of FIGL1

We previously identified FIDGETIN-LIKE-1 (FIGL1) as an anti-CO protein [10]. To better

understand the role of FIGL1 during meiotic recombination, we searched for its interacting

partners by tandem affinity purification coupled to mass spectrometry (TAP-MS) using over-

expressed FIGL1 as a bait in Arabidopsis suspension culture cells [36] (Table 1). After filtering

co-purified proteins for false positives (see Materials and methods and [36]), we recovered, in

two independent experiments, peptides from FIGL1 itself and a single additional protein. This

single interacting protein is encoded by a gene of unknown function (AT1G04650), and we

therefore named it as FIDGETIN-LIKE-1 INTERACTING PROTEIN (FLIP). Reciprocal

TAP-MS experiments using FLIP as bait recovered only FLIP and FIGL1 peptides, further sug-

gesting that FLIP and FIGL1 belong to the same complex in vivo (Table 1). Direct interaction

between FLIP and FIGL1 was further supported by yeast two hybrid (Y2H) assay using full

length proteins (Fig 1). To map the interaction domains, we truncated FIGL1 and FLIP pro-

teins and tested their interaction in Y2H assays (Fig 1). The N-terminal region of FIGL1 (1–

271 amino acids), which lacked both the AAA-ATPase domain and the sequence similar to the

human FIGNL1’s RAD51 binding domain (FRBD), was sufficient to mediate the interaction

with FLIP. Conversely, the N-terminal half of FLIP (1–502 aminoacids) was sufficient to medi-

ate an interaction with FIGL1.

Further, the full length or the N terminal half of FLIP was able to interact with itself, sug-

gesting that it could oligomerize (Fig 1). Moreover, the human orthologs of FLIP (C1ORF112,

hFLIP) and FIGL1 (hFIGNL1) also showed interaction in our Y2H assays, suggesting that this

Table 1. Tandem affinity purification using FIGL1 and FLIP as baits. Two replicates of Tandem affinity purifications (TAP1 and TAP2) followed by mass spectrometry
were performed using either FIGL1 (A) or FLIP (B) as a bait over-expressed in cultured cells. For filtering specific and false positive interactors, refer to Materials and
Methods and [36]. The number of peptides and the fraction of the protein covered are indicated for each hit. Raw data are presented in S1 Table.

A Bait = FIGL1 TAP 1 TAP 2

protein name Number of peptides protein coverage % Number of peptides protein coverage %

FIGL1 47 70,5 42 62,3

FLIP 34 39,4 30 36,8

B Bait = FLIP TAP 1 TAP 2

protein name Number of peptides protein coverage % Number of peptides protein coverage %

FLIP 33 40,6 37 46,2

FIGL1 18 33,2 22 40,5

https://doi.org/10.1371/journal.pgen.1007317.t001
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interaction is evolutionarily conserved (Fig 2). hFIGNL1 and C1ORF112/hFLIP proteins were

previously showed to co-purify in pull-down assays [32,37] and the mouse corresponding

genes are strongly co-expressed [38], further supporting the conservation of the FIGL1-FLIP

interaction from plants to mammals. The N-terminal region (1–290 aminoacids) of hFIGNL1,

lacking the AAA-ATPase domain and the FRBD, was able to mediate the interaction with

hFLIP, consistent with the Arabidopsis data (Figs 1 and 2). In addition, the FRBD of hFIGNL1

showed an interaction with hFLIP, suggesting that the FRBD domain could also contribute to

the interaction (Fig 2). Finally, hFLIP was able to interact with itself, as shown for the Arabi-

dopsis FLIP (Figs 1 and 2).

The distribution of FLIP orthologs in eukaryotic species was analyzed using remote homol-

ogy search strategy (see Methods). Orthologs of FLIP could be unambiguously detected in a

wide range of species including mammalia, sauria and plants but also in arthropods and

Fig 1. Yeast-two-hybrid experiments testing interactions between Arabidopsis FIGL1, FLIP, RAD51 and DMC1
proteins. Proteins of interest were fused with Gal4 DNA binding domain (BD, left) and with Gal4 activation domain
(AD, top), respectively, and co-expressed in yeast cells. Full-length and truncated protein are schematically
represented. For each combination, serial dilutions of yeast cells were spotted on non-selective medium (-LW),
moderately selective media (-LWH) and more selective media (-LWHA). ++: Growth on both LWH and LWHA,
interpreted as strong interaction. +: Growth on LWH and not on LWHA, interpreted as weak interaction. +�: Growth
on LWH but cannot be interpreted as positive interaction because of auto-activation of one of the construct.—:
Growth on neither LWH nor LWHA. n.d. Not determined. Pictures of yeasts are shown in S1 Fig.

https://doi.org/10.1371/journal.pgen.1007317.g001
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unicellular species such as choanoflagellate (Fig 3, S3 Fig for a larger number of species, and as

interactive tree http://itol.embl.de/tree/132166555992271498216301). The FLIP orthologs

showed low conservation at the sequence level (e.g. AtFLIP and hFLIP sharing only 12%

sequence identity), but they all harbor a specific DUF4487 domain (Domain of Unknown

Function) [39], further supporting their orthology. No FLIP ortholog could be detected in

alveolata, amoebozoa and fungi. FLIP systematically co-occur with FIGL1, which is consistent

with FLIP supporting the function of FIGL1 (Fig 3, S3 Fig). The reverse is not true since there

are a number of species with FIGL1 ortholog detected but no FLIP (as in D.melanogaster and

C. elegans). Structural predictions using RaptorX server[40] and HHpred [41] do not converge

towards the same predicted fold but are both in agreement with FLIP likely folding as a long

helical bundle over its full sequence. Such folds are often seen in protein recognition scaffolds

suggesting FLIP could act as a FIGL1 adaptor module. Given the wide range of species harbor-

ing both FLIP and FIGL1 orthologs, the origin of this complex is probably quite ancient at the

root of the eukaryotic tree suggesting that absence of FLIP-FIGL1 in some eukaryotic clades

Fig 2. Yeast-two-hybrid experiments testing interactions between human FIGNL1, FLIP, RAD51 and DMC1
proteins. Proteins of interest were fused with Gal4 DNA binding domain (BD, left) and with Gal4 activation domain
(AD, top), respectively, and co-expressed in yeast cells. Full-length and truncated protein are schematically
represented. For each combination, serial dilutions of yeast cells were spotted on non-selective medium (-LW),
moderately selective media (-LWH) and more selective media (-LWHA). ++: Growth on both LWH and LWHA,
interpreted as strong interaction. +: Growth on LWH and not on LWHA, interpreted as weak interaction. +�: Growth
on LWH but cannot be interpreted as positive interaction because of auto-activation of one of the construct. Growth
on neither LWH nor LWHA. n.d. Not determined. Pictures of yeasts are shown in S2 Fig.

https://doi.org/10.1371/journal.pgen.1007317.g002
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(such as Dikarya that regroups the fungi Basidiomycetes and Ascomycetes) is due to indepen-

dent gene loss events.

A genetic screen identified FLIP as an anti-CO factor

In parallel to the protein complex purification approach, FLIP was independently recovered in

a genetic screen aiming at identifying meiotic anti-CO factors that previously uncovered

FIGL1. Using fertility (fruit length) as a proxy for CO formation, we screened for ethyl meth-

ane sulfonate-generated mutations that restored COs in class I CO deficient mutants (zmm).

As COs provide a physical link between pairs of chromosomes (bivalents), mutation of an

anti-CO factor is expected to restore bivalent formation in CO-deficient mutants, thus im-

proving balanced chromosome segregation and fertility [22]. This genetic screen led to the

identification of several anti-CO factors, defining three pathways that limit COs in Arabidop-

sis:(i) The FANCM helicase and its cofactors [22,23]; (ii) The AAA-ATPase FIDGETIN-LIKE-

1 (FIGL1) [10]; (iii) The RECQ4 helicase-Topoisomerase 3α-RMI1 complex [24,25]. Here, we

isolated an additional suppressor of hei10, one of the zmm mutants that are deficient in class I

COs [42]. This suppressor, hei10(S)320 showed longer fruit length compared to hei10 and biva-

lent formation was restored to an average of 3.7 bivalents per cell compared to 1.5 in hei10 and

Fig 3. Phylogenetic tree depicting the evolutionary conservation of FLIP, FIGL1, RAD51 and DMC1 orthologs in a range of eukaryotic species. FLIP, FIGL1,
DMC1 and RAD51 are presented as dots in green, red, blue and turquoise color, respectively. Gene accession numbers are provided in S2 Table. A version of this figure
with a larger number of species can be found in S3 Fig and as an interactive tree at http://itol.embl.de/tree/132166555992271498216301.

https://doi.org/10.1371/journal.pgen.1007317.g003
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5 in wild type (Fig 4), suggesting a partial restoration of CO formation. Whole genome se-

quencing and genetic mapping of hei10(S)320defined a genetic interval containing five puta-

tive causal mutations. One of them resulted in a stop codon in the gene AT1G04650, which

encodes FLIP (flip-1W305>STOP) (Fig 4). An independent mutation in FLIP (T-DNA

Salk_037387/ flip-2), was also able to restore bivalent formation in hei10 (Fig 4). Further, flip-

1/flip-2 hei10 exhibited restored bivalents (Fig 4), demonstrating that flip-1 and flip-2 are allelic

and that mutations in FLIP are causal for the restoration of bivalents in hei10. The flip-1muta-

tion was also able to restore bivalent formation in msh5 (Fig 4), another essential gene of the

class I CO pathway, suggesting that effect of the flipmutation is not specific to hei10 but allows

the formation of COs in absence of the class I pathway.

No growth or development defects were observed in the flipmutants. Meiosis progressed

normally in single flip-1 and flip-2, except that a pair of univalent was observed at metaphase

in ~14% of the cells (n = 12/99 in flip-1; n = 9/50 in flip-2). (Fig 4B and 4C). Similarly, we

Fig 4. Mutation in FLIP restores crossover formation in zmm mutants: A. Schematic representation of the FLIP gene (Fidgetin-Like-1
Interacting Protein). Exons appear as blue boxes. The red line and red triangle indicate the missense mutation in flip-1 and the flip-2T-DNA
insertion, respectively. B. Average number of bivalents (blue) and pairs of univalents (red) per male meiocyte at metaphase I (Fig 4C). Light
blue represents rod shaped bivalents indicating that one chromosome arm has at least one CO, and one arm has no CO. Dark blue represents
ring shaped bivalent indicating the presence of at least one CO on both chromosome arms. The number of cells analyzed for each genotype is
indicated in brackets. C. DAPI staining of Chromosome spreads of male meiocytes at metaphase I. Scale bars 10μm. D. Fertility measured as
number of seeds per fruit. Each dot represents a plant; at least 10 fruits per plant were analyzed.

https://doi.org/10.1371/journal.pgen.1007317.g004
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observed a low frequency of univalents in figl1-1(n = 6/82 cells) that has been missed in previ-

ous analyses [10], and in figl1-1 flip-1 (n = 5/66 cells). This suggests a slight defect in imple-

mentation of the obligate COs in absence of FLIP or FIGL1. We also observed a moderate

increase in the frequency of pollen death (wild type 1.1% ±0.3, figl1-1 5.2% ±1.8, flip-1 5.8% ±

0.6, figl1-1 flip-1 4.3% ±1.1; n = 5 plants per genotype,�300 pollen grains/plant) and a decrease

in the number of seeds per fruit was observed in the single and double mutants (Fig 4D).

We next monitored the direct effect of FLIPmutation on CO frequency by tetrad analysis

and measured recombination in six genetic intervals defined by fluorescent tagged markers

that confer fluorescence in pollens [43]. CO frequencies in flip-1were significantly increased

in four intervals out of six tested, in the range of +15% to +40% compared to wild type (Fig 5).

This increase in CO frequencies due to loss of FLIP is consistent with the restoration of biva-

lent formation in zmm mutants and implies that FLIP limits COs during meiosis in wild type.

FLIP physically interacts with FIGL1 (see above), suggesting that they can act together to limit

COs. We therefore compared recombination in flip-1, figl1-1 and the double mutant by tetrad

analysis. On the four intervals tested, figl1-1 showed an average of ~70% CO increase com-

pared to wild type, corroborating previous findings (Fig 5), which is significantly higher than

flip-1. Combining flip-1 and figl1-1mutations did not lead to a further increase in recombina-

tion suggesting that FIGL1 and FLIP act in the same pathway to negatively regulate CO forma-

tion (Fig 5). However, FIGL1 may be partially active in absence of FLIP as flip-1 increases CO

frequencies to a lesser extent than figl1-1.

FLIP limits class II COs

We next explored the origin of extra COs in flip. In the flip-1 spo11-1 double mutant, bivalent

were completely abolished and 10 univalents were observed at metaphase I, (Fig 4B), showing

that all COs in flip-1 are dependent on SPO11-1 induced DSBs. Two classes of COs exist in

Arabidopsis: class I COs are dependent on ZMM proteins and are subjected to interference,

while class II are insensitive to interference and involve structure specific endonucleases

including MUS81 [21]. The flip-1mutation restored CO formation in two zmm mutants, hei10

Fig 5. FLIP and FIGL1 act in the same pathway to limit COs.Genetic distance in centiMorgan (cM) measured by
pollen tetrad analysis using fluorescent tagged lines [43]. I2a and I2b are adjacent intervals on chromosome 2. Similarly
I3bc and I5cd on chromosome 3 and 5, respectively. Error bar indicates ± standard error of the mean. Not significant
(n.s) p> 0.05; �� p< 0.01; ��� p< 0.001, Z-test. Raw data are presented in S3 Table.

https://doi.org/10.1371/journal.pgen.1007317.g005
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and msh5 (see above). Further, tetrad analysis of three pairs of intervals showed reduced inter-

ference in flip-1 compared to wild type (Fig 6A). Finally, we examined meiosis in the flip-1

mus81 double mutant. While no chromosome fragmentation is observed in single flip-1 or

mus81mutants, chromosome fragments were observed at anaphase I in the flip-1 mus81 dou-

ble mutant (n = 31/31 cells. Fig 6B). This suggests that MUS81 is required for resolution of

recombination intermediates formed in flip-1. Altogether, the extra COs produced in flip-1

appeared to be dependent on the class II pathway, as previously shown for figl1-1 [10].

FIGL1 and FLIP regulate RAD51 and DMC1 focus dynamics

Based on genetic and physical interactions between FIGL1 and FLIP, we next hypothesized that

FLIP might regulate RAD51 and DMC1 foci during meiosis, as previously shown for FIGL1

[10]. We thus performed RAD51 (Fig 7) and DMC1 (Fig 8) immunolocalization in figl1, flip

and figl1 flip in combination with staining of the chromosome axis (ASY1) and the synaptone-

mal complex (ZYP1) to follow their localization at early, mid and late prophase stages.

In wild type, RAD51 foci appear at leptotene and increase at zygotene (Fig 7). The number

of RAD51 foci at leptotene is increased by ~2 fold in figl1 and figl1 flip. An increase is also

observed in flip at leptotene, but to a lesser extent and at the edge of significance. At zygotene

the number of RAD51 foci was not significantly different between the two single mutants and

the wild type, but appeared increased in figl1 flip. This suggests that FIGL1/FLIP negatively

regulates the formation or the turnover of RAD51 foci.

In wild-type, DMC1 foci first appear at leptotene, peak at zygotene and almost disappear at

pachytene (33/46 had less than 10 foci) (Fig 8). At both leptotene and pachytene, a large

increase of DMC1 foci was observed in figl1 and figl1 flip. The same trend was observed in flip,

but with a lesser increase and barely significant. At zygotene, only the single figl1 had a signifi-

cantly higher number of DMC1 foci. Altogether, this suggests that FIGL1/FLIP regulate the

kinetics of appearance and disappearance of DMC1 foci, with FIGL1 playing a more central

role than FLIP. Persistence of DMC1 foci may represent unrepaired DSBs that are eventually

repaired (possibly by MUS81), as no chromosome fragmentation was observed at anaphase I

in figl1 or flipmutant.

Fig 6. FLIP limits Class II COs. A. Interference ratio is the ratio of the genetic size in an interval with CO in an adjacent interval divided by the genetic size of the same
interval without CO in the adjacent interval. This ratio provides an estimate of the strength of CO interference. IR close to 0 means strong interference; Interference
ratio = 1 (purple line) indicates that interference is absent. The test of absence of interference is shown in purple (n.s p> 0.05; �� p< 0.01; ��� p< 0.001). Comparison of
Interference ratio between the genotypes wild type and mutants is indicated in black (n.s p> 0.05; � p< 0.05 �� p< 0.01; ��� p< 0.001). B. Chromosome spreads of
male meiocytes at metaphase I and anaphase I. Scale bars 10μm.

https://doi.org/10.1371/journal.pgen.1007317.g006
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One known positive regulator of DMC1 in plants is SDS, a meiosis-specific cyclin-like pro-

tein [44,45]. In absence of SDS, DMC1 foci do not form, synapsis and COs are abolished, but

DSBs and RAD51 foci are formed and repair is completed, presumably using the sister as tem-

plate [44,45]. We previously showed that mutation in FIGL1 restores DMC1 focus formation,

synapsis, and bivalent formation in sds [10]. These results argued for antagonistic functions of

SDS and FIGL1, the former positively and the latter negatively regulating DMC1 foci forma-

tion and DMC1-mediated homolog engagement. Here, we similarly showed that DMC1 foci

and synapsis are partially restored in sds flip double mutants as compared to sds (Fig 9A, 9B

and 9C). Moreover, 4 to 5 bivalents per metaphase I were observed in sds flip (n = 57) while

their formation is almost completely abolished in sds (0.12 bivalents per metaphase I, n = 50)

(Fig 9D). However, recombination is not completely restored in sds flip as chromosome frag-

mentation is observed at anaphase I. Accordingly, fertility is only partially restored in sds flip

compared to sds (Fig 9E). Taken together, this strongly suggests that FIGL1 and FLIP antago-

nize SDS in the regulation of DMC1 focus formation and DMC1 mediated inter-homolog

Fig 7. RAD51 foci in wild type, figl1, flip and figl1 flip.A. Triple immunolocalization of ASY1 (red), ZYP1 (blue) and
RAD51 (green) on meiotic chromosome spreads. Merged pictures are shown. Partial ZYP1 polymerization defines the
zygotene stage. Scale bars 10μm. B. Quantification of RAD51 foci at leptotene and zygotene in wild type, figl1, flip and
figl1 flip. Each dot represents an individual cell and bars indicate the mean. P values are the results of Fisher’s LSD tests.

https://doi.org/10.1371/journal.pgen.1007317.g007
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interactions and crossover formation. In both figl1 sds [10] and sds flip (Fig 9D), bivalents at

metaphase I had slightly aberrant shape and chromosome fragmentation was observed at ana-

phase I. This suggests that FIGL1 and FLIP may have a function in DSB repair downstream of

homologous template invasion or that the recombination intermediates restored in absence of

both sds and figl1/flip are aberrant.

The FLIP-FIGL1 complex interacts with RAD51 and DMC1

Our genetic interaction and immuno-localization studies in Arabidopsis suggest that the

FIGL1/FLIP complex might regulate the function of RAD51 and DMC1, directly or indirectly.

In addition, it was shown that human FIGNL1 interacts with human RAD51 through a

domain called FRBD [32]. Hence, we set out to examine whether Arabidopsis and human

FIGL1 and FLIP interact with RAD51 and DMC1, using Y2H assays. Consistent with pub-

lished data, the Y2H assay detected an interaction between the FRBD domain of human

FIGNL1 and RAD51, though it was weak and only positive in one direction (Fig 2). Similarly,

Fig 8. DMC1 foci in wild type figl1, flip and figl1 flip.A. Triple immunolocalization of ASY1 (red), ZYP1 (blue) and DMC1 (green) on meiotic chromosome
spreads. Merged pictures are shown. Partial and full ZYP1 polymerization defines the zygotene and pachytene stages, respectively. Scale bars 10μm. B. Quantification
of DMC1 foci at leptotene, zygotene and pachytene in wild type, figl1, flip and figl1 flip. Each dot represents an individual cell and bars indicate the mean. P values are
the results of Fisher’s LSD tests.

https://doi.org/10.1371/journal.pgen.1007317.g008
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we detected an interaction between Arabidopsis FIGL1 and RAD51, mediated by the predicted

FRBD domain (Fig 1). In addition, we observed a clear interaction between human FIGNL1

Fig 9. FLIP genetically interacts with SDS.A. Immunostaining of DMC1 (green) and the chromosome axis protein ASY1 (red)
on leptotene/zygotene meiotic chromosome spreads. B. Quantification of DMC1 foci at leptotene/zygotene in sds, sds figl1 and
sds flip. Each dot represents an individual cell and bars indicate the mean. C. Co-immunolocalization of ASY1 (red) and ZYP1
(green), which mark respectively chromosome axes and synapsed regions. Synapsis was partially restored in sds flip compared to
single mutant sds. Scale bars 10μm. D. DAPI staining of chromosome spreads of male meiocytes at metaphase I and anaphase I.
Scale bars 10μm. E. Fertility measured as number of seeds per fruit. Each dot represents a plant; at least 12 fruits per plant were
analyzed. P values are the results of Fisher’s LSD tests.

https://doi.org/10.1371/journal.pgen.1007317.g009
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and DMC1, mediated by the FRDB domain (Fig 2). Arabidopsis FIGL1 interacted also with

DMC1, although the interaction was detected only in one direction (Fig 1). This suggests that

FIGL1 can interact directly with both RAD51 and DMC1 and that these interactions are con-

served in plants and mammals.

Next, we tested interaction between FLIP and the two recombinases, with both plant and

human proteins. Human FLIP interacted with DMC1, suggesting that FLIP could reinforce

the interaction of the FIGL1-FLIP complex with DMC1 (Fig 2). However, our Y2H assay did

not reveal any interaction between Arabidopsis FLIP and DMC1 (Fig 1). No interaction was

detected between FLIP and RAD51, for both human and Arabidopsis proteins (Figs 1 and 2).

Discussion

We identified, by two different approaches, FLIP as a new factor that genetically and physically

interacts with FIGL1 [10] and regulates meiotic recombination. We showed that (i) FIGL1 and

FLIP form a conserved complex; (ii) FLIP and FIGL1 are anti-CO factors that act in the same

pathway to regulate meiotic recombination; (iii) kinetics of DMC1 and RAD51 foci are modi-

fied in figl1 and, to a lesser extent, in flip; (iv) flip and figl1 restore DMC1 focus formation and

inter-homolog interactions (synapsis) in the sdsmutant; (v) FIGL1-FLIP complex interacts

with RAD51 and DMC1, and this interaction is evolutionarily conserved in both plants and

mammals. FIGL1 was previously shown to be involved in meiotic recombination in Arabidop-

sis, and in recombination-mediated DNA repair in human somatic cells [10,32,46]. In contrast

and despite the conservation in many eukaryotes, FLIP was of unknown function. We propose

a model wherein FIGL1 and FLIP act as a complex that negatively regulates the strand invasion

step of HR by interacting with DMC1/RAD51 and modulating their activity/dynamics. FIGL1

belongs to the AAA-ATPase group of proteins, which typically function by dismantling the

native folding of their target proteins [33,34]. Therefore, it is tempting to suggest that the

FLIP-FIGL1 complex may directly disrupt DMC1/RAD51 filaments using the unfoldase activ-

ity of FIGL1. Supporting this possibility, both Arabidopsis and human FIGL1 physically inter-

act with DMC1 and RAD51.

We showed that FLIP and FIGL1 act together to limit meiotic COs in Arabidopsis, but the

increase in CO frequency is lower in flip than in figl1 (~30% and ~70% increase compared to

wild type, respectively). This difference in CO frequency could be attributed to the catalytic

activity of the complex being supported by FIGL1. We suggest that FLIP could only be partially

required for FIGL1 enzymatic functions in vivo, acting as a co-factor or reinforcing the affinity

and/or the specificity of the interaction of the FIGL1/FLIP complex with the target. In our

assay, human FLIP interacted with DMC1, suggesting that FLIP could indeed function to facil-

itate FIGL1 activity towards DMC1. We could not detect an interaction between FLIP and

RAD51 but we cannot rule out the possibility that FLIP facilitates also interaction of the com-

plex with RAD51. Indeed, several lines of evidence suggest that FLIP could act in conjunction

with FIGL1 in its role in somatic HR [32]: Down-regulation of hFLIP induces reduced growth

of HeLa cells [38]. FLIP in mouse is strongly co-expressed with cancer related genes and the

knock out mouse is not viable [38,47]. Finally, FIGNL1 and hFLIP are strongly co-regulated in

mouse expression data [38]. Overall, this argues for a conserved role of the FIGL1/FLIP com-

plex in regulating RAD51/DMC1 activities during both somatic and meiotic HR.

Beyond Arabidopsis and humans, FIGL1 and FLIP are conserved in all vertebrates and land

plants examined in the current study. FIGL1 and FLIP can be also detected in species from

other distant clades, suggesting that this complex emerged early in the evolution of eukaryotes

(Fig 3). However, some clades appear to have lost both FIGL1 and FLIP, most notably the

Alveolata and Dikarya (which regroups the fungi Basidiomycetes and Ascomycetes). In those
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species, RAD51/DMC1 might be regulated independently of FIGL1-FLIP. Species with a FLIP

ortholog also systematically have a FIGL1, but the reverse is not true, several species/clades

having FIGL1 but no detectable FLIP orthologs. This is consistent with our experimental data

that argue for FIGL1 being the core activity of the complex and FLIP as a dispensable factor

for FIGL1 activity. While RAD51 appears to be universally conserved, DMC1 is absent in a

number of species (Fig 3). Moreover, we could not find any correlation between presence/

absence of FIGL1 or FLIP with DMC1. Some species have DMC1 but no FIGL1/FLIP (e.g.

many fungi), while others have DMC1 and FIGL1 but not FLIP (e;g some nematodes), or

FIGL1 and FLIP without DMC1 (e.g. Chrophyta). Altogether, our phylogenic analysis supports

that neither FIGL1 nor FLIP are specific to DMC1, and that the FIGL1-FLIP complex can reg-

ulate the activity of both RAD51 and DMC1. The FIGL1 complex may also have additional

functions unrelated to HR [48].

We suggest that FIGL1 and FLIP could limit strand invasion mediated by RAD51 and

DMC1. How could the lack of this function lead to an increase in the frequency of meiotic COs

as observed in flip and figl1? One conceivable explanation is that the absence of FLIP and FIGL1

changes the equilibrium between invasions on inter-sister versus inter-homolog, leading to the

formation of higher numbers of inter-homolog joint molecules and eventually more COs. How-

ever, DSBs and presumably inter-homologous joint molecules are already in large excess to

COs in wild type [21], making it hard to believe that a simple increase in their number would

increase CO frequencies. We favor another possibility in which the lack of the FLIP / FIGL1

activity generates aberrant recombination intermediates through either multi-chromatid inva-

sions or invasion of both ends of a break. The observation that the structure specific nuclease

MUS81 becomes essential for completion of repair in figl1 and flip suggests that indeed some

novel class of intermediates arise in these mutants. Thus, we favor the hypothesis in which the

absence of FLIP and FIGL1 leads to excessive and/or late activity of DMC1/RAD51, generating

aberrant joint molecules such as multi-chromatid joint molecules [49,50]. Such unusual struc-

tures would need structure specific endonucleases to be resolved, leading to increased COs.

Therefore, the function of FLIP-FIGL1 in wild type context could prevent formation of aberrant

recombination intermediates by functioning as a quality control of strand invasion.

Intriguingly, some univalents are observed at metaphase in figl1 and flip. This suggests that

the implementation of the obligate CO is slightly affected in absence of FIGL1/FLIP. One pos-

sibility is that some recombination intermediates designated to become COs fail to mature

into actual COs because they have aberrant structures generated by unregulated DMC1/

RAD51. In such scenario, these intermediates would be eventually repaired as non-crossovers,

as no chromosome fragmentation is observed in the mutants.

While this manuscript was under evaluation, the homologue of FLIP in rice (MEICA) has

been shown to regulate meiotic recombination [35]. The mutation of meica restores COs in

msh5, suggesting that the anti-CO function of FLIP/MEICA is conserved in plants. However,

both Osfignl1 [51] and meica [35] mutants in rice show significant chromosome fragmentation

at anaphase I, suggesting that the FIGL1-FLIP/Os FIGNL1-MEICA complex is more crucial

for the completion of DSB repair in rice than in Arabidopsis.

In conclusion, we uncovered a conserved FIGL1-FLIP complex that directly binds to

RAD51/DMC1 and could negatively regulate strand invasion during homologous recombina-

tion. It would be of particular interest to further study the function of this complex in mamma-

lian systems and in biochemical assays. Unraveling proteins playing a role in HR pathway

would provide better understanding related to various inherited diseases in humans pertaining

to defects in HR repair proteins [2]. Targeting HR protein could increase the sensitivity of can-

cer cells to anti-cancer drugs [52]. Thus, FIGL1-FLIP could represent potential targets for can-

cer therapy.
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Materials andmethods

Genetic material

The Arabidopsis lines used in this study were: hei10-2 (N514624) [42], msh5-2 (N526553) [53],

mus81-2 (N607515) [18], spo11-1-3 (N646172)[54], sds-2 (N806294)[44],figl1-1 [10], zip4-2

(N568052) [55]. Tetrad analysis lines (FTLs) used were as follows: I2ab (FTL1506/FTL1524/

FTL965/qrt1-2), I3bc (FTL1500/FTL3115/FTL1371/qrt1-2) and I5cd (FTL1143/FTL1963/

FTL2450/qrt1-2). FTLs were obtained from Gregory Copenhaver [43]. Suppressor hei10(s)320/

flip-1was sequenced using iIlumina technology at the Genome Analysis Centre, Norwich, UK.

Mutations were identified through MutDetect pipeline [23]. The flip-1 causal mutation was C

to T substitution at the position chr1:1297137 (Col-0 TAIR10 assembly). flip-2 (N662136)

T-DNAmutant was obtained from the Salk collection, distributed by the NASC. The primers

used for genotyping are listed in the S4 Table.

Cytology techniques

Meiotic chromosomes from anthers were spread and DAPI stained as previously described

[56]. For cytological detection of meiotic proteins, male meiotic chromosome spreads from

prophase I were prepared as described in Armstrong et al. [57]. Spread slides were either

immediately used for immuno-cytology or stored at -80˚C before immunostaining. Chromo-

some axis protein ASY1 and synaptonemal complex protein ZYP1 staining were performed to

define substages of prophase I. Leptotene stage had only ASY1 signal, while zygotene and

pachytene cells showed partial stretches of ZYP1 signal or 95–100% of ZYP1 signal in the

nucleus, respectively. Primary antibodies used for immunostaining were: anti-DMC1 (1:20)

[58], anti-RAD51 (1:500) [59], anti-ZYP1 raised in rat (1:250) [60] or rabbit (1:500) and anti-

ASY1 raised in guinea pig (1:250) or chicken (1:50) [57]. Secondary antibody: Alexa fluor 488

(A-11006); Alexa fluor 568 (A-11077); Alexa fluor 647 (A-11006), anti-rabbit 647 (6444–31

Southern Biotech) and super clonal Alexa fluor1488, (A-27034) obtained from Thermo

Fisher Scientific were used in 1:400 dilution. Images were obtained using a Zeiss AxioObserver

microscope and were analyzed by Zeiss Zen software. In case of DMC1 and RAD51 staining,

all images were acquired at 2s exposure, and DMC1 and RAD51 foci were counted by using

Fiji software after exporting images in tiff format [61]. Briefly, DAPI or ASY1 images were

binarized using the ‘triangle’ intensity thresholding method followed by a binary morphologi-

cal closing operation to localize meiotic chromosomes and to mark them as regions of interest

(ROI). In parallel, a white top-hat transform was applied to DMC1 or RAD51 images. Signifi-

cant peaks located within chromosome ROI were counted as foci. Scatter dot plots and statisti-

cal analysis were performed using the software GraphPad Prism 6.

Recombination measurement

We used FTLs [43] to estimate male meiotic recombination rates at three pairs of genetic inter-

vals I2ab, I5cd and I3bc. For each set of experiment, heterozygous plants were generated for

the pairs of linked fluorescent markers and siblings from the same segregating progeny were

used to compare the recombination frequency between different genotypes. Slides were pre-

pared as described previously [43]. Tetrads were counted and sorted to specific classes (A to L)

[43] using a pipeline developed on the Metafer Slide Scanning Platform. For each tetrad, attri-

bution to a specific class was double checked manually. Genetic sizes of each interval was

calculated using Perkins equation [62] as follows: D = 100× (Tetratype frequency+6×Non-

Parental Ditype frequency)/2 in cM. The Interference ratio (IR) was measured as described

previously [63] [43]. Briefly, in two adjacent intervals I1 and I2, genetic size of I1 was
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calculated for the two populations of tetrads in I2 interval–D1 is at least with one CO in I2; D2

is without CO in I2. The ratio of D1/D2 revealed presence (when IR<1) or absence (when IR

is close to 1 or>1) of the interference. A chi square test is performed to test the null hypothesis

(H0: D1 = D2). The average of the two reciprocals is depicted on the graph (Fig 6A).

Cloning

Cloning of the FIGL1 open reading frame (ORF) is described in [10]. The AtFLIP ORF

was amplified using gene-specific primer (S4 Table) on cDNA prepared from Arabidopsis

flower buds (Col-0 accession). The full length or truncated ORFs of FLIP were cloned into

pDONR207/pDONR201 vectors to produce entry clones. All plasmid inserts were verified by

Sanger sequencing. The ORFs for human FIGNL1 (BC051867), RAD51 (BC001459), DMC1

(BC125163) were obtained from the human orfeome collection, while human FLIP (IMAGE

clone: 30389801) ORF was ordered from Source BioScience, UK

Yeast two hybrid assay

For yeast two hybrid assays, AtFIGL1, AtFLIP, AtRAD51 and AtDMC1 as well as their respec-

tive human orthologs (hFIGNL1, hFLIP, hRAD51, hDMC1) were cloned into destination vec-

tors pGBKT7 and pGADT7 by the Gateway technology. The fidelity of coding sequence of all

clones was verified by sequencing. Yeast two hybrid assays were carried out using Gal4 based

system (Clontech) [64] by introducing plasmids harboring gene of interest in yeast strains

AH109 and Y187 and interaction were tested as previously described [65].

Tandem affinity purification coupled with mass spectrometry (TAP-MS)

TAP-MS analysis was performed as described previously [36]. Briefly, the plasmids expressing

FLIP or FIGL1 fused to the double affinity GSrhino tag [36] were transformed into Arabidopsis

(Ler) cell-suspension cultures. TAP purifications were performed with 200 mg of total protein

extract as input and interacting proteins were identified by mass spectrometry using an LTQ

Orbitrap Velos mass spectrometer. Proteins with at least two high-confidence peptides were

retained only if reproducible in two experiments. Non-specific proteins were filtered out based

on their frequency of occurrence in a large dataset of TAP experiments with many different

and unrelated baits as described [36].

Bioinformatics

Identification of putative orthologs of FLIP, FIGL1, DMC1 and RAD51 was performed follow-

ing different strategies based on the sequence divergence and the existence of paralogs. Since

FLIP sequence diverged significantly during evolution without detectable paralog, 3 iterations

of HHblits [66,67] against the uniclust30_2017_04 database were sufficient to retrieve 139

sequences belonging to plants and metazoa species. To get NCBI entries of those proteins, a

PSSM generated from the recovered alignment was used as input of a jump start PSI-blast [68]

against the eukaryotic refseq_protein database [69]. For DMC1 and RAD51, reciprocal best

hits of blast searches were used to identify the most likely ortholog in every species. First,

DMC1 in H. sapiens and S. cerevisiae sequences were blasted against the refseq_protein data-

base to gather a set of DMC1 candidates. Each of these candidates was reciprocally blasted

against the protein sequences of six fully sequenced genomes wherein DMC1 and RAD51

genes could be unambiguously identified and which were chosen spread over the phylogenetic

tree (H. sapiens, S. cerevisiae, C. reinhardtii, T. gondii, P. falciparum, T. cruzi). Detection of a

DMC1 ortholog was considered correct when one of the 6 DMC1 genes was spotted out as
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best hit with an alignment score at least 10% higher than that of the second best hit, supporting

its significantly higher similarity to DMC1 than to RAD51. The same strategy was followed to

assign RAD51 orthologs. In the case of FIGL1, large number of paralogs such as spastin, fidge-

tin, katanin or sap1-like proteins render the global analysis more complex. A phylogenetic tree

was initially built focused on the AAA ATPase domain of 600 protein sequences belonging to

fidgetin, spastin, katanin, sap1 and VPS4 families. They were aligned using mafft einsi algo-

rithm [70] and tree was built with PhyML [69] using the LG model for aminoacid substitution

and 4 categories in the discrete gamma model. This prior analysis helped to delineate which

homologs could be considered as orthologs of H. sapiens and A. thaliana FIDGETIN-like pro-

teins. For the 373 fully sequenced species presented in Fig 3, reciprocal blast best hit searches

were then performed to retrieve the Fidgetin-like ortholog when present. FIGL1 ortholog can-

didates were retrieved from a blast of H. sapiens and A. thaliana FIGL1 sequences against the

refseq_protein database and were assessed by reciprocal best hit searches using these candi-

dates as query against genomes of H. sapiens and A. thaliana. Detection of FIGL1 orthology

was assessed if best hit was FIGL1 sequence with an alignment score at least 10% higher than

that of the second best hit. For a limited number of species, orthologs were suspected but not

identified in any of the NCBI databases. Targeted blast searches where then performed on

their genomes using the Joint Genome Institute (JGI) server to further probe the existence of

these orthologs which could be detected in 7 cases. All the NCBI and JGI gene entries are listed

in S2 Table and can be easily retrieved from the interactive tree (http://itol.embl.de/tree/

132166555992271498216301) [71] by passing the mouse over the species names.

Supporting information

S1 Fig. Yeast-two-hybrid experiments testing interactions between Arabidopsis FIGL1, FLIP,

RAD51 and DMC1 proteins. Proteins of interest were fused with Gal4 DNA binding domain

(BD) and with Gal4 activation domain (AD), respectively and co-expressed in yeast cells. For each

combination, serial dilutions of yeast cells were spotted on non-selective medium (-LW), moder-

ately selective media (-LWH) and more selective media (-LWHA). Growth on LWH is inter-
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59. Kurzbauer M-T, Uanschou C, Chen D, Schlögelhofer P. The Recombinases DMC1 and RAD51 Are
Functionally and Spatially Separated during Meiosis in Arabidopsis. The Plant Cell. 2012. pp. 2058–
2070. https://doi.org/10.1105/tpc.112.098459 PMID: 22589466

60. Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FCH. The Arabidopsis synaptonemal
complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes
Dev. 2005; 19: 2488–2500. https://doi.org/10.1101/gad.354705 PMID: 16230536

61. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source
platform for biological-image analysis. Nat Methods. 2012; 9: 676–82. https://doi.org/10.1038/nmeth.
2019 PMID: 22743772

62. Perkins DD. Biochemical Mutants in the Smut FungusUstilago Maydis. Genetics. 1949; 34: 607–26.
PMID: 17247336

63. Malkova A, Swanson J, GermanM, McCusker JH, Housworth E a, Stahl FW, et al. Gene conversion
and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics.
2004; 168: 49–63. https://doi.org/10.1534/genetics.104.027961 PMID: 15454526

64. Rossignol P, Collier S, Bush M, Shaw P, Doonan JH. Arabidopsis POT1A interacts with TERT-V(I8), an
N-terminal splicing variant of telomerase. J Cell Sci. 2007; 120: 3678–3687. https://doi.org/10.1242/jcs.
004119 PMID: 17911168

65. Kumar R, Bourbon H-M, de Massy B. Functional conservation of Mei4 for meiotic DNA double-strand
break formation from yeasts to mice. Genes Dev. 2010; 24: 1266–80. https://doi.org/10.1101/gad.
571710 PMID: 20551173
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