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We present a model for disordered 3D fiber networks to study their linear and nonlinear elasticity. In

contrast to previous 2D models, these 3D networks with binary crosslinks are underconstrained with

respect to fiber stretching elasticity, suggesting that bending may dominate their response. We find that

such networks exhibit a bending-dominated elastic regime controlled by fiber length, as well as a

crossover to a stretch-dominated regime for long fibers. Finally, by extending the model to the nonlinear

regime, we show that these networks become intrinsically nonlinear with a vanishing linear response

regime in the limit of flexible or long filaments.
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Materials ranging from paper and textiles to the struc-

tural components of living cells and tissues [1] consist of

networks of fibers or stiff polymers. Such networks have

extraordinary mechanical properties [2–4]. Their elasticity

depends in part on their connectivity [5,6], in analogy with

jammed matter [7,8] and network glasses [9]. The mechan-

ics of the constituent fibers, and specifically their bending

rigidity, can also strongly impact network elasticity [10].

However, the relative importance of fiber stretching versus

bending is not understood, especially in 3D. Prior work has

mostly focused on 2D networks [11–16] since simulations

in 3D are challenging and have usually been limited to

small system size [17,18]. Significant qualitative differ-

ences are expected between 2D and 3D networks: for the

typical case of binary fiber interactions, the high molecular

weight limit in 2D actually corresponds to the Maxwell

central-force (CF) isostatic threshold, where stretching

interactions begin to completely constrain network defor-

mations. In contrast, 3D networks with binary interactions

remain well below CF isostaticity. Thus, owing to their

marginal stability, real 3D fiber networks are expected to

be fundamentally more bending dominated and more prone

to collective nonaffine deformations [10,18]; even the ex-

istence of a simple affine limit dominated by fiber stretch-

ing is unknown.

Here we develop a numerical model for the elasticity of

random 3D fiber networks with binary crosslinks. This

model provides access to network configurations ranging

from the rigidity percolation threshold to the previously

inaccessible high molecular weight limit. These networks

exhibit various qualitatively distinct elastic regimes: a

critical regime governed by the rigidity percolation point,

a length-controlled bending regime, and an affine stretch-

ing regime, as shown in Fig. 1(a). We provide a scaling

analysis for insight into the origins of these regimes.

Paradoxically, although these networks in 3D can only be

rigid with nonzero fiber-bending stiffness, we find that no

matter how weak this bending rigidity is, network elasticity

approaches an affine limit that is insensitive to fiber bend-

ing for high molecular weight. Moreover, in the limit of

flexible filaments with weak bending rigidity or high mo-

lecular weight, these networks become intrinsically non-

linear with a vanishing linear response regime [Fig. 1(b)].

Much has been learned about stiff polymer gels from

minimal models, such as 2DMikado networks of randomly

placed straight filaments with binary crosslinks [11,12].

The elasticity of such Mikado networks is governed by

nonaffine fiber bending (NAB) deformations at low den-

sities, while higher density networks exhibit predomi-

nantly affine stretching (AS) elasticity of single fiber

segments [11,12]. The crossover from NAB to AS regimes

can be understood as being the result of increasing
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FIG. 1 (color online). Schematic phase diagrams for the linear

(a) and nonlinear elasticity (b) of 3D fiber networks on the Ph fcc

lattice, where L is the average filament length, z is network

connectivity, ! is strain, and " is the fiber bending rigidity. All

lengths are measured in units of the lattice spacing ‘0 and " in

units of #‘2
0
. The solid boundary line indicates a sharp phase

transition and dashed lines indicate a crossover.
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fiber length, measured in units of the distance between

crosslinks. However, for such 2D networks, this high mo-

lecular weight limit actually coincides with Maxwell’s CF

isostatic connectivity, zCF ¼ 2d in d dimensions [5], which

can also give rise to a bend-stretch transition [6,13]; it is

thus unclear whether the observed transition in 2D is

controlled by CF stretching constraints or by filament

length. However, 3D networks with binary crosslinks—

characteristic of most biopolymer systems—are qualita-

tively different; in this case the high molecular weight limit

corresponds to network connectivities well below zCF. In
the absence of fiber-bending resistance, such networks do

not resist shear stresses. Thus, there are reasons to question

the existence of an affine, stretching-dominated regime in

realistic 3D networks with fibers that are more compliant to

bending than to stretching [13,18,19]. This is still the

subject of debate since studies in 3D have so far been

limited to small systems [18] or to networks with high

connectivities [6,19].

To provide insight into the macroscopic mechanics for

network configurations ranging from the rigidity percola-

tion point to the high molecular weight limit, we develop a

3D lattice-based fiber network model with binary cross-

links. Our networks consist of straight fibers organized

geometrically on a face-centered-cubic (fcc) lattice.

However, we limit the maximum coordination number to

four by randomly assigning three independent pairs of

crosslinked fibers out of the six fibers crossing at a vertex.

Although the different binary crosslinks may overlap geo-

metrically, they do not constrain each other [20] [inset

Fig. 2(a)]. Therefore, we term this the phantom (Ph) fcc

lattice. This model is similar to a generalized kagome

lattice in 3D [21], although the Ph fcc has a higher sym-

metry. By cutting bonds with a probability 1" p, we tune
the average molecular weight, L ¼ ‘0=ð1" pÞ, where ‘0
is the distance between vertices [6,20].

The elastic energy of the 3D Ph fcc network involves

stretching and bending contributions of the constituent

fibers, characterized by their stretching modulus # and

bending rigidity ". Each lattice vertex consists of three

independent freely hinging binary crosslinks ranked by h.
For small displacements, denoted by u

h
i , the stretching

energy of the network is expressed as

ES ¼
1

2

#

‘0

X

3

h¼1

X

hiji

ghijðu
h
ij % r̂ijÞ

2; (1)

where the second sum extends over neighboring pairs of

vertices, uh
ij ¼ u

h
j " u

h
i and r̂ij is the bond direction in the

undeformed lattice. Bond dilution is implemented by set-

ting ghij ¼ 1 for present bonds and ghij ¼ 0 for removed

bonds. Fibers form straight chains that resist angular de-

flections, leading to a total bending energy [6,15],

EB ¼
1

2

"

‘3
0

X

3

h¼1

X

hijki

ghijg
h
jk½ðu

h
ij " u

h
jkÞ ' r̂ij(

2: (2)

Since the crosslinks themselves do not contribute a tor-

sional stiffness, the second sum only extends over coaxial

nearest neighbor triplets along the same fiber.

The shear modulus G is determined numerically by

applying a shear strain along the 111 plane with Lees-

Edwards periodic boundary conditions and energy

minimizations are performed by a conjugate gradient al-

gorithm. Our network sizes range from W3 ¼ 203 to 1503

unit cells, with up to 3 times that many crosslinks.

Filaments that span the network make unphysical stretch

contributions to the elasticity of the sample and may render

the deformation field of the network more affine. To avoid

such trivial finite size effects, at least one bond is removed

along every fiber. Consequently, this model can only ap-

proach z ¼ 4 asymptotically from below.

Linear regime.—We find numerically that these net-

works have a finite shear rigidity only if "> 0, even

though the perfect, undiluted Ph fcc lattice (z ¼ 4) deforms

affinely and has a finite shear modulus for " ¼ 0, similar to

the model in Ref. [21].

For finite ", the Ph fcc networks can be either bending

dominated (G) " at low "), or stretching dominated

(G)# at high " or large L), as shown in Fig. 2(a).

Interestingly, there appear to be two distinct regimes well

above the rigidity percolation point: a bending-dominated

FIG. 2 (color online). (a) The shear modulus as a function of L
in units of ‘0 for various " in units of #‘2

0
. Here, GA represents

the affine shear modulus of the undiluted Ph fcc lattice. The inset

illustrates the phantom principle: at each lattice vertex three

independent binary crosslinks are formed between randomly

chosen fiber pairs labeled by color. (b) Nonaffinity parameter

! as a function of L. Dashed black lines indicate a slope of 2.
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regime where G depends on L and " (low " and L) and an

L- and "-independent stretching-dominated regime (high

" and L). These observations are consistent with those

obtained in Ref. [21].

These results can be understood as follows. In the high-"

limit, the network deforms increasingly affinely, with a

shear modulus G ’ GA. Here, GA ) #

‘2
0

z is the affine shear

modulus, which is completely determined by fiber stretch-

ing. However, in the critical regime—controlled by the

bending rigidity percolation point zb—G vanishes conti-

nuously with "z ¼ z" zb [6,9,12,21] as

Gcs )
#

‘2
0

j"zjf; Gcb )
"

‘4
0

j"zjf; (3)

for high and low ", respectively. We find zb * 2:4 and

f * 0:65 for a system size W3 ¼ 30
3, as demonstrated in

the lower inset in Fig. 3 by showing that Gj"zj"f="
reaches a plateau for low values of "z. The rigidity thresh-
old is similar to observations in prior 3D models [18],

although f is considerably lower here, which is more

consistent with findings on the generalized 3D kagome

lattice [21]. The rigidity threshold can be estimated by a

counting argument [5,6,18]; this connectivity threshold

occurs when per crosslink the number of stretching con-

straints, nbz=4, and bending constraints, nbðd" 1Þz2=16,
equal the number of internal degrees of freedom d. Here,
the number of bonds per crosslink nb ¼ 2 in the undiluted

network (z ¼ 4). This yields zb * 2:6, in reasonable agree-
ment with the numerical results.

Since the CF isostatic point lies beyond the physical

connectivity range of this model, a naive expectation may

be that a nonaffine bending regime extends over the whole

range z < 4 for low ", such that G + GA as z ! 4 from

below. However, this argument ignores possible effects due

to filament length. In networks of straight fibers with

binary interactions, the average fiber length diverges as

z ! 4 and large L may lead to nonaffine displacements

over greater length scales [13]. The effects of high L on the

deformation field have been discussed in the context of 2D

Mikado networks using both scaling arguments [11,12]

and floppy mode theory [13], although the corresponding

effects in 3D are unknown.

Here, we investigate the effects of molecular weight on

the deformation field and their implications for the me-

chanics of 3D fiber networks. Network nodes along a fiber

can undergo independent nonaffine deformations scaling

as !L to avoid stretching of the other fibers to which they

are connected. This direct scaling of nonaffine displace-

ments with Lwas proposed in Ref. [13] and constitutes one

of the central assumptions of the floppy mode model that

was applied to Mikado networks. To test this assumption,

we investigate the strain fluctuations using the nonaffinity

measure [6,11,22], ! ¼ 1

‘2
0
!2 hð$u

NAÞ2i, where $uNA ¼

u" u
A denotes the nonaffine displacement of a crosslink

and the brackets represent a network average. This non-

affinity measure exhibits a cusp at the bending rigidity

percolation point, reflecting the criticality of the network’s

mechanics in this regime [6,7], as shown in Fig. 2(b).

Furthermore, there appears to be a regime for sufficiently

low " where !) L2 independent of ", lending credence to

the basic assumption that $uNA ) L! [13].

Such length-controlled nonaffine deformations store an

amount of elastic energy scaling as "ð$uNA=‘2
0
Þ2‘0 per

segment, which on the macroscopic level results in a shear

modulus for this bending regime,

GLC )
"

‘2
0

!

$uNA

‘2
0

"

2 1

!2
)

"

‘6
0

L2: (4)

This prediction for the L dependence of G is born out by

the numerical data, as shown in Fig. 2(a). This analysis

further implies that the energetic cost of nonaffine bending

deformations grows with increasing L. As a result, such

nonaffine bending deformations become less favorable

than the L-independent affine stretching deformations

when the average molecular weight exceeds a nonaffinity

length scale, %NA. This crossover length scale can be

estimated by comparing GLC with the affine stretching

shear modulus GA, which forms an upper bound to the

shear modulus; this gives

%NA ¼ ‘2
0
=‘b; (5)

where ‘b ¼
ffiffiffiffiffiffiffiffiffiffi

"=#
p

. Indeed, by plottingG=GA as a function

of L=%NA we find a collapse of the data to a universal

curve, for which G=GA ’ when L=%NA * 1, as shown in

Fig. 3. This supports the existence of a NAB-AS transition

driven by molecular weight in 3D fiber networks with

connectivities well below Maxwell’s CF isostatic point.

In contrast, prior results for 2D networks suggested

%NA ) ‘"&
b , with & * 0:3–0:4 [11,12]. However, for such
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FIG. 3 (color online). The shear modulus scaled with the affine

modulus GA versus L scaled with %NA ¼ ‘2
0
=‘b for various

values of " in units of #‘2
0
. The open symbols indicate data

ranges in the rigidity percolation regime where we observe

different scaling. The lower inset shows G scaled with j"zjf

as a function of j"zj and here the open circles correspond to

" ¼ 1. The upper inset shows the nonaffine fluctuations ! scaled

with !% ¼ %NA=‘
2

0
versus L=%NA.
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networks it is unclear whether the NAB-AS transition is

actually driven by fiber length, as for the 3D case presented

here, or by the CF isostatic point [6,13] that coincides with

the high-L limit for the Mikado model. A similar scaling

analysis can be performed for the nonaffine fluctuations

[Fig. 2(b)]. At the crossover ! ¼ !% ¼ %2

NA
=‘2

0
¼ ‘2

0
=‘2b

and thus, we can collapse the nonaffinity data above the

critical regime by plotting !=!% as a function of L=%NA, as

shown in the upper inset of Fig. 3. This shows that !=!%

reaches a maximum at the NAB-AS crossover followed by

a gradual decrease with L=%NA. We summarize the

conclusions for the various elastic regimes based on this

scaling analysis and the raw data (Fig. 2) in Fig. 1(a), in

which the crossovers are indicated by dashed lines.

Nonlinear regime.—The length-controlled bending me-

chanics also has important implications for the nonlinear

elasticity of 3D fiber networks. Even in a bending-

dominated regime, stretching modes are excited at finite

network deformations [14], but to a higher order in the

applied strain [7,10,13]. Specifically, assuming length-

controlled nonaffine deformations, a transverse bend with

an amplitude )!L results in a stretch energy in the asso-

ciated bond, $ES )#'2‘0, where ') ð!L=‘0Þ
2 þOð!4Þ.

The onset of nonlinear network elasticity occurs at a strain

!0, at which $ES becomes comparable to the bending

contribution, $EB ) "L2!2=‘3c. This stiffening saturates

at a strain !A, set by the condition $EB þ $ES )
#

‘2
0

!2, at

which the network’s response becomes dominated by af-

fine stretching modes. Thus, the onset and completion of

the stiffening regime are expected to scale as

!0 )
‘b
L
; and !A )

‘2
0

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1" L2‘2b=‘
4

0

q

: (6)

Here we focus on the characteristic strain for the onset of

nonlinear behavior, !0, which is shown in Fig. 4(b). To

further test the scaling prediction, we collapse the data by

plotting ð‘bLÞ
2 as a function of the scaled characteristic

strain !0L
2 (inset Fig. 4). Importantly, these results provide

evidence for a vanishing linear response regime in the

limits " ! 0 and L ! 1. The scaling of the nonlinear

behavior of the network is illustrated in the schematic

phase diagram in Fig. 1(b).

Using the phantom model together with a scaling analy-

sis, we have shown that even though the mechanical stabil-

ity of 3D networks relies on the bending resistance of the

constituent fibers, surprisingly for any "> 0, network

mechanics becomes affine and independent of " when L >
%NA. We conjecture that main results of this Letter also

apply to models with additional interactions other than

fiber bending, which stabilize the network below the

CF threshold, including next-nearest-neighbor interactions

or bond-bending interactions for crosslinks that fix a pre-

ferred bond angle. Specifically, such networks should ex-

hibit an affine high molecular weight limit and a vanishing

linear elastic regime in the limit of long filaments or weak

interactions [7].

The scaling analysis presented here for athermal fiber

networks may also be used to develop predictions for

thermal systems for which the crosslinking length scale

is expected to scale with ("2=5 [23], where ( is the

polymer length density. In the bending regime, we expect

G) "(13=5 for thermal semiflexible polymers and G)
"(3 for stiff fibers. These predictions may account for a

recent report of G) (2:68 in collagen networks [17].

The Ph fcc model developed here provides a powerful

numerical model to probe the mechanics of 3D fiber net-

works with large system sizes. This model can also be

extended to study the dynamic network rheology and the

effects of force generating molecular motors.
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