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■ Abstract Filament-stretching rheometers are devices for measuring the exten-
sional viscosity of moderately viscous non-Newtonian fluids such as polymer solu-
tions. In these devices, a cylindrical liquid bridge is initially formed between two
circular end-plates. The plates are then moved apart in a prescribed manner such that
the fluid sample is subjected to a strong extensional deformation. Asymptotic analysis
and numerical computation show that the resulting kinematics closely approximate
those of an ideal homogeneous uniaxial elongation. The evolution in the tensile stress
(measured mechanically) and the molecular conformation (measured optically) can be
followed as functions of the rate of stretching and the total strain imposed. The resulting
rheological measurements are a sensitive discriminant of molecularly based constitu-
tive equations proposed for complex fluids. The dynamical response of the elongating
filament is also coupled to the extensional rheology of the polymeric test fluid, and
this can lead to complex viscoelastic-flow instabilities such as filament necking and
rupture or elastic peeling from the rigid end-plates.

1. INTRODUCTION

Within the last decade, there has been an explosion of activity aimed at improv-
ing one’s ability to measure and understand the response of polymer solutions
to an extensional deformation. The importance of elongational or extensional
flow of polymer fluids arises because several industrially important processes
involve a predominantly extensional mode of deformation; examples include fiber
spinning, film blowing, and extrusion of polymeric materials. For polymer so-
lutions, extensional flows are also encountered in applications such as coatings,
enhanced oil recovery, lubrication, turbulent drag reduction, and atomization. It is
well known that the addition of a small amount of high molecular-weight polymer
in solutions greatly increases the resistance to flow in extension. This property of

0066-4189/02/0115-0375$14.00 375



21 Nov 2001 10:18 AR AR151-15.tex AR151-15.sgm ARv2(2001/05/10)P1: GJC

376 MCKINLEY ¥ SRIDHAR

macromolecular fluids has been exploited in processes such as the prevention of
the breakup of a jet of fluid emitting from a nozzle into droplets.

Even a cursory examination of current textbooks on rheology (e.g., Bird et al.
1987a, Tanner 2000) shows how much shear rheology dominates the science and
how little is known comparatively regarding extensional deformation. Shear flows
are weak in the sense that material elements in the fluid separate linearly with time,
and vorticity ensures that the fluid microstructure is always rotated away from the
principal axes of stretching. Extensional flows, on the other hand, are irrotational
and extremely efficient at unraveling flexible macromolecules or orienting rigid
molecules. As a result, one anticipates that if the flow field were to be maintained
for a long enough time, all molecules would eventually be fully extended and
aligned. As the force on the molecule depends both on the strain rate and elonga-
tion, extensional flows are expected to elicit, qualitatively and quantitatively, fluid
responses different from simple shear flow. The extensional rheological proper-
ties of fluids are therefore expected to be a more critical test of the plethora of
constitutive equations that have been proposed to describe the stress-deformation
relationship of polymeric fluids.

2. FUNDAMENTAL DEFINITIONS

2.1. Kinematics of Extensional Flows

Consider the uniaxial elongation of a cylindrical specimen of initial diameterD0

and lengthL0, which is stretched in the axial directionz by an applied forceF so
that its radius decreases uniformly along the length. For a homogeneous shear-free
flow, the kinematics are independent of spatial position. The flow is irrotational,
and the velocity-gradient tensor is given by

∇v = 1

2
ε̇(t)

−1 0 0
0 −1 0
0 0 2

 , (1)

whereε̇(t) is the extension rate. Positive values represent elongation, and negative
values lead to biaxial stretching. If the extension rate is constant with time such that
ε̇(t) = ε̇0, then the flow is steady in both the Eulerian and Lagrangian senses. That
is, at any position along the cylinder, the velocity gradient is constant with time,
and furthermore, an element of fluid experiences a motion with constant stretch
history. Then from conservation of volume and integration of the components of
Equation 1, the length and diameter of the specimen at any timet vary from their
initial values ofL0 andD0, respectively, in the following way,

L(t) = L0 exp(ε̇0t); D(t) = D0 exp

(
−1

2
ε̇0t

)
. (2)



21 Nov 2001 10:18 AR AR151-15.tex AR151-15.sgm ARv2(2001/05/10)P1: GJC

FILAMENT-STRETCHING RHEOMETRY 377

The natural-strain measure arising from such a deformation is the logarithmic or
Hencky strain given by

ε = ε̇0t = ln(L(t)/L0) = −2 ln(D(t)/D0). (3)

The total-stress tensorπ for a fluid undergoing homogeneous uniaxial ex-
tensional flow is given byπ= −pI + τ , where−pI is the isotropic pressure
contribution andτ is the extra-stress tensor, which must be determined from
an appropriate constitutive equation. In the start-up of uniaxial extensional flow,
the fluid is initially quiescent and the extra stress is identically zero. Then at
timest ≥ 0, the constant extension rate ˙ε0 is imposed on the specimen, and the
stresses grow in time as stretching progresses. The material function of interest
is the transient extensional viscosity or tensile-stress growth coefficientη+

E (ε̇0, t),
defined as

η+
E (ε̇0, t) ≡ τzz− τrr

ε̇0
. (4)

As time increases and the deformation proceeds, the extensional- or tensile-stress
growth coefficient may reach a steady-state value, which is termed the extensional
or tensile viscosity,

ηE(ε̇0) = lim
t→∞

[
η+

E (ε̇0, t)
]
. (5)

The extensional viscosityηE is a material property of the fluid and is a function
only of the extension rate (and temperature). For a Newtonian liquid with a con-
stant shear viscosity,µ, substitution of the known kinematics into the Newtonian
constitutive equation gives the result

ηE ≡ τzz− τrr

ε̇0
= 2µε̇0 − (−µε̇0)

ε̇0
= 3µ. (6)

This result is often referred to as the Trouton viscosity, after Trouton (1906), who
found that the extensional viscosity of a mixture of pitch and tar is independent
of the rate-of-extension and is three times the shear viscosity of the mixture. For
viscoelastic fluids in the limit of very low extension rates, simple fluid theory (Bird
et al. 1987a) shows that the steady-state extensional viscosity also approaches three
times the zero-shear viscosity.

The polymer stress provides a measure of the overall deformation of the polymer
chain. In addition, it is useful to obtain a direct microstructural measure of the local
orientation and conformational shape of the chain. Flow-induced birefringence can
accurately and noninvasively provide such a measure. Birefringence arises from the
anisotropy in the refractive-index tensor of the polymeric medium and results in a
phase difference (or retardance) of polarized light traversing the sample. Details of
the theoretical background and measurement techniques in various flow fields are
available in the treatise by Fuller (1995). The principal elastic stress difference and
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the birefringence1n′ in extensional flow are related by the stress-optical rule
(Larson 1988, Fuller 1995)

(τzz− τrr ) ≡ 1τ = 1n′/C, (7)

whereC is the stress-optic coefficient. It has been known for some time that this
colinearity becomes invalid in strong extensional flows such as fiber spinning
(Talbott & Goddard 1979), and the filament-stretching rheometers we describe
below have also been developed to permit simultaneous and independent determi-
nation of the birefringence and polymeric tensile stress (Sridhar et al. 2000).

2.2 Historical Perspective

The continuing fascination of scientists with extensional flows has been well docu-
mented by Petrie (1979) in the only available treatise on extensional flows. The
thread-forming ability of fluids has attracted the attention of researchers since the
work of Trouton (1906). Measurements of the viscometric properties of polymeric
fluids in simple shear flows are well established (Meissner 1985b), and a number of
commercial rheometers are available for both melts and the more-mobile polymer
solutions. The situation is far less satisfactory, however, when it comes to measuring
the extensional material properties. Techniques have been developed for polymer
melts, such as polyolefins, which are viscous enough that homogeneous sheets or
rods of material can be prepared and elongated under conditions of either constant
deformation rate or constant stress (M¨unstedt 1979, Meissner 1985a). As a result of
the mobile nature of polymer solutions, it was thought to be impossible to grip the
sample and make it stretch in a prescribed manner. The basic requirement for such
measurements is the ability to impose a precise (preferably constant) deformation
history on a fluid sample for a long enough period such that a constant stress is
achieved.

Most of the techniques used for mobile liquids can be classified as either flow-
through systems or stagnation-point devices. Among the former methods, fiber
spinning seems to have been most widely used, as it represents the most promis-
ing method of providing a well-defined deformation field (Nitschman & Schrade
1948). Other free-surface techniques that have been used to measure the exten-
sional viscosity of polymer solutions include the tubeless siphon, otherwise known
as Fano flow (Astarita & Nicodemo 1970), and the triple-jet techniques (Oliver &
Bragg 1974). Each configuration involves essentially the stretching of a fluid jet
and measuring the resultant tensile force or stress required to sustain the extension.
Fuller et al. (1987) have described an extensional rheometer that uses opposing
nozzles immersed in the fluid. Sucking the fluid into the nozzles using a vacuum
creates an extensional flow field in the small gap between the nozzles. Numer-
ous variants of these techniques are available and are reviewed elsewhere (Gupta
& Sridhar 1998). All of these approaches fail to achieve some of the kinematic
requirements stated earlier (James & Walters 1993, Petrie 1995). The disappoint-
ing state of affairs as far as the measurements of the extensional properties of
polymer solutions are concerned can be seen in the outcome of the M1 project.
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This project attempted to compare the extensional viscosity measurements ob-
tained by different techniques on a single fluid (Sridhar 1990). Suffice it to say,
this exercise demonstrated the urgent need for a better method of measuring ex-
tensional properties.

Over the last decade, the filament-stretching rheometer has emerged as a new
method of measuring extensional properties of mobile liquids (Matta & Tytus
1990, Sridhar et al. 1991, Tirtaatmadja & Sridhar 1993). The last few years have
seen a rapid growth in the development and usage of this instrument. This review
focuses on implementation and analysis of the filament-stretching technique and
attempts to both demonstrate the considerable progress that has been made and
discuss the significant new issues that have emerged and await clarification.

3. CONSTITUTIVE EQUATIONS
FOR POLYMER SOLUTIONS

Non-Newtonian fluid mechanics is pedagogically different from Newtonian fluid
mechanics, and polymeric fluids exhibit numerous characteristics that find no
parallel in Newtonian fluids (Bird et al. 1987a). The viscoelastic nature of the
materials means that the extra stress in a fluid element depends on the entire history
of deformation experienced by that element. The stress can therefore be expressed
as a functional of the velocity gradient, time, and other microstructural details. The
numerous constitutive equations that have been developed for polymeric materials
can be conveniently classified in many different ways depending on the user’s
perspective (for example see Bird et al. 1987b, Larson 1988). Space prohibits a
detailed discussion of recent advances in these areas. Bird (1982) has reviewed
the use of molecular models derived from kinetic theory. The monograph edited
by Nguyen & Kausch (1999) also summarizes many recent developments in the
study of dilute polymer solutions in extensional flows.

3.1. Kinetic Theories for Dilute Polymer Solutions

The development of a kinetic theory for polymers has been one of the outstand-
ing intellectual achievements in rheology and allows a hierarchical description of
the fluid microstructure that can be progressively and systematically reduced in
dimensionality (coarse-grained). By correctly incorporating the molecular details,
specific predictions (e.g., the scalings of the relaxation time and viscosity with
molecular weight and concentration) can be obtained. For a detailed discussion
of kinetic theory, the reader is referred to Bird et al. (1987b) and Appendix B
(available as Supplemental Material: Follow the Supplemental Material link on
the Annual Reviews homepage at http://www.annualreviews.org); however, the
process can be summarized schematically, as shown in Figure 1. The enormous
range of length scales (and timescales) evident in the figure permit a variety of
modeling approaches. The simplest model is obtained by replacing all of the
individual monomers by a single dumbbell; i.e., a massless linear (or nonlinear)
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Figure 1 Progressive coarse graining in the hierarchy of microstructural modeling for
dilute polymer solutions. The numerical values of the parameters shown are for a typical
polystyrene (PS) molecule with a molecular weight of 2.25× 106 g/mol.
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spring with the mass of the chain evenly distributed between two point masses
at either end of the spring. These “beads” are also the locus of all hydrodynamic
interactions between the chain and the solvent. When external motion is imposed,
the chain segments are subjected to hydrodynamic drag forces, an entropic spring
force, Brownian motion, and appropriate constraints (for example see van den
Brule 1993). For later reference, it is convenient to consider the response of such a
prototypical viscoelastic constitutive equation in a homogeneous extensional flow.
For clarity, we focus on the topmost or most “coarse-grained” level in Figure 1
(the dumbbell model) and consider the effects of finite extensibility in the spring
and anisotropy in the drag acting on the chain. The conformation of the molecule
can be presented by a single-evolution equation of the form

D A
Dt

− {∇vT · A + A · ∇v} = −1

λ
[ I + α(A − I )] · [ f (tr A)A − I ], (8)

where the conformation tensorA ≡ 〈QQ〉/Q2
eq is the ensemble average of the

dyadic product of the dumbbell connector vector scaled with the equilibrium size
of the freely jointed chain,Q2

eq = Nb2/3. The single relaxation time of the chain is
denoted byλ, α is a measure of the anisotropy in the drag acting on the dumbbell
as it orients and elongates, andf (trA) is the nonlinearity of the spring.

From the conformation tensor, the total deviatoric stress arising from the solvent
and the presence of the deformed dumbbells can be found to be

τ = τ s + τ p = ηsγ̇ + νkBT[ f (trA)A − I ], (9)

whereν is the number density of polymer chains,kB is Boltzmann’s constant,
andT is the absolute temperature. Whenα = 0 and f (tr A) = [1 − tr A/3N]−1,
Equations 8 and 9 reduce to the FENE-P (finitely extensible nonlinear elas-
tic) model, whileα 6= 0, f (tr A) = 1 corresponds to the Giesekus model. In the
limit α = 0 and f (tr A) = 1, the model becomes the Hookean dumbbell model
or, equivalently, the Oldroyd-B equation of continuum mechanics (Bird et al.
1987a,b).

In an irrotational flow with specified kinematics (Equation 1), the differential
equations for the evolution in the microstructural deformation become particularly
simple to solve. Combining Equations 1, 8, and 9 leads to the following expression
for the transient extensional viscosity of the Hookean dumbbell model,

η+
E (ε̇0, t) = 3ηs + 2νkBTλ

(1 − 2λε̇0)
[1 − exp(−(1 − 2λε̇0)t/λ)]

+ νkBTλ

(1 + λε̇0)
[1 − exp(−(1 + λε̇0)t/λ)]. (10)

The dimensionless product in Equation 10 is the Deborah number,De= λε̇0.
For |De| ¿ 1, Equation 10 reduces to the prediction of linear viscoelasticity with
ηE ≡ 3η0 = 3(ηs + νkBTλ) at steady state. For values−1< De< 0.5, Equation 10
predicts the extensional viscosity approaches a steady-state value that isO(De)
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above the linear viscoelastic limit; however, forDe ≥ 0.5, the extensional viscosity
grows without bound, corresponding to a “coil-stretch transition” at a critical value
of the Deborah number, as first described by de Gennes (1974). This transition has
since been confirmed in numerous experiments, perhaps most unambiguously in
the single-molecule imaging results of Chu and co-workers (Perkins et al. 1997,
Smith & Chu 1998).

3.2. Constitutive Models for Entangled Polymeric Fluids

Constitutive equations for polymer melts and entangled solutions have been sig-
nificantly influenced by the concept of reptation (Doi & Edwards 1986), which
prescribes that in entangled systems the chain motion in the lateral direction is
impeded by entanglement constraints. The chain changes its conformation by
curvilinear diffusion (reptation) in the longitudinal direction within a confining
tube. Numerous reviews of recent developments are available (for example see
Watanabe 1999, Leal & Oberhauser 2000). In entangled solutions of linear macro-
molecules, there are two dominant timescales (and their associated spectra), the
disengagement timeλd ∼ Z3λe for curvilinear diffusion (reptation) of the chain
inside a tube of constraints and the Rouse timeλR ∼ Z2λe. Here, the reference
timescale denoted byλe is the Rouse time for a single entangled segment of the
chain. The quantityZ = Mw/Me is the ratio of the molecular weight of the chain
to the molecular weight between entanglements and is a measure of the average
number of entanglements per chain. It is worth noting that simple differential
approximations to the full integral formulations of typical reptation models (for
example see Mead et al. 1998) can be written in forms very similar to that indi-
cated in Section 3.1, with the following important differences: (a) The polymeric
stress arises from evolution in both the orientation of the confining tube and the
magnitude of the stretch of the polymer chain within the tube, and consequently,
(b) two coupled evolution equations arise with time constants that characterize
the orientational dynamics of the tube (the disengagement timescale,λd) and the
separate relaxation of the stretched polymer chain within the tube (the Rouse time,
λR). We return briefly to the predicted extensional rheology of such models in
Section 6.4.

4. THE FILAMENT STRETCHING RHEOMETER

4.1. Device Design and Operating Conditions

A basic schematic diagram of a filament-stretching device is shown in Figure 2. The
drive train accommodates the end plates, and the electronic control system imposes
a predetermined velocity profile on one or both of the end plates. The principal
time-resolved measurements required are the forceF(t) on one of the end plates
and the filament diameter at the midplane. Modified analytical balances have been
used to measure the force; however, cantilever force transducers with a resolution
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Figure 2 Schematic diagram of a filament-stretching instru-
ment showing the principal components of the device (Repro-
duced from Anna et al. 2001).

of O(10−4 g) and response times of O(10−3 s) are especially suitable for this
application and are commercially available. The filament diameter can be measured
by using devices such as laser micrometers or wire gauges or by analyzing video
images of the extending filament. The former provides better temporal resolution
at a fixed point, which we denote henceforth asDmid(t), whereas the latter yields
the entire diameter profileD(z, t) albeit with somewhat reduced accuracy.

The geometric dimensions and motor capacity of the motion-control system
determine the range of experimental parameters accessible in a given filament-
stretching device. Figure 3 depicts the generic operating space for a filament-
stretching device, where endplate velocity is plotted as a function of the endplate
position. The maximum length of the drive,Lmax, and maximum velocity,Vmax,
achievable by the motors form the bounds of the operating space. An ideal uniaxial
extensional flow, described by Equation 2, is represented as a straight line on this
phase diagram, with a slope equal to the imposed strain rate. It is clear from the
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Figure 3 Sketch of the typical operating space of a filament-
stretching rheometer and the known instabilities that constrain
operation.

diagram that a given experiment will be limited by either the total travel available to
the motor plates or by the maximum velocity the motors can sustain. An important
characteristic for any such device is the characteristic strain rateĖ∗ = Vmax/Lmax

at which both the motor limit and the maximum stage length are simultaneously
attained. The mechanical and geometric parameters characterizing a number of
current filament-stretching devices have been tabulated by Anna et al. (2001).
The operating space accessible with a given fluid can also be further constrained
by instabilities associated with gravitational sagging, capillarity, and/or elasticity.
The location of these stability boundaries depends on the material properties of
the fluid and are discussed further in Section 4.3.

The fluid sample is initially constrained between two coaxial circular plates to
form a liquid bridge of aspect ratio30 ≡ L0/R0 and is subsequently elongated
by the motion of either the upper or lower plates. A typical sequence of im-
ages for a dilute polymer solution undergoing stretching is shown in Figure 4.
Note that over a large portion of the filament length, the diameter is axially
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Figure 4 Photographic images of a viscoelastic fluid filament (0.31wt% polyisobuty-
lene in polybutene) during exponential elongation at ˙ε0= 0.76s−1; the plate dimensions
areD0= 0.303 cmL0= 0.18 cm (Reproduced from Sridhar et al. 1991).

uniform as desired for homogeneous elongation. However, the no-slip condition
at the endplates does cause a deviation from uniformity. The consequences of
this are examined in Section 4.5. For strongly strain-hardening materials, Hencky
strains of up toε ≈ 7 [corresponding to a macroscopically imposed stretch of
Lmax/L0 = exp(7)≈ 1100] can be achieved.

4.2. Filament Evolution During Elongation

The general evolution in the principal experimental observables in a filament-
stretching rheometer [i.e., the midpoint radiusRmid(t) and the axial forceF(t)]
typically exhibit three characteristic regimes: (a) filament elongation, (b) stress
relaxation, and (c) filament breakup.

During elongation (regimea), the radius decreases exponentially. At short times
(or early strainsε ≤ 1), there is an initial, solvent-dominated peak in the force,
followed by a steady decline due to the exponential decrease in the cross-sectional
area of the filament. At an intermediate strainε ≈ 3, the force begins to increase
again owing to the strain hardening in the tensile stress. Because the area is still
decreasing exponentially, an increasing force indicates that the polymeric stress
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must be increasing faster than exp(ε), in agreement with Equation 10 forDe≥ 1.
At very large strains (ε ≥ 5), a second maximum in the force may be observed after
the extensional stresses saturate and the extensional viscosity of the fluid reaches
its steady-state value,ηE(ε̇0).

Following cessation of stretching at a strainε1, a second regime (b) ensues in
which the tensile stresses in the filament rapidly relax while the radius remains
almost constant. This region is typically short, lasting only one or two fluid re-
laxation times (Yao et al. 1998). Measurements of stress relaxation have been
performed under these conditions and are discussed in Section 6.2. As the elastic
stresses decay, capillary pressure and gravitational stresses become increasingly
important and filament breakup ensues (regimec). The force rapidly decays and
the radius decreases in a self-similar manner. Entov et al. (1988, Basilevsky et al.
1990) have pioneered the development of a related device referred to as a fila-
ment microrheometer, which utilizes this visco-elasto-capillary self thinning (and
ultimate breakup) of a fluid thread in regimec to extract constitutive parameters
characterizing the extensional viscosity of complex fluids. A more detailed dis-
cussion of such self-thinning experiments is beyond the scope of this review, and
the reader is referred to a short review published elsewhere (McKinley 2000).

An important experimental issue in both filament-stretching devices and fila-
ment microrheometers is the minimum force and radius that can be measured
experimentally because this constrains the range of fluids that can be tested. Typical
values areRmin ≈ 5µm andFmin ≈ 1− 10 mg. From a practical standpoint, the
latter limitation has prohibited filament-stretching experiments to date for fluids
of viscosityη0 ≤ 1 Pa.s.

4.3. Force Balance

A force balance is required to relate the measured force on the endplate to the stress
difference in the fluid and hence the extensional viscosity. The effects of gravity,
inertia, and surface tension need to be incorporated correctly, and an additional
complicating factor is that the principal experimental measurables [i.e., the force
F(t) and midfilament diameterDmid(t)] are measured at two separate axial loca-
tions. Some care is thus required in developing an appropriate force balance for
the device. The most comprehensive treatment of the force balance is due to Szabo
(1997) and is summarized below. The axial component of the linear-momentum
equation is radially averaged and then integrated over the upper half of the filament
from 0≤ z≤ L/2 to arrive at an equation for the mean stress in the filament:

〈τzz− τrr 〉 + 1

2
〈τrr − τθθ 〉 + 1

2
〈r τrz〉′ = F

πR2 − ρgV0

2πR2 − σ

R
(1 + RR′′)

− ρ

[
1

R2

d2

dt2

∫ L/2

0
zR2 dz− RR̈

4

]
. (11)

Here,F(t) is the force on the upper endplate,V0/2 is the volume of fluid in the up-
per half of the filament, andσ is the surface tension. The angular brackets indicate
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average values over the filament cross section, and primes and overdots indicate
differentiation with respect to axial position and time, respectively. The final terms
on the right-hand side are the contributions due to gravity, surface tension and
inertia, respectively. Experiments (Spiegelberg et al. 1996) and numerical simula-
tions (Yao et al. 1998) show that, for judicious choices of the aspect ratio30, the
flow field at the axial midplane is, to a good approximation, purely extensional.
Assuming the fluid sample is initially at rest [such thatτii (t = 0)= 0], then under
such conditions the second and third terms on the left-hand side of Equation 11
are negligible. In addition, under conditions of constant strain rate, the last term on
the right-hand side of Equation 11 is also negligible, and the extensional viscosity
can be found from

η+
E ε̇0 ≡ 〈τzz− τrr 〉 = F

π R2
− ρgV0

2π R2
− σ

R
(1 + RR′′)

− ρ

[
1

R2

d2

dt2

∫ L/2

0
zR2 dz

]
. (12)

There are several variants of this final force balance, depending on which plate
is moved and at which plate the force transducer is located. In the original version
introduced by Sridhar et al. (1991), the force on the stationary upper plate was
measured, whereas an exponentially increasing velocity was imposed on the lower
plate. As a result, the length of the filament followed Equation 2. However, axial
nonuniformity of the filament resulted in the midpoint filament diameter deviating
from Equation 3. Tirtaatmadja & Sridhar (1993) compensated for this effect by
allowing both endplates to move in such a manner that the midfilament diameter
followed Equation 2 (see Section 4.4 below), and the force was measured on the
moving top plate. Spiegelberg et al. (1996) and Solomon & Muller (1996) measured
the force on the stationary lower plate. Szabo (1997) gives appropriate versions of
Equation 12 for each of these configurations. For most polymer solutions tested
in filament-stretching devices to date, inertial effects are very small and the final
term in Equation 12 is also typically neglected.

4.4. Dimensionless Groups

The most important dimensionless groups characterizing the filament-stretching
rheometer are the Hencky strain,ε, characterizing the extent of deformation, and
the Deborah number,De ≡ λε̇0, which characterizes the rate of stretching. In
some publications, the dimensionless productλε̇0 is referred to as a Weissenberg
number; however, we view this as inconsistent with conventional usage (Bird et al.
1987a) and as more relevant to the description of the initial radial shearing flow
between the coaxial disks as they are separated. A standard lubrication analysis
in the limit 30 = L0/R0 ¿ 1 (Spiegelberg et al. 1996) gives the magnitude of
the radial deformation rate as ˙γ = ∂υr /∂z∼ ε̇0/3

2
0, and hence, the Weissenberg

number is more properly defined asWi= λγ̇ = De/32
0. Several computational

analyses (Yao & McKinley 1998, 2000; O. Harlen, unpublished results) have
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shown that a homogenous uniaxial extensional flow can most readily be generated
using initial aspect ratios30 ≈ 1, and hence, these two dimensionless measures of
the rate of deformation are frequently equivalent.

It is also instructive to nondimensionalize Equation 12 and examine the relative
magnitudes of each term in comparison with the viscoelastic stress. If a viscous
scaleη0ε̇0 is chosen for the stress, then three dimensionless groups arise from this
equation. These groups can be expressed in terms of the familiar Reynolds num-
berRe= ρε̇0R2

0/η0, the Bond numberBo= (ρgR2
0/σ )(L0/R0), and the capillary

numberCa≡ η0ε̇0R0/σ .
For experiments with mobile fluids in a 1 g environment, gravitational “sagging”

is a particularly important issue in filament-stretching devices. As the experiment
progresses, there is a weak axial flow along the column so that more than 50%
of the fluid volume lies below the midplane where the midpoint radiusRmid(t) is
measured. This can lead to significant systematic errors and even a change in sign in
the Trouton ratio determined from Equation 12. Anna et al. (2001) present a detailed
discussion of this gravitational sagging and show that it becomes significant when
capillary forces in the neck near the axial midplane are no longer able to overcome
the axial body force. This corresponds to a point at whichBo/Ca∼ O(1) and
leads to a critical strain rate ˙εsag≈ ρgL0/η0, which must be exceeded in order to
minimize the role of gravitational sagging. Because the viscosity and the relaxation
time of a polymeric fluid both depend on the concentration and molecular weight
(Bird et al. 1987a,b, Larson 1998), this limits the range of Deborah numbers that
can be explored.

For dilute solutions described by the Zimm theory, this range of Deborah num-
bers can be expressed as

De ≥ De(dilute)
sag ≡ λZρgL0

η0
= 2.369[η]MwρgL0

(NAkBT)(1 + [η]c · · ·) , (13)

whereNA is Avagadro’s number andMw is the molecular weight of the chain (Anna
et al. 2001). The intrinsic viscosity or “limiting viscosity number” [η] can also be
expressed in terms of the molecular weight using the Mark-Houwink relationship
[η] = K ′(Mw)a in whichK′ anda are tabulated constants for a particular polymer-
solvent pair (Brandrup & Immergut 1997).

For entangled polymer solutions and melts, the (typically) very large viscosi-
ties lead to very low critical values of ˙εsag, and gravitational effects are, at first
glance, less of an issue. However, the relaxation time also increases concomitantly
with molecular weight, and hence, the range of Deborah numbers accessible with-
out significant gravitational effects is still constrained. From reptation theory, the
zero-shear viscosity and relaxation time for a well-entangled material are inter-
connected byη0 ≈ G0

Nλd, whereλd ∼ (Mw/Me)3.4 is the reptation time andG0
N is

the plateau modulus (Doi & Edwards 1986). For an entangled polymeric system
of concentrationc, the rubbery plateau modulus is independent of the molecular
weight of the chain but can be expressed in terms ofMe, the molecular weight
between entanglements (Doi & Edwards 1986). The range of Deborah numbers



21 Nov 2001 10:18 AR AR151-15.tex AR151-15.sgm ARv2(2001/05/10)P1: GJC

FILAMENT-STRETCHING RHEOMETRY 389

achievable in a filament stretching device is thus

De ≥ De(conc)
sag ≡ λdρgL0(

G0
Nλd

) = 5

4

(
ρ

c

)2 MegL0

NAkBT
. (14)

For a polystyrene melt (Me ≈ 13,300 g/mol) in a filament-stretching device of scale
L0 = 1.5 mm, we thus findDesag≈ 0.024. For entangled polymer solutions, the
plateau modulus decreases with dilution from the melt according to Equation 14,
and as a result,Desag increases rapidly. For a 10 wt% solution,Desag≈ 2.4. This
can severely constrain the lower range of Deborah numbers accessible in polymer
melts.

4.5. Velocity Compensation

In an ideal extensional flow, the filament radius remains uniform along the length
of the elongating fluid cylinder. However, when an exponentially increasing length
is programmed into a filament-stretching device, analysis of image profiles such
as those in Figure 4 do show some small but systematic deviations from such an
expectation, especially near the filament ends. These deviations arise from the
fixed endplates and cause the actual deformation history experienced by the fluid
elements near the axial midplane to be different from that imposed at the rheometer
endplates.

The magnitude and form of this discrepancy depend intimately on the rheo-
logical properties of the fluid filament (Solomon & Muller 1996). A typical result
from an experiment in which the filament length follows Equation 2 is shown in
Figure 5. Such an experiment has been termed a type I experiment (Kolte et al.
1997), and henceforth we use their nomenclature. It is evident that the diameter
of the filament does not follow Equation 2, and the instantaneous deformation
rate experienced by the fluid element at the axial midplane of the filament is
given by

ε̇mid(t) = − 2

Dmid(t)

d Dmid(t)

dt
. (15)

Because the ends are pinned at the disk radius, the middle regions of the elon-
gating liquid bridge must flow radially inward at a faster rate to conserve volume.
This implies that the strain rate computed from analysis of midplane diameter
data (Equation 15) and the value derived from filament length data (Equation 2)
are not identical. A lubrication analysis (see Section 5.2 below) shows that the
radial strain rate is, in fact, initially 50% larger than the axial strain rate. At longer
times and larger aspect ratios, the difference becomes much smaller. The Hencky
strain accumulated by the midpoint element at any timet can be found by direct
integration of Equation 15 to give

εmid =
∫ t

0
ε̇mid dt′ = 2 ln(D0/Dmid(t)), (16)
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Figure 5 Radius profiles for a dilute polystyrene solution during fila-
ment stretching using a type I and a type II experimental protocol (see
text for details) (Reproduced from Solomon & Muller 1996).

where D0 = 2R0 is the diameter of the endplates. In a type II experiment, the
temporally inhomogeneous strain rate based on the midfilament diameter rather
than the length is used to compute the viscosity. Kolte et al. (1997) discuss the
errors in such experiments and conclude that a type III experiment in which the
length profileL(t) is continuously adjusted to ensure that the diameter profile
follows Equation 2 is almost equivalent to an ideal uniaxial deformation. In other
words, this ensures that the fluid elements near the midplane experience a motion
with constant stretch history. Tirtaatmadja & Sridhar (1993) and Spiegelberg et al.
(1996) achieved such a result empirically by using velocity profiles that are sums
of two exponential functions: For a strongly strain-hardening material, this ensures
that the diameter, to a good approximation, follows Equation 2. This trial and error
procedure can be replaced by a more systematic velocity compensation or “master
plot” technique (Orr & Sridhar 1999, Anna et al. 1999) that uses the following
relationship relating the filament length and diameter,

(L(t)/L0) = (D0/D(t))p(t). (17)

This relationship can be derived from a slender-body theory for the elongating
filament (see Section 5.2 below), and the time-varying index spans the range
0≤ p(t) ≤ 2. Ideal elongation of a cylinder givesp= 2, and the lubrication theory
(as noted in Section 5.2 below) givesp= 4/3 at short times.

In general, for viscoelastic fluids, the functionp(t) can be evaluated by con-
ducting a type I experiment and generating a kinematic master plot of the endplate
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Figure 6 A kinematic master plot showing the evolution in the imposed axial strain
εL and the resulting strainεmid experienced by fluid elements at the midplane of the
elongating filament (Reproduced from Anna et al. 2001). The dashed and solid lines
indicate the ideal and lubrication solutions, respectively.

strainεL = ln(L(t)/L0) as a function of the effective or actual midplane strain
εmid given by Equation 16. A typical master plot is shown in Figure 6. For viscous
Newtonian fluids in the absence of surface tension, the mapping functionp(t) then
allows the direct calculation of the required profileL(t) for any desiredD(t). The
incorporation of constitutive nonlinearities or capillarity mean that this inversion
usingp(t) is not unique. However, numerical computations (McKinley et al. 2001)
show that an “open-loop” control based on successive substitution [in which thei-th
realizationp[i ] (t) is used to generate the next approximationL [i +1](t) to the desired
profile] rapidly and robustly converges. Anna et al. (1999) also discuss the imple-
mentation of a real-time “closed” control scheme to achieve constant strain rates;
however, such approaches have to date proved dynamically unstable.

Using such techniques to achieve constant effective strain rates at the mid-
plane of the filament allows reliable measurements for the transient uniaxial ex-
tensional viscosity function to be systematically obtained. A representative result
from a recent interlaboratory comparison of filament-stretching devices using a
polystyrene-based elastic test fluid is shown in Figure 7. The data show a rapid
stress growth at zero time and a plateau at the expected initial Trouton ratio of
3ηs/η0. When the total strain exceedsε ∼ 2, the polymer molecules uncoil and
the polymeric stress grows rapidly before reaching a steady state at a strainε ≈ 6.
Figure 7 demonstrates excellent agreement between laboratories and is in marked
contrast to the disappointing results of the M1 study (James & Walters 1993).
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Figure 7 The transient extensional viscosity of a dilute (0.05 wt%) solution of
monodisperse polystyrene (Mw= 2× 106 g/mol) (Reproduced from Anna et al. 2001).

The constitutive implications of such measurements of the transient extensional
viscosity are discussed in detail in Section 6.

5. DYNAMICS OF FILAMENT-STRETCHING DEVICES:
COMPUTATIONAL RHEOMETRY

Numerical analyses of the fluid motion in filament-stretching devices have been in-
valuable in confirming that a true homogeneous uniaxial elongation can indeed be
achieved. Computational rheometry allows one to systematically vary the magni-
tude of dimensionless parameters, such as the initial aspect ratio, the Bond number,
capillary number, or Reynolds number, and then compare the rheological output
of the device (computed using Equation 12) with the result expected in ideal ho-
mogeneous uniaxial elongation. Similar computational-rheometry studies of the
opposed-jet extensional rheometer (Fuller et al. 1987) have shown that although
this device can be used to index the relative response of one complex fluid to an-
other it cannot quantitatively determine the true Trouton ratio of a material, even
in the limiting case of creeping flow of a Newtonian fluid (Dontula et al. 1997).
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By contrast, numerous recent computational studies have shown that with judi-
cious choice of experimental parameters (such as the initial aspect ratio) filament-
stretching devices can accurately determine the full transient extensional viscosity
functionη+

E (ε̇0, t). The most important difference between filament-stretching de-
vices and other extensional rheometers is that the full Lagrangian history of the
material element located at the axial midplane of the device is followed in time.
By contrast, spinline rheometers and other open-flow devices may be steady in an
Eulerian sense, but fluid elements experience a complex and unsteady deformation
history as they flow through the measuring volume.

5.1. Numerical Implementation

Numerical analysis of the dynamics in a filament-stretching device requires time-
dependent simulations of a free-surface motion of a viscoelastic fluid. Such compu-
tations were impractical until just a few years ago. However, it is beyond the scope
of this review to discuss details of recent developments in the numerical algorithms
involved; the reader is instead referred to a recent survey by Baaijens (1998). The
sole simplifying features of the present problem are that (a) the initial conditions of
the quiescent liquid bridge are well defined and that (b) the initial non-Newtonian
stress is zero. The first attempts to simulate such a motion were made by Shipman
et al. (1991); however, only small Hencky strains (ε ≤ 1) could be attained with
computational resources at the time. More recently, simulations to large Hencky
strains have been achieved using adaptive Eulerian finite-element methods for dif-
ferential viscoelastic constitutive equations (Sizaire & Legat 1997; Sizaire et al.
1999; Yao et al. 1998, 2000) and a Lagrangian finite-element approach for inte-
gral constitutive equations (Kolte et al. 1997, Hassager et al. 1998). Results have
also been obtained using a boundary-element method (Gaudet & McKinley 1998)
and a hybrid Brownian-dynamics/finite-element (CONNFESSITT) algorithm
(J. Cormenzana, A. di Cecca, J. Ramirez, & M. Laso, submitted).

5.2. Results From Numerical Analysis
of Filament-Stretching Rheometers

LUBRICATION THEORY The evolution in the filament profiles predicted for three
different constitutive models (N, Newtonian; G, Giesekus; O, Oldroyd-B) are
shown in Figure 8 over a range of strains. At low Hencky strains, all three fluid
columns look very similar. For viscous fluids, a lubrication analysis can be used to
analyze the kinematics even though the aspect ratio3(t) is not necessarily small.
As a result of the no-slip boundary conditions that apply across the surface of the
endplates, a shearing motion, which is essentially a “reversed squeeze flow,” is
induced (Spiegelberg et al. 1996). The axial velocity profile in the thread becomes
cubic rather than linear inz, as required by the kinematics in Equation 1. If the
imposed axial deformation rate is here denotedĖ [such thatL(t) = L0 exp(Ėt)],
then the deformation rate at the midplane as measured by a laser micrometer is
ε̇mid = 3Ė/2 (Spiegelberg et al. 1996) and the endplate position and midplane
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radius are related by the following expression:

(L(t)/L0) = (R0/Rmid(t))
4/3 = exp(Ėt). (18)

The first equality gives the equation of the lubrication profile on the kinematic
master curve, as discussed in Section 4.5. The net force exerted on the endplate
at t = 0+ also depends on the initial aspect ratio of the filament and serves as an
indication of the nonideality of the flow at the start of the experiment. Numerical
computations (Yao et al. 1998) show that for viscous filaments the kinematics
remain in this lubrication regime untilε ≈ 1.

SLENDER-BODY THEORY At large strains (ε ≥ 2), experimental observations such
as those in Figure 4 show that the elongating fluid columns become increasingly
slender and axially uniform. The development of an appropriate self-consistent
equation set for slender viscoelastic fluid threads is described by Schultz (1982),
and a Lagrangian formulation that is particularly convenient for integration of typi-
cal nonlinear differential viscoelastic constitutive equations is detailed by Renardy
(1994). In the development of these equations, the kinematics of the thread are
taken to be one dimensional and of the general form

νz = f (z); νθ = 0; νr = −1

2
rf ′(z), (19)

which automatically satisfies continuity and reduces the problem to the determina-
tion of f (z) plus (in the case of non-Newtonian filaments) the integration of a set of
coupled nonlinear ordinary differential equations for the unknown components of
the stress tensor (see Phan-Thien & Tanner 1984). The ideal homogeneous solution
corresponds tof (z) ≡ ε̇0z.

A consequence of Equation 19 is that the velocity-gradient tensor becomes in-
creasingly one dimensional and extension dominated as the filament elongates. If
the axial velocity isO(ε̇0L), then the shearing-velocity gradient (∂νr /∂z) arising
from the last term in Equation 19 is onlyO(ε̇0R/L). For exponential stretching,
R∼ R0 exp(−ε/2) andL ∼ L0 exp(ε), and the transverse velocity gradients there-
fore decay very rapidly with strain. Contour plots of the deformation gradients
determined from numerical simulations show that the radial variations are indeed
negligible, except in small regions of axial extent1Z ∼ R near either endplate
(Sizaire & Legat 1997, Kolte et al. 1997, Yao & McKinley 1998). In these regions,
two-dimensional shearing flows arise owing to theO(1) combined effects of ax-
ial curvature and the no-slip boundary conditions on the endplates. Such effects
cannot be captured in the one-dimensional kinematics of Equation 19, and this
solution is best thought of as an “outer solution” for axial scalesz∼ L, which
must be matched to a local “inner solution” on scalesz∼ R near either endplate
(Olagunju 1999). Despite this deficiency, numerical calculations show that the
slender-filament equations provide a good approximation to the full equation set
(Yao et al. 1998, Yildirim & Basaran 2001).
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STRESS BOUNDARY LAYERS: THE ROLE OF INITIAL CONDITIONS One important
outcome of full numerical simulations that cannot be readily captured by one-
dimensional models has been the recognition that the choice of initial aspect ratio,
30 ≡ L0/R0, is critical in ensuring that the flow generated in a filament-stretching
device faithfully emulates the idealized uniaxial exponential kinematics desired
for rheometry. Simulations confirm that the relative strength of the shearing com-
ponents compared to the extensional terms in the kinematics of the initial squeeze
flow areO(3−1

0 ). The shearing deformation is greatest near the free surface, and
this leads to radial variations in the initial microstructural deformation accumu-
lated by fluid elements (Yao et al. 1998, Sizaire et al. 1999). In the supplementary
material, we show that, forDe> 0.5, initial radial nonhomogeneities in the initial
polymer configurationA(0)

zz (r ) never decay but are simply advected forward in time
(cf. Equation B.8). Because the magnitude of the stretch is directly connected to the
polymeric stressτzz, the evolution in this radial gradient leads to the development
of sharp boundary layers in the axial stress near the free surface of the filament
(Yao et al. 1998, Sizaire et al. 1999). Experimental measurements of integrated
quantities, such as the birefringence or the total axial force near the midplane,
will thus be appropriately weighted averages of this radial distribution. O. Harlen
(unpublished results) has shown that the effects of such radial variations can be
minimized by selecting30 ≈ 1.

THE TRANSIENT EXTENSIONAL VISCOSITY Having determined the optimal aspect
ratio30 of the device and determined the correct velocity profileL̇ p(t) to ensure
ideal uniaxial kinematics in the filament, computational rheometry can be used
to predict the transient extensional stress growth of a fluid sample elongated in a
filament-stretching rheometer. This of course requires specification of an appro-
priate constitutive model for the fluid. The linear viscoelastic properties character-
izing a non-Newtonian fluid can be independently determined in small amplitude
oscillatory shearing (SAOS) deformations, and the nonlinear properties of some
constitutive equations can be fully determined from fitting data in large amplitude
deformations such as steady-shear flow or creep. The extensional stress growth
can then be predicted without adjustable parameters; however, some constitutive
models contain model parameters that do not affect the shear rheology and that can
thus only be ascertained in extensional flows. As an example, Kolte et al. (1997)
show the predicted and measured evolution in the transient extensional viscosity
for a concentrated polyisobutylene solution that can be accurately described by the
Papanastasiou-Scriven-Macosko (PSM) model. Filament-stretching devices thus
fulfill an important rheometric role as a way of determining nonlinear fluid proper-
ties that can then be used as parameter inputs to numerical simulations of complex
two-dimensional flows.

5.3. Necking and Filament Failure

Experiments in filament-stretching devices show that it is not possible to elongate a
viscous or viscoelastic fluid thread to arbitrarily large Hencky strains owing to the
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onset of instabilities that lead to breakup of the fluid column. Similar viscoelastic
extensional instabilities have been discussed in the context of extensional rheol-
ogy of polymer melts by Meissner (1985a) and are reviewed in detail by Malkin
& Petrie (1997). The instabilities can arise from either the interfacial tension of
the fluid or the intrinsic elasticity of the fluid column and may be conveniently
subdivided into two classes: (a) “necking” or capillary instabilities that arise owing
to the exponential growth of a surface defectδR(z) of a given axial wavelength.
The filament radius subsequently decreases to zero at a given point (typically
near the axial midplane) and the filament ruptures into two topologically distinct
domains; and (b) endplate instabilities that arise from the complex deformation
field in the fluid near a rigid boundary. Such instabilities may be cohesive (i.e.,
occur in the fluid itself, typically owing to an interfacial fingering instability) or
adhesive (i.e., occur at the interface owing to local cavitation events (Crosby et al.
2000). Because the filament profile and the magnitude of the tensile stresses that
develop in viscoelastic fluids undergoing homogeneous elongation vary dramati-
cally with both the Deborah number and the total Hencky strain accumulated, it is
perhaps not surprising that each of these types of instability have been observed
in filament-stretching rheometry. The three most common modes of breakup in
filament stretching rheometers are detailed below.

CAPILLARY BREAKUP OF A VISCOUS THREAD For viscous Newtonian filaments un-
dergoing elongation, the initial lubrication flow induced by the endplates ensures
that the filament is always narrowest at its midplane. Using Renardy’s slender-
filament formulation, Hassager et al. (1998) prove that in the absence of surface
tension the filament cannot fail (i.e., neck down to zero radius) in finite time. How-
ever, numerical calculations, including capillarity, indicate that the filament necks
increasingly rapidly owing to the large capillary pressure in the neck (Hassager
et al. 1998, Yao et al. 1998). When this local necking rate (given by Equation 15)
is faster than the external scale, the motion near the midplane will be governed by
a local self-similarity solution and undergo a finite time singularity. Such capillary
instabilities are reviewed in detail by Eggers (1997).

ELASTIC THREAD BREAKUP AND RUPTURE Incorporating strain hardening may,
at first glance, be expected to stabilize an elongating filament against capillary
breakup. Such ideas are typically encapsulated in heuristic concepts such as
“spinnability” of polymeric fluids (Ide & White 1976). However, although both
the Oldroyd-B and Giesekus viscoelastic constitutive models are strain hardening,
the evolution in the column profiles is noticeably different, as shown in Figure 8.
Computations with the Oldroyd-B fluid show an increasing axial uniformity, and it
becomes progressively harder to stretch the strain-hardened central region. Linear-
stability analysis of the slender-filament equations (Olagunju 1999) shows that the
Oldroyd-B fluid is linearly stable to perturbations forDe ≥ 0.5 even in the pres-
ence of surface tension. The addition of nonlinear terms serves to make the filament
less stable in uniaxial elongation (D.O. Olagunju, unpublished work). This can be
observed in the simulation with the Giesekus fluid shown in Figure 8, and the
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filament, in fact, necks at a faster rate than the nonstrain-hardening Newtonian fil-
ament owing to elastic recoil near the end regions (Yao et al. 1998). Using the PSM
integral model beyond a critical strain, Hassager et al. (1998) found an even more
pronounced example of unstable necking. This purely elastic necking instability
at very highDe can be understood in terms of the Consid`ere necking criterion
from solid mechanics (Hart 1967, Malkin & Petrie 1997). For purely elastic flu-
ids, the Consid`ere criterion allowing homogeneous elongation or “spinnability”
of an elastic fluid criterion can be reexpressed in terms of the familiar extensional
viscosity function as (

d ln η+
E

dε

)
+

(
d ln η+

E

d ln ε̇0

)
≥ 1. (20)

The extensional viscosity of polymeric fluids is typically only a very weak
function of the stretch rate (or Deborah number). For such materials, spinnability
is thus equivalent to requiring that the extensional viscosity increases at least
exponentially with Hencky strain (McKinley & Hssager 1999). At large strains, the
extensional viscosity approaches its steady-state value, the first term in Equation 20
becomes negligible, and the stability to necking perturbations requires that the
extensional stress increase linearly with ˙ε0. By contrast, reptation theories predict
that the extensional stress (not the viscosity) saturate to a constant value. Entangled
polymeric fluids are thus expected to be prone to necking instabilities; a situation
that was anticipated by Doi & Edwards (1978).

ENDPLATE INSTABILITY AND DECOHESION Although strongly strain-hardening flu-
ids (such as the dilute polymer solutions depicted in Figures 4 and 7) are stabilized
against necking instabilities, they are prone to cohesive or adhesive instabilities
near the rigid endplates. Such dynamical phenomena are important in understand-
ing the functioning of pressure sensitive adhesives, and Crosby et al. (2000) have
recently discussed the critical conditions and established useful operating diagrams
for onset of different types of instability. For viscoelastic fluid samples with very
small aspect ratios or for rubbery viscoelastic solid samples, it is typical to observe
the onset of an adhesive instability in the form of cavitation bubbles distributed
across the plate surface. The bubbles nucleate owing to the large negative (gage)
pressure generated between the rigid disks, and as the plates are separated further,
they evolve into strain-hardening viscoelastic fibrils (Gay & Leibler 1999). By
contrast, for viscous fluids, the initial perturbations arise from the Saffman-Taylor
meniscus instability and develop as a result of the unfavorable pressure gradient
across the interface that results from the reverse squeeze flow. This gradient can
become very large for small aspect ratios30 ¿ 1; however, for larger aspect ratios,
the pressure gradients are small, and Newtonian filaments remain axisymmetric
near the endplates as they neck down near the midplane.

For strongly strain-hardening viscoelastic fluids, a new mode of peeling instabil-
ity is observed, as shown in Figure 9a. The mechanism for this symmetry-breaking
instability is still not definitively resolved, with both adverse pressure gradients
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Figure 9 Endplate instability in elastic materials. (a) Images of the free surface of a PIB/PB
Boger fluid filament elongated atDe= 2, as viewed through a transparent glass fixture. The
field of view is approximately 4 mm× 4 mm (Reproduced from Spiegelberg & McKinley
1996); (b) three-dimensional time-dependent simulation showing elastic endplate instability
in the UCM model. Plan view showing cross sections atz/R0= 0, 0.05, 0.1, 0.2, 0.5, 1, and
12.1 atDe= 1 and with a Hencky strain ofε = 2.5 (Reproduced from Rasmussen & Hassager
1998).
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induced near the rigid endplate by the large tensile elastic stresses in the fluid
column (Spiegelberg & McKinley 1996, Rasmussen & Hassager 1998) and com-
pressive azimuthal stresses leading to a local buckling of the inward-flowing fluid
(Arun Kumar & Graham 2000) proposed as possible driving forces. Varying the
geometry of the endplates to reduce the local axial curvature of the filament can
mitigate the onset of instability, and this appears to support the importance of the
pressure gradients near the endplates (Gupta et al. 2000). As the filament is elon-
gated, material is progressively withdrawn from the quasi-static fluid reservoirs (of
scaleR) near either endplate. Ultimately, observations (Spiegelberg & McKinley
1996) and calculations (Kolte et al. 1997) show that the free surface may locally
form a “dimple” and become a nonmonotonic function ofz. A time-dependent
three-dimensional numerical simulation of this disturbance growth using the upper
convected Maxwell (UCM) model is shown in Figure 9b. The absence of a solvent
viscosity in these calculations means that the predicted growth rate of the perturba-
tions is faster than observed experimentally, whereas the omission of surface ten-
sion leads to a lack of wavelength selection. More recent computations (Rasmussen
& Hassager 2001) show that the most unstable wavenumber is a function of the
elasto-capillary numberφ ≡ De/Ca= λσ/(ηR0). This dimensionless parameter
is a material property that varies with the elastic modulusG ≈ η/λ of the fluid. As
G is increased, the most unstable wavenumber of the fibrils also increases, in line
with experimental measurements using commercial pressure sensitive adhesives
in whichφ ¿ 1 and the azimuthal wavenumber is very large (Ferguson et al. 1997).

6. FILAMENT STRETCHING AND MOLECULAR
RHEOLOGY OF DILUTE SOLUTIONS

The numerical simulations and experimental protocols described above have shown
that it is possible for filament-stretching extensional rheometers to quantitatively
determine the evolution in the extensional viscosity of a viscoelastic fluid as a func-
tion of Hencky strain and Deborah number. These experimental measurements can
then be compared and contrasted with molecularly based models that describe the
evolution of microstructure in the fluid. The rheological character of a particu-
lar polymer/solvent pair (i.e., dilute or concentrated, unentangled or entangled)
can be conveniently summarized on a concentration–molecular-weight diagram
(Graessley 1980). The range of concentrationsc and molecular weightMw of the
test fluids used to date in filament-stretching devices have been tabulated and are
represented on ac–Mw Graessley diagram that is available online (see Appendix
A, available as Supplemental Material: Follow the Supplemental Material link
on the Annual Reviews homepage at http://www.annualreviews.org). The solvent
used in preparing a dilute polymer solution suitable for filament stretching must
be highly viscous to ensure that gravitational sagging is unimportant and that the
tensile forces are measurably large. Consequently, most experiments have focused
on the ideal elastic liquids known as Boger fluids (Prilutski et al. 1983).
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Figure 10 The transient Trouton ratioTr+ = η+
E/η0 for a semidilute solution of 0.31 wt%

PIB in PB stretched over a range of strain rates 0.82≤ ε̇0≤ 9s−1 and plotted as (a) a function
of elapsed timet and (b) as a function of total Hencky strainε = ε̇0t (Reproduced from
Tirtaatmadja & Sridhar 1993).

6.1. Extensional Stress Growth in Dilute Polymer Solutions

The most direct measurement to make in a filament-stretching rheometer is the time
evolution in the tensile stress1τ+(ε̇0, t) during uniaxial elongation at a constant
imposed deformation rate ˙ε0. Representative results for a semidilute polyisobuty-
lene/polybutene (PIB/PB) Boger fluid are shown in Figure 10 over a range of strain
rates. When plotted as a function of time (or alternativelyt/λ), the onset of strain
hardening is observed at progressively earlier times as ˙ε0 increases. However, when
replotted as a function of the Hencky strain (cf. Figure 10b), the data approximately
superimpose, and the material can rightly be referred to as a nonlinear elastic liquid
because the extra stress can be simply thought of as1τ (ε̇0, ε) ∼= η+

E (ε)ε̇0 with a
linear dependence on strain rate and a material coefficient that depends principally
on the Hencky strain.

At short times, the data show that the Trouton ratio is small and approximately
constant, and the extra stress is provided solely by the viscous Newtonian solvent.
For a truly dilute polymer solution (c< c∗), the solvent viscosity is onlyO(c)
different from the limiting zero-shear-rate viscosity of the solution. However, as
the polymer concentration increases, the initial solvent contribution diminishes
in importance, and this initial plateau in the Trouton ratio decreases in relative
magnitude. After an elapsed Hencky strain of 2≤ ε ≤ 3, the polymeric contribution
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to the stress exceeds that of the solvent, and the Trouton ratio climbs. Very recently,
bead-spring computations by Li & Larson (2001) incorporating excluded-volume
effects have shown that the precise value of the strain at which this increase inTr+

occurs is a very sensitive function of the excluded-volume exponentν and, thus,
of the thermodynamic quality of the solvent chosen.

The general trends in the data are in good qualitative agreement with expecta-
tions of nonlinear bead-spring kinetic theory. The extent of the strain hardening
observed before the steady-state extensional viscosity is approached is of the cor-
rect order of magnitude, with a weak dependence onDe. However, numerous
researchers have shown that systematic differences appear when quantitative com-
parisons with the FENE-P dumbbell or the FENE-PM multibead-spring model are
attempted. The parameters for these models can all be determined a priori from
molecular properties of the chain and linear viscoelastic measurements of the re-
laxation spectrum for the fluid. Although the general trend is similar, the models
consistently underpredict the stress growth at intermediate strains and predict a
much more rapid transition to the final steady state. Empirical fits to the measured
extensional data can readily be obtained using multimode bead-spring models in
which the extensibility of each mode is selected arbitrarily (Tirtaatmadja & Sridhar
1995, Verhoef et al. 1998). However, as we show in the following sections, the
molecular origins of this discrepancy have only been elucidated over the past 4
years through the careful and systematic combination of optical measurements of
flow-induced birefringence, Brownian dynamics simulations of multilink chains,
and single-molecule fluorescence-imaging experiments.

6.2. The Effects of Concentration and Molecular Weight

The general trends outlined above are also observed for a number of dilute and
semidilute linear macromolecules [PIB, PS, polyacrylamide (PAA)] over a wide
range of molecular weights and concentrations. Gupta et al. (2000b) have per-
formed an extensive study using monodisperse polystyrene solutions and show
how the transient extensional viscosity results scale withc and Mw. The final
steady-state values of the scaled extensional viscosity can be represented as a
function of the Deborah number, as shown in Figure 11. The steady-state exten-
sional viscosity increases dramatically atDe∼ O(1) and reaches a maximum value
atDe∼ 10. At higher Deborah numbers, the steady-state extensional viscosity ap-
pears to decrease again. Such a response is expected in entangled polymer melts;
reptation theories (Doi & Edwards 1986) show that the extensional stresses satu-
rate at a constant value, and thus the Trouton ratio scales asTr ∼ De−1. Sim-
ple dumbbell theories for dilute solutions giveTr ∼ De0; however, more complex
constitutive models that incorporate configuration-dependent drag on the chain
(arising from the constraining effects of other nearby chains, for example) can
show a maximum in the extensional viscosity (Bird & Wiest 1995). Asymptotic
analysis of the Wiest model suggestsTr ∼ De−1/2 is in good agreement with the
experimental data (Gupta et al. 2000b). The results in Figure 11 thus indicate that
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Figure 11 The variation in the steady-state extensional viscosity with increasing
Deborah number for a series of high molecular-weight dilute polystyrene solutions.
The line shows the asymptotic prediction of the Wiest model (Reproduced from Gupta
et al. 2000b).

accurately modeling hydrodynamic interactions (both intra- and interchain) is very
important in strong elongational flows.

6.3. Stress Relaxation and Molecular Hysteresis

As we have indicated in Section 4.2, extensional stress relaxation following the
cessation of stretching at timet1 can also be measured in a filament-stretching
rheometer. After the endplates are stopped at a predetermined maximum strainε1,
the force rapidly decays. However, becauseρgL(t1)/1τp(t1) ¿ 1 and (σ/Rmid(t1))/
1τp(t1) ¿ 1, the large elastic stresses in the elongated filament retard the onset
of both gravitational sagging and capillary-induced drainage. The tensile force
and column radius can thus be used to compute the tensile-stress relaxation func-
tion 1τ−(ε̇0, (t − t1)), whereε̇0 is the imposed stretch rate during the previous
extension. Experiments show this relaxation is much faster than that measured fol-
lowing cessation of steady-shear flow at a kinematically equivalent steady shear
rate of γ̇0 = √

3ε̇0 (Spiegelberg & McKinley 1996, Orr & Sridhar 1996). The
rapid decrease in the stress following uniaxial elongation arises from the nonlin-
earity in the elastic-spring law for the chain when it is near full extension. The
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increased stiffness in the spring reduces the effective relaxation time toγ1/ f (tr A),
and asymptotic analysis of the FENE-P dumbbell equation shows that, although
the polymeric stretchtrA relaxes exponentially with this effective time constant,
the polymeric stress in fact decreases as (t − t1)−1/2 (Doyle et al. 1998). Brownian
dynamics simulations of bead-rod chains support this conclusion and show that
the stress may reduce by a factor of 50 in an elapsed time as small as1t ∼ 0.5λ.
The simulations and asymptotic analysis show that the relaxation curves measured
following elongation to steady state at different stretch rates are, in fact, all part of
a universal function and can all be superimposed on a single master curve by the
application of a single additive shift factor in time given bytr = (t − t1) + aε, with
aε = 1/(8De2) (Doyle et al. 1998).

The consequences of these differences in the evolution in the polymeric con-
formation (or end-to-end length of the chain) and the resulting stress in the
chain during stretching and relaxation are manifested macroscopically as astress-
conformation hysteresis. Fiber-spinning experiments (Talbott & Goddard 1979)
had previously shown that the stress-optical rule (see Equation 7) becomes invalid
in strong extensional flows of polymer solutions. However, the flow in a spin line
is a steady Eulerian flow, and what had not been observed to date is that in a strong
transient flow the coefficientC, in fact, becomes a functional of the full deformation
history. This has now been demonstrated both experimentally and numerically in
unsteady flows with either uniaxial or planar kinematics (Doyle et al. 1998, Kwan
& Shaqfeh 1998). The dimensionless anisotropy in the molecular conformation
1A can still be determined optically by measuring the flow-induced birefringence
(Wiest 1995). Assuming that, on the level of a single spring, the local segments
have a Gaussian distribution leads to the following expression for the conformation

〈QzQz〉 − 〈Qr Qr 〉
(Nb2/3)

= 1A(t) = 1n′(t)
CνkBT

, (21)

whereC is the usual stress-optical coefficient and the equilibrium coil size of the
bead-spring chain isR2

g = Nb2. The stress-optical rule does not need to be invoked
because the evolution in the actual polymeric stress in the filament is indepen-
dently measured using the mechanical force transducer. Experimental and numer-
ical results for several dilute solutions of polystyrene are shown in Figure 12.
During transient uniaxial elongation (upper curves), the total stress increases
much more rapidly than the Hookean or linear-elastic contribution to the stress
1τe = νkBT1A. When stretching stops, the total stress drops much more rapidly
than the birefringence (lower curves).

6.4. Modeling of Stress-Conformational Hysteresis

Stress-conformation hysteresis is completely absent in simple closed-form vis-
coelastic constitutive equations such as the Oldroyd-B, FENE-P dumbbell, or
FENE-PM bead-spring chain models. It is, however, captured by numerical calcu-
lations with more realistic models having additional internal degrees of freedom



21 Nov 2001 10:18 AR AR151-15.tex AR151-15.sgm ARv2(2001/05/10)P1: GJC

FILAMENT-STRETCHING RHEOMETRY 405

Figure 12 Experimental measurements and numerical simulations of stress-
conformation hysteresis in dilute polystrene solutions during rapid elongation
(Reproduced from Sridhar 2000).

such as FENE dumbbell ensembles, FENE-P chains, and Brownian dynamics
simulations of bead-rod or bead-spring chains. The area contained within the hys-
teresis loops corresponds to additional mechanical energy that is dissipated during
a strong unsteady flow and that is not recovered elastically; a situation that was
first considered by Ryskin (1987). On a macroscopic level, this extra dissipation
may assist in helping to rationalize systematic differences between computation
and experiment that have been observed in prototypical complex flows such as
settling of a sphere through an elastic liquid or the flow through an axisymmetric
contraction (Rothstein & McKinley 2001). On a microscopic level, this hysteretic
behavior is now known to have at least two sources (Ghosh et al. 2001) as outlined
below:

CONFIGURATIONAL HYSTERESIS Brownian dynamics show that the set of config-
urations experienced by a single bead-rod or bead-spring chain are very differ-
ent during stretching or relaxation. This is shown in the chain configurations of
Figure 13a. For a given end-to-end length, the total stress associated with highly
kinked and locally stretched configurations such as the “yo-yo” is much higher
than that associated with the uniformly “crumpled” and partially relaxed chain
configurations observed during relaxation (Doyle et al. 1998).
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Figure 13 Molecular hysteresis during rapid uniaxial elongation. (a) Conformational
hysteresis: a series of snapshots showing some characteristic conformational states
observed during a Brownian-dynamics simulation of the unraveling and subsequent
relaxation of a 200-link bead-rod chain atDe= 11.4 (Reproduced from Doyle et al.
1998). (b) Distributional hysteresis: transient uniaxial elongation and subsequent relax-
ation of an ensemble of 5000 FENE dumbbells with extensibility parameterL2= 50 at
De= 6.0. The insets show the probability densityψ of finding a dumbbell with a given
value of|Qx| at the indicated times, t1, t2, t3, t4 (Reproduced from Sizaire et al. 1999).

406
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DISTRIBUTIONAL HYSTERESIS On a macroscopic level, the total stress or birefrin-
gence measured experimentally is derived from an ensemble of polymer dumbbells
or chains. In simple models such as the FENE-P dumbbell, this distribution is as-
sumed to be initially Gaussian and remains a (skewed) Gaussian at all future times.
Brownian-dynamics calculations during transient elongation, however, show this
not to be true (Keunings 1997, Sizaire et al. 1999). Samples of the probability
density distribution of the dumbbell lengthψ(|Qx|, t) projected in the stretching
direction are shown as insets to the curve of extensional viscosity vs. mean square
extension in Figure 13b. Even though the polymer chain is modeled as a dumbbell,
with no internal structure, the non-Gaussian distribution of dumbbells during rapid
stretching leads to hysteretic behavior. The shape of this curve looks very similar
to that observed in experiments.

The physical origin of both these sources of hysteresis is the rapid and transient
nature of the stretching process. When the timescale for stretching (˙ε−1

0 ) exceeds
the natural timescale of the molecule, then it can no longer be assumed that the
chain has time to sample its entire conformational phase space, i.e., the stretching is
no longer a quasi-equilibrium thermodynamic process, and the usual bead-spring
force-extension curve is no longer valid during stretching (Ghosh et al. 2001).
It is for this reason that the measured tensile force lies above that predicted by
simple dumbbell models. As stretching proceeds and the chain approaches full
elongation, the total extent of the configurational phase space available contracts
and once again the stress in the chain is well described by a simple FENE-P
dumbbell theory (Doyle et al. 1998).

As a result of the rapid and nonequilibrium nature of the transient elongation, the
initial configuration of every molecule and the distribution of these configurations
then becomes important; a process coined “molecular individualism” (de Gennes
1997). Using fluorescently labeled DNA molecules that are large enough to be
imaged individually, Chu and co-workers documented this process in a series of
seminal publications (see, for example, Smith & Chu 1998, Perkins et al. 1999). A
representative set of images and equivalent Brownian dynamics configurations are
shown in Figure 14 for a true molecular dumbbell configuration. Such simulations
faithfully capture both the unraveling process of individual chains and the evolu-
tion in the distributions of different characteristic configurations such as “loops,”
“folds,” and “dumbbells” (Larson et al. 1999). The source of heterogeneity in the
flow-induced configurations observed at highDe is caused by the distribution of
initial chain configurations.

When the number of repeat units in the simulated chain is rescaled to match
that of longer and more flexible polystyrene solutions and the force-extension
law is changed from that of the worm-like chain (appropriate to DNA chains) to
that of a flexible polymer chain (i.e., the FENE spring), excellent agreement with
experimental measurements of the evolution in the tensile stress is obtained. To
demonstrate this, we show in Figure 15 a comparison between numerical com-
putations with a bead-spring (M = 20) chain and the experimentally measured
stress growth and the subsequent stress relaxation following cessation of stretching
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Figure 14 Individual molecular conformations of fluoroescently labeled DNA mole-
cules during rapid planar elongation and equivalent realizations of a 20-link bead-rod
chain (Reproduced from Larson et al. 1999).

(Li et al. 2000). All of the model parameters are determined from the primary
molecular structure of the chain or from linear viscoelastic experiments, and the
agreement is very satisfying, provided the thermodynamic quality of the solvent
is correctly accounted for (Li & Larson 2001). Some discrepancies remain in the
rapid nonlinear stress relaxation at long times. As the molecular weight or Deborah
number is increased to very large values (De≥ 30), the agreement becomes less
satisfactory, most likely owing to additional effects of hydrodynamic interaction
of the polymer chains with the solvent that are not incorporated in the basic bead-
spring chain model (cf. Section 6.2).

Simulation of complex viscoelastic flows using bead-rod chain or bead-spring
chain models with so many internal degrees of freedom is still not computationally
feasible, and much recent work has been directed at developing simpler, closed-
form models that accurately capture or “coarse-grain” the macroscopic stress-
conformation hysteresis arising from molecular individualism on the microscale.
The first models treated the additional stress arising from the strong local rate of
deformation as explicitly viscous-like (see for example Rallison 1997, Verhoef
et al. 1998), whereas more recent models have attempted to capture the progres-
sive changes in the average internal structure of the molecules during stretching
and relaxation using additional scalar evolution equations (Lielens et al. 1998,
Lhuillier 2001). It remains to be seen which approach best describes kinematically
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Figure 15 Comparison of the transient Trouton ratio measured in a dilute polystyrene
solution (c= 88 ppm,Mw= 10.2× 106 g/mol) with predictions of a 20-bead-spring
chain model (Reproduced from Li et al. 2000).

complex “mixed” flows of polymer solutions containing regions of both strong
elongation and shearing.

6.5. Other Complex Fluid Systems

Filament-stretching devices may also be able to provide corresponding levels of
insight to other classes of complex fluids. As an example, we mention here semidi-
lute and concentrated entangled polymer solutions. Although the linear viscoelastic
and nonlinear shearing properties of such fluids have been extensively explored
(Doi & Edwards 1986), there have been fewer quantitative investigations of strong
extensional flows (Leal & Oberhauser 2000). As a consequence of the two dis-
tinct timescales discussed in Section 3.3, there are three important regimes in the
steady extensional viscosity of entangled fluids, as shown in Figure 16. For low
Deborah numbers,λdε̇0 < 1/2, a Trouton ratio ofTr = 3 is expected and observed.
For Deborah numbers 1/2< λdε̇0 < 3Mw/Me, the tubes constraining the entan-
gled chains are oriented. However, on the timescale of the chain, the flow is weak
(i.e., λRε̇0 < 1/2), and hence, the chains relax inside their tubes and the steady
extensional viscosity in fact decreases belowTr = 3. For even larger deformation
rates, 3Mw/Me < λdε̇0 (corresponding toλRε̇0 > 1), chain stretching and strain
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Figure 16 The steady extensional viscosity of a concentrated polystyrene solution (6.0
wt.%, Mw= 10.2× 106 g/mol) with Z≈ 26 entanglements per molecule and the associated
prediction of the Doi-Edwards-Marrucci-Grizutti (DEMG) model and the Mead-Larson-Doi
(MLD) model (Reproduced from P.K. Bhattacharjee, J. Oberhauser, G.H. McKinley, L.G.
Leal, & T. Sridhar, submitted).

hardening in the extensional viscosity is observed. As indicated in Figure 16,
the experimental measurements are in good agreement with predictions of simple
differential constitutive models for entangled polymer solutions. This crossover—
from extension thinning to extension thickening—also leads to an exchange in
the observed mode of elastic instability, from elasto-capillary necking to fibrillar
peeling instability at the endplate whenλRε̇0 ≈ 1.

Filament-stretching tests have also been made on other complex fluid systems
including liquid crystal polymer solutions (Ooi & Sridhar 1994), associative poly-
mer solutions (McKinley 2000), and entangled star polymer solutions (X. Yee &
T. Sridhar, submitted). However, space precludes further discussion of the results.

7. OUTLOOK

In the present article, we attempt to provide an overview of the kinematic con-
siderations that must be incorporated in designing filament-stretching rheometers,
the dynamics of the resulting motion for non-Newtonian fluids exhibiting strain
hardening, and finally, what extensional rheometry measurements have been able
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to teach us about the physics of rapid deformations in dilute polymer solutions
as well as the constitutive equations we use to model such flows. The filament-
stretching device has matured into a reliable method of measuring the rheological
response of mobile liquids to a nearly ideal extensional deformation. The kine-
matics of the flow effectively isolate extensional effects from those of shearing,
and it is hoped that this technique will lead to increased reporting of extensional
rheological properties alongside the now standard viscometric data.

Much work remains to be done in understanding the fluid dynamics of the vis-
coelastic free-surface instabilities that ultimately lead to filament failure at large
strains; however, additional information about the extensional rheology of the
material is encoded in these responses and deserves detailed analysis. Future ad-
vances in this area will no doubt result from the same elements that have benefited
the development of filament-stretching rheometry to date, i.e., a strong interplay
between careful experimentation, numerical simulation, kinetic theory, and con-
stitutive modeling.

The industrial applications of filament-stretching rheometry have only just be-
gun to be recognized. As we note in the Introduction, extensional flow can have a
dominant influence on numerous industrial processes and applications involving
rheologically complex fluids including foodstuff, adhesives, and other consumer
products. It is thus expected that filament-stretching rheometers will be useful
both in developing new materials and in systematically investigating the effect of
additives in currently used materials.
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