
File Allocation in Distributed Databases
with Interaction between Files

C.T. Yu, M.K. Siu, K. Lam and C.H. Chen

C.H. Chen and C.T. Yu: Department of Electrical Engineering and
Computer Science, University of Illinois at Chicago, Chicago, Illinois 60680
K. Lam:
M.K. Siu:

Department of Statistics, Hong Kong University, Hong Kong.
Department of Mathematics, Hong Kong University.

In this paper, we re-examine the file
allocation problem. Because of changing
technology, the assumptions we use here are
different from those of previous researchers.
Specifically, the interaction of files during
processing of queries is explicitly incorperated
into our model and the cost of communication
between two sites is dominated by the amount of
data transfer and is independent of the receiving

and the sending sites. We study the complexity
of the file allocation problem using the new

model. Unfortunateiy, the problem is NP-hard.
We Present an approach to three versions of the
problem, thus demonstrating the flexibility of
our approach. we further argue that our method
provides a practical solution to the problem,
because accurate solutions are obtained, the time
complexity cf our algorithm is much smaller than
existing algorithms, the algorithm is
conceptually simple, easy to implement and is
adaptive to users’ changing access patterns.

Section 1. Introduction --

In a distributed database system, files are
assigned to various sites. A user query at a
particular site may refer to data which is not

available at that site. To answer the query, data

is shipped across sites. An update of a
particular file will cause the propagation of the
update to all copies of that file in the network
in order to maintain consistency of data. Thus,
data communication is incurred for certain
retrieval and update queries.

In this paper, the allocation of files in

computer networks is investigated. The problem is

defined as : given a network, a set of retrieval

and update queries, determine the allocation of

files such that the total communication cost is
optimized.

Hany models of the file allocation problem

have been proposed [Case, Chan, ChLi, Chu, DJFo,
FiHo, LamY, LoPo, HaRi, HoLe, UrOI, Wah, Whit].

However, previous formulations of the problem

usually assume that files are independently

accessed and therefore files are assigned

indepententiy. Current research in distributed

query processing [HeYa, Chang, SDDl. YLCC,etc.l
reveals that interactions between files during
the processing of queries are common. In section

2, an example is given to illustrate that

assignment of files to sites independently is

unrealistic. This motivates us to incorporate

the interaction between files directly into our
model of the file allocation problem. Recently,

an approach to incorporate interactions between

files was given by [Aper]. However, his model is

different from ours and the number of variables

in his model grows rapidly to become unmanageable
as the number of query types increases.

Previous models of file allocation assume that

the cost of transferring data depends on the

sending and the receiving sites. This assumption

is crucial in showing that the file allocation

problem is NP-hard [Eswal , implying that a

polynomial solution is extremely unlikely.

Current research indicates that the amount of

data transfer is usually the dominant factor in

communication cost and the cost is relatively

independent of the sending and the receiving

sites. This is true for satellite transmission

and for many local networks. With this new

assumption, we need to re-examine the complexity

of the file allocation problem, which taking into

consideration the interaction between files.

Unfortunately, the problem is NP-hard. even for a
star-network as given in section 3.1.2.

248

Since the interaction between files is rather
complicated, we first study its effect on a star
network with file partitioning. Then its effects

on a star network with file clustering and
finally on an arbitrary network are studied. In

each case, we give a very simple algorithm and
present the nice properties satisfied by the
algorithms. The flexibility of our approach is
clearly demonstrated by the similarities of the
algorithms on the three versions of the file
allocation problem. Experimental results on the
first version of the file allocation problem
reveals that our algorithm requires much less
time as compared to other existing file
allocation algorithms and yet obtain solutions
which are on the average .27X away from the
optimal solutions. In section 6, we present
arguments that our algorithm is a practical one
for the file allocation problem.

Section 2. An Example To Describle The
Interaction Between Files -

-
--

Suppose we have a single query accessing two
relations [Ullml. Let the
i(Rl.A,R2.C) IRl.B=R2.B) and the

query be
relations be

Rl (A,B) and RZ(B,C), each of which can be
implemented as a file. Let the contents of the
relations be

I”

Iai 101
, ! .I

.

Lb

a,-1 0 1

an 2

RI R2

(1)
Figure 2.1

Suppose the assignment of Rl is
independent frcm that of R2 and interaction
between files during the processing of the query
is ignored.

If the query originates from a site which is
different from the site containing RI, then it is

likely that the entire relation Rl has to be
shipped to the query site. A similar situation
applies to relation R2. Thus, data transferred in
this case will be /Rl! + IR21, if both files are
absent from the query site. As a result, the
assignment of files Rl and R2 to the query site
seems to imply a saving of lRl/ + IR21 for the
processing of the query over the non-assignment

of the files to the query site.

(2) On the other hand, let us consider the
interaction of files which is common in current

distributed query processing strategies [Chang ,
HeYa. SDDl, YLCC, YCTBL].

(Case i) Rl and R2 are placed at the same
site which is different from the site the user
query originates. Then the answer to the query

is (a,,c, 1. Thus, the data transfer between
the query site and the site containing Rl and RZ

is (a,,c, >. Another possibility is to send

the parts of Rl and R2 that are needed to

construct the answer to the query site. To
illustrate this, let us temporarily assume the
contents of Rl al contents of Rl al d R2 arg

B C

1 T Cl
1 =2
. .

.

Rl

1

2 i
=rn- 1

I

=rn
2 cm+ 1
2 Cm+2

Then the answer of the query is

T

i
while the parts of R and R2 that are needed to
construct the answer (denoted by Rl’ and R2’

cm
Cn+l
Cm+2
cm
cm+ 1
=m+2

=rn
cm+ 1
Cm+2

R2

respectively) are

/i,::/ m

Rl’ R2’

In this situation we can send Rl’ and R2’ to the

query site instead of the answer since it causes
less amount of data transfer.

(Case 2) If Rl and R2 are at different sites,

say sl and 52 respectively, we can transfer

(we refer back to Fig. 2.1) RI (B)={0,2) (or
R2(B)={!.2)) to site 52 (~1). After the data

arrive at site s2 (sl), take the join of
Rl (B) (R2(B)) with R2 (Rl) . (This is known as
the semi-join [Hero, SDDl, BeChl from Rl (R2) to

R2 (RI) on attribute B). R2 (Rl) is then reduced

to (2.c) ((a,,2)).
Rl(B)=l2$ >

Then R2(B)=i2] (
is sent back to site sl (62) to

reduce Rl (R2). Finally, the reduced Rl and the
reduced R2 are sent to the query site to
construct the answer.

249

In this example, the amount of data transfer

when interaction of files is taken into
consideration during the processing of the query

is much smaller as compared to that when files

are treated independently in both cases 1 and 2.
As a result, placing files Rl and R2 at the query
site gives a marginal saving. This examp 1 e

illustrates that the amount of data transfer in
processing a query in a realistic environment can
be drastically different from that in which files

are independently accessed and independently

assigned.

Section 3. File Allocation In The Star Network _-- - ---

We will first consider an important type of
computer networks, the star network, where there
is a single central computer which is connected
to several regional computer sites, say m sites,

[Ghan. LamY, KeTYl (see Figure 3.1). The central
computer site contains all files, say n files,
and we want to determine the allocation of files
in each regional computer site. We consider two
versions of this problem. In the first version,
the files are partitioned in regional sites i.e.
the union of files in the regional sites is the
set of all files and no two regional sites have a
file in common. In this version, the regional
computers may have limited storage capabilities

and we may require that there is no redundant
copies for each file in the regional computer
sites. Therefore, we disregard update cost. In
the second version, each file may have redundant
copies and therefore update cost, as well as the
retrieval queries cost, is taken into
consideration. -

Central site

Regional sites

d, bre i 3p

3.1. File Partitioning -- -

In this subsection, we concentrate on the
partitioning of files. Our aim is to find a
partitioning of files in the regional sites such

that the total communication cost for answering a

set of retrieval queries is minimum.
3.1.1. Problem Formulation --- -

Since the central site contains all files, a
retrieval query accessing a set of files which
are not available at the local site is routed to
the central site. Then, the central site will

send back either the answer or the parts of the

accessed files which are needed to construct the
answer, depending on which strategy requires less
data transfer.

To simplify notation and for ease of
understanding, we consider queries, each
accessing one or two files, although the
following results are true in general. ---- Again for
simplicity. the cost of routing queries to the
central site is ignored; the communication cost
is expressed in terms of the amount of data
transfer. All these restrictions are not -
essential and can be eliminated by minorchanges ---
in the analysis. --
Retrieval Query Cost

(Type 1) : a query originating at site 5
requests for data contained in a single file, say
file i,: iRs

If file i is available at site s, then the
query can be answered without incurring any
communication cost; otherwise, the answer with
size F(ii) ,R) is sent from central site to site
S. Let Yis be a binary variable indicating the
presence or absence of file i at site 5, i.e.

yis = 1, if file i is at site 5, 0, otherwise.
Thus the cost for answering the query ,iRs,
is

RC(iRs Yis

I

~0) = F(iij ,R) (3.1)
RC(iRs yis’l) = 0 0.2)

(Type 2): . .R, i.e.

‘8
a query originating at

site s reques s for the joint access of certain
parts of files i and j.

Let F(iij,R) and F(fjj ,R) be the sizes of the
parts of files i and j needed to construct the
answer respectively (please refer to the example
in section 2) and F(ii,jj,R) be the size of the
answer. etc. are computed when the query is
excuted) . If both files are not at site s, then
either the answer having size F({i,jj ,R) is
transmitted to site s or the two parts
total size F(jij ,R)

having
+ F(ij1.R) are sent to site

S, where the answer is constructed from the two
parts, depending on which has a lower cost.
Similarly, if only one file, say file i, is at
site s, then either the answer or the part of
file j with size F({j],R) is transmitted to site
s. Thus. we have the cost function

RC(ijRsJy. ‘0,~. -0)
= Min~!P(~i~~~ ,R) ,F({ij ,R)+F(ij) .R)j (3.3)

RC(ijRslyi =I,y’ =O)
= Min.~F(~i~~~ ,R) ,F({jj ,R)l

RC(ijRs lyi ‘0,~. ;;l>
= Hin.!F((i~~~ ,R) ,F(lij ,R)j

(3.4)

(3.5)

RC(ijRslyis=l,yjs=l) = 0 (3.6)

In general, if a query originating at site s
accesses a set of files Tl and if only a subset
of files, say T2. are present at site s, then
either the answer which is constructed from the
set of files Tl at the central site is sent to
site s or the parts of the files in Tl - T2,
which are needed to answer the query are sent
from the central site to site 5.
with the lower cost is chosen.

The strategy

250

Objective Function: Proposition 3.1: The DFPP is NP-complete. -- ---

Proof: It is easy to see that DFPP is in NP
since a nondeterministic algorithm can guess a
partition of files and check in polynomial time

whether that partition has cost 5 d. We now show

that X3C reduces to DFPP.
Given an instance, (X.C), of X3C, we construct

an instance of DFPP defined as follows.
File Set FE: --- There is a file fi corresponding

to each element Xi in set X.
Site Set S: For each Ci in C there is a --
corresponding site si.
Query Set QE:

For each Ci =
1 < i 2

Cxi lVxi 2Pxi 31,
m. there-are 3 ;etriAval queries each

oriiinating at site Si and accessing two of the

three corresoondine files:

Our objective is to find a partitioning of

files to sites such that the total communication
Cost for answering a given set of queries is
minimized. That is,
To minimize

z(s L: RC(iRSlyiS)+ z
s i.Q

’ RC(ijRslYisPYjs))
1s iiwj~ijQs

(3.7)
subject to

yis = 0. 1 for i=l,....n, s=l,...,m;
s Yispl for i-l,...,n. (There is one copy
s
of each file at all the regional sites)

where iQs is the set of queries accessing
file i and originating from site s, ..Q is

the set of queries joint accessing fi!is’i and j

and originating from site s. z is summation over
{i,jl

2-element subsets of files {l,...,n].

3.1.2. The Complexity of File Partitioning --- - --

If the cost of communicating between two sites
is independent of the sending site and the
receiving site. then the file allocation (e.g.

[Case]) which does not take into consideration

the interaction between files becomes a trivial

problem. Under our new environment where

communication cost is dominated by the amount of

data transfer and the interactions between files

are taken into consideration, the complexity of
the file allocation probiem is now re-examined.

We will show that the file partitioning problem

(FPP) in the star network is NP-hard by reducing

the exact cover by 3-sets (X3C) problem. to the
decision problem of FPP. The decision problem of
the file partitioning problem (DFPP) is defined
as follows.

[DFPPI : Given a star network with m regional
sites s=tsl....,sm~, files
FE=ifl,...,f,) ,a set of querie: QE and a

cost parameter d, is there a partition of files

to sites such that the total cost is less than or

equal to d?

If a partition of the files to sites with the

minimum cost can be found, then by comparing the

minimum with d, we can clearly answer the DFPP.

Thus, finding the minimum cost partition is at

least as hard as DFPP. The exact cover by 3-sets

problem was shown to be NP-complete in [GaJo] and

is defined as follows.

[x3cl: Set X with 3q elements and a collection C
of 3-element subsets of X with ICI = m. Does C

contain an exact cover for X, i.e. a

subcollection C’ of C such that every element of

X occurs in exactly one member of C’.

F((fi,j,fi k 1 ,R) for each query to be 1 and
f.’ 1.R)

%i$,ij!.
< Min. 1 F(If. .l,R),

By (3.3) to (3.6) ‘ii! e cost of
answeking each query is either 0, in the
situation that both referred files are in the

query site, or 1, otherwise.
Bound d: - -

The bound d is defined to be (m-q) :‘r 3.

It is clear that the construction of DFPP can

be carried out in polynomial time. We now show
that DFPP has a partition with cost 5 d iff (X,C)
has an exact cover.

We first show that if (X,C) has an exact
cover, then DFPP has a partition with cost 5 d.

Let C’ be an exact cover for (X.0. Assume
without loss of generality that
Ci’(X.

1
~I,Iyxi1,2’xi1,3)~~* ci~(xiq,l’xiq,2,xiq,3)

are the elements of C’. We can assign files
f. 3 t0 site Si

Thtk!ile assignme k t is a partition

since C’ is an exact cover. The total cost to
answer the 3m queries is (m-q) A 3 since the 3q
queries corresponding to the elements in C’ in

site s.. 1 5 k 5 q. are answered with cost =

0 and :$lh of the remaining (m-q) * 3 queries is

answered with cost = 1.

We now show the reverse statement i.e. if there
is a partition with cost 5 d for DFPP, then there
is an exact

we wZI)YeflrfY sl2” *
To show this

statement,
. .

, in Lemma 3.2, that
if there is a partition with cost 5 d, the
partition must have q sites each containing 3
files and the cost = d.

It is then easy to see that if a partition has
q sites each containing 3 files and the cost is
equal to d, then the queries originating from
those q sites should be answered with cost 0.

251

Let the q sites be Sil’...‘Si and the
aueries be 9

1 5 k 5 q Then the corresponding 3-set elements

.

Lemma 3.2: ---
If there is a partition with cost 5 d,the

partition must have q sites each containing 3
files and the cost is equal to d.

Proof: Suppose the partition consists of mi

sites, each containing i p files,1 5 i 5 h, for
some integer h such that i+ mi * i = 3s.

We now compute the upper 6 ound of the number of
queries each of which is answered with cost = 0.

case 1: for those sites each containing a
single file. No queries can be answered with
cost = 0. since each query requests for
information from 2 files.

case 2: for those sites each containing two
files. At most one query in each site can be
answered with cost = 0.

case 3: for those sites each containing more
than twc files. At most 3 queries in each site
can be answered with cost = 0, because the number

of queries submitted at each site is 3.

SO. the upper bound of the number of queries
which can be answered with cost = 0 is
m2+3(m3+. . .+mh) . Thus the cost of
answering queries for this partition t 3m-
[m2+3 (m3+. . . +mh) 1 . Since the partition has
co5 t 5 (m-q) * 3.

m2+3(m3+. . .+mh) t 3q (1)
However, s mi’i = 3q and mi ? 0, i=l, . . . ,h, (2)

From (1) ind (2) , mi = 0 for i # 3 and m3 = q.
.

3.1.3. Necessary and Sufficient Conditions --- -

In practice, users in a particular regional
site, say s, may retrieve some files very often
while they are retrieved rarely at other sites.
Intuitively, those files should be placed at site
s and not at any other site. To characterize
this, a sufficient condition and a necessary

condition for a file to be optimally assigned to
a site will be derived.

Let J be a partition of files to sites such
that file i is assigned to site t. Consider the
reallocation of file i from site t to site s. The

cost of answering a query iR, in iQ, (the

set of queries originating at site s and

accessing file i) will decrease from

RC(iR, IYis -0) to zero. For a query **R
. . Q,* the amount of

~~(ifd, iYispO,Yj,)

cost dec%n:nt is

RC(ijR,lYiSxl,Yj,) 9 which depends on the
value Of YjS. By Lemma 3.3, the minimun cost
decrement is attained when yjs-0, Thus, there
is a minimum gain of allocating file i to site s

for all queries of the forms Q ij s and
This minimum gain is

~‘~C(iR,lyi,=O)+~
-Q

2 [RC(ijRs lYi,=O.Yj,-O) -

1 s ’ ij9, jp

where z is summing
RC(ijRJlyispl.yjs’O)I (3.8)

over all queries originating

iQs
from site s and accessing file i and z P

j ijQs

jfi.
is summing over all queries from the same site
and accessing all pairs of files of the form

(i,j) with different values of j.

On the other hand, the reallocating of file i
from site t to site s will increase the cost of
answering a query iRt in iQt from 0 to

RC(iRtlyit’O). Similarly, the cost of
answering a query ijRt will increase by

RC(ijRt’yit’O.yjt)

RC(’ .RtiY;t=lvY.) 9 which
dep:?ldent on thit value of yjt.

is also
By Lemma 3.3,

the maximum loss (cost increment) is attained
when yj t=l. Thus, the maximum loss of not
allocating file i to site t, due to all queries
of the form * .Q and

’ RC(iRtlyi;iOf + ’
iQt is

iQt j
’ RC(ijRtlyitiO,yjt’l)

ijQt
j#i

The cost of answering queries which are not of

the forms i .Q
] will not c~a~gei~~~ni~?!~ ii!itreallocated from

site t to site s.
Proposition 3.4 says that if the minimum gain

of allocating file i at site s is greater than
the maximum loss of not allocating file i at site

t, for every t + 5, then every optimal solution
consists of assigning file i to site 5.

Lemma 3.3: --- For any pair of files i and j and any

site s,

RC(ijR, IYis’O*Yj, =O> - RC(ijR,(yi,=l,yj,PO)

s RC(ijRslyisSO,yjs=l) - RC(ijRslyis=l,yjsEl)

(3.10)

Proof: To prove (3.10) is equivalent to prove the
following inequality

Min. iF(li,jl ,R), F({il ,R) + F({j) ,R)) -

Min. jF(ii,jj .R), F(ijj ,R)]
-< Min. (F(ti, jl ,R), F(ji) ,R)j .

The inequality is true in each of the
following cases :

(1) F(ii,jI,R) > F(iiI ,R) + F(1iI.R)
(2) Xax. {F({ij.R), F({jj,R)j < F(ii,iI,R) 5

FiiiI.R) + F((jj,R) .
(3) Min. iF(ii) ,R), F(ijI ,R)I < F(ii, jI ,R) 5

Hax. lF(iil .R), F({j} ,R)]
(4) F({i,jI .R) 5 Hin. {F(iiI ,R), FiljI ,R)I .

.

252

Proposition 3.4
If the foilowing inequality is satisfied, then

every optimal file partitioning should have file

i assigned to site s.
Expression (3.8) > Expression (3.9). (3.11)

for any t + 5.

Proof: Suppose the inequality (3.11) is

satisfied and J is an optimal partition where

file i is assigned to site t, t Z s. Let J’ be a

new partition by reallocating file i from site t

to site 5. Let C(J) and C(J’) be the cost of J

and J’ respectively.
C(J’) < C(J) - expression(3.8) + expression(3.9)

< C(J) (by Lemma 3.3 and satisfying 3.11)

a contradiction of J being an optimal.
Similarly, a necessary condition for pl

file i at site s is
Proposition 3.5 --

If file i is optimally placed at sit

then the following inequality ‘is satisfied.

.
acing

e 5,

r,

p RC(iRslyis=O) + ' Z RC(ijRslYiszo*Yjsxl)

1s j Q
j+i ij s

t s
.Q

RC(iRtIYit=O) +

1 t

2 2 [RC(ijRtIYit

jii ijQt

=O,yit=O)-RC(ijRtlyit’l,Yjt=O)I

for each t f s. (3.12)

The left hand side of the above inequality is

the maximum gain of having the file at site s

while the right hand side is the minimum loss of

not having the file at site t. We will leave out

the proof.

Note:

It is clear that the expression in (3.9) is also

the maximum gain of allocating file i to site t.

Thus, later in this section, we will use the

terms gain and loss interchangeably.

In general, a query may access more than two
files. To derive the necessary condition and the

sufficient condition for the general situation,
it is sufficient to derive the minimun gain and

maximum gain of allocating file i at site s for

each query which access a set of files, say T.
Let T = ii,jl,...,jk1 and TR, denote

the query accessing the set of files T and
originating at site 5. It is easy to show that
the minimum gain of allocating file i to site 5

for query TR, is

RC(TRS 1 Y~S’O, YjIs’Ov**, Yjks=O)
- RC(TRS 1 yis’l. yj s’?,....

A
‘jkS

=O)
and the ax lmum gain is

- RC(TRslyis=O,y’ -l.....yjks=l).
Thus, Proposi ion 3.4 and 3.5 are generalizable

.{l”

to queries accessing any number of files.

It is clear that (3.11) can be used to
allocate certain files to certain sites optimally

and (3.12) can be used to prevent the allocation
of some suboptimal allocation of files to sites.
However, the checking of the satisfaction of

(3.11) and (3.12) can be expensive. In the next

subsection, we shall present an algorithm which

will assign the files to the sites consistent to
Proposition 3.4 and 3.5, without checking the
satisfaction of (3.11) and (3.12).

3.1.4: An adaptive algorithm ---

The algorithm to be described consists of
having two n by m matrix M and Ml. M[i.sl is the

“expected gain” of placing file i at site s. The

elgorithm has two phases. In the first phase,
when no user access pattern is available, certain

entries in the M matrix will be updated for each
submitted user query to give the current expected

gain. After a set of queries have been processed,
if M[i,s] is the maximum entry in row i, then

file i will be tentatively assigned to site 5.

In the second phase, the same process as in phase

1 is carried out except that the gain of placing
file i at site s is computed based on the
tentative assignments of files to sites obtained

in phase 1. The gains, due to all processed

queries, are stored in the matrix Ml. If the file
assignment as given by M is the same as that

given by Ml, then the algorithm terminates,

otherwise, the gains of placing the files at the

sites are re-computed, based on the file

assignment given in Ml and the new gain is stored

in M. This process is repeated until M and Ml

give identical file assignments. In practice,

each of the matrices M and Ml can be partitioned

into m n-vectors such that each site stores one

vector to keep track of the current gain. After a

time period, those vectors are sent to the

central site to determine the file allocation.

The details are given as follows:

Phase 1 - -

step 1:

Initialize M[i,s] and Ml[i,s] to be 0, 1 5 i
In:l<sSm.

step 2:

For each query processed;

case (type of query)
(i) /* the query is .R *I:/

increase M[i,sl b; ~C(iRslyis=0).
(ii) /” the query is ijRs “/

increase M[i,s] by

IRC(i .Rs lYis=O,Yjs PO)-RC(‘.R
+ dC(..R ly. =O,y. =l)lJ’ “(1 :sw.).Js

Iy’ ‘1,~. =O)I*Wj

/” Any w;iiyfngiietweii 0 and 1 ca!, be used.

The aboveJ quant i ty is a weighted average of the
minimum and the maximum gains of placing file i
at site 5. w’ can be interpreted
probability that’file j is not assigned

as the
to site

5. For simplicity, we assign Wj to be l/2, 1 5

j 5 n. “/

253

increase ll[j .s] by
[RC(. ‘R,lyi,‘Oly. =oj-Rc(. ‘R~~~~~‘O~~j~~l)l*“~

+‘dC(ijRsJyis’~,yjs-0)‘~ (1 - Wi).
Step 3:

After many queries have been processed. if
H[i,s] is the maximum entry in row i, then assign
file i to site 5.

Phase 2 --

1
We invoke step 2 and step 3, except that Wj =

if yjs has been determined to be 0, 0
otherwise for each 1 5 j 5 n, 1 5 s 5 m. The
expected gain information is contained in matrix
Ml. If the file assignment given by M is not the

same as that give by Hl, then the iteration
cant inues with X and Hl interchanged else the
algorithm terminates.

Note: The above algorithm assumes that the query
access pattern is unchanged from one time period
to another. In practice, access pattern changes
with respect to time and we proceed as follows.
If the network is being set up, then we will
invoke phase 1 and then terminates the algorithm
as soon as a file allocation is determined in
phase 2. No further iteration is performed. If
the network has been operational for some time,

then the current file assignments will determine
the values of “j’s in (ii) for step 2. It is
sufficient to invoke phase 2 to obtain the first
file allocation and terminates the algorithm for
the current time period.

We now give the time complexity of executing
one phase of the algorithm.

Let q be the number of queries processed and k
be the average number of files accessed per query
in step 2. The time complexity of the algorithm
is O(kq) for step 2 plus O(mn) for step 3. Since
all other file allocation algorithm do not take
into consideration the time to collect
statistics, which is essentially step 2, the time
complexity of this algorithm in relation to other

file allocation algorithms, is O(mn> only.
Clearly, this is optimal in time.

We expect the matrices M and Ml to contain

mostly zero entries. For implementation, it is
sufficient to store the non-zero entries.

It can be shown that the algorithm has the
properties that (a) if the sufficient condition
of allocating file .i to site s is satisfied, then

the algorithm will allocate file i to site s
without checking the truth or falsity of
inequality (3.11); (b) if the necessary condition
to optimally allocate file i at site 6 is
violated, then the algorithm will not allocate
file i to site s without checking the inequality
(3.12) ; and (c) Assume that users’ access pattern
is unchanged from one time interval to another.
If an optimal solution is obtained at the k-th
iteration in phase 2, then the optimal allocation
remains unchanged at the (k+l)-th iteration.
Furthermore, if the file allocation at the
(k+l)-th iteration is different from that of k-th
iteration, a strictly better solution than that

given in the k-th iteration can be extracted from
the solution at the (k+l)-th iteration. We now
give the proof of property (a> but leave out the
proofs of properties (b) and (c).

Proposition 3.6
If the suTfTcient condition of allocating file

i to site s is satisfied, then the algorithm will
allocate file i at site 5.

Proof: It can easily be seen that the entry

H[i,s] is the expected gain of allocating file i
to site 5 by examining step 2 of the algorithm.

SO, the value of M[i,s] is less than or equal to
the maximum gain of allocating file i at site s
and greater than or equal to the expression of
(3.8) (the minimum gain). By the same reasoning,

H[i,tl is less than or equal to expression (3.9).
If the sufficient condition is satisfied, then
n[i,sl > H[i,tl for all t # s and file i is
allocated at site s by step 3 of the algorithm.

.

3.2: File Clustering
Problem Formation

The problem is the same as that of 3.1, exceot

that a-file may be assigned to zero or - more

regional site. As a result, update cost can be
significant and is taken into consideration. We

first consider the effect of the various types of
queries on the communication cost between the
central site and a particular regional site, say
site s.

Retrieval Query Cost

(1) same as query type (1) in 3.1.

(2) same as .query type (2) in 3.1.
Update Query Cost

(3) a query originating at site s, requests for

the updating of a single file, say file i:

.u .

r in update query of size Un(iUs) is sent to

the central site, irrespective of the presence or

absence of file i at site s. Then granting or
rejecting messages are exchanged between the

central site and the sites containing file i. The
number of messages exchanged is a constant times
the number of copies of the files [Ullm]. This is

refered to as the concurrency control cost. Thus,
for each site containing a copy of the file, the

communication cost incurred between the central

site and the regional site is a constant. Let

CC (ius) = the constant of the concurrency
control cost. Thus, the cost incurred between
site s and the central site to answer the query

are:

ucs (ius Yisil) L UM(iUs) + CC(iUs) (3.l3)

UCs(iUs yis’O) I IJH(ius) (3.14)

(4) ;u,: same as (3) except the query
origihating at site t f s. With similar reasoning

as in (3)) the cost incurred between site s and
the central site are:

UCs(iUt Yispl) I Un(i”t> + CC(iUt)

UCs(iUt Yispo) = O
(3.15)

(3.16)

254

Suppose some copies of certain files are added
to regional site t f s. Any retrieval query
originating at site s can be answered with the

same cost, irrespective of the additional files

at site t. Furthermore, any retrieval query
originating from any site other than s does not

incur any transmission cost between site s and

the central site. For update queries, the extra
copies of the files at site t causes additional

update cost. However, the additional cost occurs

between the central site and the regional site t
only. Thus, the transmission cost between site s

and the central site remains unchanged, when

additional copies of some files are added to

regional site t. In other words, the allocation

of files to each regional site is independent of

other regional sites. So, our objective of

minimizing total communication cost between the
central site and the regional sites can be met by

minimizing the communication cost between the
central site and each regional site
independently. Therefore, the subscript s of

UC, in (3.13) - (3.16) can be ignored. The
objective of allocating a set of n files to a
oarticular site s is to minimize

Z Z RC(iRs(yis) + I:
i iQs

i RC(ijRsIYis,Yjs)
{i,jI ijQs

+S z UC(iUslyis) + ’ ’
i i’s

z UC(iUtlYis) (3.17)
i t#S iPt

a

where iPu is the set of update queries which
update file i and originating at site u.

Necessary and Sufficient Conditions ---
Consider allocating file i to site s. A gain

will be achieved for retrieval queries
originating at site s and accessing file i (refer

to section 3.1). However, the allocation of file
i at site s will incur additional update cost. It
can be easily seen if the minimum gain of
allocating file i for retrieval queries to site s

is greater than the additional update cost
incurred, the file i should be assigned to site
5. On the other hand, if the maximum gain of
allocating file i at site s for retrieval query
is less than the update cost incurred, then file
i should not be assigned to site 5. so, the
sufficient condition and the necessary condition
of allocating file i to site s can be easily
derived. They are stated in Propositions 3.7 and
3.8.

Proposition $.I
If file 1 at site s satisfies the following

inequality, then every optimal file allocation
should have file i assigned to site s.
’ RC(iRslyis-0) +

iQs

z ‘[RC(ijRs IyiscO,yjs=O)-RC(ijRs jyis’l,yjs-0)I

’ ijQs
j#i

’ 4 [uc(iuslYis=l) - uC(i”,lyi,pO)I +

i s

z ’ uC(iUt Iyis’l)
tfs gt

(3.18)

Proposition 3.8
If file T 7s optimally allocated at site s,

then the following inequality is satisfied.

’ RC(iRslyis-0) + z ’ RC(ijRslYissO,Yjs=l)
.9 1s j Q

jfi
ij s

2 ’ [“C(iuslyis=l) - UC(iUs
P

is

lYisxo)l

1) (3.19) +x z
t#s iPt

UC(iUtlyis’

Adaptive Algorithm

The adaptive algorithm described in section
3.1 can be used with a minor modification. In
this case, an array B is stored such that B[i] is
the expected gain of assigning file i to site s
(refer to section 3.1). Also, another array C is
stored such that C[il is the update cost of
assigning file i to site 5. If B [il > C[il after
a time period, file i will be assigned to site s,

otherwise, file i is not assigned. The algorithm

also has the same properties (a), (b) and (c) as

stated in section 3.1.

Section 4. General Network -- --~
The network considered in this section is

assumed to be an arbitrary point-to-point

network. The query processing model is more

complicated than that given in the previous

section. In the star network, the central site

contains a copy of each file. For a retrieval

query originating at site 5, the processing of

the query is independent of the allocation of

files in any other regional site, because the

required files are either at the central site or

at site 5. In an arbitrary network, we may not

have a site containing all files. A typical
strategy[Chang, HeYa. KeTY, SDDl, YLCC, YCTBLI is
to perform a sequence of semi-joins and then send

the reduced relations to an assembly site to

construct the answer. The common assumption in
current research of distributed query processing

is that the transmission cost between any two

sites is not dependent on the sending and the

receiving sites and the cost is a linear function

of the amount of data transfered. This is valid

255

for satellite communication and many local

networks. For other networks, the communication

cost is usually dominated by the amount of data

transfer [DateZl. Here we make the same

assumption. Again, the query types described in

section 3 are used in this section. The cost

model for the queries are as follows.
Retrieval Query Cost
(1) :R,: - The cost is the same as that in 3.1.

(2) L ii : ij s
case 1: there is a site containing both files --

i and j.
If s is such a site, then the cost of answering

the query is 0, otherwise the site containing

both files can be visualized as the central site

in the star network. Thus, equations (3.3)-(3.6)

apply. Let Xijs be a binary variable such that

it is 1 if there is a site containing both files

i and j and 0 otherwise. Let the cost function be

denoted by RC(ijRslYis,Yjs,X..). Then
the following equation can :izily be seen to be

equivalent to the set of equations (3.3)-(3.6).
For example, (3.3) is obtained by setting yis =
v:.. = 0 in the eouation.

case 2: there is no such site i.e. x”
iJs

=O.
AzsTble strategy which is common in current

distributed query processing algorithm [Chang ,

HeYa, KeTY, SDDl, YLCC, YCTBL] is to execute a

sequence of semi-joins (see example in section 2)
to reduce files i and j to sizes F({i) ,R) and

F({jj ,R) respectively. Then, each of the reduced
files is sent to site s, if it is
there. Let SC(ijRsIYis,Yjs)

not already
be the

communication cost of the sequence of semi-joins
executed. Then. the total cost is

RC(ijRsIYis’;.s.Xijs-o) =
SC(ijRsIYis*Yjs j+(‘-yii)9cF(IiI ,R)+(l-yjs)*FEiji;R)

.
Update Query Cost

Let the query which originates from site s and
requests to update file i be denoted by iUs.
Let ni be the number of sites, excluding site

S, which contain file i. One possible
concurrency control scheme which guarantees
consistency of data is as follows. A message is
sent to each of the ni sites requesting a lock.
Assuming that the required locks are granted, the

l7i sites will reply affirmatively. Then the
update query is sent to all other sites
containing copies of the file. Clearly, the total
number of messages sent will be proportional to
lli. Thus, each of the ni sites will be
assigned a constant cost. This constant has two
components: one component being the message cost
due to the request for locking which is referred
to as concurrency control cost and denoted by
CC(iUs) and the other being the propagation
of the update query which is referred to as
update cost and denoted by UM(iUs). Thus, the
total communication cost incurred by update query
iI!, is

UC(iUs) = “i
ir [UM(iUs) + CC(i”,)l

This is equivalent to assigning

i

0

UC(iUslyit) - (2.;)”

yit*[UM(iUs)+CC(iUs)I t ’ s

Objective Function
Our objective is to find a file allocation

such that the total communication cost is

minimized subject to at least one copy of each
file must be allocated in the network. That is.

To minimize
x z z
s i

p UC(iUslYit)
iPs t7s

+Z x $ RC(iRs IYis)
S iin

+z z z

s ii,jl ijQs
RC(ijRs I

subject to

yiseyjs >

$ Yis ’ l for i = l,...,n.

Necessary and Sufficient Conditions ---
The following properties can be easily proved

by using the same ideas developed in previous

section.

Proposition 4.1

If file T 6t site s satisf
condition, then every optima
include file i at site s.

ies the following

1 solution should

Z RC(iRslyis=O) +
.Q 1 s

z
j ijts

[RC(’ .R ly. =O.Yjs=O.X.’ =l) -

j#i
RC(ifd,~Yi~31,Yjs=o,‘i~~~‘)I

> z ’ UC(iUt lyisll)
t#s gt

Proposition 4.2

If file T Ts optimally allocated at site 5,
then the following inequality is satisfied.

1;
RC(iRslyis’O)+ 4 Z RC(ijRslyis=O,yjs=l.

1s ’ ijQs
jfi xij s

=o>

+z z L:
t#s j Q

[RC(i ;Rt yit’O,yjt=O.Xijs’O) -

j#i
ij t RC(ijRt yitiO,yjt=O,Xijscl)I

? z z
t#s iPt

UC(iUtjyis’l)

Algorithm

The adaptive algorithm applied to this
enviroment is similar to those given in previous
section except that a n by m matrix B is stored
such that B[i,sI is the expected gain of
allocating file i at site 5, and another n by m
matrix C is stored such that C[i.sI is the update
cost of assigning file i at site 5. When a query
is submitted, some entries either in the B matrix
or the C matrix will be updated using (3.1).
(4.1). (4.2) and (4.3). Finally, assign file i

256

to site s if B[i,s] > C[i,s]. In order to satisfy
the constraint that at least one copy of each
file has to be allocated, file i is assigned to
the site with maximum B[i,s] - C[i.s] even if

B[i,s] is less than C[i.s] for every s=l,...,m.
The same properties (a), (b), and (c) stated in

section 3.1 are also satisfied.

Section 5: Experimental Results --

In this section, experimental results for the
adaptive file partitioning algorithm in a star
network are presented. Various problem sizes
ranging from 2 sites with 8 files to 50 sites
with 100 files, are used to test the speed and
the accuracy of the algorithm. In order that the
simulation is realistic, the access probabilities
of the files at each site form an approximate
Zipfian distribution with a randomly generated

parameter [see Knut]. Furthermore, the volumes
of traffic directed at the sites are different

but vary by no more than a factor of 25. For
each of the first 12 problem sizes listed in
Table 1. 100 cases are run and the average is

taken. For problem size 13, 50 cases and for
problem sizes 14 and 15. 10 cases each are run
and the average is taken. In each case, up to
6000 query types are generated by the computer

where two queries are of different query types if

they either access different sets of files or

require different amounts of data. Each query

accesses either one or two files. The weights

w’s for all files are arbitrarily set to l/2 for

phase 1 of the algorithm. The amounts of data

requested by each query (i.e. F({i,j], R), F(ii],

R) . etc.) are randomly generated. (The reason
why we do not perform 100 cases for each of the
larger problem sizes is that enormous amount of

time has to be spent on verifying the numerous

queries generated in fact satisfy the access
patterns described above).

The speed of the algorithm is tested as

follows. A batch of queries are processed in
phase 1 of the algorithm to produce a file

allocation. Then, another batch of queries

(randomly drawn from the same query pattern) are
further processed in phase 2 of the algorithm to
produce another file allocation. If the two file

allocations are identical then the algorithm

terminates and the file allocation is obtained;

otherwise another batch of queries are further

processed. This will be continued until the file

allocation produced by all queries up to the i-th

batch is the same as the file allocation produced
by all queries up to the (i-11th batch, for the

smallest positive integer i. A PDP 11-45

computer is used. It is seen from Table 1 that

the average time used for the smallest problem
size of 2 sites with 8 files is 0.69 sec. and the

average time for the largest problem size of 50

sites with 100 files is 10.68 sec. Clearly, the

execution time compares favorably with recent

results reported by [FiHo] (the average execution
time for 50 sites with 1 file is more than 1 min.
by a DEC-10 computer) and by [ChLi] (the average

execution time for 3 sites with 100 files is
28.62 min. by a PDP 11-70 computer), although the
problem formulations are different and the

algorithm by [ChLi] yields an optimal solution.
(If their algorithms are run on the problem with
50 sites and 100 files, then their running times
are at least more than an hour, which is a few

hundred times more than ours).
We now proceed to discuss the accuracy of the

algorithm. The accuracy of our algorithm is
reported for the first 12 problem sizes only,
because a branch-and-bound algorithm, which we

use to obtain the optimal solution, does not

converge for the larger problem sizes. (In fact,
among the first 12 problem sizes, the branch-and-

bound algorithm fails to terminate in some

cases.) It is seen from table 1 that the
algorithm usually has a higher chance of

obtaining the optimal solution for smaller

problem sizes (86 percent for the 2 sites with 8

files case) than for larger problem sizes (70

percent for the 4 sites with 9 files case).

though the percentage of obtaining the optimal

solution is not always monotonically decreasing
with respect to increasing problem size.
However, the average percentage difference

between the solution generated by our algorithm
and the optimal solution seems to decrease from
the maximum of 0.40 percent for the 3 sites with
6 files case to the minimum of 0.126 percent for
the 5 sites with 9 files case. The average error
is 0.265 percent for all cases. The good
performance exhibited by our algorithm can be
explained by the fact that our algorithm will

obtain the optimal solution if the sufficient
condition is satisfied and will not assign a file
to a site suboptimally if the necessary condition
is violated. In other words, file having obvious
optimal solutions (satisfying the sufficient
condition) are optimally allocated by our
algorithm, while files having obvious sub-optimal
solutions (violating the necessary condition) are
disallowed. Furthermore, properties (c) will not
permit the algorithm to stop at a point in which
a better solution can be easily-obtained.

Section 6: Conclusion ~-

We have described an adaptive file allocation
algorithm. This algorithm is particularly
suitable to a dynamic data base environment where
users ’ access pattern may change from one time
interval to another. The algorithm is invoked at
the beginning of each time period. If there is a
change to the users’ access pattern, then the
file assignment obtained by the algorithm in the
current time period will be different from that
obtained by the same algorithm in the previous
time period. As a result, physical assignment of
files to sites will take place. This can be
considered as part of an adaptive database design

[HaCh, HaNi, Salt, YSLT]. However, this is a very
significant difference between our approach and

earlier studies. In [HaCh, HaNi], all user
queries are stored, classified into query types

257

and the cost of executing each type of queries is

estimated. Usually, the classification process

leads to significant inaccurates. For example,

different queries referring to same set of
attributes (though having different conditions
on the attributes) of a relation are treated to
be of the same type and have the same processing
cost. In spite of this crude classification, the
number of query types is exponential, which makes

the classification process expensive in space,
because a frequency count has to be kept for each

query type. More importantly, the estimation of

the cost of processing a giving query type
depends on the assumption that data is uniformly

and independently distributed. (In figure 2.1,
the applicable assumptions are “the values 0 and

2 occur with equal probabilities in Rl(B); the
distribution of the value ial,...,anJ and {0,21

in Rl are independent;” similar situations apply

to R2). Clearly, such assumptions lead to

substantial inaccuracies. On the other hand, our

method consists of obtaining actual data

requirement at the time a query is processed.
The query data requirement is immediately

incorporated into the gains or losses and the

query need not be stored nor classified. Thus,

the suboptimal solutions that our algorithm

produces (.27% away from the optimal solutions in
one version of the file allocation problem) are

far more accurate than the solutions of other
algorithms, which do not obtain accurate data

transfer Statistics for each query and/or do not
consider the interaction between files.

We believe the approach presented here is a

practical solution to the file allocation
problem, because
(1) it gives accurate solutions;
(2) it is conceptually simple;
(3) it is adaptive to users’ changing environment;

(4) its time complexity is much smaller than
existing algorithms;

(5) it is very flexible as demonstrated by our
applying the approach to three different versions
of the problem.

REFERENCES

[Aper] Apers, P.M.G., “Redundant allocation of

relations in a communication network” Proc. 5th
Berkeley Workshop on Distributed Data Management
and Computer Networks, pp.245-258, Feb. 1981.

[BeChl Bernstein, P.A.. Chiu, D.W. “Using

semijoins to solve relational queries.“, J. ACM.
Jan. 1981, pp. 25-40.

[Case] Casey, R.G., “Allocation of copies of a
file in an information network”, AFIP Conference
Proceeding, Vol. 40, 1972, Spring Joint Computer
Conference, Hay 1972, pp. 612-625.

[Chanl Chang, S. K., “Database decomposition in

a hierarchical computer system”, ACM SIGMOD. Hay
1975, pp. 48-52.

[Changl Chang, J. H., “A heuristic approach to
distributed query processing“, VLDB, 1982.

[ChLil Chang, S. K. and Liu, A.C., “A database
file allocation problem”, IEEE COHPASC, 1981.

[Chul Chu, W.W., “Optimal file allocation in a
multi-computer information systems”, IEEE

Transaction on Computer, Vol. 18, No. 10. October

1969, pp. 885-889.

[Coddl Codd, E.F., “A relational model of data

for large shared data banks”, C.ACH. Vol. 13,

No. 6, 1970, pp. 377-387.

[Date] Date, C.J., “An introduction to database

systems”, Addison-Wesley, Reading, Mass., 1977.

(Date21 Date, C.J., “An introduction to database

systems”, Addison-Weskey, Vo1.2, Reading, Mass.,
1983.

1~0~01 Dowdy, L.W. and Foster, D.V. “Comparative

Uodels of the file assignment program”, ACH
Computing Survey, Vol. 14, No. 2, June, 1982, pp.
287-313.

[Eswa] Eswaran, K.P., “Placement of records in a
file and file allocation in a computer network”,

IFIP, August 1974, pp. 304-307.

[FiHo] Fisher, !I. and Hochbaum, D.. “Database
location in computer networks”, J.ACM., 1980, pp.
718735.

[GaJo] Garey, H.R., Johnson, D.S., “Computer and
intracrability: A guide to the theory of NP-

completeness”, Freeman 1979.

[Ghosl Ghosh. S.P.. “Distributing a data base

with logical associations on a computer network

for parallel searching”, IBM Research Report,
1974.

[Grbe] Grapa, E. and Belford, G., “Some theorems

to aid in solving the file allocation problem”,

CACM, November 1977, pp. 878-882.

[HaCh] Hammer, N. and Chan, A., “Index selection

in a self-adaptive database management system”,
ACM SIGHOD, 1976, pp. l-8.

[HaNij Hammer, M. and Niamir, B.. “A Heuristic

approach to attribute paartitioning”, ACl4 SIGMO.
1979, pp. 93-101.

[HeYal Hevner, A. and Yao. S.B., “Query
processing in distributed database systems”, IEEE
Trans on Software Engineering, Vol.SE-5, No. 3,
Hay, 1979, pp. 177-187.

[Hose] Hoffer, J.A. and Severance, D., “The use

of cluster analysis in physical data base
design”, VLDB, 1975, pp. 69-86.

258

[KefY] Kerschberg, L.. Ting, P.D. and Yao,

S.B., “Query Optimization in star computer
network”, ACH TODS, Vol. 7, No. 4. December,
1982, pp. 678-711.

[LamYl Lam, K. and Yu, C.T., “An approximation
algorithm for a file allocation problem in a

hierarchical distributed system”, ACM SIGMOD,
1980, pp. 125-132.

[LOP01 Loomis, M.S. and Popek, G.J., “A model
for database deotribution”, Trends and
Applications, Computer Xethods, IEEE Computer
Society, 1976.

[HaRi] Hahmoud. S. and Riordon, J.S., “Optimal
allocation of Resources in distributed
information networkd”, ACH TODS, Vol. 1, No. 1,
March 1976. pp. 66-78.

[MoLeI Horgan, H. L. and Levin. K.D., “Optimal
program and data location in computer networks”,
CACM, 1977, pp. 315-322.

[Rive] Rivest, R., “On self-organizing
sequential search heuristics”, C. ACH, 1976. pp.
63-67.

[Salt] Salton, G., “Dynamic information and
library processing”, Prentice-Hall, Engl ewood
Cliffs, New York, 1975.

[SDD~I Bernstein, P.A., Goodman, N., Wong, E.,
Reeve, C. and Rothnie, J.B., “Query processing in

a system for distributed databases (SDD-I)“, ACM
TODS, Vol. 6, No. 4, Dec. 1981. pp. 602-605.

[Thorn] Thomas, R.H., “A majority consensus
approach to concurrency control”, ACH Trans. on
Database Systems Vo14, No2, 1979.

[Ullm] Ullman, J.D., “Principles of Database
Sys t ems ‘I, Computer Science Press, 1982.

problem size average C.P.U. time
(no. of sites, in sec.

no.of files) PDP-1 l/45

1. (2,8) .69
2. (X,6) .70
3. (3.7) .79
4. (3.8) .72
5. (3,9) -88
6. (3.10) .93
7. (4,8) .87
8. (4,9) .82
9. (4.10) .90
:O. (5,8) .89
11. (5.9) .89
12. (5,101 1.01
13. (10,401 2.78
14. (40,100) 9.75
15. (50,100) 10.68

[Ur@Il Urano, y., Ono, K. and Inone. S.,
“Optimal design of distributed networks”, Proc.
of International Conference on Computer
Communication, August 1974, pp. 413-420.

[Wahl Wah, B.W., “An efficient heuristic for
file placement on distributed database”, Proc.
COHPSAC ‘80, IEEE COHPSAC, pp. 462-468.

[Whit] Whitney, V.K.H., “A study of optimal file
assignment and communication network conformation

in remote-access computer message processing and
communication systems”, Univ. of Hichigan, Dept.
of Electrical Engineering, 1970.

[YaDT] Yao, S.B., Das, K.S. and Teory, T.J., “A

dynamic database reorganization algorithm”, ACM

TODS, pp.159/174

[YSLT] Yu, C.‘T., Siu,H.K., Lam, K. and.Tai, F.,

“Adaptive clustering schemes: general framework”,

IEEE COHPSAC, Nov. 1981

[YuOz] Yu, C.T., Ozsoyoglu. H.Z.. “An algorithm
for tree-query membership of a distributed
query”. IEEE COHPSAC 1979, pp.306-312.

[YCTBLI Yu, C.T., Chang, C.C., Templeton, H.,

Brill, D.. Lund, E. , “On the design of a query
processing strategy in a distributed database

environment”, ACH SIGHOD 1983, pp.30-39.

[YLCC] Yu, C.T., Lam. K., Chang, C.C., Chang.

S.K., “A promising approach to distributed query

processing”, Berkeley Conference on Distributed
Data Base, Feb., 1982, pp.363-390.

average percentage
from optimai

0.21 86/100
0.40 78/100
0.279 83/ 100
0.389 78/100
0.303 74/100
0.29 73/100
0.297 70199
0.298 70/100
0.198 78/100
0.243 72/100
0.126 73/99
0.143 71197
---- ----

percentage of cases
where optimal solu-

tions are obtained

Table 1

259

