
FILE SYSTEM ACCESS FROM RECONFIGURABLE FPGA HARDWARE PROCESSES IN

BORPH

Hayden Kwok-Hay So

Department of Electrical and Electronic Engineering

University of Hong Kong, Hong Kong

hso@eee.hku.hk

Robert Brodersen

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

rb@eecs.berkeley.edu

ABSTRACT

This paper presents the design and implementation of BO-

RPH’s kernel file system layer that provides FPGA processes

direct access to the general file system. Using a semantics

resembling that of conventional UNIX file I/Os, an FPGA

accesses the file system through a special hardware system

call interface. By extending the semantics of a UNIX pipe,

a single file system access mechanism is used for both reg-

ular file I/O, as well as for hardware/software and hardwa-

re/hardware data streaming. An FPGA design may switch

between different communication modes dynamically dur-

ing run time by means of file redirection. Design trade-offs

among system manageability, user usability and application

performance are explored. An example of constructing a

video processing system during run time using commodity

software and FPGA applications connected by pipes is used

to demonstrate the feasibility and potential of such FPGA-

centric file system access capability.

1. INTRODUCTION

This paper presents a new FPGA-centric communication mo-

del enabled by the BORPH operating system[1, 2] that ad-

dresses the hardware/software communication interface prob-

lem in reconfigurable computers. In particular, we will fo-

cus on the design and implementation of BORPH’s hard-

ware system call interface and its kernel file system layer.

Figure 1 shows the logical organization of software and

FPGA resources in a system managed by BORPH. In such

system, user FPGA applications, called gateware, execute as

special hardware processes independent of any controlling

software. To the rest of the system, a hardware process is

the same as any other normal UNIX processes, except they

execute on FPGAs instead of using up CPU time slices. Be-

cause of this hardware process model, communication be-

tween gateware and the rest of the system is not necessarily

controlled by any software program. Instead, gateware de-

signs may take an active role in data I/O by initiating com-

munication to the rest of the system.

BORPH extends the standard UNIX kernel system call

This work was funded in part by C2S2, the MARCO Focus Center for

Circuit & System Solutions, under MARCO contract 2003-CT-888.

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

Hardware

(Network, UART, etc)

Platform

SW

Process1

SW

Process2

SW

Process3

HW System Library

H
a
rd
w
a
re

S
o
ft
w
a
re

ioc ioc ioc

HW
Process1

FPGA

HW
Process2

FPGA

BORPH OS Kernel

Software System Library

Fig. 1: Logical organization of BORPH system.

concept to FPGA gateware by defining a hardware system

call interface. To enable general UNIX file system access

from FPGA gateware, a set of file system access hardware

system calls is defined. With BORPH’s backward compati-

bility with the Linux OS, standard commodity software, as

well as user developed software, may execute concurrently

with FPGA gateware in the system. In a UNIX system,

most logical entities that enable inter-process communica-

tion (IPC), such as sockets and pipes, are abstracted and

accessed as files. As a result, enabling general file system

access from FPGA gateware not only provide a unified ha-

rdware/software communication interface that is well under-

stood by both software and hardware designers, but it also

opens up opportunities for novel hardware/software commu-

nication techniques that are previously impossible without

BORPH’s hardware-centric execution model.

2. DESIGN ISSUES

In a UNIX system, file I/O is the main mechanism for a

process to communicate with the rest of the system. Apart

from accessing regular data from backing stores, the same

UNIX file abstraction is also used to access most other inter-

process communication entities including sockets, pipelines,

FIFOs and even device driver handles. Therefore, provid-

ing gateware designs active access to the general file sys-



tem layer will open up many novel communication scenarios

previously impossible.

Furthermore, UNIX files are natural representations for

data streams. After all, the unidirectional UNIX pipeline, or

pipe, is logically identical to hardware FIFOs that are widely

used for data I/O in FPGA designs. As many researchers

have observed[3, 4], streams are natural representations for

gateware data I/Os. Therefore, it is natural to provide file

system access to a gateware design that is executing as a

hardware process in BORPH.

2.1. High Speed Data Access

Although logically identical, in practice, gateware streaming

data access demands a much higher I/O performance than

software access. As a result, the impact of kernel overhead

during data I/O is also higher.

Unfortunately, because of the physical separation, the

kernel overhead for accessing a regular file from a hard-

ware process is usually higher than accessing from software.

Luckily, we have observed that hardware processes almost

always access files sequentially as stream of data. Therefore,

pre-fetching works very well for such accesses.

In our current implementation, we have optimized one

special case when both ends of a file connection are hard-

ware processes. In this scenario, the kernel sets up a direct

connection between the two gateware designs. This allows

them to subsequently communicate directly without kernel’s

interruption in a true synchronous data flow (SDF) fashion.

2.2. Dynamic File Access Mode Switching

Although the direct hardware/hardware connection suggested

in previous subsection addresses the need for high speed

data streaming, it inevitably breaks the standard request-

acknowledge file access operating mode of UNIX. In a stan-

dard UNIX system, a process must request data from the

kernel first before the kernel replies the process with the re-

quested data. However, FPGA gateware designs, especially

most digital signal processing designs, often assume a data

flow model in which data are pushed into a design without

explicit request. Furthermore, the target of a file I/O opera-

tion, and thus its file access mode, may only be determined

during run time due to file I/O redirections.

As a result, the BORPH file system layer must be capa-

ble of handling such run time file I/O redirections. Not only

must the kernel be able to alter the target of file I/O dynam-

ically, it must also be able to change the file access mode

according to the capabilities of the redirected file.

2.3. Blocking vs. Nonblocking File Access

In a UNIX system, during the period when the OS kernel

services a system call, the issuing user process is usually

blocked. Once the system call is serviced, the calling pro-

cess is resumed at the point where it was suspended, hav-

ing the illusion that the system call has completed instanta-

neously. However, gateware exhibit a parallel computation

model in which every part of the design executes concur-

rently. Therefore, it is unwise for the kernel to block the

entire hardware process using techniques such as clock gat-

ing.

As a result, all hardware system calls are executed asyn-

chronously to the user gateware designs in our current im-

plementation. User designs must handle signals from the

kernel that indicate the progress of a system call.

2.4. Concurrent File System Access

Since gateware designs compute in parallel, it is also pos-

sible that multiple portions of the same design demand OS

services concurrently. As oppose to the “logical” concurrent

system calls generated by multi-threaded software applica-

tions, gateware designs may issue file system requests on the

exact same hardware cycle. Therefore, the OS kernel must

physically be able to service such concurrent requests.

2.5. Partial Result and Error Status

The semantics of standard software file access system calls

state that the OS kernel may return less data or commit less

data than what the user has requested. It is useful when the

file does not have enough data to return, or when the user’s

disk quota has exceeded. Furthermore, the kernel may return

status code that indicates I/O error or reaching end-of-file.

While such concept of partial data delivery and error

reporting is common among software developers, they are

seldom considered by gateware designers. Our current im-

plementation retains such software semantics and mandates

gateware designs to handle them gracefully. A set of user-

space gateware libraries is provided to hardware-centric de-

signers to smooth their development efforts.

3. CURRENT IMPLEMENTATION

BORPH is currently implemented on the BEE2 systems[5].

The BORPH kernel is divided into two logical entities. The

main kernel, MK, is implemented as an enhanced version

of a Linux 2.4.30 kernel in the control FPGA. It performs

conventional OS functions and manages software processes.

The second logical part of the BORPH kernel is a set of

distributed micro-kernels called UKs. As shown in Figure 2,

UKs are implemented as gateware to provide low level OS

support for its corresponding user gateware design at hard-

ware speed. The focus of the remaining of this section will

be on the design of UK and its interface with user gateware.

3.1. Hardware System Call Interface

In a typical UNIX system, user programs request services

from the OS kernel through a set of predefined system calls.

BORPH defines a similar interface in FPGA through which

a user gateware application accesses OS services. Simi-

lar to a software OS application binary interface (ABI), the



ioreg

ioc

ioc

ioc

ioc

ioreg

Memory
Shared

On−Chip

BRAM

PPC P
L
B

−
O

P
B

B
ri
d
g
e

Design

Simulink

User

SelectMap FIFO

User Space

OPBPLB

H
W

 L
ib

ra
ry

ARB

To Streaming Network

T
o 

S
W

 K
er

ne
l

BORPH OS Kernel Space (uK)

Fig. 2: Each user FPGA on BEE2 hosts BORPH’s gateware micro-

kernel UK and a user application. Access to file system is per-

formed through one of the 4 identical iocs.

WRITE, WRITE_ACK
(syscall#)
SC: READ, READ_ACK

FLAG: FLG_STREAM, FLG_ERROR

SIZE:

ACK: Actual read/write size

READ/WRITE: size request

byte offset

0 1 2 3

PAYLOAD

FLAG SIZESC

hsc_k2ud_f

hsc_u2kd

hsc_u2kd_f

hsc_status

hsc_k2ud

Fig. 3: Left: One copy of ioc with which BORPH’s hardware

system call interface is built. Right: Format of packet transmitted

through hsc.

hardware system call interface is kept at the lowest possi-

ble physical level such that it is generic and design language

independent. As a result, the current BORPH hardware sys-

tem call interface is relatively simple.

BORPH’s hsc is physically realized as a set of iocs.

As shown on left hand side of Figure 3, each ioc essen-

tially consists of two 8-bits wide unidirectional connections

guarded with 1-bit valid (framing) signal. To allow concur-

rent hardware system calls, BORPH’s hardware kernel in-

terface has 4 identical copies of iocs dedicated to each user

gateware application as shown in Figure 2.

The actual hardware kernel system calls are implemented

through a message passing protocol between the kernel and

the user. As shown on the right hand side of Figure 3, the

packet format is simple by design for easy extensions and

implementations. The protocol mandates a request-acknowledge

sequence between user and kernel for most system calls. Ac-

knowledgment messages are used by the kernel to return any

requested data or error status to the user.

3.2. Implementation of file read/write system calls

In our implementation of READ and WRITE system calls,

the actual amount of data written or read is returned in the

user
request stream? Read/Write?

Source Streamable? Sink Streamable?

Wait until receive
SrcRdy signal

Send SrcRdy
signal to sink

Setup
Virtual Circuit

Send SinkRdy
signal to source

Send WRITEACK
packet to user

Wait until receive
SinkRdy signal

from hsc interface
Wait for user packet

START

Relay user
packet to mK

Wait until receive
ACK from mK

Send ACK to user
on hsc

Stream Monitor

yes

no

write

read

no

yes

no

yes

Fig. 4: A simplified flow diagram for iock packet handling. A

streaming data connection is setup iff both source and sink are

streamable and are ready to stream data.

SIZE field of the corresponding ACK message. Following

UNIX convention, this size is not necessarily the same as

the amount in the original request packet. Furthermore, end-

of-file status and any error condition are flagged in the FLAG

field, with the error code embedded in the SIZE field.

Note that there is no file identifier or current file posi-

tion specified in our packet definition. This is designed both

as a way to simplify design for user, and to allow such in-

formation be managed by the hardware kernel. The physical

location of an ioc serves as a UNIX file descriptor. The log-

ical file descriptor number corresponds to this ioc is stored

internally when the file is open-ed. Furthermore, a file’s cur-

rent position is also stored and updated internally with each

read/write call.

3.3. Kernel Side Control

On the kernel side of an ioc is an iock. It handles user file

system requests and switches between different file access

modes dynamically during run time.

Normally a gateware design access BORPH’s file sys-

tem by sending READ/WRITE messages to the kernel. In this

mode, iock relays the user request to MK. For a file read,

it signals to the user to suspend while it buffers any data re-

turned by MK. For writes, it buffers the data before sending

them to MK so that the user gateware design can resume op-

eration earlier. iock answers a user’s read/write requests

by the corresponding READACK and WRITEACK messages.



hsc_k2ud

hsc_k2ud_f

hsc_u2kd

hsc_u2kd_f

hsc_status

bfsio_r

EOF

F

D

hsc_k2ud

hsc_k2ud_f

hsc_u2kd

hsc_u2kd_f

hsc_status

bfsio_w

RDY

F

D

Fig. 5: The bfsio library contains two blocks. The read (bfsio r)

block generates read requests on behalf of the user and relay only

data payload and EOF information to user. The write (bfsio w)

translates a stream of data from user into individual write request

packets to the kernel.

A user design may opt for high-speed, cycle-accurate

data streaming access to the file system during run time. In

respond to such request, iock checks if its corresponding

connection peer is capable of data streaming (called stream-

able) based on run time information from MK. If both sides

of a file connection are streamable, then iock sets up a

direct connection between the two using the protocol de-

picted in Figure 4. Once the connection is set up, iock

restraints its task to non-intrusive monitoring, thereby allow-

ing cycle-accurate communication between the two hard-

ware processes. To keep the ioc user interface unified,

cycle-accurate data streams are implemented as READ and

WRITE packets with infinite payloads.

3.4. User Side Gateware Library

Although the complexity of hsc packet protocol has already

been kept to a minimum, it is still cumbersome for gateware

designers. Therefore, a layer of gateware library that takes

on a similar role as libc in standard UNIX system is in-

troduced to further isolate user applications from the com-

plexity of kernel interactions. To demonstrate this idea, we

have created a file access library for synchronous data flow

designs as shown in Figure 5. Reducing all kernel complex-

ities to just a simple byte-wide streaming data port with sim-

ple flow control, these blocks allow users to focus on actual

application development.

4. RESULT

As a proof-of-concept, we have developed a simple gate-

ware Sobel edge detector (yuvedgdet.bof) that works

with the standard Linux MJPEG tools[6]. The MJPEG tools

is a set of small Linux programs that collectively perform

complex video editing functions. Most of the programs in

the tool set communicate with one another via standard in-

put/output using a predefined raw video format.

Using BORPH’s file system support, we are able to per-

form simple gateware video edge detection by interoperating

with rest of the software system as follow:

bash$ lav2yuv test.avi | yuvedgdet.bof \

| mpeg2enc -o output.mpg

Table 1: FPGA resource used by OS vs. user for a hardware Sobel

edge detector.

Resource Avail OS HW lib App OS/Avail

Slice 33088 2127 178 95 6.5%

RAMB16 328 38 1 9 11.5%

PowerPC 2 1 0 0 50.0%

In this example, test.avi is a 6 mega bytes video file

while lav2yuv and mpeg2enc are unmodified software

video decoder/encoder respectively. Processing the video

took 169.9s using this mixed software/gateware pipeline.

This is slightly slower than a software-only pipeline that fin-

ishes in 143.9s due to big I/O overhead in our current sub-

optimal implementation.

Table 1 shows an analysis of post-mapped resource uti-

lization of yuvedgdet.bof. The core edge detection al-

gorithm consumes only 95 slices. 178 slices are consumed

by the two hardware library blocks bfsio r and bfsio w.

The rest of the design, listed under OS, is devoted to UK.

Despite the complex functionalities of UK, it consumes

only 6.5% of the entire FPGA. Even when taking resources

used by hardware libraries into account, less than 10% of the

FPGA is needed to provide the file system and other system

functionalities described in this paper.

5. CONCLUSION

In this paper, we have presented the design and implemen-

tation of BORPH’s hardware system call interface and file

system layer. This general UNIX file system access en-

ables user gateware designs to initiate FPGA-centric data

I/O. The UNIX pipe abstraction is extended to represent

cycle-accurate hardware/hardware communication. Our pr-

oof-of-concept implementation incurs an overhead of less

than 10% of a user FPGA. We have demonstrated the feasi-

bility of combining user-developed gateware with unmodi-

fied Linux software at run time to process video files.

6. REFERENCES

[1] H. K.-H. So and R. Brodersen, “A unified hardware/software runtime

environment for FPGA-based reconfigurable computers using BO-

RPH,” Trans. on Embedded Comp. Sys., vol. 7, no. 2, pp. 1–28, 2008.

[2] H. K.-H. So and R. W. Brodersen, “Improving usability of FPGA-

based reconfigurable computers through operating system support,” in

Proc. FPL’06, 2006, pp. 349–354.

[3] J. R. Hauser and J. Wawrzynek, “Garp: a MIPS processor with

a reconfigurable coprocessor.” in 5th IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM ’97), Napa Val-

ley, CA, USA, Apr.16–18, 1997, pp. 12–21.

[4] M. B. Gokhale et al., “Stream-oriented fpga computing in the streams-

c high level language,” in FCCM ’00: Proceedings of the 2000 IEEE

Symposium on Field-Programmable Custom Computing Machines.

Washington, DC, USA: IEEE Computer Society, 2000, p. 49.

[5] C. Chang et al., “BEE2: A high-end reconfigurable computing sys-

tem,” IEEE Design & Test, vol. 22, no. 2, pp. 114–125, 2005.

[6] mjpegtools. [Online]. Available: http://mjpeg.sourceforge.net


