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Abstract Digital Evidence Bags (DEBs) are a mechanism for bundling digital

evidence, associated metadata and audit logs into a single structure.

DEB-compliant applications can update a DEB's audit log as evidence is

introduced into the bag and as data in the bag is processed . This paper

investigates native file system support for DEBs, which has a number

of benefits over ad hoc modification of digital evidence bags. The paper

also describes an API for DEB-enabled applications and methods for

providing DEB access to legacy applications through a DEB-aware file

system. The paper addresses an urgent need for digital-forensics-aware

operating system components that can enhance the consistency, security

and performance of investigations.
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1. Introduction

Digital forensic tools typically utilize standard operating system com

ponents, e.g., file systems and caching mechanisms. However, there are

compelling performance, consistency and security reasons for making

operating system components "digital forensics aware." These include

performance (e.g., better data distribution and clustering mechanisms,

particularly for distributed digital forensics [2]), security (e.g., protec

tion of digital evidence from unauthorized access or tampering), and

consistency. This paper considers the advantages and design challenges

of digital-forensics-aware file systems. Specifically, it examines how au

diting ofdigital evidence is currently handled and how an enhanced file

system can make this process more automated and more accurate.

Evidence bags and seals are a standard item in traditional crime scene

investigations. Bags and seals allow evidence to be preserved and catego-
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rized, and tamper-evident designs indicate if the evidence is still secure.

Many types of evidence bags provide ample writing space so that notes

can be written directly on the bag. Furthermore, the bag's seal may

include information such as the name of the investigating officer, case

identifiers, the suspect's name, a description of the item, and the date

and time when the bag was sealed. Continuity sections on the bag permit

tracking the movements of the bag and noting its chain of custody.

Traditional digital forensic methods capture, preserve and analyze

evidence in standard electronic containers: images of seized hard drives
(e.g., created using the Unix dd command) are stored in regular files and

documents are typically processed "as is." Auditing a digital investiga

tion, from identification and seizure of evidence through duplication and

analysis is essentially ad hoc, with much of the information recorded in

separate log files or in the investigator's case notebook.

For example, the popular dd utility provides no direct method for

capturing information about when the imaging operation took place,

who performed the operation, and the results of integrity checks. This

information must be recorded separately and, in the case of an integrity

check, additional commands (e.g., md5sum or a similar cryptographic
hashing command) must be executed and the output recorded manually.

While enhanced versions of dd exist, e.g., dcfldd, adding integrity checks

to each application is tedious and error-prone. In addition, integrity

problems are aggravated when large chunks of digital evidence must be
split into pieces, for example, when a disk image is fragmented to fit on
removable storage, and then reassembled for processing.

Ad hoc auditing is bound to be incomplete. Because different tools

provide widely disparate amounts of auditing information, much of the

information must be recorded manually by an investigator. Over the

course of an investigation, a piece of digital evidence may be touched by
many different tools, some of which generate no audit trail (e.g., dd and

Sleuth Kit command line tools [5, 4]) and some that generate their own

audit logs (e.g., FTK [1]) . Ultimately, an investigator is left to piece

together these bits of audit trail information to create a comprehensive

view of what occurred during the investigation. The failure to record

certain information, e.g., the MD5 hash generated by md5sum for a large

disk image, could result in a huge amount of lost time if the operation

must be repeated.

Digital Evidence Bags (DEBs) [8] are universal containers for digi

tal evidence, much as traditional evidence bags are containers for other

types of forensic evidence. DEBs bundle digital evidence, associated

metadata and audit logs into a single structure, providing an audit trail

of operations performed on the evidence as well as integrity checks. In
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addition to providing increased security for digital evidence, the audit

log details the processes applied to the evidence throughout an inves

tigation. This is potentially useful from the educational and evalua

tion standpoints, allowing novice investigators to see what steps were

taken, which tools were used, and the order in which they were used.

DEB-compliant applications can update a DEB's audit log as evidence

is introduced into the bag and as data in the bag is processed.

This paper suggests that while the adoption of a standard format for

storing digital evidence could radically improve the investigative pro

cess, system support for DEBs would be even more useful. The paper

investigates native file system support for DEBs in which the basic file

type is a DEB. This approach provides several benefits over ad hoc

DEB implementations. Some of the advantages of DEBs can be realized

even for current DEB-unaware tools: a DEB-enabled file system can

transparently offer a DEB's contents to such tools while automatically

updating the DEB's metadata and audit log. Another advantage, even

for DEB-enabled tools, is that the code for accessing a DEB, including

introducing and removing items from the bag and updating the audit

log and metadata, needs to be certified only once. Finally, a standard

API for accessing DEBs greatly reduces the effort in involved adding

DEB support to current and future applications.

2. Basic DEB Structure

The notion of a Digital Evidence Bag (DEB) was proposed by Turner

[8]. This section discusses the DEB structure at a high level, focusing

instead on the DEB components necessary for native file system support.

Interested readers are referred to [8] for additional details about DEBs.

A DEB consists of a collection of objects. The first is the tag area,

which is a set of name/value pairs containing metadata associated with

the DEB. The information includes a unique identifier for the DEB, the

creation date and time, the name and organization of the DEB creator,

and a list of Evidence Units (EUs) stored in the DEB. Each EU provides

a name for a distinct blob of digital evidence stored in the bag and the

blob's associated index file. An index file describes one blob of digital

evidence, e.g., detailing the files contained in the blob or the physical

characteristics and model/serial number of an imaged disk device. Fi

nally, an audit log (called a Tag Continuity Block in [8]) tracks the

operations performed against a DEB, including the date, time, affected

blocks, application signature of each operation as well as periodic hashes

of DEB contents . Section 3.4 discusses how secure auditing techniques

can be used to protect DEB contents from tampering.
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3. Design Overview

Native file system support for DEBs must:

• Allow transparent import of DEBs into an enabled file system,
i.e., support the automatic conversion of DEBs to a native storage

format.

• Allow transparent export of DEBs from an enabled file system to

a "normal" file system, i.e., support the automatic conversion of

DEBs to a popular container format, e.g., XML.

• Provide convenient, efficient and secure access to DEBs for new
DEB-enabled applications as well as legacy applications.

The next section surveys the main design choices for meeting these

goals. The subsequent sections describe an API for DEB-enabled appli

cations, discuss how native applications can transparently access DEBs,

and evaluate methods for securing DEB audit logs.

3.1 Design Choices

A format such as XML is a sensible choice for DEB files when they

are stored outside a DEB-enabled file system. The original DEB spec

ification [8] used plain text for the components of a DEB. However, a
more efficient format is required for the native storage of DEBs. This
is because unlike other compound file types , e.g., ZIP files or tarballs,

DEBs are updated quite frequently as evidence units are introduced and

the audit logs are modified. It is also likely that some DEBs will be

extremely large, so methods for in-place updates will be necessary for

efficient access. In summary, a native storage format for a DEB-enabled

file system should support efficient updates of the audit log as well as

rapid access to the digital evidence blobs.

Several file systems were evaluated before choosing a candidate for

native DEB support, including ext2/3, reiserFS and XFS. NTFS was

eliminated because its source code is not available, although NTFS alter

nate data streams are an attractive mechanism for implementing DEB

resource forks (e.g., blobs of digital evidence, the audit log and DEB

metadata). Most of the evaluated file systems contain features, e.g., ex

tended attributes (EAs), that can be used to efficiently support DEBs.

Unfortunately, the EA implementation in ext2/3 places substantial lim

its on the size of EAs (one disk block), precluding their use to store

larger components in a DEB. Similarly, XFS and stable versions of reis

erFS limit the size of EAs. In a future version of reiserFS, EAs will be

stored as regular files in the file system, with the file name referring to
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the name of the EA and the file contents being the associated value of

the extended attribute. We adopt a similar strategy using symbolic links

to store DEB components.

The best choice may be to use a standard file system like ext3. The

resource forks within a DEB can be stored as separate files using sym

bolic links stored in the first data block of a DEB file. Changes are also

required at the inode level (to tag DEBs as a special type of file and

to accommodate efficient storage of DEBs) , to pathname handling (to

allow transparent access to digital evidence blobs within a DEB using

a convention like DEBname .blobname) , and at the system call level (to

support a DEB API and legacy applications). At the system call level,

standard file I/O calls such as readO and write 0 must be modified

to perform auditing functions in addition to accessing blocks of a blob

stored within a DEB.

We are currently using a user-level file system, FUSE (File System in

User Space) [7], to test our ideas. System calls in FUSE are redirected

by a kernel-level FUSE component to a user-space application (written

against the FUSE library) . This has enabled us to rapidly build a proof

of-concept primarily in user-space, without the complexity of in-kernel

hacking.

3.2 API for DEB-Enabled Applications

This section describes an API for DEB-enabled applications to create,

access and modify DEBs. The API's functions fall into three categories.

The first category of functions facilitate the creation of DEBs and the

introduction of "blobs" of digital evidence into DEBs. A blob is an

arbitrary unit of digital evidence and might be a disk image, a single

document or a compound file type. The second category allows access

to a DEB's tags. Recall that the tags record DEB metadata, e.g., the

investigating agent's name and contact information. The third category

provides access to the DEB's audit log, so that applications can insert

additional entries into the log to document investigative operations. Us

ing any of the functions automatically introduces entries into the DEB's

audit log. The functions are described briefly below.

• int CreateDEB(char *filename, char *applicationinfo,

char *comment, /* variable number of DEB tags */)j

This function creates a new DEB whose complete pathname is

filename. The comment field is a free-form string entered into the

audit log to describe the creation event, while applicationinfo

documents the application that created the DEB. A variable num

ber of tags, which document the investigator's name, contact infor-
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mation, and case characteristics are permitted. An initial entry is

made in the DEB's audit log to document the creation event. This

entry also contains a hash of the initial DEB contents, which at

this stage are essentially metadata. The AddDEBBlob 0 function,

described below, allows evidence to be introduced into the bag. A

positive return value indicates successful creation of the bag.

• int AddDEBBlob(char *filename, char *blobname,

void *blob, char *applicationinfo, char *comment)j

This function introduces a new piece of digital evidence, blob,

named blobname, into the bag whose pathname is filename. The

blobname must uniquely identify the piece of digital evidence in

the DEB, otherwise an error is generated. The comment is intro

duced into the DEB's audit log to describe the digital evidence

introduced, while applicationinfo documents the application it

self. In addition, audit log entries are automatically written to

document the cryptographic hash of the introduced evidence plus

a hash of the entire bag contents after the introduction of the blob

is completed . A positive return value indicates successful introduc

tion of the blob.

• int AddDEBBlobFile (char *filename, char *blobname, char
*blobfilename, char *applicationinfo, char *comment)j

This function performs the same operations as AddDEBBlob 0, ex

cept that the digital evidence that is introduced is contained in the

file blobfilename, instead of in a block of memory.

• int OpenDEBBlob(char *filename, char *blobname,
int mode, char *applicationinfo, char *comment)j

This function returns a file handle attached to the blob blobname

contained in the DEB identified by filename. The file handle is

opened with read/write permissions described by mode, which has

the same semantics as the mode parameter for the standard C

openO function. The applicationinfo argument describes the

application issuing the open command while the comment describes

the open operation (from the opening application's perspective) in

the DEB's audit log. A positive return value indicates success.
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• void CloseDEBBlob(int handle, char *comment)j

This function releases the file handle, handle, attached to a single

blob of evidence in a DEB. The comment describes the close op

eration (from the closing application's perspective) in the DEB's

audit log.

• unsigned long long ReadDEBBlobBlock(int handle,

void *data, unsigned long long len, char *comment) ;

This function reads a block of data from the stream identified

by handle. The handle must have been obtained from a call to

OpenDEBBlob O. The length of the block to be read is len. The

comment argument describes the read operation from the appli

cation 's perspective. The function returns the number of bytes

read.

• unsigned long long WriteDEBBlobBlock(int handle,
void *data, unsigned long long len, char *comment)j

This function writes a block of data to the stream identified by

handle. This handle must have been obtained from a call to

OpenDEBBlob (). The length of the block to be written is len. The

comment argument describes the write operation from the appli

cation's perspective. The function returns the number of bytes

written.

• char *GetDEBTagValue( char *filename, char *tagname,
char *applicationinfo , char *comment);

This function returns a pointer to a string containing the value

of the tag tagname associated with the DEB filename. The

applicationinfo argument describes the application issuing the

operation while comment describes the operation in further detail

in the DEB's audit log. The function returns NULL if the tag's

value cannot be returned.

• int PutDEBTagValue(char *filename, char *tagname,

char *applicationinfo, char *comment)j

This function creates (or modifies) the tag tagname, setting (or

replacing) its value by tagvalue for the DEB filename. The

applicationinfo argument describes the application issuing the

operation while comment describes the operation in further detail

in the DEB's audit log. A positive return value indicates successful

modification of the tag.
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• int DpenDEBAuditLog(char *filename, char *application

info, char *comment);

This function returns a file handle associated with the audit log

for the DEB filename. The file handle's mode is read-only. This

primary use of the function is to review the audit log. To modify

the audit log, the function AppendDEBAuditLogO must be invoked.

• void CloseDEBAuditLog(int handle, char *application

info, char *comment);

This function closes the audit log stream associated with handle.

• int AppendDEBAuditLog(char *filename, char *auditentry,

char *applicationinfo, char *comment)i

This function appends a log entry auditentry to the audit log as

sociated with the DEB filename. A positive return value indicates

a successful append operation.

3.3 Support for Non-DEB-Enabled Applications

Native file system support for DEBs enables them to be used even

with non-enabled applications. Rather than using the API described

in Section 3.2, legacy applications may use standard C library open 0,
close 0, read 0 and write 0 operations (and their buffered counter

parts) on digital evidence blobs in a DEB. The openO system call is

modified to return a handle to a blob in a DEB; operations against the

returned handle target the associated digital evidence blob rather than

the DEB itself. Hooks in the implementation of these system calls can

identify the process name, process number and affected blocks, facilitat

ing transparent updates of the audit log in the DEB. This information

is useful not only in identifying which legacy applications have accessed

the DEB, but also in auditing the behavior of a legacy application. For

example, unauthorized write operations can be readily identified from

the audit log. Also, the "thoroughness" of an application can be identi

fied, by ensuring that it truly accesses all the blocks in a blob of digital

evidence.

We have developed a prototype system for native file system support

of non-DEB enabled applications based on FUSE. In our prototype, user

level applications are used to import and export DEBs into and out of a

special DEB-aware FUSE file system. An import operation essentially

splits the DEB into component files and places these files in a special

directory, along with the DEB audit log and other metadata. Legacy

access to digital evidence blobs in these special directories automatically
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results in audit log updates. For example, read access to a digital ev

idence blob causes the application name (and process number), access

time, portions of the blob accessed, and optionally, a hash of the exe

cutable of the accessing application to be recorded. The creation of a

new blob of digital evidence results in a similar audit log entry. Export

ing a DEB from the DEB-enabled file system simply recreates the DEB

structure from the data stored in the corresponding directory.

Table 1. Scalpel JPG file carving results (1 GB disk image).

Scalpel v1.52 Time

File carving on ext3 file system (no legacy DEB support) 3 min. 12 sec.

File carving on ext3 file system (legacy DEB-enabled FS) 3 min. 29 sec.

We ran several experiments to determine the overhead of automat

ically auditing access to digital evidence blobs. Table 1 presents the

results obtained when Scalpel was used to carve JPEG files from an

1 GB disk image. The test was run under Linux on a 1.6 GHz Pentium

M Thinkpad with 2 GB of RAM.

Table 2. FTK evidence processing results (8 GB disk image).

FTK v1.60 Time

Add Evidence step on Samba share (no legacy DEB support) 47 min. 56 sec.

Add Evidence step on Samba share (legacy DEB-enabled FS) 59 min. 04 sec.

Table 2 shows the results obtained for FTK v1.60's Add Evidence step

on an 8 GB disk image. FTK was run on a 3 GHz Pentium 4 desktop

with 2 GB of RAM. Access to the DEB-enabled file system was through

Samba over a 100 Mb Ethernet connection. The Samba server was a

1.7 GHz Thinkpad with 512 MB of RAM.

Under Linux, with direct access to the DEB file system, the overhead

is approximately 9%. Over a Samba mount, FTK showed about 23%

overhead, but further investigation indicated that the Windows XP plat

form running FTK was issuing two parallel, non-overlapping sequences

of read operations through Samba, even when application accesses were

strictly sequential. Running the Scalpel file carver under Windows over

Samba to access a DEB-enabled file system showed similar overhead

(approximately 25%; this result is not shown in the tables). We plan

to investigate this strange Samba behavior in the future, but note that

other developers have seen similar behavior in Windows XP.
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Naturally, there are limitations to providing automatic auditing of

DEB-unaware applications. For one, the audit log is not as "tidy" as

it might be if auditing were controlled by a compliant application using

the DEB API. This is because audit log entries for reads (or writes) that

serve a common purpose cannot be easily grouped; since our prototype

does not have high-level application knowledge, it can only track low

level file operations. Another limitation is that access to the special

DEB directories via a network share, e.g., Samba, obfuscates the name

of the application touching a blob of digital evidence. For example, if

a Windows application accesses DEB data through a Samba share, the

audit log shows the Samba daemon under Linux (smbd) as the accessing

application. Still, we believe our legacy application support is a good

interim solution as legacy applications are modified to use common DEB

formats or are replaced with DEB-compliant applications.

3.4 Secure Audit Logs

To further strengthen DEB auditing capabilities, anti-tampering facil

ities can be introduced for DEB contents, especially the audit log. Our

goal is not to prevent tampering of the audit log and DEB contents,

but rather, to solve the slightly easier problem of detecting tampering. .

In general, secure auditing facilities require a trusted component. This

component can be a WORM drive to which audit log entries are ap

pended, or a secure server that is physically inaccessible to an attacker.

In the following, we discuss some design choices.

Schneier and Kelsey [3] presented a scheme for secure auditing, which

involves an untrusted machine U (e.g., a machine used in a digital inves

tigation) that shares a secret Ao with a trusted machine T. To append

a new log entry Dj, U computes K j = hash(Aj) ,C = Ek(Dj) ,Yj =

hash(Yj_ljC), and Zj = MACAj(Yj). Yj is the jth entry in a hash

chain, where Y1 = 0 and MAC is a keyed hash function. Then, [C, Yj, Zj]

is written to the log. The shared secret is then recomputed: Aj+l =

hash(Aj), and Aj is destroyed. This scheme is tailored to disallow log

entries created before a compromise at time t from being read by an at

tacker. The idea is that the attacker is then left to delete the entire log

(which will be noticed when communication is established in the future

between U and T) or leave the log alone (and not know if a log entry

has recorded his unauthorized access). The scheme is useful if access to

previous log entries by applications running on U is not required. Note

that T can verify that the audit log on U is correct because it possesses

Ao and can "replay" the entire log.
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Snodgrass etal. [6] have proposed a technique that allows read access

to an audit log while preventing widespread tampering of the log. The

scheme uses a trusted notary service, which accepts a digital document,

computes a hash of the document and a secure timestamp and then

stores and returns a notary ID. This notary ID is stored with the log

entry. To determine if the audit log is consistent , a trusted party can

verify that the notary IDs (and associated timestamps) on the notary

service match those in the audit log. Omissions, additions and deletions

can all be identified. This basic scheme has the drawback of requiring

significant communication with the notary service, but audit log entries

can be combined and submitted as a single document to the notary to

reduce overhead (at the expense of a coarser level of log validation).

The Snodgrass approach is particularly attractive for DEB audit logs as

only limited storage is required on the trusted server. For each audit

log entry, a hash is computed for the text of the log entry, this hash

is submitted to the notary service, and the notary ID received is then

stored in the DEB's audit log. Note that the DEB's audit log is readable

by any application, which is useful for creating reports, evaluating an

investigation, or performing tool evaluation.

4. Conclusions

Digital Evidence Bags (DEBs) mimic traditional evidence bags by

providing a standard container for arbitrary digital evidence, with an

integrated audit log and metadata that describes the evidence and the

forensic processes applied to the evidence. Digital-forensics-aware oper

ating system components - as provided by native file system support for

DEBs - can significantly improve the performance and consistency of

forensic investigations . The power of DEBs is increased substantially by

providing a standard API and native file system support, because new

applications (specifically written to support DEBs) and native applica

tions (which use standard Unix system calls for 1/0) can take advantage

of automatic auditing of forensic operations.

Our system is a work in progress. However, once the initial implemen

tation is 'stable, we expect to undertake a thorough performance study

and determine whether user-level file system enhancements offer suffi

cient performance, or whether modifications to an existing file system,

such as ext3, are actually necessary.
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