
P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
9
0

File Version Based Continuous Data Protection on 
Distributed Object Storage

Xin Yang1

College of Electronic Science and Engineering, National University of Denfence Technology
ChangSha, 410000, China

E-mail: Cyang_92@163.com

Ning Jing
College of Electronic Science and Engineering, National University of Denfence Technology

Changsha, 410000, China
E-mail: ningjing@nudt.edu.cn

Jiangjiang Wu
College of Electronic Science and Engineering, National University of Denfence Technology
Changsha, 410000, China

E-mail: jiang_wu_820@sina.com

Jun Li
College of Electronic Science and Engineering, National University of Denfence Technology

Changsha, 410000, China
E-mail:junli@nudt.edu.cn

Continuous  Data  Protection  (CDP) can  restore  data  to  any point-in-time,   but high  storage
overhead and drastic system performance drop restricts its application. In this paper, we propose
a file version based file level CDP system (FV-CDP) by using cheap distributed storage for
backup to low down the storage costs and using local object cache and parralel asynchronous
object sending to mask network storage latency. It designs special opration log to identify the
file system hierarchy at any point-in-time and exploits parallel restoring in filesystem recovery.
The experimental results show that parallel asynchronous objects sending makes the FV-CDP
system max write ops to get improved by about 3.4 times, and the parallel recovery reduces file
system recovery time by up to 57%. Under high frequency file syetem change workload, FV-
CDP  causes a large storage space overhead.

CENet2017
22-23 July, 2017
Shanghai, China

1Speaker

 Copyright owned by the author(s) under the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/


P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
9
0

FV-CDP Xin Yang

1. Introduction and Related Work

As IT is  becoming a data-driven business,  the data loss  can cause severe disaster,  for
example,  the recent outbreak of the WannaCry viru resulted in a large number of PC loss data
and caused a global panic. The traditionally periodic backup is taken for data protection. But for
some  applications, the Recovery Point Objective (RPO) periodic backup providing is too coarse
to endure. For these scenarios, continuous data protection (CDP) can theoretically recover data
to any point-in-time,  but  simultaneously CDP causes high overheads. Distributed storage has
become a mainstream solution to large-scale data storage.  It provides low-cost storage,  high
read/write bandwidth, which make it suitable for backup system and provide a new solution to
CDP huge space overhead.

CDP system can be classified into block-level, file-level and application-level CDP. Block-
level CDP systems work in the block interface layer and is easy for implementation.  Previous
CDP studies mainly focused on different aspects of block-level CDP. For the block-level CDP
system  architecture,  Laden[1] proposed four  different  storage  controller  based  CDP
architectures. Trap-array [2] proposed a disk array based CDP model. Zhu et al.[3] proposed a
iSCSI interface based CDP. In terms of optimizing CDP system overhead, Clotho[4] used a
differential backup method to only back up the changed data portion between versions. Morrey
III et al. [5] found deduplication to optimize the backup space overhead. Mariner[6] leveraged
the  track-based  logging  to  minimize  the  write  overhead.  Differential  backups  caused  large
Recovery Time Objective (RTO). The ST-CDP[7] introduced a snapshot mechanism based on
Trap-array, and gave the prediction model of the snapshot frequency  influence on storage cost
and recovery rate. The block-level CDP system is easy to be implemented, but it ignores the
data background, resulting in difficulties in data consistency and usability examination. The file-
level CDP system records file updates in file system level, the backup data get better consistence
and the recovery process is more concise. In the file-level CDP system research, VMS[8] used a
copy-on-write  strategy  for  file  version  backup.  OceanStore[9]  used  versioning  in  backup
recovery process and introduced cache and replication mechanism. LBFS[10] realized the file
version backup in remote area under low-bandwidth network.  Ext3cow[11] impemented file
version backup in the ext3 system. As it is  cheap and scalable, the distributed storage has been
gradually favored in data backup field. Wood et al[12] showed that backups placed on cloud
storage were cheaper, and Cumulus[13]  backed up local data to the cloud and provided backup
data management. The cCDP[14] system used the cloud object store to backup the file system
change log.

Compared with previous researches, our FV-CDP system is a file version based continuous

data protection system (FV-CDP) with distributed object storage as the storage backend. Our FV-
CDP implementation focusses on improving the write performance under high network storage
latency  and  exploring  parallel  data  recovery  method  for  system  restoring.  Thus  FV-CDP
leverages  local  cache  and  asynchronously  objects  sending  to  optimize  the  system  writing
performance, presents a log-based method to identify filesystem hierarchy at any point-in-time,

and exploits parralel restoring in filesystem recovery. 

2



P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
9
0

FV-CDP Xin Yang

2. System Architecture and Implementation 

This chapter introduces the system architecture and implementation in three parts. Section
I shows the overview of FV-CDP system achitecture, Section II introduces the FV-CDP backup
process and  system optimization  under high network storage delay and Section III introduces
how to restore file system to any poin-in-time.

2.1 System Architecture 

As  shown  in Figure  1, FV-CDP system consists  of  three  parts,  the  local  Linux  node
Filesystem in Userspace (FUSE) with file operation filtering capability, the back-end storage
consisted of the distributed object storage cluster, between the two Swift Gateway is used as
proxy sever for object storage management.

Figure 1: FV-CDP Architecture   
FUSE is a software interface for Unix-like computer operating systems that allows users to

create file systems in user space. We built a stackble FUSE based on local Linux xfs file system
in user space. With FUSE, we added local xfs to file operation filtering function, through it we
can get  xfs operation information, including  the operation type and corresponding data. After
filtering the  information, FUSE bypasses it to the FV-CDP backup module. After the backup
module  receives  the  operation  information,  it  will  decide  which  has  to  be  backed  up,  and
transfer the information into Swift objects and  send these objects to the Swift Gateway.

Swift,  as  the  OpenStack  Object  Store  gateway, provides  a  simple  and  complete  object
storage management interface. The Swift Gateway acts as a proxy sever to send the objects to
the backend distributed storage cluster. The backend storage uses Ceph object storage cluster. 

2.2 FV-CDP Backup Module 

As shown in Figure 2, when the operation information of the file system is acquired, it is
represented  by  the  operation_info object,  which  contains  the  path  name,  operation  type,
timestamp and corresponding data. This information is then sent to the backup module. In FV-
CDP backup  module,  we  further  convert  operation_info into  two  data  objects,  one  is  the
structured operation log op_record object and the other is the unstructured op_data object. The

3



P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
9
0

FV-CDP Xin Yang

op_data object is a copy of the file version corresponding to that timepoint, and it is simplely
packaged into a Swift object with its name directly encoded by using path and timestamp.

Figure 2: FV-CDP Backup Process
The op_record object is used to record operations on FUSE including the filepath, opration

type such as create, write, delete and timestamp.  Op_record  is a very small object.  If each
record is stored as a Swift object to the back-end distributed object storage cluster, the storage
delay will greatly affect the system performance. Thus, we aggregate multiple  op_records to
form an  op_log Swift object. This  op_record aggregation method reduces the average storage
delay for a single op_record. In addition, the aggregate op_record makes another convenience.
The  op_log object formed by multiple structured  op_record objects is essentially a data table
(op_log table), so that we can retrieve through the op_log table in database.

When  op_log object  and  op_data object  are  encapsulated,  they are  sent  to  the  Swift
gateway. Simple synchronous network transmission can cause serious storage latency, it will
seriously affect the system's write performance; therefore, all objects are firstly cached locally
before sending and then parallelly asynchronously sent to the Swift gateway.    

2.3 FV-CDP Restoring Implementation 

Before restoring entire file system, we firstly look at how to use the file version backup to
restore a single file to any point in time. Figure 3 shows the changes of a single file on the time
axis. At t1, t2, t3 and t4, file1 is manipulated, and these operations are logged to op_log object.
If we need to restore file1 to t, we take the  instruction in Figure 3.

Figure 3: Restore File1 to Any Point-in-time 

In order to restore the file system to any point in time, the file hierarchy at any point-in-
time is also needed. The operation log object recorded all changes on the file system, so it can
be used to restore the file system hierarchy. Normally, it is not simple to extract the file system
hierarchy  from  the  operation  log;  however,  with  the  way  proposed  by  us, the  op_log is
organized into a data table (op_log table). It is easy and efficient to do this task with database.
FV-CDP does this task with MySQL. In order to restore the file system to the point in time t, it
firstly fetched the op_log objects logged the operation before  t or containing t  from the Swift

4



P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
9
0

FV-CDP Xin Yang

gateway. These objects are then loaded into the MySQL op_log_table. In MySQL server node,
procedures in  Figure 4 are excuted.

Figure 4: Restoring File System Hierarchy

When  sys_ hierarchy table  is  obtained,  in combination with the method of  restoring a
single file to t, FV-CDP can traverse the file system hierarchy and restore the entire file system
to any point-in-time. File version based backup eliminates the interdependence of  backed up
dataI.  In the  recovery phase,  FV-CDP can take full  advantage of the independence between
backup and parallelly restore the entire file system.

3. Performance and Evaluation 

We firstly introduce the test environment settings, and the back-end storage usese Ceph
object storage cluster, storage nodes are built on CentOS7 virtual machine with 2GB RAM,
100GB hard disk and 4 cores CPU. The Swift Object Gateway is also deployed on the CentOS
with the same hardware settings. The database FV-CDP uses thesingle node MySQL sever built
on virtual CentOS7 machine with 4G RAM, 100G hard disk and 4 cores CPU. Filebench is used
as benchmark.

Figure 5: Max Write Perfomance                          Figure 6: Restoring Performance

For the system write performance test, filebench sequential write-file workload is used.
The workload is set with 1 thread sequential write on the file set of 10k files and 128k per file
size, and the I/O size is set to 64k. The test baseline is FUSE without FV-CDP mechanism. The
results  is  shown  in  Figure  5.  It  shows  that  when  FV-CDP mechanism  is  added,  FUSE
performance drops drastically from the baseline FUSE 330 write ops to sigle thread FV-CDP 67
write  opsbecause under single  thread  situation, the  synchronous backup  data  sending  over
network brings huge latency. This latency blocks writing and thus causes write performance
drop. To average the network delay, FV-CDP introduces local object cache and uses parallel

5



P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
9
0

FV-CDP Xin Yang

asynchronous objects sending. It improves the write performance greately.  The experimental
results show that parallel asynchronous objects sending makes the  FV-CDP system max write
ops to get improved by about 3.4 times.

In  the  recovery  performance  test,  the  workload  is  filebench  file-sever  workload,  the
worklaod is set 1 thread, filesize 128k, file number 10k, eventgen rate 30. We test the restoring
time overhead to the selected points in time. There're  10 minutes since FV-CDP run with the
entire filesystem 3033 files,  20 minutes 4054 files and 30 minutes 4936 files.  Test result  is
shown in Figure 6, in which, FV-CDP parallel recovery has speeded up the system restoring.
When the thread numbers exceeds a certain value, the added thread no longer decreases the
restoring timebecause the time overhead is fixed when MySQL excutes procedurs in Figure 4.
The experimental results show that parallel recovery reduces the file system recovery time by up
to 57%.

Figure 7: Storage Overhead

In the storage space overhead test, we use filebench file-sever workload, the workload is
set under 1 thread, file set is file size 1M, file number 10k. The result is shown in Figure 7, in
which, the storage overhead is increasing near linearly over time. 5G size file system under 35
ops workload takes approximate 55G storage space in 60 minutes, indicating that in the scenario
of  high  frequency filesystem changes  of  FV-CDP has  resulted  ina  larger  storage  overhead
becaues  FV-CDP backs up multiple versions of a single file independently. It helps parallel the
system recovery, but causes a redundant backup. 

4. Conclusion And Futurework 

This paper proposes a file version based file-level continuous data protection system: FV-
CDP, which uses FUSE to filter the file operation information and backs up the information into
the distributed object storage cluster through Swift gateway. FV-CDP sends local cached objects
asynchronously to the Swift gateway in parallel to mask the network latency. In the file system
restoring phase, we design the method to determine the file system hierachy from operation log.
FV-CDP can parallelly restore the entire file system because of  independence of the backup
data. The experimental results show that parallel asynchronous objects sending makes the FV-
CDP system max  write  ops  to  get  improved by about  3.4 times,  and  the  parallel  recovery
reduces file system recovery time by up to 57%.

6



P
o
S
(
C
E
N
e
t
2
0
1
7
)
0
9
0

FV-CDP Xin Yang

The FV-CDP system can cause significant storage overhead due to  independent backup of
all  versions of the file.  Future work will further explore the correlation between file history
versions and introduce FV-CDP of  deduplication technology to improve the system storage
space overhead.

References

[1] LADEN G, TA-SHMA P, YAFFE E, et al. Architectures for Controller Based CDP. Proceedings of 
the FAST, F, 2007 [C]. 

[2] YANG Q, XIAO W, REN J. Trap-array: A disk array architecture providing timely recovery to any 
point-in-time. Proceedings of the ACM SIGARCH Computer Architecture News, F, 2006 [C]. IEEE 
Computer Society. 

[3] ZHU N, CHIUEH T-C. Portable and efficient continuous data protection for network file servers. 
Proceedings of the Dependable Systems and Networks, 2007 DSN'07 37th Annual IEEE/IFIP 
International Conference on, F, 2007 [C]. IEEE.

[4]  FLOURIS M, BILAS A. Clotho: Transparent Data Versioning at the Block I/O Level. Proceedings 
of the MSST, F, 2004 [C]. 

[5] MORREY III C B, GRUNWALD D. Content-based block caching. Proceedings of the Proceedings 
of the 23rd IEEE Conference on Mass Storage Systems and Technologies, F, 2006 [C]. 

[6] LU M, LIN S, CHIUEH T-C. Efficient logging and replication techniques for comprehensive data 
protection. Proceedings of the Mass Storage Systems and Technologies, 2007 MSST 2007 .24th 
IEEE Conference on, F, 2007 [C]. IEEE. 

[7] YANG J, CAO Q, LI X, et al. ST-CDP: Snapshots in TRAP for continuous data protection [J]. IEEE
Transactions on Computers, 2012, 61(6): 753-66. 

[8] MCCOY K. VMS file system internals [M]. Digital Press, 1990. 

[9] RHEA S C, EATON P R, GEELS D, et al. Pond: The OceanStore Prototype. Proceedings of the 
FAST, F, 2003 [C]. 

[10] MUTHITACHAROEN A, CHEN B, MAZIERES D. A low-bandwidth network file system. 
Proceedings of the ACM SIGOPS Operating Systems Review, F, 2001 [C]. ACM.

[11] PETERSON Z, BURNS R. Ext3cow: A time-shifting file system for regulatory compliance [J]. ACM
Transactions on Storage (TOS), 2005, 1(2): 190-212. 

[12] WOOD T, CECCHET E, RAMAKRISHNAN K K, et al. Disaster Recovery as a Cloud Service: 
Economic Benefits & Deployment Challenges [J]. HotCloud, 2010, 10(8-15). 

[13] VRABLE M, SAVAGE S, VOELKER G M. Cumulus: Filesystem backup to the cloud [J]. ACM 
Transactions on Storage (TOS), 2009, 5(4): 14. 

[14] MANDAGERE N, ROUTRAY R, SONG Y, et al. Cloud object storage based Continuous Data 
Protection (cCDP). Proceedings of the Networking, Architecture and Storage (NAS), 2015 IEEE 
International Conference, F, 2015 [C]. IEEE. 

7


	1. Introduction and Related Work
	2. System Architecture and Implementation
	2.1 System Architecture
	2.2 FV-CDP Backup Module
	2.3 FV-CDP Restoring Implementation

	3. Performance and Evaluation
	4. Conclusion And Futurework

