
 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 2005 IEEE

Abstract – We propose a method to analyze files to categorize
their type using efficient 1-gram analysis of their binary
contents. Our aim is to be able to accurately identify the true
type of an arbitrary file using statistical analysis of their
binary contents without parsing. Consequently, we may
determine the type of a file if its name does not announce its
true type. The method represents each file type by a compact
representation we call a fileprint, effectively a simple means of
representing all members of the same file type by a set of
statistical 1-gram models. The method is designed to be highly
efficient so that files can be inspected with little or no
buffering, and on a network appliance operating in high
bandwidth environment or when streaming the file from or to
disk.

I. INTRODUCTION

Files typically follow naming conventions that use
standard extensions describing its type or the applications
used to open and process the file. However, although a
file may be named Paper.doc1, it may not be a legitimate
Word document file unless it is successfully opened and
displayed by Microsoft Word, or parsed and checked by
tools, such as the Unix file command, if such tools exist
for the file type in question.

The Unix file command performs several syntactic checks
of a file to determine whether it is text or binary
executable, otherwise it is deemed data, a “catch all” for
just about anything. These tests include checking of
header information, for example, for “magic numbers”, to
identify how the file was created. One test performed by
file considers whether the bulk of byte values are
printable ASCII characters, and hence such files are
deemed text files.

The magic numbers serve as a "signature" to identify the
file type, such as in the case of .PDF files where the
header contains "25 50 44 46 2D 31 2E". However, a pure
signature-based (or string compare) file type analyzer [1,
2] runs several risks. Not all file types have such magic
numbers. The beginning of the file could be damaged or
purposely missing if obfuscation is used. For example,

1 For our purposes here, we refer to .DOC as Microsoft
Word documents, although other applications use the
.DOC extension such as Adobe Framemaker, Interleaf
Document Format, and Palm Pilot format, to name a few.

malicious code can be hidden by many techniques, such
as the use of binders, packers or code obfuscation [3, 4].
In the case of network traffic analysis, due to different
packet fragmentation, the beginning portion of a file may
not be entirely contained in a single packet datagram or it
may be purposely padded and intermixed with other data
in the same packet to avoid signature-based detection.
Finally, not all file types have a distinct “magic number”.

In this paper we propose a method to analyze the contents
of exemplar files using efficient statistical modeling
techniques. In particular, we apply n-gram analysis to the
binary content of a set of exemplar “training” files and
produce normalized n-gram distributions representing all
files of a specific type. Our aim is to determine the
validity of files claiming to be of a certain type (even
though the header may indicate a certain file type, the
actual content may not be what is claimed) or to
determine the type of an unnamed file object. In our prior
work, we exploited this modeling technique in network
packet content analysis for zero-day worm detection [5].
We extend that work here for checking file types, whether
in network traffic flows or on disk. In our prior work we
generate many models conditioned on port/service and
length of payload. This generates a set of models that very
accurately represent normal data flow and identifies
different data quite accurately.

McDaniel and Heydari [6] introduced algorithms for
generating “fingerprints” of file types using byte-value
distributions of file content that is very similar in spirit to
the work reported here. There are, however, several
important differences in our work. First, they compute a
single representative fingerprint for the entire class of file
types. Our work demonstrates that it is very difficulty to
produce one single descriptive model that accurately
reporesents all members of a single file type class. Their
reported experimental results also demonstrate this.
Hence, we introduce the idea of computing a set of
centroid models and use clustering to find a minimal set
of centroids with good performance. Furthermore, the
McDaniel paper describes tests using 120 files divided
among 30 types, with 4 files used to compute a model for
each type. We have discovered that files within the same
type may vary greatly (especially documents with
embedded objects such as images), and hence so few a
number of exemplars may achieve poor performance.

Fileprints: Identifying File Types by n-gram Analysis

Wei-Jen Li, Ke Wang, Salvatore J. Stolfo, Benjamin Herzog Columbia University
{Wei-Jen, Kewang, Sal} @cs.columbia.edu

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 2005 IEEE

Indeed, they report 3 variant algorithms achieving an
accuracy of 28%, 46% and 96%. The results we report
using a clustering strategy produces better results. In the
case of the test producing an accuracy of 96% in their
work, they analyze the leading header portion of files.
Our work shows that each file type consists of fairly
regular header information and we achieve a near 100%
accuracy in file type classification. However, some file
types do not have consistent header information. When
more data is used as in our case, their results are rather
poor.

There is also a significant difference in the method used
to normalize their data. They state “Once the number of
occurrences of each byte value is obtained, each element
in the array is divided by the number of occurrences of
the most frequent byte value. This normalizes the array to
frequencies in the range of 0 to 1, inclusive." In their
work, they seek to build a model invariant to file size.
This may not be a good strategy. We believe a more
proper normalization strategy would be to compute the
byte value frequencies normalized by the length of the
file. We demonstrate that this achieves more accurate
centroid models.
a
Figure 1 displays a set of plots of example 1-gram
distributions for a collection of popular file types. The 1-
gram distribution shows the average frequency of each
byte value over all training files represented as a 256-
element histogram. The plots show the byte values in
order from 0, 1, 2,…, 255. Notice how distinct each
distribution is for each file type. These trained models
serve to classify unknown files, or to validate the
extension of a file by comparing the byte value
distribution of the file in question to one or more model
file distributions.2 The histograms may contain the actual
byte count, or it may be normalized so that the percentage
of each byte value is represented. The choice is a subtle
technical issue. For example, normalized histograms
allow different length files to be compared directly.

Notice that the full 1-gram distribution, which is at most
two 256-element vectors (representing the average byte
frequency, and their variance), is very space efficient. We
conjecture that these simple representations of file types
serve as a distinct representation of all members of a
single type of file, and hence refer to this concept as a
fileprint. A fileprint may be a set of such histograms to
represent a variety of example files of the same type.

2 Since the byte value 0 is used often to pad files in
various formats, one may ignore this value and focus on
the remaining byte value distribution without loss of
accuracy.

Figure 1: File binary distribution. X axis: bytes from 0 to
255, Y axis: normalized frequency of byte values (as %).

There are many potential uses of fileprints. As a network
application, one may be able to quickly analyze packet
data to identify the likely type of information being
transmitted. Network integrity applications may be
supported, and security policies may therefore be
checked. For example, the transmission of Word
documents outside of a LAN may be prohibited by
company policy. Users quickly learn how to thwart such
policies, by renaming their Word documents to .DDD, for
example, to avoiding detection based upon tests of the file
name in email attachments. However, a quick test of the
1-gram distribution of the content of the packet datagrams
suggesting the content matches a Word document
distribution would prevent such obfuscation. Thus, any
Word document file seen on the wire but without the
.DOC extension could be identified quickly by its fileprint
and filtered before leaving the LAN.

Furthermore, infected file shares may be detected if they
do not conform to an expected file type distribution.
Hence, virus and worm propagation may be thwarted if
certain files do not match their announced type. n-gram
analysis of file content was first proposed for the
detection of malicious virus code in our earlier work on
the Malicious Email Filter project [7]. (That work has
recently been extended by Kolter and Maloof [8] who
evaluate a variety of related techniques.) In that prior

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 2005 IEEE

work, a supervised training strategy was applied to model
known malicious code and detect members of that class in
email attachments. The n-gram distributions we used as
input to a supervised Naïve Bayes machine learning
algorithm to compute a single classifier of “malicious file
content”. In this work, we extend these techniques by
calculating the entire 1-gram distributions of file content
and use these as models for a set of file types of interest.
The distribution of byte values of a file are compared to
the models using well known statistical distribution
distance measures. Here, we restrict our attention to only
two, Mahalanobis and Manhattan distance.

For concreteness, suppose we have a file, F, of unknown
type. In general, to distinguish between file-types A and
B, we compute two models, MA and MB, corresponding to
file types A and B, respectively. To test the single file F,
we check the distribution of its content against both
models, and see which one it most closely matches. We
assert its name as F.B if the contents of F closely match
model MB, i.e., the D(�(F.B), MB) is less than some
threshold, where � refers to the 1-gram distribution (a
histogram), and D is a distance function.

Alternatively, given file F.A, we may check its contents
against MA and if the 1-gram distribution of F.A is too
distant from the model MA, we may assert that F.A is
anomalous and hence misnamed. Thus, D(�(F.A), MA) >
TA for some preset threshold TA. We may suspect that F.A
is infected with foreign content and thus subject it to
further tests, for example, to determine whether it has
embedded exploit code.

In this paper, we test whether we can accurately classify
file types. This test is used to corroborate our thesis that
file types have a regular 1-gram representation. We apply
a test to 800 normal files with 8 different extensions. We
compute a set of fileprints (or “centroid” models) for each
of the 8 distinct types, and test a set of files for correct
classification by those models. Ground truth is known so
accurate measurements are possible.

Several modeling strategies are explored. First, we use a
“one-class” training evaluation strategy. A set of files of
the same type are used in their entirety to train a single
model. For example, given 5 different file types, we
compute 5 distinct fileprints characterizing each type. A
test file with an extension of one of these types is thus
compared to the corresponding fileprint. This validation is
computed by the Mahalanobis distance function applied
to the distributions. In the second case, we compute
multiple models for each file type by clustering the
training files using K-means. The set of models are
considered the fileprint. In this case, a test file is
compared to all of the models of all of the types to
determine the closest model. The latter case produces
more models, but each provides a finer grained view of

the training file type distributions, and hence may provide
a more accurate fileprint classifier with fewer false
positives. We extend this strategy to the extreme case.
Rather than computing cluster centroids, we consider a set
of exemplar files of a certain type as the fileprint. Each
test file is compared to this set of pre-assigned exemplar
files. The performance results of each of these tests show
remarkably good results. We also perform these same
tests using different portions of the files, a strategy we
call truncation.

In section II we briefly describe n-gram analysis and an
overview of the modeling techniques used in this study.
Section III details the data sets and the detailed
experimental results. Section IV concludes the paper.

II. FILEPRINTS

A. n-gram Analysis

Before demonstrating and graphically plotting the
fileprints of the file contents, we first introduce n-gram
analysis. An n-gram [9] is a subsequence of N
consecutive tokens in a stream of tokens. n-gram analysis
has been applied in many tasks, and is well understood
and efficient to implement.

By converting a string of data to n-grams, it can be
embedded in a vector space to efficiently compare two or
more streams of data. Alternatively, we may compare the
distributions of n-grams contained in a set of data to
determine how consistent some new data may be with the
set of data in question.

An n-gram distribution is computed by sliding a fixed-
size window through the set of data and counting the
number of occurrences of each “gram”. Figure 2 displays
an example of a 3-byte window sliding right one byte at a
time to generate each 3-gram. Each 3-gram is displayed in
the highlighted “window”.

Figure 2: Sliding window (window size = 3)

The choice of the window size depends on the
application. First, the computational complexity increases
exponentially as the window size increases. Data is
considered a stream of tokens drawn from some alphabet.
If the number of distinct tokens (or the size of the
alphabet) is X, then the space of grams grows as XN. In the
case of 3-grams computed over English text composed of
the 26 letters of the alphabet, the space is 263 distinct

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 2005 IEEE

possible 3-grams. A string of M letters would thus have
(M-2) 3-grams with a distribution that is quite sparse.

In this work, we focus initially on 1-gram analysis of
ASCII byte values. Hence, a single file is represented as a
256-element histogram. This is a highly compact and
efficient representation, but it may not have sufficient
resolution to represent a class of file types. The results of
our experiments indicate that indeed 1-grams perform
well enough, without providing sufficient cause requiring
higher order grams to be considered.

B. Mahalanobis Distance

Given a training data set of files of type A, we compute a
model MA. For each specific observed file, MA stores the
average byte frequency and the standard deviation of each
byte’s frequency.

Note that the training and model computation of the byte

value mean frequency, x , may be computed in real-time
as an incremental function as

11
11

+
−

+=
+
+×

= ++

N
xx

x
N

xNx
x NN ,

and similarly for the computation of the standard
deviation. Hence, the models may be computed very
efficiently while streaming the data without the need to
fully buffer the file.

Once a model has been computed, we next consider the
comparison of a test file against this model, either to
validate the file’s purported type, or to assign a type to a
file of unknown origin. We use Mahalanobis Distance for
this purpose. Mahalanobis Distance weights each
variable, the mean frequency of a 1-gram, by its standard
deviation and covariance. The computed distance value is
a statistical measure of how well the distribution of the
test example matches (or is consistent with) the training
samples, i.e. the normal content modeled by the centroids.
If we assume each byte value is statistically independent,
we can simplify the Mahalanobis Distance as:

))/(|(|),(
1

0
ασ +−=�

−

= i
n

i ii yxyxD

where x is the feature vector of the new observation,
y is the averaged feature vector computed from the

training examples, iσ is the standard deviation and α is a
smoothing factor. This leads to a faster computation, with
essentially no impact on the accuracy of the models. The
distance values produced by the models are then subjected
to a test. If the distance of a test datum, the 1-gram
distribution of a specific file, is closest to some model
computed for a set of files of a certain type, the file is
deemed of that type.

Alternatively, in some applications we may compute a
distinct threshold setting, TA for each model MA
computed. If the distance of the test file and MA is at or
bellow TA, the test file will be classified as type A. An
initial value of TA may simply be the maximum score of
the model distance to its training data, plus some small
constant, �.

Since the type of a test file is unknown, we need a precise
context in order to build a set of models for a set of
expected file types. Suppose we are interested in building
a virus detector for some host system, such as a Windows
client machine. That client may regularly produce or
exchange MS Office documents, PDF files, compressed
archives, photographs or image files, and raw text files. In
this example, we would need to model probably about 10
representative file types expected for the client machine in
question. These 10 models would serve to protect the
machine, by validating all files loaded or exchanged at
run time. Recall, our goal is to ensure that a file claiming
to be of type A actually matches the corresponding
fileprint for A. For example, when receiving a file with
extension .DOC that contains non-ASCII characters, it
should be checked against the MS Word fileprint. In order
to compute such models, we use the existing store of the
client for training data to compute the fileprints. We
follow this strategy in the experiments performed and
described in the following sections. However, for some
file types, we searched the internet using Google to
prepare a set of “randomly chosen” representatives of a
file type, to avoid any bias a single client machine may
produce, and to provide the opportunity for other
researchers to validate our results by accessing the same
files that are also available to them.

C. Modeling and Testing Technique

In this section, we describe several strategies to improve
the efficiency and accuracy of the technique: truncation,
reducing the amount of data modeled in each file, and
multiple-centroids computed via clustering, a finer-
grained modeling of each file type.

1. Truncation

Truncation simply means we model only a fixed portion
of a file when computing a byte distribution. That portion
may be a fixed prefix, say the first 1000 bytes, or a fixed
portion of the tail of a file, as well as perhaps a middle
portion. This has several advantages:

- For most files, it can be assumed that the most

relevant part of the file, as far as its particular type, is
located early in the file to allow quick loading of
meta-data by the handler program that processes the
file type. This avoids analyzing a good deal of the

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 2005 IEEE

payload of the file that is not relevant to
distinguishing their type and that may be similar or
identical to several different file types. (For example,
the bulk of the data of compressed images, .JPG, may
appear to have a similar distribution – a uniform byte
value distribution – to that of encrypted files, such as
.ZIP.)

- Truncation dramatically reduces the computing time

for model building and file testing. In network
applications this has obvious advantages. Only the
first packet storing the prefix of the file may be
analyzed, ignoring the stream of subsequent packets.
If a file whose size is 100MB is transmitted over
TCP, only 1 out of thousands of packets would
therefore be processed.

Figure 3: The byte value distributions of entire file (left

column) and the first 50 bytes (right column) of the same
file types. X-axis: bytes from 0 to 255, Y-axis:
normalized frequency of byte values (as a %).

Figure 3 displays the effect of truncation over a few
exemplar file type models. Notice the distributions change
quite noticeably from the full file detail (the scale of the
histograms has also changed.) Even so, the models
computed under truncation may still retain sufficient
information to characterize the entire class of files to
distinguish different file types. In the next section, we

present the results of experiments on both truncated and
non-truncated files to test this conjecture.

2. Centroids

There are good reasons why some file types have similar
distributions. Figure 4 compares MS Office formats
(Word, PowerPoint, and Excel). The formats are similar,
and the technique presented in this paper would certainly
not be sufficient to distinguish the different sub-types
from one another. However, it may be the case that any
one of the models, or all of them at once, can be used to
distinguish any MS Office document from, say, a virus.

Figure 4: The bytes distribution of DLL and EXE files.

X axis: bytes from 0 to 255, Y axis: normalized frequency
of byte values (as a %).

The second row of Figure 4 presents another example of
how two different file extensions have similar 1-gram
distributions. These types should be grouped together as a
logically equivalent file type, here .DLL’s and .EXE’s.

On the other hand, files with the same extension do not
always have a distribution similar enough to be
represented by a single model. For example, .EXE files
might be totally different when created for different
purpose, such as system files, games, or media handlers.
Another example is documentation files that may contain
a variety of mixed media. Thus, an alternative strategy for
representing files of a particular type is to compute
“multiple models”. We do this via a clustering strategy.
Rather than computing a single model MA for files of type
A, we compute a set of models Mk

A , k>1. The multiple
model strategy requires a different test methodology,
however. During testing, a test file is measured against all
centroids to determine if it matches at least one of the
centroids. The collection of such centroids is considered a
fileprint for the entire class. The multiple model technique
creates more accurate models, and separates foreign files
from the normal files of a particular type in more precise
manner.

In the experiments reported here, the multiple models are
computed by the K-Means algorithm under Manhattan

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 2005 IEEE

Distance. The Manhattan Distance is defined as follows.
Given two files A and B, with byte frequency
distributions, Ai and Bi, i = 0,…,255, their Manhattan
Distance is defined as:

D(A,B) = �
=

−
255

0

||
i

ii BA

The K-means algorithm that computes multiple centroids
is briefly described as follows.
1. Randomly pick K files from the training data set.

These K files (their byte value frequency distribution)
are the initial seeds for the first K centroids
representing a cluster.

2. For each remaining file in the training set, compute
the Manhattan Distance against the K selected
centroids, and assign that file to the closest seed
centroid.

3. Update the centroid byte value distribution with the
distribution of the assigned file.

4. Repeat step 2 and 3 for all remaining files, until the
centroids stabilize without any further substantive
change.

The result is a set of K centroid models, M
k
A which are

later used in testing unknown files.

III. FILE TYPE CLASSIFICATION AND ANOMALY DETECTION:
EXPERIMENTAL RESULTS

In this section we describe several experiments to test
whether fileprints accurately classify unknown files or
validate the presumed type of a file. The experiments
performed include tests of single models computed for all
files of a single type, multiple models computed over the
same type, and models computed under truncation of
files. We report the average accuracy over 100 trials using
cross validation for each of the modeling technique.

A. File Sets

We used 2 groups of data sets. The first data set includes
8 different file types, EXE, DLL, GIF, JPG, PDF, PPT,
DOC and XLS. Models for each were computed using
100 files of each type. The files were collected from the
internet using a general search on Google. For example,
.PDF files were collected from Google by using the
search term “.pdf”. In this way, the files can be
considered randomly chosen as an unbiased sample. (The
reader can also repeat our experiments since the same
files may be available through the same simple search.)

In our earlier experiment, we found that EXE and DLL
have essentially the exact same header information and
extremely similar 1-gram distributions. They are used to
similar purpose in MS system. We consider that they are
in the same class in this paper. The contents of MS Office
file types are also similar (see Figure 4). They have the

same header, which is “D0 CF 11 E0 A1 B1 1A E1”. We
thus assign all files of DOC, PPT and XLS files as a
single class represented by .DOC in the figures below.

The files vary in size, each are approximately from 10K
to 1MB bytes long. To avoid a problem of sample bias,
we only compare files with similar size in the following
experiments. For example, a 100K bytes file can be
compared to a 200K file, but not a 1MB bytes file.

B. File Type Classification

1. One-centroid file type model accuracy

In this section, we seek to determine how well each
fileprint accurately identifies files of its own type using
both of the entire and truncated content of the files in
question.

For each file type x, we generated a single (one-centroid)
model Mx. For example, we computed Mpdf by using 80%
of the collected PDF files. Since we had 8 different types
of files (EXE and DLL are considered as one type, and
DOC, PPT, and XLS are in one group), we generated 5
models totally. The rest of 20% files of each type are used
as the test data.

In the truncated cases, we modeled and tested the first 20,
200, 500 and 1000 bytes of each file. This portion
includes the “magic numbers” of the file type if it exists.
Such analysis was used to establish a baseline and
determine whether all the files tested in question contain
essentially common header information.

The results are quite amazing. There was only a few
misclassified file when we used truncated files. The
classification accuracy results are shown in the top row of
Table 1. In the row of 20 and 200 bytes, the results are
almost perfect. There are some common problems. First,
image, GIF and JPG, types are sometimes similar. The
second, document files (PDF and MS office types) may
include images. These may also cause misclassification
error. The last, PDF files (with or without images) may be
classified to the GIF category.

In cases where file boundaries are easily identifiable, it is
rather straightforward to identify the file type from header
information alone. This serves as a baseline and a first
level of detection that should work well in practice.
However, we next turn our attention to the more general
case where header information is damaged or missing or
purposely replaced to avoid detection of the true file type.
We thus extend the analysis to the entire file content.

One-centroid file type classifying accuracy
Truncation EXE GIF JPG PDF DOC AVG.

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 2005 IEEE

Size
20 98.9% 100% 99% 100% 98.3% 98.9%

200 98.3% 91.1% 97% 82.8% 93.7% 93.6%
500 97% 97% 93.4% 80.4% 96.7% 94.3%
1000 97.3% 96.1% 93.5% 83.4% 82.6% 88.2%
All 88.3% 62.7% 84% 68.3% 88.3% 82%

Multi-centroids file type classifying accuracy

Truncation
Size EXE GIF JPG PDF DOC AVG.

20 99.9% 100% 98.9% 100% 98.8% 99.4%
200 97% 98.3% 96.6% 95% 97.2% 96.9%
500 97.2% 98.4% 94.8% 90% 96.9% 96%
1000 97% 95.1% 93.5% 90.7% 94.5% 94.6%
All 88.9% 76.8% 85.7% 92.3% 94.5% 89.5%

Classifying accuracy using exemplar files as centroids

Truncation
Size EXE GIF JPG PDF DOC AVG.

20 100% 100% 100% 100% 98.9% 99.6%
200 99.4% 91.6% 99.2% 100% 98.7% 98.2%
500 99% 93.6% 96.9% 99.9% 98.5% 98%
1000 98.9% 94.9% 96.1% 86.9% 98.6% 96.4%
All 94.1% 93.9% 77.1% 95.3% 98.9% 93.8%

Table 1: The average accuracy of file type classifying test.
First Column: the truncation size, first 20, 200, 500 1000

byte, and the entire file. Other Columns: “EXE”
represents the group which includes .EXE and .DLL.

“DOC” represents the group which includes .DOC, .PPT
and .XLS. “AVG.” represents the overall performance.

2. Multi-centroids for classifying file types

The next experiment tests the multi-centroid model.
Recall, in this strategy rather than building one model for
each file type, we compute multiple models by K-means
clustering of example files into separate centroids. The
union of these centroids represents the entire file type.

We generated K models for each of the types of files,
Mk

exe, Mk
doc, Mk

pdf, for example. If K = 10, a total of 50
models (5 groups of test files) are tested using
Mahalanobis Distance to determine the closest file type
model. The results are shown in the middle row of Table
1.

Compare each of these results of the multi-centroids test
to the previous one centroid case. The results are better.
We also tested several sizes of K. Basically, the results
are similar.

3. Exemplar files used as centroids

We may extend the multi-centroids method without using
K-means. In this experiment we test each file against the
distributions of a randomly chosen set of exemplar files.
The same technique was used as described in the previous
tests, but here we randomly choose 80% of the files as the
representative samples of their file type. The other 20%
of the files are test files. In this case we compare the 1-

gram distribution of an individual file and hence there is
no variance computed. We thus cannot apply
Mahalanobis, and instead use Manhattan Distance.

For concreteness, assume we had N files of type x, M i

x,
and M files if type y M j

y where i = 1, 2,…N and j = 1,
2,…M. Then, for each test file Fk, we compute the
Manhattan Distance against each M ix, and M jy.

We record the smallest distance of Fk to each of the
training files. If the closest file was of type x, Fk was
classified as that type. The results are displayed in the
bottom of Table 1. In general, the results are better than
both of the previous two methods. The average accuracies
of all the three methods are shown in Figure 5.

Figure 5: The classification accuracy -- comparison of
three different methods. X-axis: Size of truncation (in

bytes). Y-axis: accuracy.

IV. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate the 1-gram binary
distribution of files for different file types. The
experiments demonstrate that every file type has a
distinctive distribution that we regard as a “fileprint”.
This observation is important. The centroid models
representing the byte value distributions of a set of
training files can be an effective tool in a number of
applications including the detection of security policy
violations. Techniques that may be used by attackers to
hide their malware from signature-based systems will
have a tougher time being stealthy to avoid detection
using these techniques.

Moreover, we found that the truncated modeling
technique performs as well if not better than modeling
whole files, with superior computational performance.
This implies real-time network-based detectors that
accurately identify the type of files flowing over a
network are achievable at reasonable cost.

As future work, a number of interesting alternative

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 2005 IEEE

modeling techniques should be explored. The truncation
to the tail of a file might be interesting to determine if
common shared files are infected. Furthermore, as noted,
several of the file types (.DOC, .PPT and .XLS) are each
so similar to a single type, MS Office. What features may
be available to tease these sub-types apart? We believe
bigram models are a natural extension to explore for this
purpose. We have also tested these techniques comparing
normal Windows OS files (both groups are EXE files)
against a collection of viruses and worms. The results are
quite good but also preliminary. A wider collection of
test sets is required which is part of our ongoing work.

V. ACKNOWLEDGEMENTS

This work has been partially supported by an SBIR
subcontract entitle “Payload Anomaly Detection” with the
HS ARPA division of the Department of Homeland
Security.

VI. REFERENCES

[1] FileAlyzer, http://www.safer-
networking.org/en/filealyzer/index.html

[2] FILExt – the file extension source http://filext.com/

[3] C. Nachenberg. “Polymorphic virus detection
module.” United States Patent # 5,826,013, October 20,
1998.

[4] P. Szor and P. Ferrie. “Hunting for metamorphic”. In
Proceedings of Virus Bulletin Conference, pages 123 –
144,September 2001.

[5] Ke Wang, Salvatore J. Stolfo. “Anomalous Payload-
based Network Intrusion Detection”. RAID, Sept., 2004.

[6] McDaniel and M. Hossain Heydari. “Content Based
File Type Detection Algorithms.” 6th Annual Hawaii
International Conference on System Sciences (HICSS'03)

[7] Matthew G. Schultz, Eleazar Eskin, and Salvatore J.
Stolfo. “Malicious Email Filter - A UNIX Mail Filter that
Detects Malicious Windows Executables.” Proceedings of
USENIX Annual Technical Conference - FREENIX
Track. Boston, MA: June 2001.

[8] Jeremy Kolter and Marcus A. Maloof. “Learning to
Detect Malicious Executables in the Wild.” ACM
SIGKDD, 2004

 [9] M. Damashek. “Gauging similarity with n-grams:
language independent categorization of text.” Science
1995

