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Abstract – We propose a method to analyze files to categorize 
their type using efficient 1-gram analysis of their binary 
contents. Our aim is to be able to accurately identify the true 
type of an arbitrary file using statistical analysis of their 
binary contents without parsing.  Consequently, we may 
determine the type of a file if its name does not announce its 
true type. The method represents each file type by a compact 
representation we call a fileprint, effectively a simple means of 
representing all members of the same file type by a set of 
statistical 1-gram models. The method is designed to be highly 
efficient so that files can be inspected with little or no 
buffering, and on a network appliance operating in high 
bandwidth environment or when streaming the file from or to 
disk. 

I. INTRODUCTION 

Files typically follow naming conventions that use 
standard extensions describing its type or the applications 
used to open and process the file. However, although a 
file may be named Paper.doc1, it may not be a legitimate 
Word document file unless it is successfully opened and 
displayed by Microsoft Word, or parsed and checked by 
tools, such as the Unix file command, if such tools exist 
for the file type in question. 
 
The Unix file command performs several syntactic checks 
of a file to determine whether it is text or binary 
executable, otherwise it is deemed data, a “catch all” for 
just about anything. These tests include checking of 
header information, for example, for “magic numbers”, to 
identify how the file was created. One test performed by 
file considers whether the bulk of byte values are 
printable ASCII characters, and hence such files are 
deemed text files. 
 
The magic numbers serve as a "signature" to identify the 
file type, such as in the case of .PDF files where the 
header contains "25 50 44 46 2D 31 2E". However, a pure 
signature-based (or string compare) file type analyzer [1, 
2] runs several risks. Not all file types have such magic 
numbers. The beginning of the file could be damaged or 
purposely missing if obfuscation is used. For example, 

                                                           
1 For our purposes here, we refer to .DOC as Microsoft 
Word documents, although other applications use the 
.DOC extension such as Adobe Framemaker, Interleaf 
Document Format, and Palm Pilot format, to name a few. 

malicious code can be hidden by many techniques, such 
as the use of binders, packers or code obfuscation [3, 4]. 
In the case of network traffic analysis, due to different 
packet fragmentation, the beginning portion of a file may 
not be entirely contained in a single packet datagram or it 
may be purposely padded and intermixed with other data 
in the same packet to avoid signature-based detection. 
Finally, not all file types have a distinct “magic number”. 
 
In this paper we propose a method to analyze the contents 
of exemplar files using efficient statistical modeling 
techniques. In particular, we apply n-gram analysis to the 
binary content of a set of exemplar “training” files and 
produce normalized n-gram distributions representing all 
files of a specific type. Our aim is to determine the 
validity of files claiming to be of a certain type (even 
though the header may indicate a certain file type, the 
actual content may not be what is claimed) or to 
determine the type of an unnamed file object. In our prior 
work, we exploited this modeling technique in network 
packet content analysis for zero-day worm detection [5]. 
We extend that work here for checking file types, whether 
in network traffic flows or on disk. In our prior work we 
generate many models conditioned on port/service and 
length of payload. This generates a set of models that very 
accurately represent normal data flow and identifies 
different data quite accurately. 
 
McDaniel and Heydari [6] introduced algorithms for 
generating  “fingerprints” of file types using byte-value 
distributions of file content that is very similar in spirit to 
the work reported here. There are, however, several 
important differences in our work. First, they compute a 
single representative fingerprint for the entire class of file 
types. Our work demonstrates that it is very difficulty to 
produce one single descriptive model that accurately 
reporesents all members of a single file type class. Their 
reported experimental results also demonstrate this. 
Hence, we introduce the idea of computing a set of 
centroid models and use clustering to find a minimal set 
of centroids with good performance. Furthermore, the 
McDaniel paper describes tests using 120 files divided 
among 30 types, with 4 files used to compute a model for 
each type. We have discovered that files within the same 
type may vary greatly (especially documents with 
embedded objects such as images), and hence so few a 
number of exemplars may achieve poor performance. 
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Indeed, they report 3 variant algorithms achieving an 
accuracy of 28%, 46% and 96%. The results we report 
using a clustering strategy produces better results. In the 
case of the test producing an accuracy of 96% in their 
work, they analyze the leading header portion of files. 
Our work shows that each file type consists of fairly 
regular header information and we achieve a near 100% 
accuracy in file type classification. However, some file 
types do not have consistent header information. When 
more data is used as in our case, their results are rather 
poor. 
 
There is also a significant difference in the method used 
to normalize their data. They state “Once the number of 
occurrences of each byte value is obtained, each element 
in the array is divided by the number of occurrences of 
the most frequent byte value. This normalizes the array to 
frequencies in the range of 0 to 1, inclusive." In their 
work, they seek to build a model invariant to file size. 
This may not be a good strategy. We believe a more 
proper normalization strategy would be to compute the 
byte value frequencies normalized by the length of the 
file. We demonstrate that this achieves more accurate 
centroid models.  
a 
Figure 1 displays a set of plots of example 1-gram 
distributions for a collection of popular file types. The 1-
gram distribution shows the average frequency of each 
byte value over all training files represented as a 256-
element histogram. The plots show the byte values in 
order from 0, 1, 2,…, 255. Notice how distinct each 
distribution is for each file type. These trained models 
serve to classify unknown files, or to validate the 
extension of a file by comparing the byte value 
distribution of the file in question to one or more model 
file distributions.2 The histograms may contain the actual 
byte count, or it may be normalized so that the percentage 
of each byte value is represented. The choice is a subtle 
technical issue. For example, normalized histograms 
allow different length files to be compared directly.   
 
Notice that the full 1-gram distribution, which is at most 
two 256-element vectors (representing the average byte 
frequency, and their variance), is very space efficient. We 
conjecture that these simple representations of file types 
serve as a distinct representation of all members of a 
single type of file, and hence refer to this concept as a 
fileprint. A fileprint may be a set of such histograms to 
represent a variety of example files of the same type.  
 

                                                           
2  Since the byte value 0 is used often to pad files in 
various formats, one may ignore this value and focus on 
the remaining byte value distribution without loss of 
accuracy. 

 
Figure 1: File binary distribution. X axis: bytes from 0 to 
255, Y axis: normalized frequency of byte values (as %). 

 
There are many potential uses of fileprints. As a network 
application, one may be able to quickly analyze packet 
data to identify the likely type of information being 
transmitted. Network integrity applications may be 
supported, and security policies may therefore be 
checked. For example, the transmission of Word 
documents outside of a LAN may be prohibited by 
company policy. Users quickly learn how to thwart such 
policies, by renaming their Word documents to .DDD, for 
example, to avoiding detection based upon tests of the file 
name in email attachments. However, a quick test of the 
1-gram distribution of the content of the packet datagrams 
suggesting the content matches a Word document 
distribution would prevent such obfuscation. Thus, any 
Word document file seen on the wire but without the 
.DOC extension could be identified quickly by its fileprint 
and filtered before leaving the LAN. 
 
Furthermore, infected file shares may be detected if they 
do not conform to an expected file type distribution. 
Hence, virus and worm propagation may be thwarted if 
certain files do not match their announced type. n-gram 
analysis of file content was first proposed for the 
detection of malicious virus code in our earlier work on 
the Malicious Email Filter project [7]. (That work has 
recently been extended by Kolter and Maloof [8] who 
evaluate a variety of related techniques.) In that prior 
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work, a supervised training strategy was applied to model 
known malicious code and detect members of that class in 
email attachments. The n-gram distributions we used as 
input to a supervised Naïve Bayes machine learning 
algorithm to compute a single classifier of “malicious file 
content”. In this work, we extend these techniques by 
calculating the entire 1-gram distributions of file content 
and use these as models for a set of file types of interest. 
The distribution of byte values of a file are compared to 
the models using well known statistical distribution 
distance measures. Here, we restrict our attention to only 
two, Mahalanobis and Manhattan distance.   
 
For concreteness, suppose we have a file, F, of unknown 
type. In general, to distinguish between file-types A and 
B, we compute two models, MA and MB, corresponding to 
file types A and B, respectively. To test the single file F, 
we check the distribution of its content against both 
models, and see which one it most closely matches. We 
assert its name as F.B if the contents of F closely match 
model MB, i.e., the D( �(F.B), MB ) is less than some 
threshold, where � refers to the 1-gram distribution (a 
histogram), and D is a distance function.  
 
Alternatively, given file F.A, we may check its contents 
against MA and if the 1-gram distribution of F.A is too 
distant from the model MA, we may assert that F.A is 
anomalous and hence misnamed. Thus, D( �(F.A), MA ) > 
TA for some preset threshold TA. We may suspect that F.A 
is infected with foreign content and thus subject it to 
further tests, for example, to determine whether it has 
embedded exploit code. 
 
In this paper, we test whether we can accurately classify 
file types. This test is used to corroborate our thesis that 
file types have a regular 1-gram representation. We apply 
a test to 800 normal files with 8 different extensions. We 
compute a set of fileprints (or “centroid” models) for each 
of the 8 distinct types, and test a set of files for correct 
classification by those models. Ground truth is known so 
accurate measurements are possible. 
 
Several modeling strategies are explored. First, we use a 
“one-class” training evaluation strategy. A set of files of 
the same type are used in their entirety to train a single 
model. For example, given 5 different file types, we 
compute 5 distinct fileprints characterizing each type. A 
test file with an extension of one of these types is thus 
compared to the corresponding fileprint. This validation is 
computed by the Mahalanobis distance function applied 
to the distributions. In the second case, we compute 
multiple models for each file type by clustering the 
training files using K-means. The set of models are 
considered the fileprint. In this case, a test file is 
compared to all of the models of all of the types to 
determine the closest model. The latter case produces 
more models, but each provides a finer grained view of 

the training file type distributions, and hence may provide 
a more accurate fileprint classifier with fewer false 
positives. We extend this strategy to the extreme case. 
Rather than computing cluster centroids, we consider a set 
of exemplar files of a certain type as the fileprint. Each 
test file is compared to this set of pre-assigned exemplar 
files. The performance results of each of these tests show 
remarkably good results.  We also perform these same 
tests using different portions of the files, a strategy we 
call truncation.  
 
In section II we briefly describe n-gram analysis and an 
overview of the modeling techniques used in this study. 
Section III details the data sets and the detailed 
experimental results. Section IV concludes the paper. 

II. FILEPRINTS 

A. n-gram Analysis 

Before demonstrating and graphically plotting the 
fileprints of the file contents, we first introduce n-gram 
analysis. An n-gram [9] is a subsequence of N 
consecutive tokens in a stream of tokens. n-gram analysis 
has been applied in many tasks, and is well understood 
and efficient to implement. 
 
By converting a string of data to n-grams, it can be 
embedded in a vector space to efficiently compare two or 
more streams of data. Alternatively, we may compare the 
distributions of n-grams contained in a set of data to 
determine how consistent some new data may be with the 
set of data in question. 
 
An n-gram distribution is computed by sliding a fixed-
size window through the set of data and counting the 
number of occurrences of each “gram”. Figure 2 displays 
an example of a 3-byte window sliding right one byte at a 
time to generate each 3-gram. Each 3-gram is displayed in 
the highlighted “window”.  
 

 
Figure 2: Sliding window (window size = 3) 

 
The choice of the window size depends on the 
application. First, the computational complexity increases 
exponentially as the window size increases. Data is 
considered a stream of tokens drawn from some alphabet. 
If the number of distinct tokens (or the size of the 
alphabet) is X, then the space of grams grows as XN. In the 
case of 3-grams computed over English text composed of 
the 26 letters of the alphabet, the space is 263 distinct 
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possible 3-grams. A string of M letters would thus have 
(M-2) 3-grams with a distribution that is quite sparse.  
 
In this work, we focus initially on 1-gram analysis of 
ASCII byte values. Hence, a single file is represented as a 
256-element histogram. This is a highly compact and 
efficient representation, but it may not have sufficient 
resolution to represent a class of file types. The results of 
our experiments indicate that indeed 1-grams perform 
well enough, without providing sufficient cause requiring 
higher order grams to be considered. 

B. Mahalanobis Distance 

Given a training data set of files of type A, we compute a 
model MA. For each specific observed file, MA stores the 
average byte frequency and the standard deviation of each 
byte’s frequency.  
 
Note that the training and model computation of the byte 

value mean frequency, x , may be computed in real-time 
as an incremental function as 
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and similarly for the computation of the standard 
deviation. Hence, the models may be computed very 
efficiently while streaming the data without the need to 
fully buffer the file.  
 
Once a model has been computed, we next consider the 
comparison of a test file against this model, either to 
validate the file’s purported type, or to assign a type to a 
file of unknown origin. We use Mahalanobis Distance for 
this purpose. Mahalanobis Distance weights each 
variable, the mean frequency of a 1-gram, by its standard 
deviation and covariance. The computed distance value is 
a statistical measure of how well the distribution of the 
test example matches (or is consistent with) the training 
samples, i.e. the normal content modeled by the centroids. 
If we assume each byte value is statistically independent, 
we can simplify the Mahalanobis Distance as:  
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where x  is the feature vector of the new observation, 
y is the averaged feature vector computed from the 

training examples, iσ is the standard deviation and α is a 
smoothing factor. This leads to a faster computation, with 
essentially no impact on the accuracy of the models. The 
distance values produced by the models are then subjected 
to a test. If the distance of a test datum, the 1-gram 
distribution of a specific file, is closest to some model 
computed for a set of files of a certain type, the file is 
deemed of that type.  
 

Alternatively, in some applications we may compute a 
distinct threshold setting, TA for each model MA 
computed. If the distance of the test file and MA is at or 
bellow TA, the test file will be classified as type A. An 
initial value of TA  may simply be the maximum score of 
the model distance to its training data, plus some small 
constant, �.  
 
Since the type of a test file is unknown, we need a precise 
context in order to build a set of models for a set of 
expected file types. Suppose we are interested in building 
a virus detector for some host system, such as a Windows 
client machine. That client may regularly produce or 
exchange MS Office documents, PDF files, compressed 
archives, photographs or image files, and raw text files. In 
this example, we would need to model probably about 10 
representative file types expected for the client machine in 
question. These 10 models would serve to protect the 
machine, by validating all files loaded or exchanged at 
run time. Recall, our goal is to ensure that a file claiming 
to be of type A actually matches the corresponding 
fileprint for A. For example, when receiving a file with 
extension .DOC that contains non-ASCII characters, it 
should be checked against the MS Word fileprint. In order 
to compute such models, we use the existing store of the 
client for training data to compute the fileprints. We 
follow this strategy in the experiments performed and 
described in the following sections. However, for some 
file types, we searched the internet using Google to 
prepare a set of “randomly chosen” representatives of a 
file type, to avoid any bias a single client machine may 
produce, and to provide the opportunity for other 
researchers to validate our results by accessing the same 
files that are also available to them. 

C. Modeling and Testing Technique 

In this section, we describe several strategies to improve 
the efficiency and accuracy of the technique: truncation, 
reducing the amount of data modeled in each file, and 
multiple-centroids computed via clustering, a finer-
grained modeling of each file type. 
 

1. Truncation 

Truncation simply means we model only a fixed portion 
of a file when computing a byte distribution. That portion 
may be a fixed prefix, say the first 1000 bytes, or a fixed 
portion of the tail of a file, as well as perhaps a middle 
portion. This has several advantages: 

 
- For most files, it can be assumed that the most 

relevant part of the file, as far as its particular type, is 
located early in the file to allow quick loading of 
meta-data by the handler program that processes the 
file type. This avoids analyzing a good deal of the 
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payload of the file that is not relevant to 
distinguishing their type and that may be similar or 
identical to several different file types. (For example, 
the bulk of the data of compressed images, .JPG, may 
appear to have a similar distribution – a uniform byte 
value distribution – to that of encrypted files, such as 
.ZIP.)  

 
- Truncation dramatically reduces the computing time 

for model building and file testing. In network 
applications this has obvious advantages. Only the 
first packet storing the prefix of the file may be 
analyzed, ignoring the stream of subsequent packets. 
If a file whose size is 100MB is transmitted over 
TCP, only 1 out of thousands of packets would 
therefore be processed.   

 

 
Figure 3: The byte value distributions of entire file (left 

column) and the first 50 bytes (right column) of the same 
file types. X-axis: bytes from 0 to 255, Y-axis: 
normalized frequency of byte values (as a %). 

 
Figure 3 displays the effect of truncation over a few 
exemplar file type models. Notice the distributions change 
quite noticeably from the full file detail (the scale of the 
histograms has also changed.) Even so, the models 
computed under truncation may still retain sufficient 
information to characterize the entire class of files to 
distinguish different file types. In the next section, we 

present the results of experiments on both truncated and 
non-truncated files to test this conjecture. 

2. Centroids 

There are good reasons why some file types have similar 
distributions. Figure 4 compares MS Office formats 
(Word, PowerPoint, and Excel). The formats are similar, 
and the technique presented in this paper would certainly 
not be sufficient to distinguish the different sub-types 
from one another. However, it may be the case that any 
one of the models, or all of them at once, can be used to 
distinguish any MS Office document from, say, a virus.  
 

 
Figure 4: The bytes distribution of DLL and EXE files. 

X axis: bytes from 0 to 255, Y axis: normalized frequency 
of byte values (as a %). 

 
The second row of Figure 4 presents another example of 
how two different file extensions have similar 1-gram 
distributions. These types should be grouped together as a 
logically equivalent file type, here .DLL’s and .EXE’s. 
 
On the other hand, files with the same extension do not 
always have a distribution similar enough to be 
represented by a single model. For example, .EXE files 
might be totally different when created for different 
purpose, such as system files, games, or media handlers. 
Another example is documentation files that may contain 
a variety of mixed media. Thus, an alternative strategy for 
representing files of a particular type is to compute 
“multiple models”. We do this via a clustering strategy. 
Rather than computing a single model MA for files of type 
A, we compute a set of models Mk

A , k>1. The multiple 
model strategy requires a different test methodology, 
however. During testing, a test file is measured against all 
centroids to determine if it matches at least one of the 
centroids. The collection of such centroids is considered a 
fileprint for the entire class. The multiple model technique 
creates more accurate models, and separates foreign files 
from the normal files of a particular type in more precise 
manner.  
 
In the experiments reported here, the multiple models are 
computed by the K-Means algorithm under Manhattan 
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Distance. The Manhattan Distance is defined as follows. 
Given two files A and B, with byte frequency 
distributions, Ai and Bi, i = 0,…,255, their Manhattan 
Distance is defined as:  

D(A,B)  = �
=

−
255

0

||
i

ii BA  

The K-means algorithm that computes multiple centroids 
is briefly described as follows. 
1. Randomly pick K files from the training data set. 

These K files (their byte value frequency distribution) 
are the initial seeds for the first K centroids 
representing a cluster. 

2. For each remaining file in the training set, compute 
the Manhattan Distance against the K selected 
centroids, and assign that file to the closest seed 
centroid.  

3. Update the centroid byte value distribution with the 
distribution of the assigned file.  

4. Repeat step 2 and 3 for all remaining files, until the 
centroids stabilize without any further substantive 
change. 

The result is a set of K centroid models, M
k
A which are 

later used in testing unknown files. 

III. FILE TYPE CLASSIFICATION AND ANOMALY DETECTION: 
EXPERIMENTAL RESULTS 

In this section we describe several experiments to test 
whether fileprints accurately classify unknown files or 
validate the presumed type of a file. The experiments 
performed include tests of single models computed for all 
files of a single type, multiple models computed over the 
same type, and models computed under truncation of 
files. We report the average accuracy over 100 trials using 
cross validation for each of the modeling technique. 

A. File Sets 

We used 2 groups of data sets. The first data set includes 
8 different file types, EXE, DLL, GIF, JPG, PDF, PPT, 
DOC and XLS. Models for each were computed using 
100 files of each type. The files were collected from the 
internet using a general search on Google. For example, 
.PDF files were collected from Google by using the 
search term “.pdf”. In this way, the files can be 
considered randomly chosen as an unbiased sample. (The 
reader can also repeat our experiments since the same 
files may be available through the same simple search.)  
 
In our earlier experiment, we found that EXE and DLL 
have essentially the exact same header information and 
extremely similar 1-gram distributions. They are used to 
similar purpose in MS system. We consider that they are 
in the same class in this paper. The contents of MS Office 
file types are also similar (see Figure 4). They have the 

same header, which is “D0 CF 11 E0 A1 B1 1A E1”. We 
thus assign all files of DOC, PPT and XLS files as a 
single class represented by .DOC in the figures below. 
 
The files vary in size, each are approximately from 10K 
to 1MB bytes long. To avoid a problem of sample bias, 
we only compare files with similar size in the following 
experiments. For example, a 100K bytes file can be 
compared to a 200K file, but not a 1MB bytes file. 

B. File Type Classification 

1. One-centroid file type model accuracy  

In this section, we seek to determine how well each 
fileprint accurately identifies files of its own type using 
both of the entire and truncated content of the files in 
question.  
 
For each file type x, we generated a single (one-centroid) 
model Mx. For example, we computed Mpdf by using 80% 
of the collected PDF files. Since we had 8 different types 
of files (EXE and DLL are considered as one type, and 
DOC, PPT, and XLS are in one group), we generated 5 
models totally. The rest of 20% files of each type are used 
as the test data.  
 
In the truncated cases, we modeled and tested the first 20, 
200, 500 and 1000 bytes of each file. This portion 
includes the “magic numbers” of the file type if it exists. 
Such analysis was used to establish a baseline and 
determine whether all the files tested in question contain 
essentially common header information.  
 
The results are quite amazing. There was only a few 
misclassified file when we used truncated files. The 
classification accuracy results are shown in the top row of 
Table 1. In the row of 20 and 200 bytes, the results are 
almost perfect. There are some common problems. First, 
image, GIF and JPG, types are sometimes similar. The 
second, document files (PDF and MS office types) may 
include images. These may also cause misclassification 
error. The last, PDF files (with or without images) may be 
classified to the GIF category. 
 
In cases where file boundaries are easily identifiable, it is 
rather straightforward to identify the file type from header 
information alone. This serves as a baseline and a first 
level of detection that should work well in practice. 
However, we next turn our attention to the more general 
case where header information is damaged or missing or 
purposely replaced to avoid detection of the true file type. 
We thus extend the analysis to the entire file content. 
 
 

One-centroid file type classifying accuracy 
Truncation EXE GIF JPG PDF DOC AVG. 
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Size 
20 98.9% 100% 99% 100% 98.3% 98.9% 

200 98.3% 91.1% 97% 82.8% 93.7% 93.6% 
500 97% 97% 93.4% 80.4% 96.7% 94.3% 
1000 97.3% 96.1% 93.5% 83.4% 82.6% 88.2% 
All 88.3% 62.7% 84% 68.3% 88.3% 82% 

 
Multi-centroids file type classifying  accuracy 

Truncation 
Size EXE GIF JPG PDF DOC AVG. 

20 99.9% 100% 98.9% 100% 98.8% 99.4% 
200 97% 98.3% 96.6% 95% 97.2% 96.9% 
500 97.2% 98.4% 94.8% 90% 96.9% 96% 
1000 97% 95.1% 93.5% 90.7% 94.5% 94.6% 
All 88.9% 76.8% 85.7% 92.3% 94.5% 89.5% 

 
Classifying accuracy using exemplar files as centroids 

Truncation 
Size EXE GIF JPG PDF DOC AVG. 

20 100% 100% 100% 100% 98.9% 99.6% 
200 99.4% 91.6% 99.2% 100% 98.7% 98.2% 
500 99% 93.6% 96.9% 99.9% 98.5% 98% 
1000 98.9% 94.9% 96.1% 86.9% 98.6% 96.4% 
All 94.1% 93.9% 77.1% 95.3% 98.9% 93.8% 

Table 1: The average accuracy of file type classifying test. 
First Column: the truncation size, first 20, 200, 500 1000 

byte, and the entire file. Other Columns: “EXE” 
represents the group which includes .EXE and .DLL. 

“DOC” represents the group which includes .DOC, .PPT 
and .XLS. “AVG.” represents the overall performance. 

 

2. Multi-centroids for classifying  file types 

The next experiment tests the multi-centroid model. 
Recall, in this strategy rather than building one model for 
each file type, we compute multiple models by K-means 
clustering of example files into separate centroids. The 
union of these centroids represents the entire file type.  
 
We generated K models for each of the types of files, 
Mk

exe, Mk
doc, Mk

pdf, for example. If K = 10, a total of 50 
models (5 groups of test files) are tested using 
Mahalanobis Distance to determine the closest file type 
model. The results are shown in the middle row of Table 
1. 
 
Compare each of these results of the multi-centroids test 
to the previous one centroid case. The results are better. 
We also tested several sizes of K. Basically, the results 
are similar. 
 

3. Exemplar files used as centroids 

We may extend the multi-centroids method without using 
K-means. In this experiment we test each file against the 
distributions of a randomly chosen set of exemplar files.  
The same technique was used as described in the previous 
tests, but here we randomly choose 80% of the files as the 
representative samples of their file type.  The other 20% 
of the files are test files. In this case we compare the 1-

gram distribution of an individual file and hence there is 
no variance computed. We thus cannot apply 
Mahalanobis, and instead use Manhattan Distance.  
 
For concreteness, assume we had N files of type x, M i

x, 
and M files if type y M j

y where i = 1, 2,…N and j = 1, 
2,…M. Then, for each test file Fk, we compute the 
Manhattan Distance against each M ix, and M jy. 
 
We record the smallest distance of Fk to each of the 
training files. If the closest file was of type x, Fk was 
classified as that type.  The results are displayed in the 
bottom of Table 1. In general, the results are better than 
both of the previous two methods. The average accuracies 
of all the three methods are shown in Figure 5. 
 

 
Figure 5: The classification accuracy -- comparison of 
three different methods. X-axis: Size of truncation (in 

bytes). Y-axis: accuracy. 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we demonstrate the 1-gram binary 
distribution of files for different file types. The 
experiments demonstrate that every file type has a 
distinctive distribution that we regard as a “fileprint”. 
This observation is important. The centroid models 
representing the byte value distributions of a set of 
training files can be an effective tool in a number of 
applications including the detection of security policy 
violations. Techniques that may be used by attackers to 
hide their malware from signature-based systems will 
have a tougher time being stealthy to avoid detection 
using these techniques. 
 
Moreover, we found that the truncated modeling 
technique performs as well if not better than modeling 
whole files, with superior computational performance. 
This implies real-time network-based detectors that 
accurately identify the type of files flowing over a 
network are achievable at reasonable cost. 
 
As future work, a number of interesting alternative 
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modeling techniques should be explored. The truncation 
to the tail of a file might be interesting to determine if 
common shared files are infected. Furthermore, as noted, 
several of the file types (.DOC, .PPT and .XLS) are each 
so similar to a single type, MS Office. What features may 
be available to tease these sub-types apart? We believe 
bigram models are a natural extension to explore for this 
purpose. We have also tested these techniques  comparing 
normal Windows OS files (both groups are EXE files) 
against a collection of viruses and worms. The results are 
quite good but also preliminary.  A wider collection of 
test sets is required which is part of our ongoing work.  
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