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Abstract—We propose a novel approach to auto-

matically fill holes in triangulated models. Each hole

is filled using a minimum energy surface that is

obtained in three steps. First, we unfold the hole

boundary onto a plane using energy minimization.

Second, we triangulate the unfolded hole using a con-

strained Delaunay triangulation. Third, we embed

the triangular mesh as a minimum energy surface

in R
3. The running time of the method depends

primarily on the size of the hole boundary and

not on the size of the model, thereby making the

method applicable to large models. Our experiments

demonstrate the applicability of the algorithm to the

problem of filling holes bounded by highly curved

boundaries in large models.
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1. INTRODUCTION

The wide use of laser range sensors and other types of

3D sensing devices has produced increasingly detailed

3D models. However, holes, due to a variety of reasons,

are usually present in models built from range scans.

Some holes are caused by the intrinsic limitations of the

sensors. Others are the result of object self-occlusion,

insufficient view coverage, and shallow grazing angles.

Davis et al. [7] give an account of holes and their causes

in different situations.

Many methods have been proposed for hole filling.

The majority of them fill holes by interpolating the

nearby geometry [7]. This method is only effective

when the holes are small. Manual, interactive tools

are often used to fix large holes. To keep the surface

smoothness the same as the nearby areas, interactive

methods were proposed in a way that imitates image

touch-up tools such as those found in Adobe Photoshop

where users “cut and paste” surface geometry from

nearby areas [22].

We propose a novel approach to automatically fill

holes in triangulated models. We assume that the holes

are bounded by a simply connected loop that is an

unknot. That is, it can be continuously deformed to a

circle without introducing self-intersections. The hole

can be large and the boundary loop can be highly

curved. We fill the hole with an approximate minimum

energy surface. A mimimum energy surface (MES) is a

surface with fixed boundary b that minimizes a given

energy functional over all surfaces with boundary b.

For the examples shown in this paper we two energy

functions: the least-squares mesh function [24] and the

discrete fairing energy [14]. However, other energy

functionals, for example to preserve smooth change in

surface normal, could be used instead. The complexity

of our algorithm depends primarily on the complexity

of the hole boundary instead of on the complexity

of the triangular mesh. Note that this is a significant

improvement over algorithms that operate on the full

mesh because the complexity of the boundary is often

small even for large models.

To fill a hole bounded by a loop of boundary edges,

the proposed approach proceeds in three steps. In the

first step, the boundary loop is gradually unfolded to

a simple planar polygon. During this unfolding, we

constrain the motion such that the loop does not self-

intersect.

In the second step, the simple planar polygon is

triangulated using a constrained Delaunay triangula-

tion algorithm. The resulting triangulation has three

properties. First, the triangulation contains all of the

edges of the unfolded polygon. Second, the triangulation

does not add any Steiner points. Third, the triangulation

maximizes the minimum angle over all triangulations

that have the first two properties.

In the third step, the triangulated patch is embedded in

R
3 using the known boundary positions. As the ordering

of the vertices is maintained during the unfolding, the

resulting patch closes the hole. We refine the patch to

have the same resolution as the surrounding surface. The

interior vertices are positioned to approximate a MES.

2. RELATED WORK

Geometric methods for filling holes in a mesh model

interpolate the hole boundary or extrapolate the surface

geometry from the surrounding areas. Two types of

representations are used: volumetric representations and

triangular meshes.

The volumetric representation discretizes the surface

mesh into regular 3D grids or an octree structure ei-

ther locally or globally. Davis et al. [7] diffuse the

geometry from the hole boundary to the interior until

the fronts meet. This method handles complex topo-

logical configurations such as holes with islands. How-

ever, it may change the existing mesh. Podolak and

Rusinkiewicz [20] embed the incomplete mesh in an



octree and use a graph cut method to decide the connec-

tions between pairs of the hole boundaries. It resolves

difficult boundary topologies globally. Ju [11] constructs

a volume using an octree grid and reconstructs the sur-

face using contours. Volumetric approaches work well

for complex holes. However, they are time consuming.

Furthermore, the topology of the generated result may

be incorrect in case of large holes.

The triangle-based approaches to hole filling work

directly on the surface mesh. The advantage of working

directly with the surface mesh is that the rest of the

surface is unchanged when the holes are filled. Let the

mesh contain n vertices and let the mesh boundary

contain m vertices. This class of algorithms usually only

deal with holes bounded by a simple loop that is unknot.

That is, holes with islands can usually not be filled using

these algorithms.

Barequet and Sharir [2] give an O(n + m3) algo-

rithm for triangulating a 3D polygonal boundary which

represents the boundary of a hole. When triangulating

the hole boundary, a divide and conquer technique is

used. No new vertices are added to the mesh. Liepa [18]

extends this method to include a surface fairing step.

The high complexity of the algorithm limits the use of

this method. Jun [12] proposes another method based on

subdividing the hole into simple regions. Each simple

hole is filled with a planar triangulation. This algorithm

is not guaranteed to find a result. Li et al. [17] extend

the method to achieve higher efficiency and stability.

However, the algorithm is not guaranteed to find a result

for arbitrary holes.

Dey and Goswami [8] use a Delaunay triangulation-

based method, called Tight Cocone, in which tetrahe-

drons are labeled as in or out. In this method, no extra

vertices are added to the mesh. The method is shown to

perform well to fill small holes. However, the method is

inappropriate to fill large holes because the geometry is

extrapolated from the nearby boundary.

Carr et al. [4] use radial basis functions (RBF) to

compute an implicit surface covering the hole. One RBF

is computed for the full surface. Hence, the complexity

of the algorithm is a function of n. That is, in cases

where the surface is large and the hole boundary is

small, the algorithm is inefficient. To overcome this

problem, Branch et al. [3] extend this approach to use

local RBF for each hole. Chen et al. [5] use an RBF-

based approach to fill holes and recover sharp features

in the hole area.

Tekumalla and Cohen [25] propose an approach that

fills the hole by repeatedly using moving least squares

projection. The approach iteratively adds layers of tri-

angles onto the boundary until the hole is filled. Zhao

et al. [27] fill holes in a similar way. After finding an

initial triangulation by iteratively adding layers to the

boundary, the position of the vertices is optimized by

solving a Poisson equation. The goal of the optimization

is to achieve smooth normal changes across the mesh.

Lévy [16] proposes a general technique for surface

editing based on global parameterization. The method

can fill holes in a surface by parameterizing the surface

in the plane, filling the hole in the parameter domain,

and placing the added vertex coordinates in three di-

mensions to approximate a MES. Unlike the previously

discussed approaches, this approach can fill holes with

arbitrary boundaries. However, the complexity of the

algorithm is a function of n. That is, in cases where the

surface is large and the hole boundary is small, the algo-

rithm is inefficient. Furthermore, it is hard to ensure that

no global overlap occurs during the parameterization of

an incomplete mesh. If the parameterization overlaps,

then the holes cannot be filled.

In this paper, we propose a novel approach to fill

holes in triangular meshes. Our approach is similar

to the approach by Lévy [16] in that we construct a

planar parameterization. However, unlike Lévy, we do

not parameterize the full mesh in the plane, but only

the boundary of the hole. Note that this restricts our

algorithm to operate on holes bounded by simple loops.

However, if the triangular mesh and the boundaries of

the holes are given, our algorithm is independent of

the complexity n of the mesh and depends primarily

on the complexity m of the hole boundary. If the

boundaries of the holes are not given, our algorithm can

extract the boundaries in O(n) time. Furthermore, if our

algorithm finds a solution, then the parameterization of

the boundary is not self-intersecting.

3. ALGORITHM

Given a triangular manifold S with n vertices with

partially missing data, we aim to fill the holes of S by

a triangular manifold meshes of minimum energy.

We first identify the boundaries of holes of S. Since

S is a manifold, we can find the edges of S bounding

a hole as edges that touch exactly one triangle. We

fill each hole separately. Filling a hole bounded by

m edges with a triangulation that does not have self-

intersections may require an exponential number of

Steiner points in m [9]. Furthermore, the problem of

deciding whether such a triangulation exists is an NP -

complete problem [1]. Hence, we do not require that

the mesh avoids self-intersection. However, unlike the

approach by Barequet and Sharir [2], we add Steiner

points to the mesh to reduce the occurrence of self-

intersections.

Our approach proceeds in three steps. First, the

boundary loop is gradually unfolded to a simple planar

polygon. During this unfolding, the loop does not self-

intersect. Second, the simple planar polygon is tri-

angulated using a constrained Delaunay triangulation

algorithm. Third, the triangular patch is embedded in R
3

and refined to match the resolution of the surrounding

mesh. The following sections give a detailed description

of these steps.
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3.1 Unfolding the Boundary

We aim to unfold a boundary loop in R
3 into a

simple planar polygon with similar curvature as the

boundary loop by gradually moving the vertices of the

loop without causing any self-intersections of the loop.

This is only possible if the original loop is an unknot.

Hence, in the following, we assume that an unknotted

boundary loop is given.

The aim is to unfold the loop to a planar polygon.

Minimizing an energy that encourages all sets of four

vertices on the loop to be planar is computationally

expensive because it takes O(m4) time to evaluate the

energy. Hence, we minimize an energy that encourages

all sets of four consecutive vertices on the loop to be pla-

nar. This energy can be evaluated in O(m) time. As we

unfold the curve gradually, we expect that the resulting

planar curve has similar curvature as the boundary loop.

In particular, we expect that concavities of the curve

are preserved. Maintaining concavities helps to obtain a

triangulation that does not self-intersect.

Let p0, p1, . . . , pm−1 denote the m vertices of the

boundary loop. To unfold the boundary loop, we aim

to minimize EPE =
∑m−1

i=0 dPE(pi) subject to the

constraint dMD > ǫ for an arbitrary threshold ǫ. We

specify these term below:

dPE(pi) = ∠(ni, n(i+1)mod m), where

ni = (pi−p(i+1)mod m)×(p(i+2)mod m−p(i+1)mod m)

and ∠(a, b) denotes the angle between the two vectors a

and b. An illustration of dPE(pi) is shown in Figure 1.

Here, dMD denotes the minimum distance between any

two segments on the boundary loop, which can be com-

puted in O(m2) time. The minimum distance between

two segments can be computed using dot products [15].

pi

pi+1
pi+2

pi+3

ni

ni+1dPE(pi)
ni

Fig. 1. Illustration of the distance dPE(pi). In the illustration, we

assume that i + 3 < m. Otherwise, all subscripts need to be taken

modulo m.

Note that we can compute the gradient of EPE

analytically, which allows to minimize EPE using a gra-

dient descent approach. However, experimental evidence

suggests that such an approach is likely to get trapped

in a local minimum.

Therefore, we solve the minimization problem using

simulated annealing [13], which proceeds by trying

random steps. If the new solution achieves lower energy

than the previous one, the step is always accepted.

Otherwise, the step is accepted according to a proba-

bility distribution that depends on the time that elapsed

since the algorithm was started. In the beginning of the

algorithm, steps that increase the energy are more likely

to be accepted than in the later stages of the algorithm.

This is analogous to the way liquids cool and crystallize.

We use the approach outlined by Press et al. [21, Chapter

10.9] that uses the Boltzmann distribution to decide

whether a step is accepted or rejected. This approach

accepts a new step with probability exp(
−(Et+1

P E
−Et

P E

kT
),

where Et
PE is the energy in the last step, Et+1

PE is

the energy in the current step, k < 1 is a constant

that describes the rate of cooling, and T is the start

temperature. We enforce the constraint dMD > ǫ by

restricting the maximum step size of the algorithm to

max(ǫ, dMD).
As outlined above, a solution that achieves lower

energy than the previous one is always accepted. In this

case, we choose the next random step close to the current

one. Namely, we move each point along a direction

within 10 degrees of the previous random direction.

After the simulated annealing step, we force the

boundary loop to be planar by projecting it to its best-

fitting plane. If it is possible to move the boundary

loop to the projection by linear motions of the vertices

without introducing self-intersections, we accept the

unfolding. Otherwise, we restart the simulated annealing

process. If we cannot find a solution after starting the

simulated annealing process 100 times, we consider the

algorithm inappropriate to fill the hole.

3.2 Triangulating the Planar Patch

After unfolding the boundary as outlined in the pre-

vious section, we aim to triangulate the simple planar

polygon. We use the method and available code by

Shewchuck [23] to complete this step. The algorithm

computes a constrained Delaunay triangulation of the

input polygon. A constrained triangulation of a polygon

is a triangulation that is constrained to contain each of

the edges of the polygon. That is, no Steiner points

are added along the edges of the polygon. The con-

strained Delaunay triangulation of a polygon has the

property that it maximizes the minimum angle over all

constrained triangulations of the polygon. During the

triangulation, we do not add Steiner points.

3.3 Embedding the Triangular Mesh in R
3

The previous section constructs a planar triangular

mesh. This section outlines how we move this mesh to

the boundary of the hole to obtain a watertight model.

First, we embed the mesh in R
3 by moving the

vertices of the mesh to their corresponding vertices on

the hole boundary. As the order of the vertices along

the boundary polygon is maintained during unfolding,

this yields a watertight model, and, as we expect con-

cavities to be preserved during the gradual unfolding,

we expect to obtain a triangulation that does not self-

intersect. For the non-pathological examples shown in

our experiments, no self-intersections occur.

The result of this step is similar to the result by

Barequet and Sharir [2]. Our approach takes O(m2cd)
time to compute this result, where c is the number
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of unfolding steps during each SA run and d is the

number of SA runs required to find the result, while

the approach by Barequet and Sharir takes O(m3) time.

The number of simulated annealing steps counts how

often we need to restart the simulated annealing process

while the number of unfolding steps counts the number

of random steps taken in one simulated annealing step.

The resolution from the filling mesh may be different

from the resolution of the surrounding mesh, so we

refine the mesh using the approach by Chew [6]. Steiner

points are added such that the Delaunay triangulation

of the added points is guaranteed to have all the angles

between 30◦ and 120◦ and where the edge lengths are at

most twice as long as the edges of the mesh surrounding

the hole. The running time of the algorithm is linear in

the number of generated triangles.

Finally, we embed the interior vertices PInt of the

mesh, such that PInt minimize an energy function. In

this paper, we use two energy functions: a Laplacian

energy to obtain a least-squares mesh [24] and a discrete

fairing energy [14]. Note that these energies can be

replaced by any desired energy function. For example,

different boundary conditions can be used. Or, if images

are captured for texture mapping, a photo consistency

energy can be minimized.

To obtain a MES using the Laplacian energy, the

newly added interior vertices of the mesh filling the hole

are repositioned to minimize the area of the triangular

mesh subject to the boundary constraints provided by the

positions of the boundary vertices. This can be achieved

by repeatedly applying Laplacian smoothing because

Laplacian smoothing is equivalent to minimizing the

surface area [10].

To improve the efficiency of the algorithm, we formu-

late Laplacian smoothing as an optimization problem.

For each vertex p of the mesh, define

U(p) =
1

|N1(p)|

∑

q∈N1(p)

q − p,

where N1(p) is the 1-ring neighborhood of p and

|N1(p)| is the cardinality of the set N1(p). We aim to

minimize

EAREA =
∑

p∈PInt

(U(p))
2
,

where PInt denotes the set of interior vertices of the

mesh. Note that the gradient of EAREA with respect

to p can be expressed explicitly. We solve the opti-

mization problem using a quasi-Newton method [19].

Note that this is equivalent to computing a least-squares

mesh [24].

To obtain a MES using discrete fairing, we minimize

a second-order Laplacian energy. For each vertex p of

the mesh, we compute U(p) as before. Next, compute

for each interior vertex of the mesh

U2(p) =
1

|N1(p)|

∑

q∈N1(p)

U(q) − U(p).

We aim to minimize the energy

EDF =
∑

p∈PInt

(

U2(p)
)

.

We minimize this energy using an iterative approach in

our experiments.

4. EXPERIMENTS

This section presents experiments using the algorithm

presented in this paper. The experiments were conducted

using an implementation in C++ using OpenMP on an

Intel Pentium D with 3.5 GB of RAM. We set k =
0.9, T = 0.5, and ǫ = 10−5 in all of our experiments.

In all of the figures showing holes in the models, back

faces are shown in blue.

We first apply the algorithm to holes arising from the

limitations of range scanners. The first experiment fills

the holes present in the scan of a chicken model. The

model was scanned using a ShapeGrabber laser range

scanner. The scanned model contains 135233 vertices.

The algorithm filled eight holes with a total of 666

vertices on the boundaries. The model along with the

filled holes is shown in Figure 2. The model is grey

and the filled holes are colored. Figures 2 (a) and (b)

show the front and back of the chicken with five and

three holes respectively. The most complex of the five

holes on the front is located underneath the little chicken

and shown in detail in Figure 2 (c). Another complex

hole on the front of the chicken is located under the eye

and shown in detail in Figure 2(d). Figures 2 (e) and

(f) show large complex holes at the back base of the

chicken model. Our algorithm took the longest to fill

the two highly curved holes shown in Figure 2 (f). We

can see that the proposed algorithm fills all of the holes

present in the scan with approximate MES of similar

resolution as the surrounding mesh.

The unfolding of all the holes took about 6.5 min-

utes. The embedding of all the holes while minimizing

EAREA took about 3 seconds. Note that due to the high

complexity of the model, we only ran the algorithm

once. Hence, the running times are not averaged over

multiple runs for this experiment.

The second experiment based on laser range scans fills

the well-known holes present in the Stanford bunny [26].

There are 5 holes and they contain 79 vertices total.

We fill the holes while minimizing EAREA. Four of the

holes before and after filling are shown in Figure 3.

We next apply the algorithm to a number of artificial

holes. We created holes of large curvature in complete

models to show the applicability of our algorithm in

this case. The first experiment fills the hole present in

the armpit of a human model. The hole boundary has

high curvature. The initial hole as well as the result of

our algorithm are shown in Figure 4.

The following three experiments fill holes present in

the head of a human model. The first hole is shown

in Figure 5. The hole is large and the hole boundary
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(c) (d)

(a) (b) (e) (f)

Fig. 2. Chicken model filled by minimizing EAREA. (a): Front view of the chicken with five filled holes. (b): Back view of the chicken with

three filled holes. (c): Detail view of the filled hole under the little chicken. (d): Detail view of the filled hole under the eye. (e): Detail view

of a filled large hole at the base of the model. (f): Detail views of two filled complex holes at the base of the model.

(a) (b)

Fig. 3. Stanford bunny model filled by minimizing EAREA. (a): Four of the holes in the bunny model. (b): Filled holes.

(c) (d) (e)

(a) (b) (f) (g) (h)

Fig. 4. Armpit model. (a): Hole in the armpit of a human model. (b): Unfolded mesh. (c)-(e): Final embedded mesh obtained by minimizing

EAREA. (f)-(h): Final embedded mesh obtained by minimizing EDF .

is highly curved. Nonetheless, our algorithm finds a

visually pleasing solution.

The second hole is shown in Figure 6. The hole is

large. The hole boundary is highly curved and highly

twisted. Nonetheless, our algorithm finds a visually

pleasing solution.

The third hole is shown in Figure 7. The hole is large.

The hole boundary is curved in all three dimensions.

Nonetheless, our algorithm finds a visually pleasing

solution.

The running times of the experiments are given in

Table 1. We average the running time over 10 runs. Note

that due to the random component in simulated anneal-

ing, the running times of the 10 runs vary significantly.

The running time of the unfolding step depends on the

number of times simulated annealing is restarted and on

the number of steps required to unfold the boundary.

The running time of the embedding step depends on the

number of Steiner points added to the triangular mesh

that fills the hole. Note that the efficiency of the algo-

rithm may be improved by using a more sophisticated

simulated annealing technique than the one described by

Press et al. [21, Chapter 10.9].

5. CONCLUSION

We presented a novel approach to automatically fill

holes in triangulated models. The approach fills the

hole using a minimum energy surface that is obtained

by unfolding the hole boundary into the plane using

an energy minimization approach. The planar curve is

then triangulated and embedded to the three-dimensional

position of the boundary loop. In this paper, we embed

the triangular patch as a minimal surface. Note that this

could be replaced by a prior distribution of the surface’s

geometry to embed the triangular patch. We leave this

for future work.
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(c) (d) (e)

(a) (b) (f) (g) (h)

Fig. 5. Head model 1. (a): Hole in the head of a human model. (b): Unfolded mesh. (c)-(e): Final embedded mesh obtained by minimizing

EAREA. (f)-(h): Final embedded mesh obtained by minimizing EDF .

(c) (d) (e)

(a) (b) (f) (g) (h)

Fig. 6. Head model 2. (a): Hole in the head of a human model. (b): Unfolded mesh. (c)-(e): Final embedded mesh obtained by minimizing

EAREA. (f)-(h): Final embedded mesh obtained by minimizing EDF .

(a) (b) (c) (d) (e)

Fig. 7. Head model 3 filled by minimizing EDF . (a): Hole in the head of a human model. (b): Unfolded mesh. (c): Final embedded mesh.

(d): Filled hole. (e): Detail view of the filled hole.

The energy used to unfold the boundary loop encour-

ages all sets of four consecutive vertices on the loop

to be planar. This energy can be evaluated efficiently

in O(m) time. We use simulated annealing to minimize

this energy. We leave applying more sophisticated SA

variants to this problem for future work.
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