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Ecology is concerned with understanding the abun-
dance, diversity, and distribution of organisms in

nature, the interactions among organisms and between
organisms and their environment, and the movement and
flux of energy and nutrients in the environment. Along
with an understanding of the principles that shape funda-

mental parameters, such as the organization of communities
and the cycling of resources in ecosystems, the basic knowl-
edge of ecologists should include information from other
physical and environmental sciences to address today’s most
pressing environmental issues. In January 2006, the US
National Science Foundation convened a panel to discuss
the “frontiers of ecology” (www.nsf.gov/funding/pgm_
summ.jsp?pims_id=12823&org=DEB&from=home) and to
make recommendations for research priority areas in popu-
lation and community ecology. This article summarizes the
panel’s recommendations.

The last such panel was convened in 1999 (Thompson
et al. 2001), and we therefore report on recent progress
and research goals for the next decade. Although we
agree with many of the previous recommendations, we
have chosen to highlight areas of inquiry still in need of
expansion. In particular, our approach was not to redefine
the field or identify “hot topics”. Instead, we stepped back
to ask: what are the outstanding questions that, if
answered, would substantially advance the discipline?
Here, we highlight several rapidly developing conceptual
areas that have the potential to reshape ecology in the
near future. We have not highlighted fields such as
microbial ecology or invasion biology, as these areas are
already growing fast and are rightfully receiving attention
in terms of funding and intensive study. Nor have we
based our discussion on under-investigated systems,
although we highlight some underutilized systems and
approaches, which present great opportunities for under-
standing ecological pattern and process (WebPanel 1).
Instead, we seek to highlight underexploited but poten-
tially fruitful areas of research that, if pursued, would
build upon recent conceptual advances in ecology.

At the most general level, we propose that ecologists
must understand the implications and limitations of three
key assumptions which, by unfortunate necessity, have
often provided the implicit framework for previous ecologi-
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In a nutshell:
• Ecology will become a more quantitative and predictive disci-

pline if research is focused on how the strength of interactions
between species changes with biotic or abiotic context

• Interactions among ecological entities – be they individuals,
populations, or ecosystems – are almost always bidirectional,
but are rarely studied as such; the explicit examination of feed-
backs is critical for understanding ecological dynamics

• Theory on species diversity and species coexistence has out-
paced experimentation, so empirical tests that distinguish
among competing theories are needed

• The role of historical events in driving ecological patterns and
processes is increasingly recognized and must be accounted for
in both theory and experimentation
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cal research: (1) that the effects of multiple factors (eg com-
petition, predation, nutrient availability) are independent
of one another and are manifested in a consistent fashion
across scales and contexts; (2) that the traits of interacting
entities are uniform and unchanging; and (3) that feed-
backs inherent to ecological interactions, scaling from indi-
viduals to communities, may be ignored without corruption
of our understanding of complex interactions. Today, the
number of ecologists thinking within this framework is in
decline, but we have not yet relaxed these simplifying
assumptions and embraced the resulting complexities in our
theoretical, conceptual, and empirical models. 

Below, we focus on advancing three major themes in
population and community ecology: the strength and
modification of species interactions across multiple scales,
the importance of feedbacks within and across ecological
scales, and pattern and process of species coexistence. Like
Thompson et al. (2001), we value the role of historical and
evolutionary perspectives for addressing ecological ques-
tions. However, we depart from their recommendations in
important ways. Theory development in community ecol-
ogy has been so rapid in the past decade that empirical
data, including tests of theory, are sorely needed. A focus
on organismal traits, shaped by environmental variation
(plasticity), natural selection, and phylogenetic history, is
a timely and key avenue of research. In the area of indi-
vidual and community feedbacks, we argue that both the-
oretical and empirical advances are needed, as these
processes may generate unanticipated outcomes.
Although most of our recommendations for research lie in
the realm of fundamental population and community
ecology, we also consider important issues relating to
emerging aspects of global change (WebPanel 2).

� Community context and the strength of species
interactions

Organisms contend with abiotic stresses, compete for
resources, eat each other, and engage in mutually beneficial
relationships. Historically, the principal approach in com-

munity ecology has been to evaluate how
each process separately influences popula-
tion dynamics or community structure.
This approach has been fruitful: in the past
40 years, ecology has transitioned from the
view that competition alone structures
communities to a more inclusive and
nuanced perspective incorporating preda-
tion, mutualism, and parasitism (Wootton
1994; Stachowicz 2001). Moreover, we
now recognize the importance of condi-
tional outcomes of interactions (Bronstein
1994), indirect effects (Wootton 1994),
trait-mediated interactions (Preisser et al.
2005), and intraspecific genetic variation
(Agrawal 2003, 2004). 

Advances in this area are currently lim-
ited by a lack of knowledge on:

• how biotic and abiotic contexts shape the strength of
species interactions;

• the degree to which the distribution and abundance of
a given species are influenced by interspecific interac-
tions (with the exception of predator–prey interac-
tions);

• how biotic and/or abiotic factors interact and vary in
magnitude over time or space; and

• how variation in the abundance of particular species
influences variation in the abundance of the species
with which they interact.

Modern population and community ecology is poised to
move beyond lists of community-structuring factors to a
predictive framework for where, when, and how multiple
factors may work, both individually and in combination,
to structure communities. Substantial progress now comes
from asking not only whether particular factors have
detectable effects on community structure, but also quanti-
fying the magnitude of effects to ascertain their relative
importance. Furthermore, we now recognize that both the
strength and outcome of interactions can change as a
function of biotic and abiotic context. For example, many
studies have demonstrated a substantial influence of land-
scape or local conditions on species abundance and the
outcomes of species interactions (eg Hebblewhite et al.
2005). Mycorrhizal fungi interact mutualistically with
their host plants under nutrient- or moisture-poor condi-
tions, but become parasitic in nutrient- and moisture-
replete environments (Johnson et al. 1997; Figure 1).

Variation in experimental outcomes due to non-additive
dynamics of interactors (ie emergent properties) has led to
disagreement when investigators working in parallel sys-
tems reach different conclusions on the nature of interspe-
cific interactions. Understanding how these different
results can be reconciled to elucidate general ecological
principles is key. Our view is that understanding context-
dependency is critical for such reconciliation. For example,

Figure 1. Context dependence almost always affects interactions among species.
For example, mycorrhizal associations are a manifestation of the interaction between
plant and fungal genotypes and the hierarchy of environmental factors that determine
the functioning of mycorrhizas along a continuum from mutualism to parasitism.
Adapted from Johnson et al. (1997).
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classic studies in certain intertidal communities showed
the primacy of local species interactions in determining
community composition and diversity (Connell 1961), but
similar studies in different geographic locations failed to
yield the same results (Gaines and Roughgarden 1985;
Figure 2). Further work showed that regional oceano-
graphic conditions mediated this disparity: in regions
where currents limited larval supply, recruitment patterns
drove community composition, and species interactions
were of lesser importance. In contrast, when oceano-
graphic conditions facilitated the return of larvae to shore,
recruitment was high, resources became limiting, and the
importance of interspecific interactions increased
(Connolly and Roughgarden 1999). We need more work
that explicitly examines or manipulates environmental
attributes to determine how distinct components of envi-
ronmental variation contribute to changing interaction
strengths across environmental gradients (eg Crain et al.
2004). Though not a new agenda, we still have remarkably
few studies that compare the relative importance of multi-
ple factors and estimate non-additivity among factors.

Metrics for quantifying interaction strength, or effect size,
are leading to important insights into the sources of varia-
tion in community structure, although care must be taken
in choosing the appropriate metric for a particular effect
type (Berlow et al. 1999). Effect size metrics have been used
to compare and summarize results of multiple studies that
each measure the effect of a factor in a different community.
This meta-analytic approach has been a great improvement
over the “vote counting” approach of past literature reviews
and, importantly, has allowed ecologists to correlate among-
study variation in effect strength to non-experimental
covariates that differ among communities.

While meta-analysis can generate hypotheses about the
drivers of variation in the strength and outcome of interac-
tions, multi-factorial studies can experimentally test these
dynamics within communities. For instance, several recent
studies have compared the individual and combined effects
of predation and competition on plant and animal perfor-
mance (eg Hambäck and Beckerman 2003). A related
approach has been to study the influence of a single factor
along an environmental gradient (eg plant–plant facilita-
tion along gradients of abiotic stress; Callaway et al. 2002;
Figure 3). With either approach, calculating effect sizes
within multi-factor experiments provides a common cur-
rency to compare the strength of effects both within and
among experiments (Berlow et al. 1999). Moreover, multi-
factorial approaches permit rigorous and quantitative com-
parison of the relative effects of several factors in a single
ecological context (site, community, environmental con-
ditions). Finally, this approach allows us to determine
whether such factors act independently or non-additive
dynamics are associated with the combination of factors.
Work to date indicates that non-additive effects are proba-
bly the norm, not the exception. As a result, accurately
characterizing the net strength of biotic and abiotic influ-
ences within a community requires understanding not only

the individual factors, but also the emergent properties of
those factors in combination. Such interactive effects also
lead to non-linear dynamics, an area currently undergoing
important theoretical development. Yet to date, most
experimental manipulations employ only exclusion and
control treatments; understanding how multiple non-addi-
tive factors structure ecological communities requires
quantifying interaction strengths at multiple (ie three or
preferably more) species densities concentrated within the
natural range of variation (Abrams 2001). 

In our view, a necessary step forward is a more explicit
consideration of mutualisms, and formal comparisons of
the relative importance of mutualism and negative inter-
actions (eg competition, predation, pathogens) in struc-
turing ecological communities. Although mutualisms are
receiving increasing attention in ecology, the impacts of
such “positive interactions” on community structure and
function have not been well integrated with general the-
ory (but see Bruno et al. [2003]), and empirical tests and
further development of theory are needed. 

Although experimental approaches will always be
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Figure 2. Interactions among species in the marine intertidal
zone have played an important role in the conceptual
development of ecology. This image shows the mid-intertidal
zone of Fleming Island in Barkley Sound, British Columbia,
Canada. Shown are a number of different color morphs of sea
stars (Pisaster ochraceus), mussels (Mytilus californianus),
and two barnacles (Balanus glandula on mussels and the larger
Semibalanus cariosus attached to the rocks).
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required to demonstrate mechanisms underlying ecological
phenomena, observational studies complement and
expand on what can reasonably be studied in an experi-
mental context. Techniques such as structural equation
modeling (eg path analysis) can generate testable hypothe-
ses about such mechanisms. In addition, where mecha-
nisms are unknown, path analysis can reliably deconstruct
net effects into component parts with ascribed magnitudes.
For example, path analyses have been used to evaluate the
relative importance of seed predators and pollinators on
plant fitness and floral characteristics (Cariveau et al.
2004). The use of path analysis in combination with exper-
imental manipulations can provide non-intuitive insights
into the functional relationships between species interac-
tions, environmental variation, and outcomes.

Finally, a novel, trait-based approach provides a means
to mechanistically link the phenotypes of organisms to the
outcomes of interactions. Two perspectives are valuable
here. First, comparative approaches informed by phy-
logeny offer a powerful tool for understanding the role of
particular traits in ecological interactions (eg Cavender-
Bares et al. 2004a). Second, many species’ traits are phe-
notypically plastic (ie expression of the trait is dependent
on the biotic and abiotic environment; Agrawal 2001).
Such plasticity may have strong impacts on community
interactions, independent of differences in the density of

organisms. For example, a remarkably large
portion (often > 50%) of the indirect effects
that occur between predators, prey, and
plants reflect the effects that predators have
on the behavior of prey (eg feeding rates, hid-
ing behavior, emigration) rather than direct
reductions in prey density (Preisser et al.
2005). Predator-mediated effects on prey
behavior are an illustration of a much broader
process, in which responses of phenotypic
traits to the environment change the context
of interactions among species, quantitatively
altering population dynamics, interaction
strengths, and community outcomes. 

In sum, addressing classic questions about
the organization of communities and the
role of interspecific interactions has the
potential to lead researchers to a new level
of predictability in ecology. This goal
should be achievable through well-designed
experiments coupled with observational
work in various ecological contexts.

� Feedbacks across multiple ecological
scales

The dynamic nature of most ecological
processes means that feedback often occurs
between factors that are typically considered
independent. Predator–prey population
cycles, perhaps the classic example of an eco-

logical feedback, have received considerable theoretical
and empirical attention. Likewise, the study of coevolution,
the reciprocal evolutionary change that occurs in interact-
ing populations, has addressed feedbacks in an evolutionary
framework. In contrast, feedbacks between interacting indi-
viduals (in their behavior or phenotypes) and community
dynamics have received comparatively little attention.

Advances in this area are currently constrained by a
limited understanding of:

• how reciprocal interactions mediated by behavior or
phenotypic plasticity shape community and population
dynamics, stability, and structure;

• the scale dependence of feedbacks between community
interactions and environmental conditions;

• the mechanisms driving the relationship between
species diversity within communities and genetic diver-
sity within populations; and

• when it is necessary to consider evolution within com-
munities.

Most organisms exhibit phenotypic plasticity, and it is
almost certain that feedbacks of reciprocal, plastic
responses are common among interacting species. For
example, herbivore damage frequently induces defensive
responses in plants, which reduce the performance of sub-

Figure 3. Using environmental gradients to understand variation in the
outcomes of interspecific interactions: plant–plant interactions vary predictably
along a gradient of environmental harshness. Working in 11 study sites
(asterisks), Callaway et al. (2002) demonstrated that, at low elevations, com-
petition is the main structuring force in communities of plants (ie removal of plant
neighbors caused focal plants to increase flowering or fruiting), while facilitation
supplants competition in this role at higher elevations (ie removal of plant
neighbors diminished flowering and fruiting in focal plants).
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sequent herbivores (Karban and
Baldwin 1997). In turn, consumption
of plant secondary compounds can
induce herbivore detoxification
enzymes that increase herbivore per-
formance (Krieger et al. 1971).
Though typically studied as a one-way
interaction, reciprocity may often
result in escalating (or at least chang-
ing) phenotypes. Similar feedbacks
are also likely to occur between posi-
tively interacting species, such as ants
and aphids, or ants and lycaenid cater-
pillars, which dynamically adjust their
investment in mutualistic interactions
(Axen and Pierce 1998; Yao and
Akimoto 2002). Phenotypic feedbacks
may be (1) a primary determinant of
an organism’s phenotype in nature; (2)
an ecological signature of coevolution;
and/or (3) a stabilizing factor that pre-
vents runaway exploitation (Agrawal
2001). A critical question that
remains unanswered is: what is the
strength and ubiquity of these recipro-
cal effects? There is currently no theo-
retical framework addressing how reci-
procal interactions that influence
phenotypes may affect coevolutionary
dynamics or community structure.

Despite their absence from theory,
there is growing appreciation for the potential of recipro-
cal effects to influence important community attributes.
Feedbacks between plants and soil microbes have been
implicated in maintaining community structure and coex-
istence of plant species (Klironomos 2002). A key frontier
of biodiversity research in community ecology is identify-
ing the feedbacks among the environment, biodiversity,
and species interactions. Separate research programs have
provided strong support for the unidirectional linkages
among these three areas (ie productivity drives species
diversity, diversity in turn affects productivity). More gen-
erally, we know that the composition of a community can
affect characteristics of the environment and that the
environment can affect species interactions, but we have a
poor understanding of the mechanistic linkage, especially
at larger landscape scales (eg Pastor et al. 1998; Figure 4).
Is one direction of the feedback loop stronger than the
other? Are these processes scale-dependent? Are there
“equilibrial” states? At what time scales do feedbacks oper-
ate? Similarly, the trophic composition of a community
can have strong impacts on prey diversity, and prey or
resource diversity can, in turn, shape predator impacts.
The feedback among diversity, consumer effects, and
ecosystem level dynamics remains largely unexplored
(Downing and Leibold 2002), but deserves greater atten-
tion. We predict that many classically studied, one-way

interactions (eg impacts of biodiversity on ecosystem
function) will be overshadowed by the reciprocal effects
(eg ecosystem properties drive biodiversity), at least at
some scales. Theory and experiments are needed to
address these questions.

Understanding the feedbacks between community
diversity and genetic diversity within species is also a
novel area of recent inquiry (Vellend and Geber 2005).
Theoretical work predicted that species diversity within
communities and genetic diversity within populations
would positively covary. Biotically rich communities, for
example, may exert conflicting selection on traits of com-
ponent species and thereby maintain genetic diversity
(Strauss and Irwin 2004), and/or promote stabilizing selec-
tion. In recent studies manipulating genetic diversity of
plant species, but not species diversity, resulting species
diversity was highest in study plots with the greatest intra-
specific genetic diversity (Booth and Grime 2003).
Similarly, genetic diversity speeds the recovery of eelgrass
communities after grazing by geese (Hughes and
Stachowicz 2004). Genetically diverse plant communities
also support greater arthropod biodiversity, and this can
reciprocally affect plant fitness (Johnson et al. 2006). From
these and other studies, it appears that intraspecific varia-
tion within a species may play an important role in shap-
ing community structure and diversity.

Figure 4. Reciprocal interactions (ie ecological feedbacks) are ubiquitous but rarely
studied. For example, a tri-trophic feedback is likely at the landscape scale among habitat
selection by wolves and elk and vegetational production. Elk (black dots) selected areas
with lower predation risk (by wolves; territories shown by white circles) and more forage
in the Great Divide District of Chequamegon National Forest, WI. Thus, habitat
selection by elk results in their spatial concentration and may reciprocally shape predator
and vegetation dynamics (Anderson et al. 2005)
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More generally, models that incorporate the evolution of
one or more players in a food web often predict dramati-
cally different outcomes from models that consider only
ecological interactions among species with fixed traits (eg
Loeuille and Loreau 2005). Feedbacks among species inter-
actions, genetic change, and community structure are an
important reality for all communities. These dynamics may
occur much more rapidly than previously believed, in part
because of non-equilibrium conditions. Although defini-
tive experiments that demonstrate the importance of evo-
lution for population and community structure may be lim-
ited to laboratory microcosms (eg Yoshida et al. 2003), a
combination of field experiments, modeling, and compara-
tive work could provide a strong test of these ideas. 

�Mechanisms of species coexistence

The related challenges of understanding species diversity
and coexistence lie at the heart of community ecology. At
issue is what determines the number of coexisting species
within a community and what, if anything, prevents com-
petitive exclusion and thus allows those species to coexist.

Advances in this area are currently limited by a lack of:

• linkages between theory on how multiple effects gener-
ate coexistence and ways in which different mecha-
nisms can be tested empirically;

• empirical data at appropriate spatial and temporal scales
to test theoretical predictions of species coexistence;

• phylogenetic data in studies of coexistence; and
• evolutionary approaches to ecological mechanisms of

community assembly and maintenance.

Recent and rapid advances in coexistence theory have
fundamentally changed the questions that must be
addressed in this area. Historically, the question has been
phrased in terms of the external factors or niche differ-
ences among species that might be large enough to allow
coexistence (Figure 5). Recent theoretical findings have

counterintuitively suggested that similar
species may coexist more easily than ones
with greater niche differences, and that a
multitude of  external factors are each suffi-
ciently powerful to generate coexistence
(Chesson 2000; Hubbell 2001; Chave
2004). One of the most useful distinctions is

between processes that promote equality in mean popula-
tion fitness across species (“equalizing forces”) versus
those that lead to positive population growth rates when
species are rare (“stabilizing forces”; Chesson 2000;
WebPanel 3). 

Explicit empirical tests of the predictions and assump-
tions of competing coexistence theories will be critical in
evaluating mechanisms underlying invasion, persistence
of rare species, and, generally, the maintenance and
determinants of diversity in communities. Three priori-
ties follow closely from the theoretical issues outlined
above. First is the design of field studies that can be used
to test multiple coexistence mechanisms in the same
community and that enable a ranking or quantification of
their relative importance. Second is the need for the
careful treatment of spatial scale and dispersal dynamics
in investigations of the maintenance of coexisting
species. Many of the mechanisms thought to be impor-
tant for the coexistence of species rely on spatial effects,
including aggregation due to limited dispersal abilities or
habitat heterogeneity (Ives and May 1985; Chesson
2000; Hubbell 2001); designing field studies that can esti-
mate the processes driving these spatial effects presents a
major challenge. Third is the need for studies that mea-
sure dynamics or even community patterns over the
lengthy time scales most relevant to many coexistence
theories. For example, paleoecological analysis of small
mammal communities in North America demonstrates
greater temporal stability of community structure than
can be plausibly predicted based on a neutral model of
ecological drift (McGill et al. 2005). A related issue is re-
conciling the time scales at which stable coexistence may
occur with the time scales of community assembly and
disassembly due to climatic and geological change. 

Phylogenetic approaches to community ecology show
particular promise because they have the potential to
integrate the evolutionary history of the regional species
pool with local analyses testing for non-random processes
of community assembly (Webb et al. 2002; Figure 6).

Figure 5. Multiple factors allow for the coexist-
ence of species. For example, three aphid species
coexist on the same host plant, Asclepias syriaca
(and on the same resource from that plant, phloem
sap): (a) Aphis asclepiadis, (b) A nerii, and (c)
Myzocallis asclepiadis. Each species has distinct
demographic rates, interactions with other species
(only A asclepiadis has a mutualistic relationship
with ants), and tendencies to disperse, which may
contribute to their ability to coexist.

(a) (b)

(c)
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Since Darwin, it has been argued that
individuals of closely related species
will be phenotypically and ecologi-
cally similar and, as a result, will
compete more strongly. The co-
occurrence of distant relatives may
thus provide evidence for the role of
competition and/or ecological differ-
entiation in the assembly of commu-
nities. Recent studies within rela-
tively narrow clades suggest that
co-occurrence of distant species may
be prevalent (eg species of oaks;
Cavender-Bares et al. 2004a,b). In
contrast, studies of co-occurrence in
more divergent groups find the oppo-
site. For example, a recent study of
California grasslands showed that
exotic species distantly related to
plants in the invaded community
were more invasive and ecologically
harmful than were exotics more
closely related to plants in the
invaded community (Strauss et al.
2006). At larger phylogenetic scales,
related species appear to cluster by
habitat, reflecting shared environ-
mental tolerances (Webb et al. 2002).
Studies are needed across a range of
ecological and phylogenetic scales to
permit a broad, quantitative synthesis
of these contrasting patterns. Additionally, further exper-
imental studies are needed to formally test the prediction
that close relatives compete more intensely or share simi-
lar susceptibility to pathogens and predators. Experi-
mental community studies using assemblages with more
or less closely related species would be valuable to directly
test these ideas, although it will be important and chal-
lenging to experimentally separate phylogenetic and
functional diversity (WebPanel 4). 

� Conclusions

Filling the gaps in knowledge outlined here will require a
diversity of approaches. This pursuit includes testing and
enhancing the reality of existing theory, developing new
theory, and working out new and creative ways to combine
experimental work with observational studies or compara-
tive analyses. Where possible, it will require increasingly
sophisticated experiments that shed light on the relative
importance of multiple and potentially interacting effects.
Finally, quantitative experimental designs (in place of tra-
ditional qualitative presence/absence studies) may be par-
ticularly useful, because this can reveal the influence of
natural variation in abundance of particular species. While
these conclusions may seem to imply simply that more
research is needed, we argue that the time is right not for
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more research across the board, but for a greater integra-
tion of disciplines, individual studies, and research direc-
tions to produce an emergent field of ecology.

We have highlighted the importance of ecological con-
text and individual phenotypes in shaping the outcome of
interactions, and suggest that these factors may lie at the
heart of accurately predicting effects on communities.
Trait-based approaches that focus on trait variation gen-
erated by phenotypic plasticity, genetic variation, and
evolutionary divergence among species show particular
promise, especially if linked to studies examining their
role in propagating indirect effects through communities.
Finally, feedbacks, though long-recognized, require
greater integration into the mainstream ecology of indi-
vidual and community interactions.
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Figure 6. Using knowledge of evolutionary history to understand community assembly.
This figure presents a schematic of phylogenetic overdispersion (phenomenon of co-
occurring species being less related to each other than expected by chance) in three major
oak-dominated communities in Florida (adapted from Cavender-Bares et al. 2004 a,b).
Oaks within each of the major phylogenetic lineages occur in each community (with
respective physiological traits apparently matched to each environment), indicating
convergent evolution. The alternative pattern of co-occurring species being closely
related (ie phylogenetic clustering) can be generated when the environment filters species
based on traits shared among close relatives. 
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WebPanel 1. Understudied systems and underutilized approaches in ecology          

The fundamental questions in ecology apply to all populations, communities, and ecosystems.Traditionally, ecologists have focused on
systems that are accessible in a variety of ways, and on organisms that are easy to reach, view, and identify. We encourage additional
work on the following systems and approaches.

The semi-natural matrix. Ecological studies often investigate pristine systems, but many organisms now persist in the fringes of
habitat around highly disturbed areas (Brauer and Geber 2002). Although much work has been conducted in some of these areas (eg
eastern North American old-fields, much of Europe) and despite a growing interest in urban ecology, the semi-natural matrix is still
mainly unexplored, its ubiquity notwithstanding.

Scavengers and decomposers. These organisms recycle nutrients from all trophic levels, yet we are just beginning to understand
their population and community dynamics (Allison 2006).

Pathogens, with a particular focus on viruses, fungi, and nematodes. Although microbial ecology, with a focus on bacteria, is
an expanding area in both population and community ecology, less attention has been paid to some of the more cryptic groups, such as
viruses, fungi, and nematodes (Arnold et al. 2003; Forde et al. 2004; Cattadori et al. 2005; Ezenwa et al. 2006).The roles of these organ-
isms shift easily among pathogen, commensal, and mutualist, providing opportunities to investigate variation and changes in ecological
roles and the interplay of evolution with ecology.

Chemical ecology. Although the study of chemical mediation of interactions among species has been one of the core areas of ecol-
ogy, technological advances and interest in a broader group of taxa, beyond plants and chewing herbivores, opens additional questions.
Furthermore, hormonal and biochemical data can be used to gain insight into the interactions of individuals with one another and with
their environment. Predictive theory from biochemists has yet to be tested in ecologically realistic settings (Mopper and Agrawal 2004).

Ecological stoichiometry. Understanding the relative chemical needs and composition of species may provide a key link between
population/community ecology and ecosystem science. Nutrient ratios and dynamics have moved well beyond measures of carbon,
nitrogen, and phosphorus in predicting ecological outcomes. In particular, recent hypotheses about stoichiometric relationships, diet
breadth, and trophic structure are important areas of conceptual and empirical development (Elser et al. 2000; Fagan et al. 2002).

Geographic range limits. The spatial distribution of a species is set by a combination of abiotic and biotic factors that represent
adaptive limits. Constraints on range expansion include limited genetic variation, tradeoffs in performance across habitats, and gene
flow that swamps local adaptation.Theoretical models to explain the limits of geographic ranges have received inadequate empirical
investigation. Given the expected importance of climate change, an understanding of the ecological and evolutionary determinants of
species’ ranges is a critical issue in landscape ecology and conservation biology.

Merging paleo- and neoecological perspectives. Although paleoecological insights into the composition of past (especially plant)
communities have contributed to theory in community ecology, a synthesis of paleo- and neoecological perspectives is needed to bet-
ter understand how modern dynamics may be linked to both recent and distant ecological history. For example, such a synthesis may
help to explain how neoecological dynamics in North America may be shaped by the loss of Holocene megafauna. Does community
composition converge or diverge through time? How different are past and present biotic assemblages? More broadly, such space–time
linkages could be important for predicting responses to climate change.
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WebPanel 2. Applying ecology to global change frontiers          

In an era of unprecedented environmental change, ecologists are seeking to understand the effects of global change on populations,
communities, and ecosystems, and to provide the means by which ecological principles can be applied to mitigate the consequences of
global change. Below we outline a few of the emerging areas.

Distribution-wide dynamics. A wealth of studies have examined the role of climatic variability and associated changes in population
dynamics of species. Nonetheless, projections of the impacts of climate change on species (rather than on individual populations of
species) remain rare in the absence of distribution-wide analyses. Our understanding of the effects of climate and landscape, natural
enemies, and conspecifics on species’ responses to climate change can be improved through analyses that incorporate populations of
focal species throughout their distributions, with a particular focus on the edge of species’ range. Analysis of population dynamics of
species throughout their distributions has the potential to reveal population “hot-” and “cold-spots” in species’ responses to climate
change (Post 2005).

Extreme events. The frequency of extreme climatic events, including hurricanes, floods, and droughts, is expected to increase as a
function of global climate change. The role of such extreme events in population dynamics and community structure, and in disease
outbreaks and dynamics, is not well understood. Advances in climate change modeling allow the frequency and location of these events
to be predicted more accurately. Extreme events represent substantial ecological perturbations that can result in switches among eco-
logical equilibria, leading to the loss of species, changes in species abundance, and alteration of fundamental biogeochemical processes.
More cryptic effects are likely to be important and require attention, such as the potential of extreme events to bring spatially struc-
tured populations into synchrony, increasing the likelihood of extinction and outbreaks of pests and epidemics (Cattadori et al. 2005).
How resilient are communities to extreme events? How quickly do species and communities respond, how long do they take to
recover, and what form can recovery take in the context of anthropogenic change (Spiller et al. 1998)?

Several approaches are needed to assess the consequences of extreme events: small-scale experiments to identify processes, large-
scale experimental manipulations to determine if these processes scale up, and modeling of non-linear processes that identifies thresh-
olds in how systems respond to these events. Some insight into these issues could be obtained by an examination of paleoecological
records that reveal the consequences of past large-scale events (Davis and Shaw 2001).

Species deletions. With increasing rates of habitat destruction and modification, changes in global climate, and localized human activ-
ity such as illegal poaching, communities throughout the world face accelerating losses of native species. A central challenge is to
understand how these species deletions influence the structure and function of the communities and ecosystems in which they are
embedded. While our understanding of how reductions in plant diversity influence invasibility and production at small scales is grow-
ing (Elton 1958; Loreau et al. 2001; Hooper et al. 2005), we lack insight into the impact of species loss on diverse ecosystems with com-
plex food webs, where species loss is of greatest concern. Local or global extinctions are usually non-random and, often, large-bodied
predators and mutualists are at greatest risk (Peres 2000). In turn, the fate of microbial symbionts is poorly understood, reflecting a
dearth of knowledge regarding these and other cryptic organisms. We lack insight into how loss of these potentially influential species
may impact the systems from which they are removed. Theory concerning the relationship between diversity and stability is contra-
dictory (McCann 2000) and poorly tested, especially in complex natural systems. Central to understanding the ecological importance
of species losses in complex food webs is determining whether functional redundancy buffers systems from the negative impacts of
these losses. There is often substantial overlap in the prey, pollen, or seeds utilized within generalist predator, pollinator, or disperser
guilds. Can species that are “functionally redundant” compensate for the loss of functionally similar species? Is there always a relation-
ship between diversity and functional redundancy in complex systems?

Emerging diseases. Climate disruption may well have an important influence on the emergence of new diseases for humans and
wildlife. As temperatures increase, simple degree–day models predict linear effects on the development time of free-living parasites and
vectors; however, some studies indicate that there may be rapid non-linear increases in disease exposure. Climate disruption may also
influence minimum and maximum temperatures and cloud formation in some systems, a pattern suspected of having precipitated dis-
ease outbreaks that are driving widespread amphibian extinctions in Central America (Pounds et al. 2006). In several well-documented
cases, geographic ranges of vector organisms are expanding, and changes in climate are allowing diseases to invade areas not previously
colonized (eg West Nile virus). The causal relationship of global change to disease emergence requires further study.
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WebPanel 3. Theoretical issues in species coexistence research          

In species coexistence theory, some processes are thought to promote equality in mean population fitness across species (“equalizing
forces”), while others lead to positive population growth rates when species are rare (“stabilizing forces”; Chesson 2000). Neutral the-
ories of community structure (Caswell 1976; Bell 2000; Hubbell 2001) provide some of the best models for investigating equalizing
forces. These explanations of coexistence assume demographic equivalence at the individual level (ie equal probability of mortality and
offspring establishment), reducing any deterministic trend toward competitive exclusion, and thus increasing the average time to local
extinction. However, non-neutral models of coexistence can also be “equalizing” by generating demographic equivalence when no pop-
ulation is increasing or decreasing (Chave 2004). In this case, demographic equivalence may arise due to specialization for alternative
habitats in a heterogeneous landscape, or due to interactions among distinct combinations of physiological traits (Marks and Lechowicz
2006). Thus, the fact that species differ in physiological and functional traits that might promote specialization or differentiation in
resource use is not in itself a refutation of the importance of equalizing forces in promoting coexistence. In this vein, we predict that
studies that connect functional traits to fitness, and ultimately demography, will be particularly helpful in distinguishing between these
two broad models of coexistence.

Stablizing forces promote coexistence among species by niche differentiation, temporal and spatial storage effects (Warner and
Chesson 1985), aggregation effects (Ives and May 1985), enemy escape (Janzen 1970), and density-dependent mechanisms (eg Lotka-
Volterra criteria for intra- versus interspecific competitive effects and predator switching behavior that targets common prey). Trade-offs
between life-history attributes, such as competitive ability and dispersal, can also promote co-existence.These and many other stochas-
tic and deterministic mechanisms tend to favor uncommon species and hence stabilize community composition by depressing the risks
of local or global extinction. Importantly, equalizing and stabilizing forces closely interact. Chesson’s theory, in particular, demonstrates
that similar species (in terms of average demographic performance) are able to coexist with only very weak stabilizing forces.Our recent
understanding of this interplay emphasizes that surprisingly subtle species differences may be sufficient to maintain diversity.

With many mechanisms capable of maintaining diversity in communities, the most striking aspect of current coexistence theory is its
complexity and its disconnectedness from data and from clear criteria for testing alternative mechanisms (Chave 2004). This is
intended not as a criticism of the burgeoning theoretical developments, but as a comment on what is needed next. In terms of theory,
three priorities are especially evident. First, and most striking, is the need for coexistence models to simultaneously consider temporal
and spatial heterogeneity; for example, models of the storage effect, with its emphasis on temporal fluctuations, have not been brought
into the parallel framework that considers spatial heterogeneity and aggregation (Ives and May 1985). Recent work by Synder and
Chesson (2004) merges several spatial mechanisms into a single framework and thus sets the stage for a synthetic theory that may
allow quantitative comparisons of the importance of spatial and temporal heterogeneity in promoting coexistence. Second, the field of
coexistence theory has increasingly moved from consideration of whole communities, including not only a single guild of potential com-
petitors, but also their consumers and mutualists. Earlier, and more testable, whole-community and multi-trophic theories of coexis-
tence (eg Paine 1966) need to be brought back into the fold of ideas considered in coexistence studies. Finally, criteria from theory are
needed with which to clearly compare, contrast, and synthesize the results of empirical coexistence studies. Similar patterns of species
abundance can arise from very different processes, undermining their use in discriminating among competing theories.Theoretical and
empirical examination of coexistence based on increase from very low numbers (ie invasion criteria) may have greater potential to gen-
erate direct tests of different coexistence mechanisms than do theories focused on static patterns in abundance (eg Wills et al. 2006).
Such theories may also shed light on the role of rare species in community function, an area that has received relatively little attention.
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WebPanel 4. Phylogenetic diversity: from clades to landscapes           

The evolutionary relationships among coexisting species are encapsulated in phylogenies. Using modern phylogenic methods, compar-
ative biology provides a useful toolbox for ecologists, assisting in the diagnosis of conservation priorities, the interpretation of com-
munity structure and function, and the measurement of biodiversity at multiple scales. Rapid development of molecular tools, which
allow diagnosis of taxonomic units when phenotypic characters are lacking or misleading, coupled with an increased use of phylogenetic
tools in evolutionary ecology (Webb et al. 2002), has led to the increased use of phylogenetic diversity measures as a complementary
approach to traditional measures of species richness and diversity (Vanewright et al. 1991; Faith 1992). As originally described, phylo-
genetic diversity represents the sum of pairwise distances between taxa on a phylogenetic tree (Faith 1992). Simply stated, the distance
between two taxa (a and b) is represented by the sum of the lengths of the branches on the path between them, given branch lengths
that are proportional to elapsed time since the most recent common ancestor or cumulative evolutionary change.

Phylogenetic diversity (PD) measures offer two advantages over traditional approaches: (1) they take into account the phylogenetic
distance among organisms present in a sample, and thus provide an indication of the genetic diversity (or disparity) among taxa; and (2)
they do not rely on species definitions (or the designation of other taxonomic units). The utility of PD is illustrated by the example of
two communities, each with equal species richness, that differ dramatically in the taxonomic relatedness within each species pool.
Ecologists using standard measures of diversity would consider the two communities to be equally diverse, overlooking the contribution
of ancient lineages, species-poor clades, or genetic disparity in making one community more diverse than the other. In this way, PD has
been used to inform ecologists about the “biodiversity value” of particular geographic regions, as well as focal lineages in the tree of life:
bryophytes (Shaw and Cox 2005), bumblebees (Vanewright et al. 1991), crested newts (Faith 1992), carnivores and primates (Sechrest et
al. 2002), and fungal symbionts (Arnold et al. in press). In turn, the “species-free” approach of PD enables ecologists to avoid ongoing
debates regarding species concepts and the objective reality of species while drawing meaningful conclusions about diversity. Especially in
microbial ecology, PD provides an indispensable method for measuring diversity of uncultured microorganisms known only by their
genotypes, cultured microbes that lack sufficient phenotypic characters to distinguish species using traditional methods, or assemblages
of microbes that have been integrated into phylogenetic trees, but for which species concepts remain arbitrary (Arnold et al. in press).

While phylogenetic diversity measures have provided an important tool in conservation biology and are increasingly used in com-
munity and evolutionary ecology (Webb et al. 2002), these measures are imperfect. In particular, ecologists need methods to effectively
quantify diversity without relying on potentially faulty inferences due to (1) poorly resolved phylogenies, (2) phylogenies that reflect sys-
tematic error due to incongruence between gene trees and the evolutionary history of the organisms that carry those genes, (3) lim-
ited taxon sampling, which may lead to inaccurate measures of pairwise distances; and (4) inconsistency in branch lengths among
clades, reflecting differential rates of evolution due to intrinsic or ecological factors. Furthermore, phylogenetic placement may not pro-
vide the desired framework for reconstructing functional roles; convergent evolution and horizontal gene transfer can obscure the
relationship between phylogenetic distance and ecological similarity. Finally, the relationships between models of phenotypic evolution
and phylogenetic biology need to be clearly defined (Alexandre 2004). Thus, caution is needed when using PD measures. Novel mea-
sures of diversity need to be developed and should be compared to both PD and traditional indices.

Even with these limitations, PD is likely to play an important role at the frontiers of ecology. Understanding the phylogenetic diver-
sity of microbial communities has already brought about a paradigm shift in the study of biodiversity and in our understanding of cryp-
tic ecological processes (Arnold et al. in press). The development of methods associated with PD will build much-needed bridges
between ecology, systematics, bioinformatics, and genomics, providing new insights into ecological metagenomes, nonrandom processes
of extinction, and the ecological processes associated with diversification. One of many potential roles of PD lies in understanding the
causal relationship between biodiversity and ecosystem processes: a transition from species diversity to phylogenetic diversity may
inform debates regarding the functional equivalence and “redundancy” of the units of biodiversity.
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Figure 1. Phylogenetic diversity of communities. (1)
Hypothetical phylogenetic tree for organisms a through h,
drawn with representative branch lengths. (2) Hypotheti-
cal tree for organisms at site X, with organisms that are
present indicated by solid branches, and organisms that are
absent indicated by dashed branches. (3) Hypothetical tree
for organisms at site Y. Phylogenetic diversity is calculated
as the sum of the minimum total length of all phylogenetic
branches needed to span a set of taxa on the tree (Faith
1992). In this simple example, although site X and site Y
have equal species richness, site X has a markedly greater
phylogenetic diversity.
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