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Abstract

Background: The Palearctic region supports relatively few avian species, yet recent molecular

studies have revealed that cryptic lineages likely still persist unrecognized. A broad survey of

cytochrome c oxidase I (COI) sequences, or DNA barcodes, can aid on this front by providing

molecular diagnostics for species assignment. Barcodes have already been extensively surveyed in

the Nearctic, which provides an interesting comparison to this region; faunal interchange between

these regions has been very dynamic. We explored COI sequence divergence within and between

species of Palearctic birds, including samples from Russia, Kazakhstan, and Mongolia. As of yet,

there is no consensus on the best method to analyze barcode data. We used this opportunity to

compare and contrast three different methods routinely employed in barcoding studies: clustering-

based, distance-based, and character-based methods.

Results: We produced COI sequences from 1,674 specimens representing 398 Palearctic species.

These were merged with published COI sequences from North American congeners, creating a

final dataset of 2,523 sequences for 599 species. Ninety-six percent of the species analyzed could

be accurately identified using one or a combination of the methods employed. Most species could

be rapidly assigned using the cluster-based or distance-based approach alone. For a few select

groups of species, the character-based method offered an additional level of resolution. Of the five

groups of indistinguishable species, most were pairs, save for a larger group comprising the herring

gull complex. Up to 44 species exhibited deep intraspecific divergences, many of which

corresponded to previously described phylogeographic patterns and endemism hotspots.

Conclusion: COI sequence divergence within eastern Palearctic birds is largely consistent with

that observed in birds from other temperate regions. Sequence variation is primarily congruent

with taxonomic boundaries; deviations from this trend reveal overlooked biological patterns, and

in some cases, overlooked species. More research is needed to further refine the taxonomic status

of some Palearctic birds, but large genetic surveys such as this may facilitate this effort. DNA

barcodes are a practical means for rapid species assignment, although efficient analytical methods

will likely require a two-tiered approach to differentiate closely related pairs of species.
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Background
DNA barcoding employs sequences from a short stand-
ardized gene region to identify species [1]. The mitochon-
drial gene cytochrome c oxidase I (COI) has been firmly
established as the core barcode region for animals [2] and
its performance has been evaluated in birds from several
regions, including North America [3], Brazil [4,5], Argen-
tina [6], and Korea [7]. While most bird species are readily
identifiable through morphological traits [8], their well-
developed taxonomy makes them a valuable group to test
the efficacy of barcoding. Additionally, avian taxonomy is
not immune to change, and in recent decades DNA evi-
dence has clarified many species boundaries. Broad sur-
veys, such as DNA barcoding, can expedite this process by
quickly spotlighting species that merit further taxonomic
investigation [9-11]. This capacity is illustrated by several
recently described species that were earlier revealed as
divergent lineages during barcode surveys [12-14].

Although the avian diversity of the Palearctic is relatively
depauperate [15] and its taxonomy was stable for decades,
modern molecular techniques have spurred the recogni-
tion of overlooked species [16]. These new species were
often hidden within morphologically cryptic assem-
blages, which impeded their discovery [e.g. [17,18]]. In
other cases, biological species hypotheses could not be
tested because divergent populations had allopatric distri-
butions [19-21]. Molecular analyses continue to illumi-
nate the phylogeographic structure of birds in this region
[20,22-28]. A recent barcoding survey of Scandinavian
birds by Johnsen et al. [29] revealed high species resolu-
tion plus a few divergent lineages, including some
between European and North American populations of
trans-Atlantic species. The Atlantic Ocean serves as a rela-
tively impermeable barrier to dispersal for non-pelagic
birds [15,30], but the situation is very different in the east-
ern Palearctic, where intercontinental exchange across the
Bering Strait is more frequent [19,24,31]. Johnsen et al.
[29] also highlighted sequence divergences within a few
species that failed to correspond to known subspecies or
logical geographical patterns - a pattern not observed in a
comprehensive survey of Nearctic birds [3]. To determine
if this pattern is recurrent, to highlight further cases of
cryptic divergences, and to explore general patterns in
sequence divergence, we advance COI barcode coverage in
this study to include the breeding birds of the eastern Pal-
earctic region, including Russia, Ukraine, Kazakhstan, and
Mongolia.

Despite the growth of DNA barcode libraries, no consen-
sus has yet emerged on the best method to analyze DNA
barcode data [32]. Some of the original tools proposed to
delimit species using COI sequences, such as neighbour-
joining profiles [33] and distance thresholds [34], have
been criticized by several authors for not realistically

addressing the complexity of species boundaries [35-38].
More recent tools have gained complexity, incorporating
coalescent theory and more elaborate statistical methods,
though at the cost of computational time and power [38-
40]. The situation is further complicated by the dual pur-
poses proposed for barcoding: species identification and
species discovery [41]. The majority of new generation
tools require pre-defined species designations and conse-
quently cannot be used to identify divergent genetic line-
ages within known groups. Although the use of DNA
barcodes to "discover" species is contentious, it is gener-
ally accepted that barcode data can be used to flag poten-
tially distinct taxa for further hypothesis testing [42].
Because the taxonomy of Holarctic birds is relatively
mature [35], we take this opportunity to compare and
contrast some of the more commonly used analytical
methods.

Methods
Sampling

We examined 1,674 individuals representing 398 Palearc-
tic species, with 83% of these taxa represented by multiple
individuals. Species coverage was not uniformly distrib-
uted across orders and families due to specimen availabil-
ity; nearly two-thirds of resident passerines were
represented, versus less than 38% of non-passerine birds.
We used frozen tissue (typically pectoral muscle) from
museum specimens; all but six tissues were linked to
vouchered specimens. All tissue specimens originated
from either the ornithology collection at the Burke
Museum of Natural History and Culture (87.5%) or from
the Zoological Museum of Moscow University (12.5%),
and were collected in the field during the past 20 years. To
capture geographical variation, individuals collected from
widely dispersed sites were preferentially sampled for
each species whenever possible (see Figure 1 for distribu-
tion of collecting sites). Additional sequences from North
American congeners were also contributed (see below). As
a taxonomic reference, we followed Clements [43],
including corrections and updates up to 8 October 2007
with the exception of treating Corvus cornix as conspecific
with C. corone [sensu [44]].

Laboratory methods

DNA extraction, PCR, and sequencing reactions follow
the procedures described in Kerr et al. [6]. Only sequences
greater than 500 bp and containing fewer than 10 ambig-
uous base calls were included in analyses. The sequence
from one Anas crecca specimen was omitted from analysis
due to suspicion that it was actually an A. crecca × A. caro-
linensis hybrid based on morphology and molecular
results. Collection data, sequences, and trace files are
available from the project 'Birds of the eastern Palearctic'
at http://www.barcodinglife.org. All sequences have also
been deposited in GenBank (Accession nos GQ481247 -

http://www.barcodinglife.org
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GQ481247
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GQ482920). A complete list of the museum catalog num-
bers, BOLD process identification numbers, and GenBank
accession numbers for each specimen analyzed is
included in Additional file 1.

We supplemented the data gathered in this study with
sequences from North American congeners (accessible
from the "Birds of North America - Phase II" project folder
at http://www.barcodinglife.org) to examine divergences
within transcontinental species and between sister species
pairs. This added 849 sequences from 227 species, of
which 66 species were shared with the Palearctic dataset.
A list of BOLD process identification numbers and Gen-
Bank accession numbers for these sequences are listed in
the Additional file 2. In total, 2,523 sequences from 559
species were included in the analyses.

Data analysis

To assess the discriminatory power of COI barcodes, we
compared three different methods commonly deployed
in DNA barcoding studies: neighbour-joining (NJ) clus-
ters, distance-based thresholds, and character-based
assignment. We avoided more computationally intensive
methods in favour of programs that could be executed in
real time. For the clustering method, we used MEGA ver-
sion 3.1 [45] to construct an NJ tree using the Kimura 2

parameter distance model (K2P). More sophisticated tree-
building methods exist, but since we are concerned about
terminal branches, not deeper branching patterns, this
method is sufficient. Support for monophyletic clusters
was determined using 500 bootstrap replicates. Species
were accepted as being monophyletic providing they com-
prised the smallest diagnosable cluster with greater than
95% bootstrap support [46]. Though bootstrap support
cannot be determined for species represented by a single
sequence, they were included in the analysis to observe if
they created paraphyly in neighbouring taxa. Species that
could be divided into two or more well-supported clusters
were flagged as potentially cryptic taxa.

For the threshold-based approach, we blindly grouped
sequences into provisional species clusters using a molec-
ular operational taxonomic unit (MOTU) assignment
program originally developed for nematodes [47]. The
program, 'MOTU_define.pl' v2.07 (R. Floyd and M. Blax-
ter, unpublished; available from http://www.nema
todes.org/bioinformatics/MOTU/index.shtml), clusters
sequences together based on BLAST similarity using a
user-defined base difference cut-off. Rather than use an
arbitrary cut-off value, we determined the optimum
threshold, or OT [36], by pooling our new data with the
published North American bird dataset [3] and generating

Distribution of collecting sitesFigure 1
Distribution of collecting sites. Map of the eastern Palearctic region detailing the collecting sites for all specimens used in 
this study. Red circles indicate sampling sites. Sampling intensity is indicated by the brightness of each circle.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GQ482920
http://www.barcodinglife.org
http://www.nematodes.org/bioinformatics/MOTU/index.shtml
http://www.nematodes.org/bioinformatics/MOTU/index.shtml
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a cumulative error plot using all species with multiple rep-
resentatives (see Figure 2). We adopted a liberal threshold
of 11 base differences based on this result, which approx-
imately equates to 1.6% divergence. Program parameters
only included sequences greater than 500 bp with a min-
imum alignment overlap of 400 bp; however, this did not
exclude any sequences from analysis.

For the character-based identification method, we used
the character assignment system CAOS, which automates
the identification of conserved character states (in this
case, different nucleotides) from a tree of pre-defined spe-
cies [48]. The system comprises two programs: P-Gnome
and P-Elf [48]. P-Gnome is used to identify the diagnostic
sequence characters that separate species and uses them to
generate a rule set for species identification; P-Elf classifies
new sequences to species using the rule set. We used the
programs PAUP v4.0b10 [49] and MESQUITE v2.6 [50]
respectively to produce the input NJ trees and nexus files
for P-Gnome in accordance with the CAOS manual. We
executed P-Gnome using several subsets of our data. First,
we tried all of the Palearctic species included in this study
to determine if diagnostic characters could be identified to
separate a wide range of species. The input tree for P-
Gnome requires that all species nodes be collapsed to sin-
gle polytomies, which is an arduous task for large num-
bers of species. We only used a single representative from
each species to circumvent this issue with the drawback
that intraspecific variation is ignored during rule genera-

tion. To test the character-based method on a finer scale,
we ran the program independently on the three largest
genera sampled: Emberiza (n = 23), Phylloscopus (n = 13),
and Turdus (n = 13). For species with multiple representa-
tives, the shortest sequence was omitted from rule genera-
tion and used later to test species assignment.

For the first two tests (NJ and MOTU), all species exhibit-
ing type I error, wherein a single species produced two or
more discernable clusters of sequences, were compiled.
Additional lines of evidence (e.g. alternative genes, mor-
phological differences, song differences, etc.) were sought
from previous studies to support or refute the likelihood
of species differences in such cases. However, no formal
recommendations are made here. We also performed the
two-cluster test using Lintre [51] to determine if sequences
from these species had evolved in a clock-like manner. For
type II errors, wherein multiple species grouped together
to form one well-supported cluster, sequences from each
cluster were run through P-Gnome to ascertain if diagnos-
tic characters could be identified that distinguish these
close species.

Results
Neighbour-joining clusters

Of the 559 species analyzed, 72 had only a single repre-
sentative and thus no bootstrap support could be calcu-
lated. However, all of these formed independent branches
on the NJ tree that did not compromise the identification

Cumulative error plotsFigure 2
Cumulative error plots. Cumulative error plots of type I (false positive) and type II (false negative) errors for different 
divergence thresholds. Plot is based on 979 Holarctic bird species. The optimum threshold occurs at 1.6% divergence.
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of other species. The remaining species were categorized
into four patterns (Figure 3). Ninety percent formed well-
supported (> 95% bootstrap) monophyletic groups (Fig-
ure 3a), and an additional 4% were monophyletic but
with less than 95% bootstrap support (Figure 3b). Ten
species, 2% of the total, were paraphyletic (Larus canus,
Thalasseus sandviciensis, Motacilla citreola, M. flava, Saxicola
maurus, Sitta europaea, Certhia familiaris, Lanius collurio, L.
excubitor, and Pica pica)(Figure 3c). The remaining taxa
(4%) formed monophyletic clusters that contained two or
more species (Figure 3d; Table 1). These were mostly lim-
ited to pairs of sister taxa, with the notable exception of
one cluster containing 10 species in the Herring gull com-
plex (Larus californicus, L. fuscus, L. glaucescens, L. glau-
coides, L. heuglini, L. hyperboreus, L. occidentalis, L.
smithsonianus, L. thayeri, and L. vegae).

Forty-two species showed evidence of having divergent
lineages (Table 2). Twenty-two species formed two or
more well-supported (> 95% bootstrap) monophyletic
clusters. Another four species formed two distinct clusters,
but with one cluster possessing only 90-94% bootstrap
support. These cases included 7 of the 10 paraphyletic spe-
cies. In an additional 16 species, a single specimen was
divergent from the rest, but further sampling is necessary
to adequately evaluate these cases. Table 2 lists all species
with divergent lineages. The total number of species rec-
ognized via this method is difficult to gauge due to inclu-
sion of single representatives for some species and
divergent lineages.

Distance-based assignment

The MOTU analysis identified 570 clusters, or taxonomic
units, versus the 559 recognized by traditional taxonomy.
The similarity of these numbers disguises discrepancies in
species assignment. Poor resolution occurred in 22 groups
representing 61 species (Table 1). These lumped taxa, as
with the NJ clustering method, were mostly limited to
pairs of species, save for two triplets (Somateria spp. and
Turdus spp.) and thirteen large white-headed gulls (Larus
canus, L. delawarensis, L. marinus, and the aforementioned
members of the Herring gull complex). Divergent groups
were recognized in 42 species (Table 2); 95% of these
overlapped with those recognized via NJ. Most were
divided into two clusters, though three or more clusters
were detected in five species. In two of the paraphyletic
species (Motacilla flava, Lanius collurio), one lineage was
lumped with a closely related species while the other lin-
eage was divergent.

Character-based assignment

P-Gnome failed to produce a diagnostic rule set that that
could distinguish all 398 species sequenced in this study.
Results using subsets of the data were more successful.
Complete diagnostic rule sets were generated and success-

fully tested for both Phylloscopus and Turdus. The rule set
for Emberiza could not distinguish between sequences of
E. leucocephalos and E. citrinella due to their near congru-
ence. In addition, P-Elf failed to correctly identify single
sequences from the species E. chrysophrys and E. elegans.
The former sequence was short (594 bp) and might have
lacked important diagnostic characters. However, the lat-
ter sequence was of typical length (694 bp) and only
exceptional in that it contained 5 polymorphic sites from
the sequence used to generate the rule set. Both of these
species were incorrectly identified as E. aureola, though
this identification would vary if the input tree were
altered.

Of 22 groups of lumped species, all but five could be
resolved using diagnostic characters (see Table 1). For
example, the species pair Coturnix coturnix and C. japonica
possessed 10 diagnostic nucleotide sites, two short of rec-
ognition by the MOTU threshold but still easily distin-
guishable. More complex rule sets were required when
more species were involved (e.g. Aythya ducks). The
remaining groups featured virtually no variation between
species. These include 10 members of the herring gull
complex (Larus spp.) and the species pairs Gallinago gall-
inago/G. delicata, Cuculus canorus/C. optatus, Carduelis flam-
mea/C. hornemanni, and Emberiza citrinella/E.
leucocephalos.

Discussion
Species boundaries in Palearctic Birds

Divergence levels between closely related species were
highly variable, ranging from approximately 0-16%; how-
ever, some of these values may be inflated for under-sam-
pled genera and families. Recent studies have detached
rate variation in the mitochondrial genome from factors
such as population size, body size, and other life-history
traits [52-54]. While some authors contend that rate vari-
ation in birds is highly irregular [53], a recent thorough
review demonstrated relatively minor variation and
upheld the occurrence of clock-like evolution [55]. Con-
sequently, we attribute the limited divergence between
some sister species to recent speciation events. Studies
documenting recent and rapid diversifications often
address subspecific variants rather than full species
[56,57]. Still, low sequence divergence does not necessar-
ily indicate that species should be synonymised [58]. Low
sequence divergence is particularly common in superspe-
cies complexes, including those divided between conti-
nents, but the species within them remain valid units for
both ecological studies and conservation.

Four species pairs and the large white-headed gulls
included in this study featured virtually no variation for
COI and could not be distinguished using any of the
approaches employed in this study. Low divergence in
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Table 1: Species with limited COI divergence

Family Species n NJ Bootstrap Inter sp CAOS

1 Gaviidae Gavia adamsii 6 b 38 0.77 Yes

Gavia immer 3 67

2 Phalacrocoracidae Phalacrocorax pelagicus 9 b 61 0.78 Yes

Phalacrocorax urile 1 n/a

3 Ardeidae Ardea cinerea 1 b n/a 1.90 Yes

Ardea herodias 4 99

4 Anatidae Anas falcata 1 b n/a 1.46 Yes

Anas strepera 9 50

5 Aythya affinis 9 b 24 1.58 Yes

Aythya americana 10 61

Aythya collaris 10 81

Aythya fuligula 3 90

Aythya marila 11 12

Aythya valisineria 6 87

6 Bucephala clangula 7 b 55 1.58 Yes

Bucephala islandica 10 87

7 Somateria fishcheri 7 b 94 0.96 Yes

Somateria mollisima 10 d nm

Somateria spectabilis 3 nm

8 Phasianidae Coturnix coturnix 2 a 99 1.50 Yes

Coturnix japonica 4 99

9 Accipitridae Buteo buteo 3 b 85 1.92 Yes

Buteo lagopus 2 92

10 Scolopacidae Gallinago delicata 6 d nm 0.15 No

Gallinago gallinago 4 nm

11 Gallinago megala 2 b 93 0.61 Yes

Gallinago stenura 5 98

12 Glareolidae Glareola pratincola 2 a 99 1.61 Yes

Glareola nordmanni 3 99

13 Laridae Larus canus 5 b 89 0.65 Yes

Larus canus "brachyrhynchus" 4 77

Larus delawarensis 3 50

Larus marinus 3 87

Larus spp.† 34 d nm 0.24 No

14 Alcidae Cepphus carbo 3 a 99 0.97 Yes

Cepphus columba 2 99

15 Cuculidae Cuculus canorus 5 d nm 0.71 No

Cuculus optatus 5 nm

16 Motacillidae Motacilla flava "taivana" 2 b 99 1.16 Yes

Motacilla citreola "citreola" 2 87

Motacilla citreola "werae" 4 98
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mitochondrial markers had been previously demon-
strated in each of these cases. Lumping has been consid-
ered for some, including Carduelis flammea/hornemanni
[59] and the recently split Gallinago gallinago/delicata [35],
but more evidence is required. The cause of shared mito-
chondrial haplotypes between Cuculus canorus and C.
optatus has not been resolved (hybrids have never been
documented [60]), but their taxonomic distinction has
been asserted based on song differences [61]. Emberiza cit-
rinella and E. leucocephalos are exceptionally interesting in
that they are the most phenotypically distinct of these
pairs and a survey of nuclear markers revealed genetic
divergence [62]. They are known to hybridize extensively
and introgression is a likely explanation [62]. Species
boundaries in the large white-headed gulls may have also
been confused by contemporary hybridization, though
shallow history and slowed rates of evolution have also
been implicated [63,64].

Nearly one tenth of the species (7.5%) analyzed in this
study contained divergent mitochondrial lineages, with
divergences averaging 3.6%. While divergence at a single
mitochondrial gene alone is insufficient evidence to
define new species boundaries, it is cause for new hypoth-
esis testing. Several recently split species that are morpho-
logically similar to their nearest relative, such as the
swallow Riparia diluta and the warbler Locustella amnicola,
represent taxa that barcodes would flag for closer scrutiny.
Distributions of most of the divergent lineages in this
study conform to one of four previously documented phy-
logeographic trends (summarized in Table 2): a unique

lineage in the Caucasus region [65]; a unique lineage in
the Sakhalin region [66]; divergent lineages divided into
eastern and western populations [25]; divergent lineages
on either side of the Bering Strait [19]. Species with mul-
tiple lineages can display more than one of these patterns.
A few lineages appear to be parapatric, which could indi-
cate areas of overlap or hybrid zones [67]. Past climate
change and its effect on historical habitat distribution is
likely responsible for shaping patterns of genetic diver-
gence in modern populations, but whether or not these
populations were divided by the same historical events is
difficult to determine without dating divergence times.
While the COI sequences mostly appear to be evolving in
a clocklike fashion, dating is risky given the absence of
adequate calibration points and the reliance on various
assumptions [24,55].

Most species exhibited surprisingly limited variation
between Old World and New World populations. Of the
approximately 140 species with Holarctic distributions,
43% are represented in this study. Only 11 of these 61
species (18%) possessed intraspecific divergences great
enough to signal likely species-level differences by either
the NJ or MOTU method. The Bering Sea has served a var-
iable but clear role as a barrier to gene flow for birds, par-
ticularly non-marine species. Several trans-Beringian
species have already been split in recent years, due partly
to molecular evidence (e.g. Brachyramphus marmoratus/B.
perdix [21], Picoides tridactylus/P. dorsalis [19], Pica pica/P.
hudsoni [68]). Still, caution must be exercised when iden-
tifying species boundaries between allopatric popula-

17 Turdidae Turdus naumanni 9 b 75 1.10 Yes

Turdus ruficollis 8 67

18 Turdus chrysolaus 9 b 97 1.35 Yes

Turdus obscurus 5 67

Turdus pallidus 4 51

19 Laniidae Lanius isabellinus 3 b 99 1.71 Yes

Lanius collurio‡ 2 93

20 Fringillidae Carduelis flammea 10 d nm 0.40 No

Carduelis hornemanni 6 nm

21 Carduelis pinus 6 a 99 2.01 Yes

Carduelis spinus 15 99

22 Emberizidae Emberiza citrinella 5 d nm 0.09 No

Emberiza leucocephalos 5 nm

List of all groups of species that failed recognition via MOTU analysis. Additionally, species with aberrant NJ profiles are indicated; profile 
designations (a-d) refer to Figure 3. Bootstrap support is given for each species ("nm" denotes that the species is not monophyletic) and the average 
interspecific distance is given for each group of species, both as percentages. Whether groups could be distinguished via CAOS is also indicated.
† Represents the ten members of the Herring gull complex listed in the text.
‡ Only two of four specimens of the paraphyletic Lanius collurio exhibited limited divergence from L. isabellinus.

Table 1: Species with limited COI divergence (Continued)
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tions. For example, one of the Palearctic Lanius excubitor
specimens from this study appears to belong to the North
American clade, suggesting that some modern exchange
might occur between the continents. Though it is more

common for Palearctic species to invade the Nearctic, the
reverse pattern has also been observed [69]. Correct inter-
pretation of this result requires further study with addi-
tional specimens.

Divergence patterns of closely related speciesFigure 3
Divergence patterns of closely related species. Examples of divergence patterns illustrated in the NJ tree a) Species are 
monophlyletic with > 95% bootstrap support, b) Species are monophyletic, but is support is weak, c) Species are not mono-
phyletic (i.e. paraphyly occurs), d) Multiple species form a single monophyletic group.
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This survey has identified a number of species that
demand further taxonomic scrutiny (see Table 2). It is
likely that some of the divergent lineages identified here
represent distinct species. Of course, genetic distances do
not always correspond to species limits [19,69]. Alterna-

tive explanations for the divergent lineages observed
include historical phylogeographic isolation, female-
restricted dispersal, or male-biased gene flow [35]. The
common phylogeographic patterns observed in many of
the divergent lineages support the idea of historical isola-

Table 2: Species bearing divergent COI lineages

Species NJ MOTU n Bootstrap Dist Phyl Bio Ref

Falco columbarius ? * 1/4 -/99 2.29 P/N A

Gallinula chloropus ? * 1/6 -/99 3.45 P/N A [29]

Charadrius alexandrinus * * 4/3 99/99 7.53 P/N A

Tringa totanus * 3/3 99/99 0.87 E/W A [35]

Numenius phaeopus ? * 5/1 99/- 3.57 P/N A [19]

Limosa limosa ? * 4/1 99/- 2.27 E/W P

Thalasseus sandvicensis * * 2/6 98/99 3.78 P/N A [81]

Streptopelia orientalis ? * 5/2 99/94 2.14 Sak P

Asio otus ? 4/5 99/94 1.10 P/N A

Aegolius funereus ? * 1/3 -/99 4.13 P/N A [82]

Caprimulgus europaeus ? * 3/1 99/- 2.97 Cau A

Dendrocopos major ? * 4/1 99/- 2.71 Sak A [66]

Alauda arvensis * * 1/4/5 99/99/99 6.02 E/W, Sak A/P

Delichon dasypus ? * 1/1/2 -/-/99 3.58 S

Anthus rubescens * * 6/2 99/99 2.46 P/N A [19]

Motacilla flava * 2/1 87/- 5.57 E/W A [23]

Troglodytes troglodytes * * 3/8/1/5/2 99/99/-/99/99 3.70 E/W, Cau
P/N

A [22]

Erithacus rubecula ? * 6/1 99/- 4.66 Cau A

Luscinia megarhynchos ? * 1/2 -/99 2.56 Cau A

Muscicapa sibirica ? * 6/1 99/- 2.85 Sak A

Phoenicurus auroreus * * 2/3 99/99 2.36 E/W A

Phoenicurus ochruros * * 3/2/1 99/99/- 3.66 E/W, Cau A

Phoenicurus phoenicurus * * 2/4 99/99 5.20 S [29]

Saxicola maurus ? * 7/1 99/- 7.91 E/W A [83]

Cettia diphone * * 10/2 99/97 3.03 Sak A

Phylloscopus borealis * * 8/6 99/99 3.59 Sak A [31]

Phylloscopus trochiloides * * 4/4 99/99 4.39 E/W A [84]

Sylvia curruca * * 6/3 99/99 5.56 E/W A

Urosphena squameiceps ? * 4/1 99/- 2.09 Sak A

Regulus regulus * * 7/3 99/99 3.69 E/W A [85]

Parus major * * 6/7 99/99 2.59 E/W A [28,86]

Periparus ater * * 8/3 99/99 4.43 Cri A [29]

Sitta europaea ? * 1/10/1/1 -/99/-/- 2.91 E/W, Cau, Yak A [26]

Certhia familiaris ? * 6/3 93/99 1.93 E/W A

Lanius excubitor * * 2/4 99/99 3.60 P/N P

Lanius collurio ? * 2/2 93/98 2.29 E/W A

Corvus corone * 1/7 -/83 2.15 E/W A

Corvus frugilegus * * 2/2 99/99 2.94 E/W A [44]

Garrulus glandarius * * 4/3 99/99 2.63 E/W A [87]

Pica pica ? * 1/9 -/99 3.59 E/W A [44]

Sturnus vulgaris ? * 5/1 -/96 1.85 Kaz A

Pinicola enucleator * * 12/2 99/99 4.54 P/N A [29]

Emberiza pallasi * * 4/2 99/99 3.10 Mog A

Emberiza spodocephala * * 8/6 99/99 3.36 Sak A

List of all species containing divergent COI lineages. An asterisk in the respective column indicates that lineages were supported via the NJ or 
MOTU method (a question mark indicates undetermined cases). The number of specimens and bootstrap support (%) for each cluster is indicated, 
as is the mean distance (%) between all clusters within each species.
Phyl: Phylogeographic patterns (P/N = Palearctic/Nearctic, E/W = east/west, Sak = Sakhalin region, Cau = Caucasus region, Cri = Crimean region, 
Kaz = Kazakhstan, Mog = Mongolia, Yak = Sakha (Yakutia) region)
Bio: Biogeographic patterns (A = allopatric, P = parapatric, S = sympatric)
Additional references detailing more comprehensive studies are supplied where available.
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tion. Areas of secondary contact must be further studied to
evaluate the gene flow between lineages [70]. In a few
exceptional cases genetic lineages appear largely sympat-
ric, including within Alauda arvensis, Delichon dasypus, and
Phoenicurus phoenicurus. Nuclear copies of mitochondrial
sequences (numts) are an unlikely explanation given the
absence of stop codons and heterozygous peaks. Phoenicu-
rus phoenicurus was also noted by Johnsen et al. [29], who
attributed the aberrant phylogeographic pattern to admix-
ture of historically separated lineages. This situation is
paradoxical compared to suspected introgressed genomes
used to explain limited divergence in sister species. Selec-
tive sweeps are frequently invoked to explain the limited
variation observed in mitochondrial markers [6,71],
which raises the question of how two mtDNA lineages
manage to persist in one species but not another. Ongoing
research of species limits and evolutionary histories is
clearly still necessary in the Palearctic.

Methods comparison

The MOTU assignment program used in this study was
originally developed for meiofauna with few morpholog-
ical characters [47]. Applying it to a group with better-
established taxonomy allows more conclusive tests of its
performance. Our results indicated a type II error rate of
10.9%, but this is inflated by the diversity of named
white-headed gull species (Larus spp.); with these species
eliminated, error is reduced to 8.8%. At this point, we
don't consider type I errors a fault of this method since
these cases are biologically interesting, do not necessarily
impair identification, and may represent over-looked spe-
cies [34,35]. The major drawback to the program in its
current form is the difficulty in associating any level of sta-
tistical support with species assignments, which may dif-
fer slightly depending on the input order of sequences.
Although the program does allow a random re-sampling
scheme, the output is not summarized, making statistical
inference on the stability of taxonomic units virtually
impossible. The major impediment now for biologists
applying this method to microscopic invertebrates still
lies in determining an operational threshold.

The use of a distance-based threshold technique has been
a major point of contention in the DNA barcoding
endeavour [37,72,73]. While COI variation represents a
product of evolution, an arbitrary cut-off value does not
reflect what is known about the evolutionary processes
responsible for this variation. The threshold approach
depends on the existence of a gap between levels of
intraspecific variation and interspecific divergence, which
opponents argue does not exist. Early success in identify-
ing a "barcoding gap" in North American birds was attrib-
uted to insufficient sampling of closely related species
[35,37]. We found the original "10× rule" proposed by
Hebert et al. [34] to be too conservative to recognize

recently diverged species and opted for a more liberal
threshold of 1.6%. While this value was more effective at
species identification, some sister species exhibited little
or no variation, which eliminates the possibility of identi-
fying a gap. However, invalidating the use of distance-
based methods based on the failure of thresholds might
be going too far. Identifying the nearest matches to a
query sequence is still useful, even if a conclusive assign-
ment is not provided [74].

The development of an NJ profile for identification
depends on the coalescence of species and not an arbitrary
level of divergence [36]; in theory, species that failed rec-
ognition via the threshold approach may still be recog-
nized. However, we found that the same species were
typically problematic for both approaches (see Table 1).
This is not surprising: high bootstrap support is unlikely
when a slight aberration in the data would alter the results
[75], which is the case when sequences are highly similar.
Critics have argued that the bootstrap test for monophyly
is simply too conservative and incorrectly rejects mono-
phyly in too many cases [76]. This is apparent from the
4% of species that appear monophyletic but with limited
support. Alternative forms of statistical support based on
coalescent theory suggest that increased sampling
decreases the risk of monophyly by chance, which would
support the reality of these patterns despite low bootstrap
values [77]. A modified NJ algorithm with non-parametric
bootstrapping has been proposed to offer fast barcode-
based identifications, but success still depends on the
completeness of the reference database and weakly diver-
gent species remain problematic [78].

The character-based method was effective, but did not fea-
ture the same scalability as the previous two methods. We
found that the CAOS system was severely constrained by
limits on the number of species that could be included for
rule generation. More thorough benchmarking is neces-
sary to determine the upper limits of the program, but at
this point in time they are unclear. We also found that
comprehensive sampling for each taxon is vital for accu-
rate rules that account for intraspecific polymorphisms.
When operating with smaller sets of taxa, the programs
were successful in both identifying diagnostic characters
and in subsequently identifying new sequences to species.
However, we did find P-Elf to be highly susceptible to
erroneous identifications for unrepresented species, coun-
ter to previous claims [79]. When using smaller datasets,
sequences introduced from novel taxa were typically given
a species level identification, even when those taxa
derived from a different order (data not shown).

Both distance-based and clustering-based methods appear
to share the same computational strengths, handling even
large datasets quickly. However, both methods are also
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impaired by the same issues: limited divergence between
sister taxa. The results of the character-based method
appear to complement the former two methods. While it
is precise and able to detect minor differences in closely
related taxa [80], it is unable to handle large numbers of
sequences. It is also susceptible to errors when the appro-
priate taxa have not been comprehensively sampled.
When it comes to species identification, we propose that
the best method might actually be a multi-tiered
approach, where an initial method is used to narrow the
identification to a select group of taxa and an alternate
method is used to differentiate similar taxa. Similarly,
Munch et al. [78] recommend incorporating methods that
model population level variation to distinguish between
closely allied species. For cases of limited divergence, sam-
pling a longer stretch of COI or even alternative genes
would increase support for identifications.

Conclusion
The utility of DNA barcodes in avian research is two-fold.
Preliminary investigations, such as this, offer fresh insight
to aid the ongoing effort to refine avian taxonomy. And
secondly, a comprehensive library of COI sequences pro-
vides an invaluable tool for species assignment when dif-
ferences in morphology are difficult to measure or
otherwise assess. This includes species with cryptic mor-
phological differences (e.g. Phylloscopus warblers, Caland-
rella larks, and Empidonax flycatchers) but also scenarios
where identification is desired but only fragmentary
remains are available (e.g. air strikes, nest contents, diet
analysis, etc.). This study reaffirms these possibilities,
demonstrating that COI sequence variation is largely con-
gruent with species boundaries. Departures from this con-
gruence are typically indicative of overlooked biological
processes; historically separated lineages in the case of
within species divergence, and recent or historical gene
flow in the case of shared haplotypes between species.
Molecular analysis is novel for some of these taxonomic
groups or geographic areas, and the resultant observations
highlight areas in need of further taxonomic study.

The efficacy of DNA barcodes for use in species assign-
ment is dependent on two factors: the construction of
thorough COI libraries and efficient tools to assign
sequences to species. This study substantiates the need for
dense taxonomic sampling. It further demonstrates that
standardized gene libraries are easily amalgamated to
examine geographically broad areas or taxonomically
diverse groups. Current analytical methods for barcode
data appear insufficient for handling recently evolved spe-
cies. Though less of a problem for known cases of shallow
divergence, where pairs of species may often be further
scrutinized using a multi-tiered approach, these cases may
be more problematic for those who wish to use barcodes

as a tool to accelerate species discovery in poorly studied
groups.
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