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The Common Spatial Pattern (CSP) algorithm is an effective and popular method for classify-

ing 2-class motor imagery electroencephalogram (EEG) data, but its effectiveness depends

on the subject-specific frequency band. This paper presents the Filter Bank Common Spa-

tial Pattern (FBCSP) algorithm to optimize the subject-specific frequency band for CSP on

Datasets 2a and 2b of the Brain-Computer Interface (BCI) Competition IV. Dataset 2a com-

prised 4 classes of 22 channels EEG data from 9 subjects, and Dataset 2b comprised 2

classes of 3 bipolar channels EEG data from 9 subjects. Multi-class extensions to FBCSP are

also presented to handle the 4-class EEG data in Dataset 2a, namely, Divide-and-Conquer

(DC), Pair-Wise (PW), and One-Versus-Rest (OVR) approaches. Two feature selection algo-

rithms are also presented to select discriminative CSP features on Dataset 2b, namely,

the Mutual Information-based Best Individual Feature (MIBIF) algorithm, and the Mutual

Information-based Rough Set Reduction (MIRSR) algorithm. The single-trial classification

accuracies were presented using 10 × 10-fold cross-validations on the training data and

session-to-session transfer on the evaluation data from both datasets. Disclosure of the

test data labels after the BCI Competition IV showed that the FBCSP algorithm performed

relatively the best among the other submitted algorithms and yielded a mean kappa value

of 0.569 and 0.600 across all subjects in Datasets 2a and 2b respectively.

Keywords: brain-computer interface, electroencephalogram, mutual information, feature selection, Bayesian

classification

1. INTRODUCTION

The challenge in Motor Imagery-based BCI (MI-BCI), which

translates the mental imagination of movement to commands,

is the huge inter-subject variability with respect to the charac-

teristics of the brain signals (Blankertz et al., 2007). The Com-

mon Spatial Pattern (CSP) algorithm is effective in constructing

optimal spatial filters that discriminates 2 classes of electroen-

cephalogram (EEG) measurements in MI-BCI (Blankertz et al.,

2008b). For effective use of the CSP algorithm, several parame-

ters have to be specified, namely, the frequency for band-pass

filtering of the EEG measurements, the time interval of the EEG

measurements taken relative to the stimuli, and the subset of

CSP filters to be used (Blankertz et al., 2008b). Typically, gen-

eral settings such as the frequency band of 7–30 Hz, the time

segment starting 1 s after cue, and 2 or 3 subset of CSP filters

are used (Blankertz et al., 2008b). However, the performance

of the CSP algorithm can be potentially enhanced by subject-

specific parameters (Blankertz et al., 2007). Several approaches

were proposed to address the issue of selecting optimal tempo-

ral frequency band for the CSP algorithm. These include, but not

limited to, the Common Spatio-Spectral Pattern (CSSP) which

optimizes a simple filter that employed a one time-delayed sample

with the CSP algorithm (Lemm et al., 2005); the Common Sparse

Spectral-Spatial Pattern (CSSSP) which performs simultaneous

optimization of an arbitrary Finite Impulse Response (FIR) filter

within the CSP algorithm (Dornhege et al., 2006); and the SPEC-

trally weighted Common Spatial Pattern (SPEC-CSP) algorithm

(Tomioka et al., 2006) which alternately optimizes the temporal

filter in the frequency domain and then the spatial filter in an

iterative procedure.

In this paper, the Filter Bank Common Spatial Pattern (FBCSP)

algorithm is presented to enhance the performance of the CSP

algorithm by performing autonomous selection of discrimina-

tive subject-specific frequency range for band-pass filtering of

the EEG measurements (Ang et al., 2008). The FBCSP algorithm

is only effective in discriminating 2 classes of EEG measure-

ments, but the BCI Competition IV Dataset 2a (Tangermann

et al., 2012) comprises 4 classes of EEG measurements of motor

imagery on the left hand, right hand, foot, and tongue. There-

fore, this paper also presents and investigates 3 approaches of

multi-class extension to the FBCSP algorithm on Dataset 2a,

namely, Divide-and-Conquer (DC), Pair-Wise (PW), and One-

Versus-Rest (OVR). In addition, this paper also investigates

the performance of the FBCSP algorithm on Dataset 2b (Leeb

et al., 2007) using 2 mutual information-based feature selection

algorithms.

The remainder of this paper is organized as follows. Section 2

provides a description of the FBCSP algorithm, 3 approaches of

multi-class extensions to FBCSP, and 2 mutual information-based

feature selection algorithms. Section 3 describes the experimental

studies and results on the training data of the BCI Competition

IV Datasets 2a and 2b. Finally, section 4 concludes this paper

with the results on the evaluation data of both datasets from the

competition.
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2. FILTER BANK COMMON SPATIAL PATTERN

The Filter Bank Common Spatial Pattern (FBCSP) algorithm (Ang

et al., 2008) is illustrated in Figure 1. FBCSP comprises 4 pro-

gressive stages of signal processing and machine learning on the

EEG data: a filter bank comprising multiple Chebyshev Type II

band-pass filters, spatial filtering using the CSP algorithm, CSP

feature selection, and classification of selected CSP features. The

CSP projection matrix for each filter band, the discriminative CSP

features, and the classifier model are computed from training data

labeled with the respective motor imagery action. These parame-

ters computed from the training phase are then used to com-

pute the single-trial motor imagery action during the evaluation

phase.

2.1. BAND-PASS FILTERING

The first stage employs a filter bank that decomposes the EEG into

multiple frequency pass bands using causal Chebyshev Type II fil-

ter. A total of 9 band-pass filters are used, namely, 4–8, 8–12, . . .,

36–40 Hz. Various configurations of the filter bank are as effective,

but these band-pass frequency ranges are used because they yield

a stable frequency response and cover the range of 4–40 Hz.

2.2. SPATIAL FILTERING

The second stage performs spatial filtering using the CSP

algorithm. The CSP algorithm is highly successful in calcu-

lating spatial filters for detecting Event-Related Desynchro-

nization/Synchronization (ERD/ERS; Pfurtscheller and Aranibar,

1979; Pfurtscheller and Lopes da Silva, 1999). Each pair of band-

pass and spatial filter in the first and second stage performs spatial

filtering to EEG measurements that have been band-pass filtered

with a specific frequency range. Each pair of band-pass and spatial

filter thus computes the CSP features that are specific to the band-

pass frequency range. Spatial filtering is performed using the CSP

algorithm by linearly transforming the EEG measurements using

Zb,i = WT
b Eb,i , (1)

where Eb,i ∈ R
c×t denotes the single-trial EEG measurement from

the bth band-pass filter of the ith trial; Zb,i ∈ R
c×t denotes Eb,i

after spatial filtering, Wb ∈ R
c×c denotes the CSP projection

matrix; c is the number of channels; t is the number of EEG

samples per channel; and T denotes transpose operator.

The CSP algorithm computes the transformation matrix Wb

to yield features whose variances are optimal for discriminating

2 classes of EEG measurements (Blankertz et al., 2008a; Ramoser

et al., 2000; Müller-Gerking et al., 1999; Fukunaga,1990) by solving

the eigenvalue decomposition problem

�b,1Wb =
(

�b,1 + �b,2

)

WbDb , (2)

where �b,1 and �b,2 are estimates of the covariance matrices of

the bth band-pass filtered EEG measurements of the respective

motor imagery action, Db is the diagonal matrix that contains the

eigenvalues of �b,1. Technically, Wb can be computed in MAT-

LAB using the command W = eig(S1, S1 + S2) (Blankertz et al.,

2008b) where W, S1, and S2 here represents Wb, �b,1, and �b,2

respectively.

The spatial filtered signal Zb,i in equation (1) using Wb from

equation (2) thus maximizes the differences in the variance of the

2 classes of band-pass filtered EEG measurements. The m pairs

of CSP features of the ith trial for the bth band-pass filtered EEG

measurements are then given by

vb,i = log
diag

(

W̄
T
b Eb,i ET

b,iW̄b

)

tr
[

W̄
T
b Eb,i ET

b,iW̄b

] , (3)

where vb,i ∈ R
2m ; W̄b represents the first m and the last m columns

of Wb; diag(·) returns the diagonal elements of the square matrix;

tr[·] returns the sum of the diagonal elements in the square matrix.

Note that m = 2 is used for Dataset 2a and m = 1 is used for

Dataset 2b.

FIGURE 1 | Architecture of the filter bank common spatial pattern (FBCSP) algorithm for the training and evaluation phases.
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The FBCSP feature vector for the ith trial is then formed as

follows

vi =
[

v1,i , v2,i , . . . , v9,i

]

, (4)

where vi ∈ R
1×(9∗2m), i = 1, 2, . . ., n; n denotes the total number

of trials in the data.

The training data that comprised the extracted feature data and

the true class labels are denoted as

V̄ =

⎡

⎢

⎢

⎢

⎣

v̄1

v̄2

...

v̄nt

⎤

⎥

⎥

⎥

⎦

, (5)

ȳ =

⎡

⎢

⎢

⎢

⎣

ȳ1

ȳ2
...

ȳnt

⎤

⎥

⎥

⎥

⎦

, (6)

respectively to make a distinction from the evaluation data, where

V̄ ∈ R
nt ×(9∗2m); ȳ ∈ R

nt ×1; v̄i ; and ȳi denote the feature vector

and true class label from the ith training trial, i = 1, 2, . . ., nt; and

nt denotes the total number of trials in the training data.

2.3. FEATURE SELECTION

The third stage employs a feature selection algorithm to select

discriminative CSP features from V̄ from equation (5) for the sub-

ject’s task. Various feature selection algorithms can be used, but

the Mutual Information-based Best Individual Feature (MIBIF)

and the Mutual Information-based Rough Set Reduction (MIRSR)

algorithm are employed during the competition. During cross-

validation, the input data is split randomly into training data and

validation data. These 2 algorithms performs feature selection only

on the training data by selecting the discriminative CSP features

based on the mutual information computed between each feature

and the corresponding motor imagery classes. These 2 algorithms

are described in the following subsections.

2.3.1. Mutual information-based best individual feature algorithm

The Mutual Information-based Best Individual Feature (MIBIF)

algorithm (Ang and Quek, 2006; Jain et al., 2000) is based on the

filter approach. The mutual information of each feature is com-

puted and sorted in descending order. The first k features are then

selected. The MIBIF algorithm is described as follows:

• Step 1: Initialization. Initialize set of features F =
[

fT
1 , fT

2 , . . . fT
9∗2m

]

= V̄ from equation (5) and set of true labels

C = ȳ from equation (6) whereby fT
j ∈ R

n×1 is the jth column

vector of V̄, and the true label of each trial ȳ i ∈ {1, 2}.
Initialize set of selected features S = ∅.

• Step 2: Compute the mutual information of each feature fj ∈ F

with each class label ω = {1, 2} ∈ C

Compute I (fj; ω)∀j = 1, 2, . . .(9 ∗ 2m) using

I
(

fj ; ω
)

= H (ω) − H
(

ω|fj

)

, (7)

where H (ω) = −
∑2

ω=1 P (ω) log2P (ω) ; and the conditional

entropy is

H
(

ω|fj

)

= −
2

∑

ω=1

p
(

ω|fj

)

log2p
(

ω|fj

)

= −
2

∑

ω=1

n
∑

i=1

p
(

ω|fj ,i
)

log2p
(

ω|fj ,i
)

, (8)

where fj ,i is the feature value of the ith trial from fj .

The probability p(ω | fj,i) can be computed using Bayes rule

given in equations (9) and (10).

p
(

ω|fj ,i
)

=
p

(

fj ,i |ω
)

P (ω)

p
(

fj ,i
) , (9)

where p(ω | fj,i) is the conditional probability of class ω given

fj,i; p(fj,i | ω) is the conditional probability of fj,i given class ω;

P(ω) is the prior probability of class ω; and p(fj,i) is

p
(

fj ,i
)

=
2

∑

ω=1

p
(

fj ,i |ω
)

P (ω) . (10)

The conditional probability p(fj,i | ω) can be estimated using

Parzen Window (Parzen, 1962) given by

p̂
(

fj ,i |ω
)

= 1

nω

∑

k∈Iω

φ
(

fj ,i − fj ,k , h
)

, (11)

where nω is the number of data samples belonging to class ω;

Iω is the set of indices of the training data trials belonging to

class ω; fj,k is the feature value of the kth trial from fj and φ is a

smoothing kernel function with a smoothing parameter h given

in equations (20) and (21) respectively.

• Step 3: Sort all the features in descending order of mutual

information computed in step 2 and select the first k features.

Mathematically, this step is performed as follows till |S| = k

F = F\fj , S = S ∪ fj |I
(

fj ; ω
)

= max
j=1..(9∗2m), fj∈F

I
(

fj ; ω
)

,

(12)

where \ denotes set theoretic difference; ∪ denotes set union;

and | denotes given the condition.

Based on the study in (Ang et al., 2008), k = 4 is used. Note

that since the CSP features are paired, the corresponding pair of

features is also included if it is not selected. After performing fea-

ture selection on V̄, the feature selected training data is denoted

as X̄ ∈ R
n×d where d ranges from 4 to 8. d = 4 if all 4 features

selected are from 2 pairs of CSP features. d = 8 if all 4 features

selected are from 4 pairs of CSP features, since their corresponding

pair is included.

2.3.2. Mutual information-based rough set theory algorithm

The Mutual Information-based Rough Set Reduction (MIRSR) algo-

rithm is based on the wrapper approach for the Rough set-based
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Neuro-Fuzzy System (RNFS). It employs the mutual informa-

tion to select attributes with high relevance and the concept of

knowledge reduction in rough set theory to select attributes with

low redundancy (Ang and Quek, 2006). The MIRSR algorithm is

described as follows:

• Step 1: Generation of fuzzy membership functions. Initialize set

of features F =
[

fT
1 , fT

2 , . . . fT
9∗2m

]

= V̄ from equation (5) and

set of true labels C = ȳ from equation (6) whereby fT
j ∈ R

n×1

is the jth column vector of V̄, and the true label of each trial

ȳ i ∈ {1, 2}. Generate fuzzy membership functions of feature fj

using the Supervised Pseudo Self-Evolving Cerebellar (SPSEC)

algorithm (Ang and Quek, 2012) for j = 1, 2,. . ., (9 ∗ 2m).

• Step 2: Compute the mutual information of each feature fj ∈ F

with each class label ω = {1, 2} ∈ C Given fj = [x1,j ,. . .xi,j,. . .xn,j]

for n trials in the training data, perform classification of each

xi,j using the membership functions generated.

Estimate p(ω | fj) from the number of correct classifications

for class ω using the membership functions generated.

Compute I (fj; ω)∀j = 1, 2,. . .(9 ∗ 2m) using

I
(

fj ; ω
)

= H (ω) − H
(

ω|fj

)

, (13)

where

H (ω) = −
2

∑

ω=1

P (ω) log2 P (ω) , (14)

and the conditional entropy is

H
(

ω|fj

)

= −
2

∑

ω=1

p
(

ω|fj

)

log2 p
(

ω|fj

)

. (15)

• Step 3: Select best k features. Sort all the features in descending

order of mutual information computed in step 2 and select the

first k = 2log2 (9 ∗ 2m) features.

• Step 4: Remove redundant features. Remove membership func-

tions that are not selected from step 3 and perform reduc-

tion using step 2 of the Rough Set Pseudo Outer-Product

(RSPOP) algorithm (Ang and Quek, 2005). Similar to the MIBIF

algorithm, after performing feature selection on V̄, the fea-

ture selected training data is denoted as X̄ ∈ R
n×d , and the

corresponding pairs of CSP features are selected.

2.4. CLASSIFICATION

The 4th stage employs a classification algorithm to model and clas-

sify the selected CSP features. Various classification algorithms can

be used, but the study in (Ang et al., 2008) showed that FBCSP that

employed the Naïve Bayesian Parzen Window (NBPW) classifier

(Ang and Quek, 2006) yielded better results on the BCI Competi-

tion III Dataset IVa. Therefore, the following NBPW algorithm is

used.

Given that X̄ = [x̄1, x̄2, . . . , x̄n] denotes the entire training data

of n trials, x̄ i = [x̄ i,1, x̄ i,2, . . . , x̄ i,d ] denotes the training data with

the d selected features from the ith trial, and x = [x1, x2, . . .xd]

denotes a random evaluation trial; the NBPW classifier estimates

p(x | ω) and P(ω) from training data samples and predicts the class

ω with the highest posterior probability p(ω | x) using Bayes rule

p (ω|x) = p (x|ω) P (ω)

p (x)
, (16)

where p(ω | x) is the conditional probability of class ω given ran-

dom trial x; p(x | ω) is the conditional probability of x given class

ω; P(ω) is the prior probability of class ω; and p(x) is

p (x) =
2

∑

ω=1

p (x|ω) P (ω) . (17)

The computation of p(ω | x) is rendered feasible by a naïve

assumption that all the features x1, x2,. . ., xd are conditionally

independent given class ω in

p (x|ω) =
d

∏

j=1

p
(

xj |ω
)

. (18)

The NBPW classifier employs Parzen Window (Parzen, 1962)

to estimate the conditional probability p(xj | ω) in

p̂
(

xj |ω
)

= 1

nω

∑

i∈Iω

φ
(

xj − x̄ i,j , h
)

, (19)

where nω is the number of data samples belonging to class ω; Iω
is the set of indices of the training data trials belonging to class ω;

and φ is a smoothing kernel function with a smoothing parameter

h. The NBPW classifier employs the univariate Gaussian kernel

given by

φ
(

y , h
)

= 1√
2π

e
−

(

y2

2h2

)

, (20)

and normal optimal smoothing strategy (Bowman and Azzalini,

1997) given by

hopt =
(

4

3n

)1/5

σ , (21)

where σ denotes the standard deviation of the distribution of y.

The classification rule of the NBPW classifier is given by

ω = arg max
ω=1,2

p (ω|x) . (22)

The CSP algorithm was proposed for the binary classification

of single-trial EEG (Ramoser et al., 2000), and several multi-class

extensions of the CSP algorithm have been proposed (Dornhege

et al., 2004a; Dornhege et al., 2004b; Grosse-Wentrup and Buss,

2008). Some examples of multi-class extensions include: using CSP

within the classifier, One-Versus-Rest (OVR) and simultaneous

diagonalization of covariance matrices from the multi-class data.

This section describes the 3 proposed approaches of multi-class

extensions to the FBCSP algorithm to address the BCI Competi-

tion IV Dataset 2a, namely, Divide-and-Conquer (DC), Pair-Wise

(PW), and One-Versus-Rest (OVR).
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2.5. DIVIDE-AND-CONQUER

Given that ω, ω′ ∈ {1, 2, 3, 4} represents the left, right, foot, and

tongue motor imagery, the Divide-and-Conquer (DC) approach

adopts a tree-based classifier approach (Zhang et al., 2007; Chin

et al., 2009). For the 4 classes of motor imagery in the BCI Compe-

tition IV Dataset 2a, 4 − 1 = 3 binary classifiers are required. The

classification rule of the NBPW classifier is thus extended from

equation (22) to

ω = min

⎡

⎢

⎣
arg max
ω=1,2,3,4

ω′>ω

∣

∣

(

pDC (ω|x) > pDC

(

ω′|x
))

∣

∣

⎤

⎥

⎦
, (23)

where pDC(ω | x) is the probability of classifying a random trial x

between class ω and class ω′; and p(ω′ | x) = 0 if ω′ = ⊘.

For example, for the DC classifier where ω = 1, ω′ = {2, 3, 4}.

Hence, class 1 is first discriminated from classes 2, 3, and 4. If

the random trial sample is classified as class ω, the classification

procedure stops. If the random trial sample is classified as class

ω′, then the decision is deferred to the next DC classifier where

ω = 2, ω′ = {3, 4}. Finally, if the random trial sample is classified

as class ω′, then the decision is deferred to the last DC classifier

where ω = 3, ω′ = 4.

2.6. PAIR-WISE

Given that ω, ω′ ∈ {1, 2, 3, 4} represents the left, right, foot, and

tongue motor imagery, the Pair-Wise (PW) approach computes

the CSP features that discriminates every pair of classes (Müller-

Gerking et al., 1999; Duda et al., 2001). For the 4 classes of motor

imagery in the BCI Competition IV Dataset 2a, 4 ∗ (4 − 1)/2 = 6

binary classifiers are required to discriminate between class ω and

ω′. The classification rule of the NBPW classifier is thus extended

from equation (22) to a majority voting scheme based on the

predicted class labels from the binary classifiers using

ω = arg max
ω=1,2,3,4

⎡

⎢

⎢

⎣

4
∑

ω′=1
ω′ 	=ω

∣

∣pPW (ω|x) > pPW

(

ω′|x
)∣

∣

⎤

⎥

⎥

⎦

, (24)

where pPW(ω | x) is the probability of classifying a random trial

x between class ω and class ω′; and the absolute operator |·| here

returns 1 if it is true and 0 otherwise. In case of a draw in the

majority voting scheme, the class label with a smaller ω is chosen.

For example, for the PW classifier where ω = 2, ω′ = 1, 3, or

4; class 2 is discriminated from classes 1, 3, and 4 using 3 PW

classifiers.

2.7. ONE-VERSUS-REST

Given that ω, ω′ ∈ {1, 2, 3, 4} represents the left, right, foot,

and tongue motor imagery, the OVR approach computes the

CSP features that discriminates each class from the rest of the

classes (Dornhege et al., 2004b; Duda et al., 2001). For the 4

classes of motor imagery in the BCI Competition IV Dataset 2a, 4

binary classifiers are required. The classification rule of the NBPW

classifier is thus extended from equation (22) to

ω = arg max
ω=1,2,3,4

pOVR (ω|x) , (25)

where pOVR(ω | x) is the probability of classifying a random trial

x between class ω and class ω′ = {1, 2, 3, 4}ω; and \ denotes the

set theoretic difference operation.

For example, in the OVR classifier where ω = 2, ω′ = {1, 3, 4};

class 2 is discriminated from the aggregated classes 1, 3, and 4.

3. EXPERIMENTAL RESULTS

The performances of the algorithms were evaluated on BCI Com-

petition IV (Tangermann et al., 2012) Dataset 2a and Dataset 2b.

During the competition, only the class labels for the training data

were provided while the class labels for the evaluation data were

disclosed only after the competition results have been announced.

Furthermore, the competition rules stipulated that the algorithms

for both datasets should be causal and the predicted labels for

each time sample from the onset of the fixation cross to the end

of motor imagery should also be submitted. The performances

were judged based on the maximum Kappa value achieved on the

evaluation data.

3.1. DATASET 2A

BCI Competition IV (Tangermann et al., 2012) Dataset 2a com-

prised 4 classes of motor imagery EEG measurements from 9 sub-

jects, namely, left hand, right hand, feet, and tongue. Two sessions,

one for training and the other for evaluation, were recorded from

each subject. Each session comprised 288 trials of data recorded

with 22 EEG channels and 3 monopolar electrooculogram (EOG)

channels (with left mastoid serving as reference). The performance

of the FBCSP algorithm on the 4-class motor imagery data was

evaluated by employing the 3 approaches of multi-class extension

(DC, PW, and OVR) to FBCSP using the MIBIF feature selection

algorithm.

3.1.1. Protocol

Figure 2 illustrates how the single-trial EEG data were extracted

for training the FBCSP algorithm on Dataset 2a. The setting of

m = 2 pairs of CSP features for the band-pass filtered EEG mea-

surements, and the time segment of 0.5–2.5 s after the onset of the

visual cue were used. Figure 2 also shows that the FBCSP algorithm

performed the computation using a 2-s window of EEG data at any

point in time, and the classification output of a time sample was

computed from the previous 2 s of EEG data to satisfy the causal-

ity criterion. To compute the classification output of a single-trial,

the EEG data labeled as test_time_segment starting from −2 s from

the onset of the fixation cross to the end of motor imagery was

used. In addition, to account for the transitional effects of the

causal filters, an additional 0.5 s of EEG data was extracted on

both ends of test_time_segment, labeled as extract_time_segment.

As the computation of every time point of the evaluation data

was computationally intensive, the classification output was only

computed on every alternate 10th time sample, and a zero-order

hold was used to map back to every time sample.

3.1.2. Cross-validation results

The single-trial classification performances of the 3 approaches of

multi-class extensions to the FBCSP algorithm were first inves-

tigated on the training data. The performance was evaluated
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FIGURE 2 |The illustration on the extraction of a single-trial EEG

segment from the training data for the multi-class FBCSP

training phase in Dataset 2a, and the generation of the

classification outputs using the multi-class extension to FBCSP

on the entire time segment of a single-trial for the evaluation

phase.

Table 1 | 10 × 10-fold cross-validation performance in terms of

maximum kappa value using CSP and the 3 approaches of multi-class

extensions to FBCSP on the training data from BCI Competition IV

Dataset 2a.

Subjects CSP FBCSP

DC PW OVR

1 0.644 ± 0.064 0.728 ± 0.012 0.778 ± 0.021 0.769 ± 0.069

2 0.423 ± 0.056 0.417 ± 0.022 0.446 ± 0.031 0.475 ± 0.058

3 0.797 ± 0.070 0.805 ± 0.006 0.858 ± 0.010 0.834 ± 0.071

4 0.365 ± 0.053 0.436 ± 0.013 0.469 ± 0.018 0.484 ± 0.058

5 0.215 ± 0.046 0.618 ± 0.021 0.628 ± 0.023 0.601 ± 0.063

6 0.280 ± 0.049 0.309 ± 0.025 0.325 ± 0.028 0.347 ± 0.053

7 0.626 ± 0.064 0.831 ± 0.016 0.852 ± 0.009 0.862 ± 0.072

8 0.774 ± 0.069 0.697 ± 0.016 0.789 ± 0.021 0.807 ± 0.070

9 0.719 ± 0.067 0.680 ± 0.010 0.776 ± 0.014 0.788 ± 0.069

AVG 0.538 ± 0.060 0.613 ± 0.016 0.658 ± 0.020 0.663 ± 0.065

in terms of the mean kappa value using 10 × 10-fold cross-

validations. The results on the training data from Dataset 2a are

shown in Table 1.

The results showed that the OVR extension to FBCSP yielded

the best averaged mean kappa value (0.663). A paired t-test

revealed no significant difference between the OVR and PW

approaches (p = 0.480), and a significant difference between the

OVR and DC approaches (p = 0.006). The DC approach yielded

the worst performance among the 3 approaches of multi-class

extensions to FBCSP. This may be due to the fact that the DC

approach performed classification on 4 classes of motor imagery

by employing only 3 classifiers, which is relatively lesser than the

PW and OVR approaches. Furthermore, the classification order

in the DC approach could be optimized to yield improved per-

formance. Since there existed 12 possible permutations of the DC

classification order, an exhaustive search on the optimal classifica-

tion order for each subject based on 10 × 10-fold cross-validation

results would have been computationally expensive and hence

this was not performed. Instead, the order of classification for

each subject was determined by ranking each class based on the

cross-validation results of classifying against the other classes. The

OVR approach yielded the best averaged mean kappa value, and

it performed the best in 6 subjects (2, 4, 6, 7, 8, and 9) while the

PW approach performed the best in 3 subjects (1, 3, and 5). Fur-

thermore, the OVR approach was less computationally expensive

compared to the PW approach as it used 4 classifiers whereas the

PW approach used 6 classifiers. Based on these observations, the

OVR approach of multi-class extension to the FBCSP algorithm

was selected for the submission to the competition.

For comparative purposes, Table 1 also included the results on

the OVR approach of multi-class extension to the CSP algorithm

that employed a 7–35 Hz band-pass filter. The results showed that

the FBCSP algorithm consistently outperforms the CSP algorithm

for all 9 subjects, and a paired t-test revealed significant differ-

ence between these 2 algorithms (p = 0.012) employing the OVR

multi-class extension.

3.1.3. Unseen evaluation data results

The results of the FBCSP algorithm on the evaluation data for BCI

Competition IV Dataset 2a are shown in Table 2.

The results showed that the PW extension to FBCSP yielded the

best averaged mean kappa value (0.572). A paired t-test revealed

no significant difference between the OVR and PW approaches

(p = 0.898), and no significant difference between the OVR and

DC approaches (p = 0.055). The DC approach yielded relatively

the worst performance among the 3 approaches. The PW approach

yielded slightly higher mean kappa value compared to OVR and

it performed the best in 5 subjects (1, 3, 4, 5, 7) whereas the OVR

approach performed the best in 4 subjects (2, 6, 8, 9). Both the

OVR and PW approach yielded a mean kappa value of approxi-

mately 0.57 across the 9 subjects, which would achieve the best

performance relative to all the other entries submitted to the

competition.

For comparative purposes, Table 2 also included the results of

the OVR approach of multi-class extension on the CSP algorithm

that employed a 7–35 Hz band-pass filter. A paired t-test revealed
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no significant difference between the FBCSP algorithm and the

CSP algorithm employing the OVR approach of multi-class exten-

sions (p = 0.059). Nevertheless, the results showed that the FBCSP

algorithm yielded a better mean kappa value and it outperformed

the CSP algorithm in 8 of the 9 subjects (except subject 8).

Comparing the results of Tables 1 and 2, the results on the

evaluation data were consistently lower than the cross-validation

results for all 3 approaches. Specifically, the OVR approach of

multi-class extension to the FBCSP algorithm yielded lower mean

kappa value averaged over all the subjects on the evaluation

data (0.569) than the cross-validation results (0.663) in all the

9 subjects.

3.2. DATASET 2B

BCI Competition IV (Tangermann et al., 2012) Dataset 2b com-

prised 2 classes of motor imagery EEG measurements from 9

subjects, namely, left and right hand based on the experiment

protocol in (Leeb et al., 2007). Five sessions were recorded from

each subject. Each session comprised EEG data recorded from

Table 2 | Classification results from using CSP and the 3 approaches of

multi-class extensions to FBCSP algorithm on the unseen evaluation

data from BCI Competition IV Dataset 2a.

Subjects CSP FBCSP

DC PW OVR

1 0.556 0.708 0.782 0.676

2 0.310 0.370 0.407 0.417

3 0.704 0.657 0.755 0.745

4 0.444 0.472 0.528 0.481

5 0.222 0.407 0.417 0.398

6 0.199 0.264 0.185 0.273

7 0.606 0.727 0.796 0.773

8 0.759 0.579 0.741 0.755

9 0.722 0.495 0.537 0.606

AVG 0.503 0.520 0.572 0.569

3 bipolar recordings (C3, Cz, and C4) and 3 monopolar EOG

channels. The training data, which consisted the first 2 ses-

sions and the 3rd session, comprised 240 trials without visual

feedback and 160 trials with visual feedback respectively. The

evaluation data consisted 2 sessions of EEG data that com-

prised a total of 320 trials. The performance of the FBCSP

algorithm on the 2-class motor imagery data was evaluated by

employing FBCSP using the MIBIF and MIRSR feature selection

algorithms.

3.2.1. Protocol

Figure 3 illustrates how the single-trial EEG data were extracted

for training the FBCSP algorithm on Dataset 2b. The protocol used

was similar to the protocol for Dataset 2a whereby the time seg-

ment of 0.5–2.5 s after the onset of the visual cue was used to train

the FBCSP algorithm. However, the setting of m in Dataset 2b was

constrained by the 3 EEG channels available for spatial filtering.

Hence, the setting of m = 1 pair of CSP features was used.

3.2.2. Cross-validation results

The single-trial classification performances of the FBCSP

algorithm using the 2 feature selection algorithms were first

investigated on the training data. The performance was eval-

uated in terms of the mean kappa value using 10 × 10-fold

cross-validations and the results of using all the training sessions

from Dataset 2b are shown in Table 3.

The results on using all the training sessions showed that

the MIRSR feature selection algorithm yielded better averaged

mean kappa value (0.502) compared to the use of the MIBIF fea-

ture selection algorithm. A paired t-test on the results revealed

no significant difference between the MIRSR and MIBIF feature

selection algorithms (p = 0.369). The results also showed that the

MIRSR feature selection algorithm also performed the best in 5

subjects (1, 3, 5, 6, and 9) whereas the use of the MIBIF algorithm

performed the best in 4 subjects (2, 4, 7, and 8). Based on these

observations, the MIRSR feature selection algorithm was selected

for submission to the competition.

FIGURE 3 |The illustration on the extraction of a single-trial EEG

segment from the training data for the FBCSP training phase in Dataset

2b, and the generation of the classification outputs using FBCSP on the

entire time segment of a single-trial for the evaluation phase.
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Subsequently, an exhaustive search using 10 × 10-fold cross-

validation was carried out to investigate whether the inclusion or

exclusion of the first 2 training data sessions would impact the per-

formance of the FBCSP algorithm employing the MIRSR feature

selection algorithm. This was because the first 2 training sessions

did not involve visual feedback, whereas the 3rd training session

involved visual feedback. Based on the exhaustive search, only the

3rd training session was employed to train the FBCSP algorithm

for 6 subjects (4, 5, 6, 7, 8, and 9). For subject 1, only the 1st

and 3rd training session was employed. For subject 2 and 3, all 3

training sessions were used. The cross-validation results for using

the selected sessions are also presented in Table 3. The selected

sessions yielded a higher mean kappa value (0.637) compared to

using all the sessions (0.502) and the paired t-test revealed a sig-

nificant difference between the results obtained using the selected

sessions and using all sessions (p = 0.012).

For comparative purposes, Table 3 also included the results of

the CSP algorithm employing a 7–35 Hz band-pass filter on the

selected sessions. Although the paired t-test revealed no significant

difference between the FBCSP algorithm and the CSP algorithm

(p = 0.151), the results showed that the FBCSP algorithm yielded

a better mean kappa value and it outperformed the CSP algorithm

in 6 of the 9 subjects (except subjects 3, 4, and 9).

3.2.3. Unseen evaluation data results

The results of the FBCSP algorithm using the selected training

sessions on the evaluation data for BCI Competition IV Dataset

2b are shown in Table 4.

The results showed that the FBCSP using the MIRSR fea-

ture selection algorithm yielded a better averaged mean kappa

value (0.599). The paired t-test revealed no significant differ-

ence between the two feature selection algorithms (p = 0.127).

The results also showed that the FBCSP using the MIRSR fea-

ture selection algorithm performed the best in 5 subjects (1, 2,

Table 3 | 10 × 10-fold cross-validation performance in terms of

maximum kappa value using the FBCSP algorithm employing the

MIBIF and MIRSR feature selection algorithms on all the sessions of

the training data, and using CSP and the FBCSP algorithm employing

the MIRSR feature selection algorithm on selected sessions of the

training data from BCI Competition IV Dataset 2b.

Subject All sessions Selected sessions

FBCSP FBCSP CSP FBCSP

MIBIF MIRSR MIRSR

1 0.492 ± 0.012 0.546 ± 0.017 0.524 ± 0.085 0.627 ± 0.014

2 0.223 ± 0.020 0.208 ± 0.028 0.190 ± 0.057 0.208 ± 0.028

3 0.223 ± 0.024 0.244 ± 0.023 0.246 ± 0.061 0.244 ± 0.023

4 0.896 ± 0.003 0.888 ± 0.003 0.988 ± 0.136 0.988 ± 0.000

5 0.685 ± 0.005 0.692 ± 0.005 0.759 ± 0.125 0.765 ± 0.011

6 0.491 ± 0.006 0.534 ± 0.012 0.491 ± 0.111 0.650 ± 0.022

7 0.430 ± 0.015 0.409 ± 0.013 0.703 ± 0.123 0.729 ± 0.010

8 0.438 ± 0.007 0.413 ± 0.013 0.758 ± 0.125 0.761 ± 0.007

9 0.558 ± 0.016 0.583 ± 0.010 0.793 ± 0.127 0.764 ± 0.009

AVG 0.493 ± 0.012 0.502 ± 0.014 0.605 ± 0.106 0.637 ± 0.014

3, 5, and 6) whereas the use of the MIBIF algorithm performed

the best in 4 subjects (4, 7, 8, and 9). Regardless of the choice,

the FBCSP algorithm that employed either the MIBIF or MIRSR

feature selection algorithm would yield relatively the best perfor-

mance in terms of mean kappa value among the other submissions

to the competition.

For comparative purposes, Table 4 also included results of using

the CSP algorithm that employed a 7–35 Hz band-pass filter. The

paired t-test revealed no significant difference between the FBCSP

algorithm and the CSP algorithm (p = 0.057). The results showed

that the FBCSP algorithm that employed the MIRSR feature selec-

tion algorithm also yielded a higher mean kappa value (0.599)

and it outperformed the CSP algorithm in 7 out of the 9 subjects

(except subjects 2 and 8).

Comparing the results of Tables 3 and 4, the FBCSP algorithm

that employed MIRSR yielded lower mean kappa value averaged

over all the subjects on the evaluation data (0.599) than on the

cross-validation results (0.637), in 7 out of the 9 subjects (except

subjects 5 and 8).

4. CONCLUSION

In this paper, the FBCSP algorithm is presented to classify single-

trial EEG data for 2-class as well as 4-class motor imagery, where

results using different feature selection algorithms and multi-

class extensions to the FBCSP algorithm were compared with the

CSP algorithm and other entries submitted to the BCI Com-

petition IV Dataset 2a and Dataset 2b. Although other algo-

rithms were not included in this study, prior studies on the

2-class motor imagery data of the BCI Competition III Dataset

IV showed that a modified SPEC-CSP algorithm using Support

Vector Machines (SVM) yielded a 10 × 10-fold cross-validation

classification accuracy of 89.5% (Wu et al., 2008) averaged over

the 5 subjects, while the FBCSP algorithm yielded a 10 × 10-fold

cross-validation classification accuracy of 90.3% (Ang et al., 2008).

Although they might not be directly comparable, results from

these prior studies suggest that the SPEC-CSP algorithm might

yield similar results as the FBCSP algorithm in Dataset 2a and 2b

as well.

Table 4 | Classification results from using CSP and the FBCSP

algorithm on the unseen evaluation data from BCI Competition IV

Dataset 2b.

Subjects CSP FBCSP

MIBIF MIRSR

1 0.319 0.356 0.400

2 0.229 0.171 0.207

3 0.125 0.169 0.219

4 0.925 0.963 0.950

5 0.525 0.850 0.856

6 0.500 0.594 0.613

7 0.544 0.556 0.550

8 0.856 0.856 0.850

9 0.656 0.750 0.744

AVG 0.520 0.585 0.599
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The results on the Filter Bank Common Spatial Pattern

(FBCSP) algorithm showed that it is capable of performing an

autonomous selection of discriminative subject-specific frequency

range for band-pass filtering of the EEG measurements. In the 2-

class motor imagery data in Dataset 2b, even though the EEG data

was limited to 3 bipolar recordings, the FBCSP algorithm yielded

the best performance among all the submissions by employ-

ing either the Mutual Information-based Rough Set Reduction

(MIRSR) or Mutual Information-based Best Individual Features

(MIBIF) feature selection algorithm. The MIBIF feature selection

algorithm is dependent on a meta parameter, the number of fea-

tures selected, which was set-based on the results obtained on the

2-class motor imagery data from the previous BCI Competition

III Dataset 4a in Ang et al. (2008). Hence further improvement

using the MIBIF feature selection algorithm might be possible

by optimizing the number of selected features via a nested cross-

validation approach instead. In the 4-class motor imagery data

in Dataset 2a, even though the FBCSP algorithm was initially

designed for 2-class motor imagery, the results on the 4-class motor

imagery data in Dataset 2a showed that the one-versus-the-rest

(OVR) and the pair-wise (PW) approaches of multi-class exten-

sion to the FBCSP algorithm could also yield relatively the best

performance as well.
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