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ABSTRACT

In this paper, we propose a free viewpoint image rendering

method combined with filter based alpha matting for improv-

ing the image quality of image boundaries. When we synthe-

size a free viewpoint image, blur around object boundaries in

an input image spills foreground/background color in the syn-

thesized image. To generate smooth boundaries, alpha mat-

ting is a solution. In our method based on filtering, we make

a boundary map from input images and depth maps, and then

feather the map by using guided filter. In addition, we ex-

tend view synthesis method to deal the alpha channel. Ex-

periment results show that the proposed method synthesizes

0.4 dB higher quality images than the conventional method

without the matting. Also the proposed method synthesizes

0.2 dB higher quality images than the conventional method of

robust matting. In addition, the computational cost of the pro-

posed method is 100x faster than the conventional matting.

Index Terms— view synthesis, alpha matting, depth im-

age based rendering, depth map refinement.

1. INTRODUCTION

Recently, free viewpoint image rendering has attracted in-

creasing attention. Free viewpoint images are expected

as new 3D media. Free viewpoint image rendering can

synthesize views on arbitrary viewpoints by users’ inputs.

One of the rendering methods is depth image based render-

ing (DIBR) [1, 2]. The DIBR synthesizes free viewpoint

images from input images and depth maps. In the DIBR

processing, blurred regions on object boundaries spills fore-

ground/background color into the other sides in the synthe-

sized view. Therefore, those boundary regions are degraded.

Mori et al. [1] define the spilled regions by hard thresh-

olding, and then erase the regions. Next, the erased regions

are interpolated by using the other side view. Zinger et al. [2]

propose an extended method of [1] that adaptively erodes the

spilled regions, and then eroded areas are interpolated by in-

painting [3] with depth information. However, the erosion

process absorbs the whole information at the pixel in the area,

even if the pixel has useful information, such as fractional

foreground and background colors. Also, these methods can-

not reconstruct blur on the object boundaries.
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Fig. 1. Problem of blurred region warping, and the solution

of alpha matting.

Alpha matting methods [4] for view synthesis [5, 6] can

reconstruct the blur. The matting can split the blurred regions

into foreground and background regions. Figure 1 (left side)

shows the blurred region problem of the synthesis method

without matting. After 3D warping, the blurred regions are

split, and an occlusion hole is filled with the background

color. As a result, the synthesized image has remained a

blurred region in the background region. In the synthesis

method with matting (Fig. 1 (right side)), we can decompose

the input image into a foreground image, a background one

and an alpha map at first. Next, each image is warped, and

then is blended by alpha blending. The synthesized image

does not have the remained blurred region in the background

region, and blur on the edge is reconstructed.

In the previous researches of matting based view syn-

thesis methods [5, 6], these methods require valid trimaps,

which show foreground/background/unknown regions. Also,

the matting optimization does not have real-time perfor-

mance. Zitnick et al. [5] propose a method that computes

matting information from all depth discontinuities, and use

Bayesian matting [7]. Chan et al. [6] propose a method that

decomposes object boundaries by segmenting and tracking

an object. To obtain the valid trimaps, these methods use a

single object moving data, and segmentation from temporal

information. These methods are accurate for such regions, but

require much computational cost for accurate alpha matting.

In addition, there is no objective evaluation of synthesized

image signals, but there are only subjective assessments.

Therefore, we propose a fast matting for view synthesis

based on filtering. The methods can do the alpha matting for

rugged objects. In our method, we detect sparse boundaries



Fig. 2. Flowchart of filter based alpha matting.

from a depth map, and then solve alpha matting by using

guided filter [8]. Also, we validate the effectiveness of our

method by objective assessments with a lot of datasets.

Organization of this paper is as follows. In Section 2, we

propose a view synthesis method with a filter based bound-

ary matting. Section 3 demonstrates the view synthesis per-

formance of the proposed method. Finally, we conclude this

paper in Section 4.

2. PROPOSED METHOD

In our rendering, we input left and right (L-R) images IL, IR
and associate L-R depth maps DL, DR. The main difference

from the conventional approaches [1, 2] is that we perform

matting around boundary regions in the input images. In our

method, we split these maps into L-R background images

IBL,R, L-R foreground images IFL,R and L-R alpha maps

AL,R by using a filter based alpha matting. Then, these split

maps are warped to a virtual view on a target viewpoint.

The filter based alpha matting contains three processes,

which are boundary detection, boundary refinement and

boundary matting. Figure 2 shows a flowchart of the method.

We detect boundaries, and then refine the boundaries itera-

tively. Finally we obtain a foreground image, a background

image, and an alpha map with our matting. Details of each

step of our method are described as follows.

2.1. Boundary detection, refinement, and matting

In our method, we decompose the input image into a bound-

ary image and a non boundary image. The only boundary

image is split into a foreground, a background and an alpha

map by using alpha matting [4]. The alpha matting can split

a natural image I into a foreground image IF , a background
image IB and an alpha map A, such that these maps meet the
following formula:

I ≃ A · IF + (1.0−A) · IB. (1)

In our method, we do not solve this problem exactly, but solve

it simply using the guided flter [8]. The solution of a boundary

detection, refinement and matting are as follows.

2.1.1. Boundary detection

For boundary matting, we detect object boundaries in an in-

put image by using an associated depth map. We assume that

object boundaries have large differences of depth values in

boundary regions. The boundary detection process is as fol-

lows. First, we apply an input depth map to the max/min

filter. Then, we compute the differences between the input

depth map and the resulting maps of the max/min filter.

dif(p) = Dmax(p)−Dmin(p), (2)

difmax(p) = Dmax(p)−D(p), (3)

difmin(p) = D(p)−Dmin(p), (4)

where p is a current pixel. D is an input depth map.

Dmin/max is a man/min filtered depth map, respectively.

Finally, we divide an input image into a boundary region

and a non boundary one with a threshold value. In addition,

we divide the boundary region into a foreground region and a

background region by difmax and difmin.

B =

⎧

⎪

⎨

⎪

⎩

non boundary dif ≤ th

foreground dif > th, difmax ≤ difmin

background dif > th, difmax > difmin,

(5)

where th is a threshold and B is a boundary map. We set

th = 10 in our experiment. Then, the pixels in the boundary
map are assigned to three labels, non boundary (undefined

value), foreground (255) and background (0). Note that, pixel

values are in the range {0, ..., 255} in this paper.

2.1.2. Boundary refinement

We use the guided filter [8] for boundary refinement. It is

because that the object boundary exists in the blurred region

where the foreground and background are mixed. The bound-

ary refinement process is as follows.

T out(i) =
∑

j

wij(G)T (j), (6)

wij(G) =
1

|ω|2

∑

k:(i,j)∈ωk

(1+
(G(i)− μ(k))(G(j)− μ(k))

σ2(k) + ǫ
), (7)



(a) Input image (b) Input depth map

Fig. 3. Input image and depth map.

where i, j and k are pixel indexes, T out is an output image,

T is a filtering target image, G is a guidance image. μ is
the mean image of guidance image G and σ2 is a variance

image of guidance on. ǫ is a parameter, which is 1.0 in our
experiments, to control the smoothness. ω is the normalized
factor of weight in Eq. (9). ωk is the size of the filter kernel.

In our experiment, the kernel size is 7× 7.
We feather a boundary region (foreground/background) at

boundary map using the guided filter.

B′ = GuidedF ilter(I, B), (8)

whereB is a boundary map andGuidedF ilter(guide, target)
function of Eq. (6) is the guided filter. Note that before the

guided filtering, we pad the boundary map to avoid convolut-

ing the undefined values in the regions. In the process, the

undefined non boundary regions which overlap the guided fil-

ter kernel are padded by foreground or the background label

to have continuous values. For padding, we dilate or erode

foreground/background regions toward undefined regions.

After guided filtering, these regions are un-padded to recover

undefined regions using the pre-padding mask.

The feathered boundary regions are binarized by a thresh-

old value. In our method, the threshold is the middle value of

unsigned byte value (128).

Bref (p) =

{

255 B′(p) ≥ 128

0 else.
(9)

Then, we compare a feathered and binarized boundary

map (Bref ) with non processed one (B), and then replace
a depth value at reversing boundary map pixels with the max

or min value of depth map (Dmax, Dmin)

Dref (p) =

⎧

⎪

⎨

⎪

⎩

Dmax(p) B(p) = 0, Bref (p) = 255

Dmin(p) B(p) = 255, Bref (p) = 0

D(p) else.

(10)

We iterate the boundary detection in the previous subsection

and the refinement process to localize the accurate bound-

ary position. In this paper, we found that 3 times iteration

is enough for our experiments.

2.1.3. Boundary matting

After refining the boundaries, we generate foreground, back-

ground and alpha maps on the boundary regions. We assume

(a) Boundary map (b) Alpha map

Fig. 4. Generated boundary map and alpha map. Non bound-

ary regions are set to 128 in (a), and are set to 0 in (b).

(a) Foreground strip image (b) Background strip image

Fig. 5. Generated foreground and background strip images.

that feathered values by the guided filter have almost equal to

the values of the alpha map (see [8]).

The boundary matting process is as follows. First, we gen-

erate an alpha map. The boundary mapBref generated by the

refined depth map (Dref ) are feathered by the guided filter.

Bref ′

= GuidedF ilter(I, Bref ). (11)

Then, we cut the tail of the values near foreground (255) /

background (0).

A(p) =

⎧

⎪

⎨

⎪

⎩

255 Bref ′

(p) > 255 ∗ c

0 Bref ′

(p) < (1− c) ∗ 255

Bref ′

(p) else,

(12)

where A is an alpha map and c is a percentage value. We set
c = 0.85 in our experiment.
Next, we generate foreground and background strip im-

ages by using a weighted box filter. Foreground and back-

ground images are calculated as follows;

SL(p) =

∑

s∈N WL(s)I(s)
∑

s∈N WL(s)
, (13)

where p is the current pixel, s is the support pixel,N is an ag-

gregating set of support pixels, SL is the strip image and L is
a label set of foreground/background L ∈ {F,B}, I is an in-
put image. WL is foreground/background weight map. When

we generate foreground, if A(s) equal 255, WF (s) set to 1.
Otherwise W (s) set to 0. When we generate background, if
A(s) equal 0,WB(s) set to 1. OtherwiseWF,B(s) set to 0.
Figure 3 shows the input image and the depth map, Fig. 4

shows the generated boundary map and alpha map, and Fig. 5

shows the generated foreground and background strip images.



Fig. 6. Flowchart of matting based view synthesis.

2.2. Matting based view synthesis

After the L-R individual boundary matting process, we can

obtain left and right foreground strip, background strip and

alpha maps of boundary regions. Then we perform matting

based view synthesis. Figure 6 shows the flow of the view

synthesis process.

At first, we generate a base image, which is addition of the

non boundary image and the background strip image. From

these maps, we can synthesize three images, which are the

foreground image, the base image, the alpha map, on a virtual

viewpoint individually by using DIBR. Then, we can render

a free viewpoint image by blending the synthesized the fore-

ground and the base images with the alpha map.

After the boundary matting, the boundary regions have

two colors, which are the foreground color and background

color. However, the pixel in the input depth map in the re-

gion has only one depth value. Therefore, we need to gen-

erate additional depth values. In our method, we generate

the foreground/background strip depth map using the max fil-

ter/min filter, and we merge the non boundary depth map and

the background strip depth map into the base depth map.

As a next step, we can synthesize a free viewpoint image.

We useXF /XB to denote a foreground/base of an imageX ,
XL,R to denote a left or right image in a stereo image pair,

and Xw to denote a warped image X .

We warp IF by using the associated foreground depth

map, and warp IB by using the base depth map. The value of
α in the alpha map is warped by the foreground depth map.

IBw = warp(DL,R, I
B
L,R), (14)

Mw
L,R = warp(DF

L,R,ML,R),M ∈ {IF , A}, (15)

where I = an input image, A = an alpha map, andD = a depth
map. In warp(x, y) function, x is a warping depth map, and
y is a warping target image. Then, we blend the warped left

and right foreground, base and alpha map, individually.

M b = blend(ML,R),M ∈ {IFw, IBw, Aw}, (16)

whereM b are the blended foreground, base and alpha maps,

and the blend() function blends left and right signals. Finally,
we can synthesize the free viewpoint image Isyn by pasting
the synthesized foreground image F b to the synthesized base

one Bb with the synthesized alpha map Ab.

Isyn = Ab · F b + (1.0−Ab) ·Bb. (17)

3. EXPERIMENTAL RESULTS

In the experiments, we compare the proposed method with

non matting method [1], and then compare our method with

matting method [9] later. In our experiments, we use the Mid-

dlebury’s data sets [10]. We use left and right images as view

synthesis anchors, and use the center image as just a refer-

ence image in PSNR evaluation. The input depth map is the

ground truth provided by the data sets.

Table 1 shows PSNR of the virtual views from various in-

put images. The proposed method has higher PSNR (0.40 dB

on the average) than the non matting method.

Figure 7 shows zoomed synthesized images at the “teddy”

sequence of the proposed and the conventional. The render-

ing result of the proposed method has more smooth bound-

aries than the conventional method, and the blurred regions

in the image of the conventional method is spilled into the

foreground color and the background colors.

Figure 8 shows zoomed synthesized images at the “laun-

dry” sequence of the proposed and conventional. We also can

observe contour artifacts in the proposed images as shown

in Fig 8. The proposed method can solve object boundaries

well near the large object (a bottle), but the method damages

boundaries of thinning object (a trigger of the bottle). This

is because that the proposed method cannot accurately solve

matting in the region which includes a slim foreground object.



(a) Proposed method (b) Conventional method

Fig. 7. Zoomed synthesized view (teddy).

(a) Proposed method (b) Conventional method

Fig. 8. Zoomed synthesized view (laundry).

Figure 9, 10 shows synthesized images at “aloe” and

“wood2” sequences of the proposed and conventional. In

these sequences, the proposed method has lower PSNR

than the conventional method. The reason for low PSNR

is different in “aloe” and “wood2” sequence. In the “aloe”

sequence, the reason is that background textures are too com-

plex. The proposed method cannot reconstruct complex tex-

tures. Therefore, the proposed method generates low quality

background strip images when background textures of input

images are complex like “aloe” sequence. In the “wood2”

sequence, the reason is that the texture of the background

is too simple, but cyclic. In addition, foreground color and

background color are similar. In this case, pasting non mat-

ting pixels directly has better performance than the images

which are processed by the complex alpha matting. Our mat-

ting cannot generate complex patterned texture on matting

regions. The blended background textures tend to be flat. In

the textured regions, this process is not suitable. In contrast,

direct copying (non matting) can mix (or has already mixed)

foreground and background pixels, if the background texture

of warped region and of pre-warped region is almost same.

Next, we compare our method based on filtering and the

other matting method. We use robust matting [9] instead of

Bayesian matting, which is used in the previous researches of

view synthesis with matting [5, 6]. The robust matting is more

accurate, and also use trimaps. The trimap used in our exper-

iment is generated from the boundary map. We set the trimap

unknown, if the boundary map is 0 or 255. Also, we set the

trimap foreground, if the boundary map is non boundary and

the padded value is 255. Background is labeled in the same

(a) Proposed method (b) Conventional method

Fig. 9. Zoomed synthesized view (aloe).

(a) Proposed method (b) Conventional method

Fig. 10. Zoomed synthesized view (wood2).

(a) Proposed matting (b) Robust matting [9]

Fig. 11. Zoomed alpha map of robust matting (teddy).

manner. Note that robust matting and the proposed matting

have same size of the matting region in this condition. Then,

alpha map is obtained by the robust matting. Following steps,

such as foreground/background generation and view synthe-

sis, are same as the proposed method.

In Table 1, the proposed method has higher PSNR

(0.20 dB on the average) than the robust matting. Figure 11

shows zoomed alpha maps of the proposed and the robust

matting on “teddy” sequence. We can observe outliers in

the alpha map generated by the robust matting. The robust

matting is more accurate in almost regions, but more sensitive

than filter based method. Thus there are outliers in the alpha

map. For this reason, the proposed method is suitable for

view synthesis.

Table 2 shows computing time of two alpha matting meth-

ods; the proposed alpha matting and the robust matting. As a

result, the proposed alpha matting is the fastest method, and

have real-time capability.



Table 1. PSNR (dB) of various images. Bold datasets are

shown in figures 7-10.

Input

image

Matting

(Prop.)

Non matting

([1])

robust matting

([9])

average 37.22 36.82 37.02

teddy 33.73 33.37 33.57

cones 30.57 30.56 30.49

art 34.03 32.65 33.14

dolls 35.25 34.89 35.12

laundry 34.03 32.49 33.75

reindeer 36.01 34.89 33.75

baby1 40.57 39.95 40.57

baby2 37.83 37.65 36.91

baby3 35.38 35.14 35.33

bowling1 38.61 37.80 38.60

bowling2 34.62 34.22 34.50

cloth2 39.42 38.58 39.41

flowerpots 31.78 31.70 31.75

lampshade2 42.40 41.04 42.36

midd1 34.60 33.24 34.68

midd2 35.75 34.90 35.68

monopoly 36.92 36.91 36.89

plastic 43.19 39.59 43.64

rocks2 39.06 39.05 38.79

wood1 44.50 44.30 44.43

books 35.13 36.41 35.15

moebis 37.20 37.63 36.53

aloe 34.31 34.46 34.00

cloth1 40.99 41.72 40.88

cloth3 38.59 39.16 38.04

cloth4 36.34 36.41 38.04

lampshade1 41.40 41.50 40.16

rocks1 38.96 39.05 38.79

wood2 38.30 38.73 38.50

Table 2. Computing time of various alpha matting methods.

Each method is written in C++ with Visual Studio2012 on

Windows 7 64bit, and tested on Intel Core i7 920 2.93GHz.

Prop. Robust Matting

30 ms 38000 ms

4. CONCLUSION

In this paper, we proposed a filter based matting for view syn-

thesis, and were evaluated by using about 30 data sets from

Middlebury. The results showed that the proposed method

improves the subjective quality at object boundaries and has

the higher PSNR (0.40 dB) than the non matting method [1],

and has the higher PSNR (0.20 dB) than the conventional mat-

ting of robust matting [9].

In addition, its computational speed is 100x faster than

the robust matting. The code used in this paper is uploaded

in http://nma.web.nitech.ac.jp/fukushima/

research/viewsynthesis.html

In our future works, we will extend the matting by using

stereo matting [11] to improve the accuracy of matting. Also,

instead of using ground truth, we use estimated depth maps,

which have accurate boundaries, by using side information of

manual user input [12], or boundary refinement method [13].
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