
Filter Based Estimates of Depth

SJ May bank

Hirst Research Centre

East Lane, Wembley, Middlesex HA9 7PP, UK

We compare three filters for estimating the depth and
velocity of a translating point, namely, (i) the optimal
filter; (ii) a second order approximation to the optimal
filter; and (Hi) the extended Kalman filter. The filter
input is a sequence of measurements of the image of
the point under polar projection. The measurements are
subject to white Gaussian noise.

The optimal filter requires an excessive amount of
computation. The second order approximation is close
to the optimal filter, especially if the noise level is low;
and it requires far less computation. The extended Kal-
man filter also requires less computation than the opti-
mal filter, but it usually performs very badly. In partic-
ular, it seriously underestimates covariance.

We compare the performance of three filters applied
to a problem in computer vision, the estimation of the
position and velocity of a uniformly translating point,
using image measurements corrupted by Gaussian noise.
We choose this very simple application in order to make
the comparison between the three filters as clear as pos-
sible. The filters are (i) the optimal filter [1]; (ii) a sec-
ond order approximation to the optimal filter; and (iii)
the extended Kalman filter (EKF) [1,2,3]. The signifi-
cance of the optimal filter is that it provides an absolute
standard against which the performance of any approx-
imating filter can be judged.

Our main result is that the second order approx-
imation is closer to the optimal filter than the EKF.
The result is significant because the EKF is currently a
standard tool in computer vision. The second order ap-
proximation gives a simple way of assessing how far the
performance of the EKF is degraded from the optimal.

The use of filters for estimating the depth and ve-
locity of moving objects is described in [4,5]. A method
for improving on the EKF in a different context is de-
scribed in [6], where it is used to fit an ellipse to a set
of points. It is shown that an adjustment to the usual
formulation of the EKF leads to better results, at only
a small increase in computational cost.

In our application of filtering to the estimation of
depth and velocity we assume that we have a sequence of
images of a point moving in the x, y plane with constant
translational velocity (v, 1)T, as illustrated in Figure 1.
We scale the velocity such that the y component is equal
to one, in order to reduce the number of parameters.
This scaling does not cause difficulty provided the true
y component of the velocity is not excessively small.

image

Figure 1: A translating point

We describe the state of the moving point at time i by
the vector, x,- = (x,-, y,-, Vj)T. The state x1+i is given in
terms of x,- by

= (xi + Vi,yt + l,Vi)
T

(1)

We write (1) in the form x !+i = Gx,-. The transfor-
mation G is affine, deterministic, and independent of
time.

We take measurements p,- of the image of the point
at discrete times i = 1, 2, 3, . . . . The /i,- are given by

Pi = Xifoi + m

where «;,- is zero-mean white Gaussian noise with a
known standard deviation p. Any information that we
may have about the motion of the point additional to
the information obtained from the measurements is sum-
marised in a prior probability density function (pdf)
p(x). The pdf p(x) describes our knowledge of the state
at time 1, prior to the first measurement. We denote
by J* the information about the state available at time
k. Thus Ik consists of the prior density p(x) and the
measurements /it-, 1 < i < k.

Our entire knowledge about the state xj, is contained
in the conditional pdf p(xfc|/*). The optimal filter is
based on an equation which expresses p(xfc|J*) in terms
of p(xk-i\I

k
~

1
). Let p(//fc|xjb) be the pdf of the mea-

surement fik conditional on x*, and let p(x,t|x,fc_i) be
the pdf of x<; conditional on xj;_i. Thus p(//fc|xfc) de-
scribes the measurement process, and p(xt|xjfc_i) de-
scribes the time evolution of the state. The equation
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for the optimal filter is [1]

p(xk\I
k
) = cp(nk\xk) / p(xk\xk_1)p(xk_1\I

(2)
where c is a normalising constant. The integral on the
right-hand side of (2) serves to propagate from time
k — 1 to time k the conditional pdf that summarises
our knowledge of the state. The coefficient p(fik\xk)
of the integral describes the effect of incorporating the
measurement fik. In our application to tracking x* is a
deterministic function (1) of xk_i. It follows that

_i) = 6(xk - (3)

where 8 is the Dirac delta function. The pdf p(fik\xk)
is Gaussian, of the form

1 xk(
yk

(4)

The optimal filter is rarely used because it requires
an excessive amount of computation. The major ex-
ception to this rule is the Kalman filter [2], which is
the optimal filter for linear systems subject to white
Gaussian noise. In the non-linear case filters have been
developed which approximate to the optimal filter, but
which require less computation [2,3]. The best known
of these approximating filters is the EKF.

THE FILTERS
We regard filtering as a way of obtaining approxima-
tions to the optimal pdfs p(xk\I

k
) as the time k in-

creases. For example, the EKF calculates the mean and
covariance of a Gaussian approximation to p(xk\I

k
).

Let po(x), p5(x), pe(x) be the pdfs produced respec-
tively by the optimal filter, the second order approxi-
mation, and the EKF, after three measurements have
been taken. We choose three measurements because
this is the least number required to specify the system
state (x,y,v)

T exactly in the noise free case.

We obtain expressions for po(x), p«(x) and pe(x).
We define the function /(x) by

x-v

(5)

Equations (3), (4) and (2) yield the following expression
forpo(x).

po(x) = cexp | - — J j p{G~
2
x) (6)

In (6), c is a normalising constant. We assume that
p(x) = Af(x, m, P), where M(x,va., P) is the Gaussian
pdf with mean m and covariance P.

We define ps{x). Let c be the vector such that
/(c) = 0. The coordinates of c are

-2 /z 2 )

C2 =

C3 = ( )(

(7)

If the measurements are noise free then c is the state at
time k = 3. In other words, the point being tracked is at
the position (ci, C2)1" and moving with velocity (c3, 1)T-
In the more realistic case of non-zero noise we expect
po(x) to be concentrated about c.

The point c is a global minimum for /(x), thus
V/(c) = 0. Let J be the Hessian matrix of second
order partial derivatives of /(x) evaluated at c. On
taking the Taylor expansion of /(x) about c we obtain

/(x) = I(x - m)T J(x - m) + O(\\x - c||3) (8)

We obtain ps(x) by using the quadratic terms on the
right-hand side of (8) to approximate to /(x) in (5).
This yields

The pdf ps(x) is a product of Gaussians, therefore it is
also Gaussian.

The pdf pe(x) obtained by the EKF is a Gaussian
approximation to po(x). The mean and covariance of
pe(x) are obtained recursively as follows. We define the
matrix F and the vector e by

F =

Thus equation (1), describing the time evolution of the
state, is equivalent to

= Fxi + e (9)

Let m,-, Pi be the mean and covariance obtained by the
EKF at time i after incorporating the measurement //,-.
The predicted mean and covariance n, C at time i + 1,
but prior to the measurement /i»+i, are given by

C = FP{F
T (10)

We define the observation vector h{+i by

lQ)
T (11)

The updated mean and covariance m,-+i, Pi+i are ob-
tained from n, C, ht-+i by the equations [3]

m i + i = n +
hT

(12)
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We define the pdf pe(x) by

pe(x) =A r(x,m3 ,P3)

We initialise the EKF prior to the first measurement
by setting n = m, C = P, where m, P are the mean and
covariance of the prior pdf p(x). To obtain 1113 and P3}
we incorporate the measurement y,\ using (12), and we
then carry out the prediction step (10) and the update
step (12) two times.

MARGINAL DENSITIES
We use marginal densities to compare the effectiveness
of the three pdfs po(x), p«(x), pe(x). Let the three
marginal densities on the depth y be pOy(y), P>y(y),
Pey(y) respectively, and let the three marginal densities
on the velocity component v be pov(v), p,v(v), pev{v).
The marginal densities are obtained by integration. For
example, we have

Poy(y) = J j'po(x) dxdv (13)

In the case of the Gaussian density, Af(x,m,P), the
marginal densities are easy to obtain. For example, the
marginal density of the component y of x is Gaussian
with mean rri2 and variance P22- It follows that psy(y),
pey(y) and psv(v), Pev(v) are all Gaussian.

The optimal marginal density poy (y) is more difficult
to obtain. We write po(x) in the form

po(x) = c exp[--(Ax
2 + Bxv + Cv

2
 + Dx + Ev)]

(14)

where A, B, C, D, E are functions of y and of the
measurements fiit fi2, ̂ 3. We define the matrix M and
the vector 1 by

C
1 = (15)

We define the vector u by u = (x, v)
T
. It follows from

(14) and (15) that

Poy(y) = c J po(x)dxdv

=
 c

 exp[— — (u
T
Mu + l.u)]dxdv

c' exp(lT
 M-H/8)

V'det(M) l
 '

where c is a normalising constant independent of y.

EXPERIMENTAL RESULTS
We use the Mathematica computer algebra program [7]
to draw graphs of the marginal densities for 'typical'
choices of the noise level p and of the measurements n\,

Figure 2: Marginal densities for y (p = 1/200,)

A*2, A*3- For most of the experiments we use p = 1/200
rad. In an image of size 512 x 512 pixels with a 30°
field of view, this value of p corresponds to an error in
locating a feature point of

1 180 512 _ . .
x x ~ 5 pixels

200 IT 30 V

The prior pdf, p(G~
2
x), is chosen to be Gaussian with

mean m given in terms of the vector c of (7) by

m = ( C l - 2 c 3 , c 2 - 2 , 0 ) T

The first two components of m coincide with the first
two components of the state vector G~

2
c. The third

component of m is set equal to zero. We choose the
prior covariance to be 1000 /, where / is the 3x3 identity
matrix. The covariance of the prior pdf is large in order
to reduce the effect of the prior pdf on po(x), ps(x)
and pe(x). This makes it easier to assess the extent to
which ps(x) and pe(x) use the information available in
the measurements.

We plot the pdfs poy(y), P,y(y), Pey(y) in Figure 2
for the triple of measurements

= (-3/10,0,1/5)T (17)

The corresponding value of c is c = (6/5,6,6/5)T. We
see from Figure 2 that pSy{y) is fairly close to pOy(y),
except that the graph of psy(y) is shifted slightly to-
wards the lower values of y. The pdf poy(y), is skewed
with a bias towards the higher values of y. The graph
°f Pey(y) is sharply peaked, but because the optimal
filter is available for comparison, we know that pey(y)
severely underestimates the covariance. The mean val-
ues and standard deviations of the three pdfs plotted in
Figure 2 are

E(Poy) = 6.47

E(Psy) = 6.00

E(Pey) = 6.00

<Toy = 0.80

asy = 0.62

<rey =0.16

We plot the pdfs poy(y), p,y(y), pey(y) in Figure 3
for the triple of measurements

(18)
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Figure 3: Marginal densities for y, (p = 1/200,) Figure 5: Marginal densities for y (p = 1/500,)

Figure 4: Marginal densities for v (p = 1/200,)

In this case c = (2,10,2)T. In this second example the
depth C2 is increased from 6 to 10. The graphs of pOy(y)
and pey(y) are greatly flattened compared with Figure
2. The pdf pey(y) retains a sharp peak (truncated in
the figure), but as we have already noted in Figure 2,
this does not indicate that the EKF is accurate. Instead
it shows that the EKF seriously underestimates the co-
variance. As in the first example, psy is shifted towards
the lower values of y, and poy(y) is skewed, with a bias
in favour of the higher values of y. The mean values and
standard deviations of the three pdfs plotted in Figure
3 are

67.45
10.00

10.00

(Toy

(Tsy

<Tey

= 67.45

= 2.20

= 0.28

It is clear from the graph of poy(y) in Figure 3 that
a good estimate of y cannot be obtained. It is only
possible to give a sharp lower bound on y.

In Figure 4 we plot the marginal densities psv(v),
Pev(

v
) f°r the triple of measurements (17). The opti-

mal pdf, pOv(v), is not shown because of difficulties in
calculating its values.

In Figure 5 we plot the marginal densities poy(y),

p,y{y), Pey(y) for the measurements (17), with the noise
level p decreased to p = 1/500, which corresponds to
an error of about 1 pixel in locating the image of the
translating point (in a 512 x 512 image with a 30° field of
view). The densities pOy(y) and psy(y) are much closer
to each other than in Figure 2, and more sharply peaked
about their mean values.

Experiments show that the performance of the EKF
depends critically on the prior mean m. We illustrate
this overdependence of the EKF on m in Figure 6. We
set p = 1/200, and we employ the same measurements
(17) used to produce Figure 2. To produce Figure 6 we
set

m = (Cl-2c3,C2,0)T

The y coordinate of m is increased two units over the
y coordinate of the prior mean used in Figure 2. This
shift of two units is transmitted by the EKF straight
through to the estimate of depth. In contrast, the op-
timal filter and the second order filter are almost un-
affected because the contributions to the pdfs from the
measurements swamp the effect of the prior pdf.

There is one case in which the EKF does perform
well. We show in the apppendix that if the prior mean
m coincides with the state G~

2
c then pe(

x) exactly
coincides with ps(x). If m does not coincide with G~

2
c

then the covariance estimates produced by the EKF are
far too optimistic, as illustrated in Figures 2-6.

CONCLUSION
Our results show that in the simple tracking problem we
can find an approximation to the optimal filter that is
computationally tractable, and that in general far out-
performs the extended Kalman filter. The approxima-
tion is obtained by accumulating enough measurements
to specify the system state exactly in the noise free case,
and then taking a Gaussian approximation to the opti-
mal pdf with the mean of the Gaussian located at the
zero noise estimate of the system state.

The weaknesses of the EKF are that it is too strongly
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Figure 6: Effect of prior mean on the EKF (p = 1/200,/

affected by the prior mean, and that it seriously under-
estimates covariances. We conjecture that alternative
approximations to the optimal filter of the type de-
scribed above are preferable to the extended Kalman
filter in a wide range of applications, particularly when
the noise level is low.
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APPENDIX
We show that in one special case the EKF is identical
to the second order approximation to the optimal filter.

Theorem 1. Let the prior mean m be chosen such that
m = G~

2
c, where c is defined by (7). Then p,(x) =

Proof. It follows from the definition of c and the hy-
pothesis m = G~

2
c that in each update by the EKF

calculated from (12) the factor fii+i — ni/n2 on the
right-hand side of the second equation of (12) is equal
to zero. The three mean values mi , m2, ni3 produced
by the EKF at times 1,2,3 respectively are thus given

by
mi = G"

2

m3 = c (19)

It follows that the mean of p,(x) is equal to the mean
of pe(x). To prove the theorem it remains only to show
that p«(x) and pe(x) have the same covariance.

In our construction of p,(x) we take a quadratic ap-
proximation to the function /(x) of (5) about the point
c. We note that c = 1x13 = n where n is the mean
predicted by the EKF at time k = 3 prior to the third
measurement. The measurements fi\, //2, 113 are given
in terms of n and G by the equations

= 1*1

We expand x/y — \iz about the predicted mean n to
obtain

X

y ^ 3 n2 +

X

1*2

X

n2

= h3x

X

XJ — 72 o

XJ — Tti \

Tt i

n\
 V

n\y ...

n\

+ O(||x-n|I2) (20)

where I13 is the observation vector defined by (11). Sim-
ilarly, on expanding (x — v)/(y—l)—^i2 and (x—2v)/(y—

2) — [i\ about n we obtain

x — v

x-2v

(21)

- ^ i = ( G - 2 x ) . h 1 + O ( | | x - n | | 2 ) (22)

It follows from (20), (21) and (22) that

c exp | - ^ ((h3.x)2 + (h2 .G-xx)2 (h!.G-
2
x)

2
)]

x,-m,P) (23)

Let D be the covariance of ps(x). Equation (23) yields
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— (il3 ® 113 + CJ 1I2 ® ll2Cr + (CJ ) ill

T ) - 1 (24)

It follows from (24) that D is equal to the covariance
P3 obtained by the EKF.
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