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Abstract. We present a simple filtering procedure for stabilizing the spectral element method (SEM)
for the unsteady advection-diffusion and Navier-Stokes equations. A number of example
applications are presented, along with basic analysis for the advection-diffusion case.

Stabilisation par filtrage pour la méthode des éléments spectraux

Résumé. Nous présentons une procédure simple de filtrage pour la stabilisation de la méthode
des éléments spectraux (SEM) appliquée à des équations de convection-diffusion et de
Navier-Stokes. Cette procédure est mise en oeuvre sur un grand nombre d’exemples, et
une analyse élémentaire est réalisée sur un cas de convection-diffusion.

1. Introduction

We consider spectral element solution of the incompressible Navier-Stokes equations in lRd,

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u in Ω, ∇ · u = 0 in Ω, (1)

with prescribed boundary and initial conditions for the velocity, u. Here, p is the pressure and
Re = UL

ν
the Reynolds number based on characteristic velocity and length scales.

A well-known difficulty in numerical treatment of (1) is the enforcement of the divergence-free
constraint on u, particularly at high Reynolds numbers. The lPN − lPN−2 spectral element method
(SEM) introduced in [9] addresses this problem through the use of compatible velocity and pressure
spaces that are free of spurious modes. The method attains exponential convergence in space and
second- or third-order accuracy in time. Despite these advantages, we have in the past encountered
stability problems that have mandated very fine resolution for applications at moderate to high
Reynolds numbers (103–104). Here, we demonstrate a simple filtering procedure that largely cures
the instability and allows one to recover the full advantages of the SEM.

2. Discretization and Filter

The filter is applied at the end of each step of the Navier-Stokes time integration (described in
detail in [7]). The temporal discretization is based on the high-order operator-splitting methods
developed in [10].The convective term is expressed as a material derivative, which is discretized
using a stable second-order BDF scheme, leading to a linear symmetric Stokes problem to be
solved implicitly at each step. The subintegration of the convection term permits timestep sizes,
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P. Fischer, J. Mullen

∆t, corresponding to convective CFL numbers of 2–5, thus significantly reducing the number of
(expensive) Stokes solves.

The Stokes discretization is based on the variational form Find (u, p) ∈ XN × YN such that

1

Re
(∇u,∇v)GL +

3

2∆t
(u,v)GL − (p,∇ · v)G = (f ,v)GL, (∇ · u, q)G = 0, (2)

∀ (v, q) ∈ XN × YN . The inner products (., .)GL and (., .)G refer to the Gauss-Lobatto-Legendre
(GL) and Gauss-Legendre (G) quadratures associated with the spaces XN := [ZN ∩ H1

0 (Ω)]d and
YN := ZN−2, respectively. Here, ZN := {v ∈ L2(Ω)|v|Ωk ∈ lPN (Ωk)}, where L2 is the space of
square integrable functions on Ω; H1

0 is the space of functions in L2 that vanish on the boundary
and whose first derivative is also in L2, and lPN (Ωk) is the space of functions on Ωk whose image
is a tensor-product polynomial of degree ≤ N in the reference domain, Ω̂ := [−1, 1]d. For d = 2, a
typical element in XN is written

u(xk(r, s))
∣

∣

Ωk
=

N
∑

i=0

N
∑

j=0

uk
ijh

N
i (r)hN

j (s) , (3)

where uk
ij is the nodal basis coefficient; hN

i ∈ lPN is the Lagrange polynomial based on the GL

quadrature points, {ξN
j }N

j=0 (the zeros of (1 − ξ2)L′
N (ξ), where LN is the Legendre polynomial of

degree N); and xk(r, s) is the coordinate mapping from Ω̂ to Ωk. We assume Ω = ∪K
k=1Ω

k and that
Ω̄k ∩ Ω̄l for k 6= l is either an entire edge, a single vertex, or void. Function continuity (u ∈ H1)
is enforced by ensuring that nodal values on element boundaries coincide with those on adjacent
elements. For YN , a tensor-product form similar to (3) is used, save that the interpolants are based
on the G points since interelement continuity is not enforced.

Insertion of the SEM basis into (2) yields a discrete Stokes system to be solved at each step:

H ũ − DT pn = B fn, D ũ = 0; un = Fαũ,

where we have introduced the stabilizing filter, Fα, to be described below. Here, H = 1
Re

A + 1
∆t

B
is the discrete equivalent of the Helmholtz operator, ( − 1

Re
∇2 + 1

∆t
); −A is the discrete Laplacian;

B is the mass matrix associated with the velocity mesh; D is the discrete divergence operator, and
fn accounts for the explicit treatment of the nonlinear terms. The filter, Fα, is applied on an
element-by-element basis once the velocity-pressure pair (ũ, pn) has been computed.

The filter is constructed as follows. Let in be the one-dimensional interpolation operator at
the nodes {ξn

j }
n
j=0 over lPn[−1, 1]. Then in the square, we can define irn (resp. isn) as being

the interpolation operator in the r (resp. s) direction. The filter (in the square) is then Fα =
αIN−1 + (1−α)Id, where IN−1 = irN−1 ◦ isN−1 and Id is the identity operator. The interpolation-
based procedure ensures that interelement continuity is preserved; and, because the nodal basis
points ξN

i interlace ξN−1
i , Fα will tend to dampen high-frequency oscillations. Moreover, spectral

convergence is not compromised, because the interpolation error will go to zero exponentially fast
as N −→ ∞ for smooth u. This operator is stable both in L2 and H1 norms (that are natural
norms for this equation) as can be found in [2] (13.27–28). We note that α = 1 corresponds to a
full projection onto lPN−1, effectively yielding a sharp cutoff in modal space, whereas 0 < α < 1
yields a smoother, preferable decay [3, 6, 8].

3. Applications

We have used the filtering procedure on a number of high Reynolds number applications where
the standard lPN − lPN−2 method would not converge (for reasonable values of K and N). These

2



Filter-based stabilization of spectral element methods

� � � � � � � � �

� � � � � � � � �

� 	 
 � �  � � � � � � � � � �  � �

� 	 
 � �  � � � � � � � � � �  � 


� 	 
 � � � � � �  � � � � �  � 


� 	 
 � � � � � � � � � � � �  � 


�  � 	 � � � � � � � � � 
 � � �  � 	

� 	 
 � �  � � � � � � � 
 � � �  � 	

� � � � � � � � � �  ! " # " ! $ % �  & " ' (  ( ) ! � * � + � , - "  " ) . / 0 � - 1 & � 2 � � � 3 4 5 �  � 6 3 # � ) ! � 7  / %  � 8 9 : � ! �
: � ; $  � � <  
 = � ( 1 % � 2 �  � � 3 4 5 � � � � � � � 3 # � ) ! � 7  / %  � 8 9 � � ! � � � ; $ : 	 <  � > � # % > ? " . > � # " ) @ � A � >

have included the regularized driven cavity at Re = 5000, transitional channel flow at Reh = 8000,
and hairpin vortex formation in a boundary layer at Reδ = 1200. The examples below demonstrate
the benefits of the filter on some well-known test problems.

Example 1. Figure 1 shows results for the shear layer roll-up problem studied in [1, 4]. Doubly-
periodic boundary conditions are applied on Ω := [0, 1]2, with initial conditions

u = tanh(ρ(y − 0.25)) for y ≤ 0.5, u = tanh(ρ(0.75 − y)) for y > 0.5, v = 0.05 sin(2πx).

Each case consists of a 16× 16 array of elements, save for (e), which is 32× 32. The time step size
is ∆t = .002 in all cases, corresponding to CFL numbers in the range of 1 to 5. Without filtering,
we are unable to simulate this problem at any reasonable resolution. In (a), we see the results just
prior to blow up for the unfiltered case with N = 16, corresponding to an n×n grid with n = 256.
Unfiltered results for N = 8 (n = 128) and N = 32 (n = 512) are similar. Filtering with α = 0.3
yields dramatic improvement for n = 256 (b) and n = 128 (d). Although full projection (α = 1) is
also stable, it is clear by comparing (c) with (d) that partial filtering (α < 1) is preferable. Finally,
(e) and (f) correspond to the difficult “thin” shear layer case [4]. The spurious vortices in (e) are
eliminated in (f) by increasing the order to N = 16 at fixed resolution (n = 256). Note that an
even number of contours was chosen to avoid the dynamically insignificant zero contour.

Example 2. The spatial and temporal accuracy of the filtered SEM is verified by reconsidering
the Orr-Sommerfeld problem studied in [7]. The growth rates of a small-amplitude (10−5) Tollmien-
Schlichting wave superimposed on plane Poiseuille channel flow at Re = 7500 are compared with
the results of linear theory. The errors (see (41) in [7]) at time t = 60 given in Table 1 reveal
exponential convergence in N for both the filtered and unfiltered cases. It is also clear that
O(∆t2) and O(∆t3) convergence is obtained for the filtered case, but that the unfiltered results
are unstable for the third-order scheme. In this case, the stability provided by the filter permits
the use of higher-order temporal schemes, thereby allowing a larger time step for a given accuracy.

3



P. Fischer, J. Mullen

� � � � � � � � � � 	 
 � � � � � � �  � � � � � � � � � � � � � � � � � � � � � � �   � � � � � � � � � � � � 
� � � � � � � � �  ! � " # � $ % & ' ( % ) ( � ( % & ' ( % ) (

! * � � � � * � � � � � � * � � � � * � � � � * � � � � * � � � �
# � + � � , - " � + � # -  � � + � � � � � � + " � , � " � + " � , � " " # " + � # � � + � � � , ,
. � + � � " # � � + " " . � . � + " � � � � � + � � - ,  � + � � - ,  � + � � � , # � + � � � , /

" " � + � � -   � + � " " " - � + �  � � � � + � � . " � � + � � . " " " , " + " � - � + � � � - �
" � � + � � � � - � + � � � # - � + � �  � � � + � � � � / � + � � � � / " + � - - , � � + � � � " �

4. Analysis and Conclusion

The stabilizing role of the filter is illustrated by considering a time marching approach to solving
the advection-diffusion equation, ux = νuxx +f , u(0) = u(1) = 0, which was studied in the context
of bubble-stabilized spectral methods in [5]. Discretization by SEM/CN-AB3 yields

Hũ = HRun + C(
23

12
un −

16

12
un−1 +

5

12
un−2) + Bf , un+1 = Fαũ , (4)

where H = (ν
2A + 1

∆t
B) and HR = (−ν

2A + 1
∆t

B) are discrete Helmholtz operators and C is the
convection operator. The fixed point of (4) satisfies

(

−νA + C + H(F−1
α − I)

)

u = Bf . (5)

The ∆t dependence in (5) can be eliminated by assuming that 1 ' CFL := ∆t/∆x ' ∆tN2.
For any Galerkin formulation, C is skew symmetric and therefore singular if the number of vari-

ables is odd (the spurious mode being LN −L0). The eigenvalues of (F−1
α −I) are {0, 0, . . . , 0, α

1−α
}

(the non-zero eigenmode being φN (x) := 2N−1
N(N−1) (1− x2)L′

N−1(x) = LN −LN−2). The stabilizing

term, H(F−1
α −I), thus prevents (5) from blowing up as ν −→ 0 by suppressing the unstable mode.

We note that this mode corresponds to a single element in the filter basis suggested in [3]. One
can easily suppress more elements in this basis in order to construct smoother filters as suggested,
for example, in [3, 6, 8]. However, our early experiences and asymptotic analysis (ν −→ 0 in (5))
indicate that slight suppression of just the Nth mode is sufficient to stabilize the lPN − lPN−2

method at moderate to high Reynolds numbers.
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