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Abstract- For tracking systems with a uni- 
form data rate and stationary measurement 
noise, non-maneuvering targets can be 
rately tracked with a steady-state Kalman ffl- 
ter. The steady-state Kalman filter, which can be 
viewed as equivalent to an alpha-beta filter, has 
been widely applied to many different systems. 
A means of selecting the fflter coefacients was 
proposed by Kalata using Kalman filter consid- 
erations. A n  alternative method based on noise 
reduction ratios is presented in this paper. Using 
a design criteria with the Kalata relation, opt& 
mal filter coefacients can be selected for specific 
applications. This method genedizes curreat 
methods for selecting the fflter coefficients. 

I. INTRODUCTION 

With a tracking radar, it is possible to measure the 
position of the target directly, but it is not possi- 
ble to  measure the velocity of the target directly. A 
means of estimating the future positions and veloc- 
ities of the target is needed. Some of the earliest 
filters used in tracking radars are the a - /? filter 
and the a - /? - 7 filter [l]. The variable gain a - /? 
filter combines elements of the Kalman filter [2] [3]. 
The a - /? filter has found application when large 
numbers of objects are to  be tracked. The tracking 
equations for the a - P filter consists of two parts: 
prediction equations, which are given by 

z p (  k )  = z8 (k - 1) + 2)s (k - 1)T (1) 

and smoothing equations 

where 

s,(k) smoothed position at the k-th interval 

z p ( k )  predicted position at the k-th interval 

zCm(k) measured position at the k-th interval 

v , (k)  smoothed velocity at the k-th interval 

vp(k )  predicted velocity at the k-th interval 

T radar update interval or period 

a, /? filter weighing coefficients 

These equations are onedimensional, but can be 
extended t o  three dimensions by substituting succes- 
sively y and z for z in Eqs. (14). The filter equa- 
tions are usually analyzed in one dimension and the 
resulting analysis is extended to  three dimensions 
with the assumption that this gives similar results. 

The first major advance in using the tracking 
equations was to find a means to  optimally select 
a value for P in terms of a. The functional relation- 
ship between /? and a was derived by [4] using a com- 
bination of 2-transforms and variational calculus. 
Benedict derived an optimal relationship between 
the coefficients a and /?, the so called Benedict- 
Bordner relation 

This relationship is optimal in the sense that it is 
a compromise between the twin goals of good noise 
reduction which requires small a (and thus, small 
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p), and good tracking through maneuvers which re- 
quires a larger p. The noise reduction ratio for the 
smoothed position is given by 

2a2 + P(2 - 3 4  
K Z ( O )  = 4 4  - 2(Y - p) 

while the noise reduction for the smoothed velocity 

Thus with measurement noise with variance On, the 
output of the filter, for the smoothed velocity for 
example, has a reduced variance &$)un. 

A means for selecting a was introduced by Kalata 
[5] who defined a variable I', known 8s the track- 
ing index. The tracking index is a function of the 
assumed target maneuverability variance U$ (devia- 
tion from modeled behavior or the process noise in a 
Kalman filter) and the measurement noise variance 
U:, e.g. 

R 

In addition, he suggested using the relationship be- 
tween a and P 

, L ~ K  = 2(2 - (Y) - 4=, (9) 

which is more useful in steady state conditions. Note 
the Kalata and Benedid-Bordner two relationships 
are numerically equivalent for a < .4. 

Note by following the Kalata relationships, it is 
possible to  implement an (Y - ,B filter that has nearly 
identical performance characteristics to a two state 
Kalman filter. While there is no great advantage 
to  this for a simple tracking system that is tracking 
fewer than ten objects at a time, there is consider- 
able advantage to the cy - p filter implementation of 

a Kalman filter in a rich tracking environment for 
real time implementation. With this said, there are 
alternative principles that can be introduced into 
the design of an cy - p filter so that it is no longer 
entirely equivalent to a steady state Kalman filter. 

The process noise is an edifice that was con- 
structed in order to obtain solutions to  the gain 
equations. It reflects an unknown, namely the noise 
associated with target motion, rather than the mea- 
surement of the target motion which is measured 
from the sensor. It reflects a decomposition of a 
noise process into two components, sensor measure- 
ment noise and target motion noise. Under some cir- 
cumstances such an artificial deconstruction might 
be useful as in the case of air-to-air radars. It is 
somewhat artificial in nature, and thus less adap- 
tive than other criteria that can be introduced in 
order to  accomplish a tracking goal. Since the de- 
velopment of the Benedict-Bordner relation and the 
Kalman filter were almost concurrent, the ideas used 
by Benedict to  arrive at his relations were largely 
ignored since apparently better results could be ob- 
tained from the Kalman filter. Thus, the possibility 
of using a design principle that replaces the pro- 
cess noise as a selection criteria for the gains was 
ignored because of the introduction of the Kalman 
filter's process noise models. We propose the intro- 
duction of different criteria to  replace the process 
noise model as a means of increasing the generality 
of the Kalman filter structure to deal with a diverse 
environment of threats while at  the same time main- 
taining the other aspects of the Kalman filter. 

11. INTRODUCTION OF COST FUNCTIONS AS A 
DESIGN CRITERIA FOR ALPHA BETA 

FILTERS 

The response of an a - p filter to a linear accel- 
eration produces the model input produces three 
terms; a transient term, a lag, and the model input 
term [6]. The lag is a bias, so the expected value 
E of the steady state response E[z,(k) - zm(k)] 
is the lag. Similarly, E[(z , (k )  - ~ ~ ( k ) ) ~ ]  is equal 
to K,(O)a; + -?LzGp and E[(v,(k) - ~ ~ ( k ) ) ~ ]  = 
K,(O)a: + L $ a p .  Note that this is based on the 
assumption that the noise is zero mean and has a 
variance 0:. This allows one t o  define a cost or ob- 
jective function for the smoothed velocity 

&(alp) = a;Kv(o) + (; - (10) 
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This can be written in terms of T (r = 
the Kalata relationship as 

using 

(11) 
2a2(1 - 793 r2 + b2- r( l  + T )  ( 1  - T ) 2  

Jv(r) = 

or 

+ r2U2 
JV (4 2 P ( u , a , r )  = - = 

U 2  U( U + 1) ( 1  + 2u) 
(12) 

where a = ?f , U = &, I? = q, and b = %T. 
This cost function can be minimized with respect t o  
U ,  which gives the optimal value U ,  

1 + 6u, + 621: =r$& (13) 
U* (U* + 1)2( 1 + 2u*)2 

This function can be solved for rv(u*) by numerical 
methods. Note this r v  is a pseudo tracking index. 
An alternative cost function based on the noise re- 
duction ratio and the position lag is 

or 

Minimizing the cost function with respect to U gives 

(16) 
2 + 3 ~ *  2 2 ,  2 

( 1  +u*)2(1+ 2u*)2 - -TU*' 
where r$ is the same as above. Numerical methods 
can be used to  determine U* = u(rp). 

To compare the results of using different criteria 
for selecting a, one can, of course, use simulations 
t o  study the details of what is happening during the 
entire tracking process. Bounds on the performance 
can be obtained by examining the cost functions as 
a function of a. The normalized cost functions for 
the velocities, which are evaluated in terms of their 
respective tracking indices I'(u), is for the Kalata 
relationship P(u, U = 1,I'K) = Ck 

(17) 
2 4 

P -  +-- 
K -  u(u+1)(1+2u)  (u+1)2 

while the velocity optimized relationship is 
Cv(u ,a  = l,rv) = C; 

(18) u(u+1)(1+2u) u(u+1)2(1+2u)2 
2 1 + 6u  + 6u2 cv, = + 

7 

6 

.K 
l 4  

;3 
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Figure 1 - Velocity Cost Functions 

A graphical comparison of the two velocity cost 
functions in Figure I shows that Cv < CK for a 
in the range 0 5 a 5 -95 which indicates a sig- 
nificant improvement in reduction in cost over con- 
ventional selection methods. The normalized cost 
functions for the positions, which are evaluated in 
terms of their respective tracking indices I'(u), is for 
the Kalata relationship CP(u,u, = 1 , I ' r~ )  = PK 

(19) 
1+3u U2 

cg = (U + 1) ( 1  + 221) + 2(u  + 1)2 

while the position optimized relationship is 
Cp(u,unl,rp) = Pp 

(20) 
1+3u ( 2  + 3u)u2 

(U + 1)(1+ 2u) + 2(u  + 1)2(1+ 2 4 2  
Pp = 

A graphical comparison of the two position cost 
functions in Figure I1 shows that cp < cK for a 
in the range 0 5 a 5 -95 which indicates an im- 
provement using the position minimization criteria 
over the conventional selection method. 

An alternative to  the previous criteria is to  base 
the filter coefficient selection on the assumption that 
there is no plant noise, but instead a deterministic 
bias due to  the target maneuvering. The output 
of the filter is the bias Lv@T, so the criteria to 
minimize is 
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Figure 2 - Postion Cost f indions 

or 
2 

+ r u  (22) a u(u + 1) (1 + 22L) 
using the previous notation. Minimizing Eq. (21) 
for U gives 

which can be readily solved for U = us@'), the opti- 
mal value, using root solvers in MATLAB. Then a 
in 
I 

2% + 1 a =  
(l+u*)2' 

which is the optimal one for the criteria in Eq. (22). 
A direct comparison between this criteria and the 
others is not possible since they are based on differ- 
ent assumptions, however the a obtained by using 
Eq. (24) is virtually identical to the one obtained 
using Eq. (12). This suggests that using either one 
of these is preferable when a bias (deterministic or 
random) is present. 

Different cost functions other than the ones above 
are useful under some circumstances. If there is con- 
cern about transient effects that occur while the tar- 
get is accelerating replacing the lags by twice their 
value includes this effect since the transient response 
is always less than or equal t o  the lag. Another pos- 
sibility is to  weight the lag by the percentage of time 
maneuvers are expected to  occur. In some cases, it 

is more desirable to minimize the lag in predicted re- 
sponse, so the cost functions of position and velocity 
are combined and then minimized. 

111. EXAMPLES 

One frequently hears that the a-@ filter is too prim- 
itive t o  use in this time of fast computers and the 
Kalman filter. Strictly speaking, this is an example 
of cookbook thinking. In situations where the noise 
is range dependent, the Kalman filter gains always 
converge to steady state and then change slowly as 
the range of the object being tracked changes. Thus 
with proper initialization of the data, the a-p filter 
with a look up table of the coefficients as a function 
of range achieves the same performance as a Kalman 
filter. Unless one is tracking only a few objects, the 
advantage of the a - @ filter implementation of the 
Kalman filter is to be preferred over the conven- 
tional Kalman filter for real time applications. It 
does require some care in the design in terms of un- 
derstanding the operating environment as well as 
careful thought in the underlying design concepts. 

With that understanding, we now consider several 
specific examples. When tracking is done in Carte- 
sian coordinates, the noise is range dependent. Typ 
ically, the noise can be written as us = R a e ,  where 
0 0  is the Sensor angular noise, which is a known 
parameter of the tracking system. Given that the 
range is in kilometers and the angle noise is in milli- 
radians, the noise can be written as a function of 
the range (n) times a constant k. The tracking in- 
dex becomes - 

r=-  
k n  * 

Specific system parameters are then plugged into 
Eq. (25) and the a's are computed. For exam- 
ple, commercial aircraft do not have maneuvers that 
exceed 3g's. We choose other system parameters 
so that the tracking index is r = 9. The ta- 
ble shows the two different a's computed from the 
common tracking index and the resultant costs for 
ranges from 4 - 128 km. 

Two other examples of interest to the tracking 
community can be mapped into the same form as 
the accelerating target with different interpretations 
of the coefficients used to form the tracking index. 
A maneuvering target that has a turning rate of less 
than 15" deg/sec has an acceleration that is equiv- 
alent to  a constant acceleration so the I, in 3. (12) 
can be represented by pow2 where w is the turning 
rate and po is the radius of curvature of the turn. 
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for this specific cast J(a,O). 
lead to  selection criteria d e  

ion. Thus, a more flexible 
can be introduced into a “Kalman filter” 

ows one to  simultaneously track more than 
ype of target class. Note, this idea has been for- 

hadowed to  some extent in a more general context 
in the literature in article by Swerling [7] that sug- Table 1. Cost Functions vrs Range 

The noise is now angular U, + Rae and to  a 98% 
confidence level, a becomes 3aeR/T. Thus this ex- 
ample is completely mapped into the solution in Eq. 
(12) with 

p0w2T2 
3Rae 

rm = -. 
Another example is to  determine the ballistic co- 
efficient of an object. The force on an object un- 
dergoing a ballistic slowdown is F = ipkv2.  This 
force produces an equivalent acceleration term = 

q, which can be used to give the tracking index 
VO 

IV. SUMMARY AND CONCLUSIONS 

Some discussion is need to clarify some points. 
The tracking indexes discussed in this section are 
based on both deterministic and random compo- 
nents, while the Kalata tracking index is based on 
two random components. The Kalata tracking in- 
dex has an acceleration term that is not observable, 
so it is at best an empirical quantity. While the 
minimization criteria uses the deterministic acceler- 
ation as a design criteria and hence it is not directly 
applicable to  a particular tracking example, it is ap- 
plicable to  a class of tracking problems. Namely, if 
one wants to choose the “best” a, in the sense of 
minimizing the cost function, for an upper limit on 
threat accelerations and sensor noise, the velocity 
cost function selection criteria gives better perfor- 
mance than the Kalata selection criteria. Thus it 
should be viewed as an alternative to  the standard 
Kalman filter with a cost function or selection cri te 
ria replacing the plant noise model. 

It is now apparent that the selection of the fil- 
ter coefficients can be viewed as a process indepen- 
dent of the Kalman filter selection criteria, namely 
the process noise. In place of introducing process 
noise, a specified criteria is minimized to  determine 

gests a great deal of ground remains t o  be explored 
along these lines. 
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