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ABSTRACT 
This paper concerns the filter design problem for a recent 

proposed polyphase filter bank with arbitrary number of 
subband channels. According to the perfect reconstruction 
condition for I-D case presented in [ I ] ,  an analytical formula 
for the filter design is developed. Compared with direct 
numerical design algorithms. this analytical formula allows 
one to design the required low-pass FIR prototype filter with 
much less computational complexity and obtain better filter 
bank performance. A design example is given for illustration. 

I. INTRODUCTION 
Polyphase filter banks (PFB) have been successfully used 

to  constitute a multirate signal processing system for splitting 
a signal into N subbands and allowing the resynthesis of the 
signal from the subbands. Current applications are mainly in 
subband coding of speech signals ( 2 ,  31, TDM-FDM trans- 
multiplexing systems [4, 51 ,  and short-time spectral analysis 
[ 6 ] .  Consider the filter design for PFB, many results have 
been reported in the literature (7-141. Most o f  these methods 
employ numerical algorithms directly to minimize the 
associated error measure in filter design process. [ 151 derived 
an analytical formula to represent the error measure. As a 
result. the filter coefficients can be found by a straight 
nonlinear optimization procedure and saving computations 
can be achieved. However. all of these methods have focused 
o n  the design o f  quadrature mirror filters (QMF). 

In [ I ] ,  based on nonsymmetrical frequency band alloca- 
tion in constructing band-pass fdter for subband channels, 
one of the authors has developed a onedimensional (I-D) 
PFB with N axbitrary. Each constructed band-pass filter is a 
nonsymmetrically frequency-shifted version of  a low-pass 
prototype filter. It has been shown in [ 11 that the new PFB 

possesses -me advantages over conventional PFB's. In this 
paper, we concern the filter design problem for the I-D PFB. 
An analytical formula for finding the coefficients of the 
required I-D low-pass FIR prototype filter is derived. Using 
thls formula. one can design the prototype filter with much 
less computations than direct numerical algorithms. Moreover, 
the simulation example shows that the resulted reconstruction 
error is smaller under the same number of  subband channels 
and filter length. 

11. THE PROPOSED ANALYTICAL DESIGN FORMULA 
The basic structure of a I-D filter bank with N subbands 

to  be considered is shown in Figure 1. Its efficient structure 
based on polyphase network and fast Fourier transform has 
been developed in [ I ] .  The band-pass filters H,(w) and H,(w) 
are given as 

h 

respectively. where Gi (w)  = G ( w  - in/N) and G ( w )  denotes 
the I-D low-pass prototype filter. Assume that C ( w )  is linear 
phase. The associated condition on the magnitude response 
of G ( w )  for perfect reconstruction is given by [ 1 ] 

2 N -  1 

k = O  
Z l C ( w  - k n / N ) I 2  = N for 0 < w S 2 n  ( 2 )  

To design the low-pass prototype filter G ( w )  which 
approximates the condition of (2) in some optimum sense, 
we define an appropriate approximation error measure E as 

E = E, + a E ,  (3)  

where E, denotes the ripple energy over the whole frequency 
range and is given as 

2 N -  1 
E, = J:( :o lC (w  - Pn/N) l 2  - N  l 2  dw (4) 
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E, denotes the stopband energy of G(w) and is given as 

The Q in (3) designates the weight between E, and E,. To solve 
the problem of  minimizing E, unconstrained numerical 
optimization algorithms can be employed to  find the filter 
coefficients of G ( w ) .  However, at each iteration, we have to  
compute the Fourier transform of Gi(w), i = 0, 1, . . . . . , 
2N - 1 ,  in older to  compute E, and E,. This requires considerable 
computations and hence leads to substantial computer time 
requirement 

Next, we derive a closed analytical formula to represent 
(3) and turn the optimization problem of (3) into a direct 
search problem of fdter coefficients. Assume that G ( w )  is a 
linear phase FIR filter with length M. 
Then G ( w )  can be expressed as 

= exp (- j (M - 1 )  w/2) 

i f M i s o d d ,  

or 

= exp (- j ( M  - 1) w/2) 

( M - l ) / Z  
( Z d(n)  cos((n- (M - 1)/2) w ) )  , 

n= 0 

if M is even . 

where 

d (( M - 1)/2) = g ((M - 1)/2) , for M odd, 

d (n) = 2g(n) , for 0 < n < ( M - 3)/2 and M odd, 
for 0 < n < M/2 - 1 and M even. 

using (61, we obtain 
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cos(w (m - (M - 1)/2)) 

cos(w (n - (M - 11/21] 

1 ( M - 1 ) / 2  ( M - 1 ) / 2  
= -  Z Z 

2 m = O  n = 0  

d ( m ) d ( n ) ( c o s (  w (m - n))+ 

cos(w ( m + n - M +  1))). (7) 

For the case of odd M, substituting (7) and the following rela- 
tionship 

ZN-  1 

k = O  
Z: exp (j (w - 2nk/2N) a )  

2N exp (jnw) , if n/2N = integer, 

={0 , e k e ,  

or equivalently, 

Z N - 1  

k = O  
Z cos((w -kn/N)P) 

2N cos(fw) , if n/2N = integer, ={ 0 , else, 

into (2) and performing some manipulations yields 

2 N - 1  

k=O 
Z I G ( w  - k r / N ) l '  

( M - 1 ) / 2  ( M - 1 ) / 2  

m = O  n = O  
= N  Z Z d(m) d(n) (A (m, n) + B (m, n)) 

4 F ( w )  (8) 

where 

cos ( (m - n) w ) ,  if (m - n)/2N = integer, 

, else, 
A ( m , n )  = 

c o s ( ( m + n - M + l ) w )  , 

0 , e l = ,  

if (m + n - M + 1)/2N = integer, 

for 0 < m, n < (M - 1)/2. 

use the result of (8) and the following relationship 
Consider theintegral (4). We expand the square term and 

n , i f k = O ,  
0 , else, 

1: c o s ( k w ) d w  = 

to obtain 

~ 

rurtiicr imvrmarivn can ~e mraineu morn ut-. w.  hennern JenKins. 



E, = J; (F’ ( U )  - ? N F ( w )  + N 2 ) d w  

(M - I ) / 2  

n = O  
= N2 n ( I  - ( Z 2d2 (n)) - 2d2 ((M-l)/2) + 

1 ( M - 1 ) / 2  

2 I = O  J = O  r n = ~  n = ~  
- 2 B Z B d(m)d(n)d(i)d( j ) )  (9) 

where the four integers m, n, i. and j must satisfy one of the 
following relationships: 
a. 
b. 
c. 
for  0 Q m. n,i. j < (M - l ) / 1  and integers k l  , k 2 ,  and k, .  
For the E, of ( 5 ) ,  using the following relationship 

m - n = 2Nkl and i - J = 2 2Nk, 
m - n =  2Nk, and i + j  - M + 1 = + 2 N k 2  
m + n  - M +  1 = 2Nk, and i + j  - M +  1 = + 2 N k ,  

n ( 1  - I/N) 
(- sin(kn/N))/k , if k # 0, 

, i f  k = 0 

(10) 
J z , N  c o s ( k w ) d w  = 

we obtain 

1 ( M - 1 ) i . Z  ( M - l ) / 2  

2 m = ~  n = ~  
- -  z Z d(m) d(n) (C (m - n) + 

where C (0 )  = n ( I  - I/N), 

C (k) = (- sin (kn/N))/k , if k/N # integer 

C ( k )  = 0 , if k f 0 and k/N = integer. 

From (9) and ( 1  i), we note that the approximation error 
measure E can be expressed as a closed analytical formula 
in terms of the filter coefficients, g(O), g( l ) ,  . . . . . , g(u - I ) .  
On the other hand, for the case of even M ,  following the similar 
procedure. we can obtain the similar result. Therefore, com- 
puting the filter coefficients by minimizing E can be performed 
by utilizing a simple direct search method. 

111. EXPERIMENTAL RESULTS 
In this section, we present an example for illustration. 

The filter length M and the weight (I were set to 28 and I ,  
respectively. The number N of subbands was 3. Based on the 
proposed analytical formula, we employed a simple gradient 
method to iteratively search the filter coefficients, g(O), g( I ) ,  
. . . . . , g(27). The number of iterations was 200. For com- 
parison, the direct numerical optimization of (3) was also 
performed. Figure 2 shows the frequency responses of C(w) 

using both methods. The corresponding reconstruction errors 
are shown in Figure 3. Table 1 compares the computational 
complexity in terms of the number of operations required at 
each iteration step. Table 2 lists the computed filter coef- 

ficients, g(O), g( l),  , , . , , , g( 13), for the simulation of linear 
phase FIR filter design. From these results, we observe that 
the proposed analytical design formula is superior to the direct 
numerical optimization algorithm. 
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Figure 2. The Magnitude Response of G(u) 
- Using The Analytic Design Formula ----- Using A Conventional Numerical Algorithm 
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Figure 3. Reconstruction Error Bet::een The Output and Input 
of 'Ihe System of Fig. 1 - Using The Analytic Design Formula 

Using A Conventional Manerica1 Algorithm 
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Table 1 The Cunputational Canplexity 

Algorithn 
Analytical 
Foxnula ! I 1514 1 3723 

Table 2 The Filter Coefficients 

g(0) = -0.30155435OE-02 
g(1) = -0.44925447602 
g(2) -0.314682306602 
g(3) = 0.260439676602 
g(4) = 0.915403406602 
g(5) = 0.899816595602 
g(6) = -0.255303234602 

g(8) = -0.253663825601 
g(7) = -0.198699317601 

g(9) = 0.255687792602 
g(10)= 0.750467467601 
g(ll)= 0.181366878E 00 
g(12)= 0.2886486573 00 
g(13)= 0.3562212753 00 
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