IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 15, AUGUST 1, 2013

3799

Filter Design With Secrecy Constraints:
The MIMO Gaussian Wiretap Channel
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Abstract—This paper considers the problem of filter design
with secrecy constraints, where two legitimate parties (Alice and
Bob) communicate in the presence of an eavesdropper (Eve)
over a Gaussian multiple-input-multiple-output (MIMQ) wiretap
channel. This problem involves designing, subject to a power
constraint, the transmit and the receive filters which minimize
the mean-squared error (MSE) between the legitimate parties
whilst assuring that the eavesdropper MSE remains above a
certain threshold. We consider a general MIMO Gaussian wiretap
scenario, where the legitimate receiver uses a linear zero-forcing
(ZF) filter and the eavesdropper receiver uses either a ZF or
an optimal linear Wiener filter. We provide a characterization
of the optimal filter designs by demonstrating the convexity of
the optimization problems. We also provide generalizations of
the filter designs from the scenario where the channel state is
known to all the parties to the scenario where there is uncertainty
in the channel state. A set of numerical results illustrates the
performance of the novel filter designs, including the robustness
to channel modeling errors. In particular, we assess the efficacy
of the designs in guaranteeing not only a certain MSE level at
the eavesdropper, but also in limiting the error probability at the
eavesdropper. We also assess the impact of the filter designs on the
achievable secrecy rates. The penalty induced by the fact that the
eavesdropper may use the optimal nonlinear receive filter rather
than the optimal linear one is also explored in the paper.

Index Terms—Error Probability, filter design, MIMO, MSE,
mutual information, physical-layer security, secrecy, Wiener,
wiretap, ZF.

I. INTRODUCTION

HE issues of privacy and security in wireless communi-
cation networks have taken on an increasingly important
role as these networks continue to flourish worldwide. Tradi-
tionally, security is viewed as an independent feature with little
or no relation to the remaining data communication tasks and,
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therefore, state-of-the-art cryptographic algorithms are insensi-
tive to the physical nature of the wireless medium.

However, there has been more recently a renewed interest
on physical-layer security which, motivated by advances on in-
formation-theoretic security, calls for the use of physical-layer
techniques exploiting the inherent randomness of the communi-
cations medium to guarantee both reliable communication be-
tween two legitimate parties as well as secure communication
in the presence of eavesdroppers.

The basis of information-theoretic security, which builds
upon Shannon’s notion of perfect secrecy [1], was laid by
Wyner [2] and by Csiszar and Koérner [3] who proved in
seminal papers that there exist channel codes guaranteeing
both robustness to transmission errors and a certain degree
of data confidentiality. In particular, Wyner considered the
wiretap channel where two legitimate users communicate in
the presence of an eavesdropper. Wyner characterized the
rate-equivocation region of the wiretap channel and its secrecy
capacity. Ever since, the computation of the secrecy capacity
of a range of communications channels has been an important
research topic [4].

For example, in [5] the authors considered a scenario where
both the main and the eavesdropper channels are additive white
Gaussian noise (AWGN) channels. They showed that the se-
crecy capacity of such so-called Gaussian wiretap channel is
equal to the difference between the main and the eavesdropper
channel capacities and, therefore, confidential communications
require the Gaussian main channel to have a better signal-to-
noise ratio (SNR) than the Gaussian eavesdropper channel.

Motivated by the emerging wireless applications, the evalu-
ation of the secrecy capacity of wireless fading channels with
single or multiple antennas at the transmitters, receivers and/or
eavesdroppers has also attracted considerable attention as well.

Space-time signal processing techniques for secure commu-
nications over wireless links were introduced in [6]. The outage
secrecy capacity of slow fading channels was characterized in
[7], where it was shown that fading alone could guarantee in-
formation-theoretic security, even when the eavesdropper av-
erage SNR is higher that the legitimate receiver average SNR.
In turn, the ergodic secrecy capacity of fading channels was in-
dependently characterized in [8], [9] and [10]. In [11] Parada
and Blahut considered the secrecy capacity of several degraded
fading channels. The characterization of the secrecy capacity of
multiple-input-multiple-output (MIMO) channels, which repre-
sent a model for multiple-antenna channels, can be found in
[12]-[14] and [15]. The computation of optimal power allo-
cation policies and input covariances for the MIMO Gaussian
wiretap channel are covered in [16] and [17], respectively.

Another key aspect in the MIMO wiretap problem is the
availability of channel state information (CSI). This problem is
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addressed in various works under different CSI assumptions.
When the CSI about the various channels is assumed to be
known to all the parties, several secrecy capacity achieving
schemes, based on optimal beamforming designs that leverage
the general singular value decomposition (GSVD) of the main
and eavesdropper channel matrices, have been proposed (e.g.,
[15] and [18]). When the CSI about the eavesdropper channel is
assumed to be limited or not available, artificial noise schemes
have been proposed instead [19], [20], where a fraction of
the total power is used for reliable communication between
the legitimate transmitter and the legitimate receiver and the
remaining fraction of the total power is used to jam the eaves-
dropper. For example, the authors in [21] and [22], set up a
problem whose objective is to determine the minimum transmit
power necessary to guarantee a certain quality of service
(QoS) between the legitimate transmitter and the legitimate
receiver—the remaining power out of the total power budget
is then used to jam the eavesdropper using artificial noise type
of techniques.

One key advantage of artificial noise transmission relates
to the fact that the eavesdropper channel knowledge is not
required. Nonetheless, the idea of transmitting artificial noise
in the null space of the main channel in order to degrade the
eavesdropper channel has also its limitations. On the one hand,
there is an inherent trade-off between data rate and the ability
to impair the eavesdropper [19], so that one may not take full
advantage of the spatial multiplexing ability of MIMO systems.
On the other hand, if the null space of the main channel overlaps
considerably with the null space of the eavesdropper channel,
the artificial noise approach might lead to limited gains in
security.

This paper, at the heart of the novelty of the contribution,
addresses the physical-layer security problem from the estima-
tion-theoretic rather than the information-theoretic viewpoint.
We consider the problem of filter design with secrecy constraints
in the classical MIMO wiretap scenario consisting of two le-
gitimate parties that communicate in the presence of an eaves-
dropper, where the objective is to conceive transmit and re-
ceive filters that, subject to a power constraint, minimize the
mean-squared error (MSE) between the legitimate parties whilst
assuring that the eavesdropper MSE remains above a certain
threshold. Interestingly, this class of problems, which differs
from previous approaches in physical-layer security in the liter-
ature (see, e.g., [15], [18], [19], [21] and [22]), represents a nat-
ural generalization of filter design without secrecy constraints
for point-to-point communications systems (e.g., [23]-[28]).

One notable merit of this approach, in contrast to the
information-theoretic work that relies on non-constructive
random-coding arguments to demonstrate that there exist se-
crecy capacity achieving codes, is that it leads to realizable
designs which can be easily implemented in practical systems.
Instead, practical secrecy capacity achieving code designs are
known only in some scenarios, which include: i) the main
channel is noiseless and the eavesdropper channel is a binary
erasure channel [29], [30]; ii) both channels are binary input
symmetric discrete memoryless channels (DMC) and the
eavesdropper channel is degraded with respect to the main
channel—where polar codes are used [31], [32]; and iii) the
eavesdropper is constrained combinatorially [33].
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Fig. 1. A possible application scenario of the problem of filter design with se-
crecy constraints: ”Secure” video broadcasting.

Nonetheless, it is relevant to pause to reflect on the opera-
tional relevance of this new metric, in view of the fact that it is
the norm, in the information-theoretic security literature, to use
equivocation rather than MSE to measure security. In fact, the
use of the MSE in Jieu of equivocation does not guarantee per-
fect information-theoretic security in the sense of [1], [2] and
[3]. We view the design of the filters based on the MSE criteria
as a means to provide additional confusion in a communications
system.

The rationale of the new design approach is then based on the
fact that some applications require a MSE below a certain level
to function properly, so that this approach would impair further
the performance of the eavesdropper by imposing a threshold
on its MSE level. Note also that the bit error rate (BER), which
is a very important figure of merit in a communications system,
is typically monotonically increasing with the MSE, so that a
threshold on the MSE may also translate into a threshold in the
BER.

One particular scenario that suits this design approach re-
lates to wireless broadcasting where a service provider pro-
vides different services, e.g., different video streams, to dif-
ferent users/subscribers (see Fig. 1). Here, the service provider
(the legitimate transmitter) needs to guarantee that a user that
has subscribed to the service (the legitimate receiver) has ac-
cess to a high quality version of the video stream whereas a
user that has not subscribed to the service (the so-called eaves-
dropper) has only access to a very poor quality version of the
video stream. The use of a distortion metric, such as the MSE
or the BER, instead of equivocation, is then entirely appro-
priate for this class of applications, offering an alternative to the
cryptographic methods used by Content Access (CA) systems
[34]-[36].

It turns out thus that the filter design with secrecy constraints
problem is to be understood broadly as a filter design problem
with distortion constraints. However, in order to connect this
work with the large body of work of physical—and information-
theoretic security whose overarching aim is to impair the eaves-
dropper, we—in a somewhat abusive use of language—use the
notion secrecy rather than distortion.

This paper is structured as follows: Section II defines the
problem. Section III considers the design of the transmit filter
when ZF filters are used at both the legitimate and the eaves-
dropper receivers. In turn, Section IV considers the design of
the transmit filter when the eavesdropper uses an optimal linear
filter while the legitimate receiver is restricted to the use of a ZF
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Fig. 2. MIMO Gaussian wiretap channel model.

receive filter. Section V provides some generalizations of the
problem of filter design with secrecy constraints, from the sce-
nario where the state of the channels is known exactly to all the
parties (i.e., the legitimate transmitter, the legitimate receiver
and the eavesdropper) to the scenario where there is uncertainty
in the channel state. Section VI shows various numerical results
to illustrate the impact of the filter designs on both the reliability
and security criteria, evaluating, not only the MSE, but also the
bit error rate and the achievable secrecy rates yielded by the de-
signs. The main contributions of the manuscript are summarized
in Section VII.

Notation

We use the following notation: boldface upper-case letters de-
note matrices or column vectors (X) and italics denote scalars
(«); the context defines whether the quantities are deterministic
or random. The notation M > 0 is used to denote a positive
definite matrix and M > 0 denotes a positive semidefinite ma-
trix. The symbol I represents the identity matrix. The operators
Il - II?, tr{-} and V represent the /s-norm, the trace operator
and the gradient operator, respectively. The operators ()Jr and
(~)Jr denote the Hermitian transpose operator and the Pseudo-In-
verse operator, respectively. The operator £ (-) represents the
expectation. CA (p, ¥) denotes a circularly symmetric complex
Gaussian random vector with mean z and covariance 2.

II. PROBLEM STATEMENT

We consider a communications scenario where a legitimate
user, say Alice, communicates with another legitimate user, say
Bob, in the presence of an eavesdropper, Eve (see Fig. 2).

Bob and Eve observe the output of the MIMO channels given,
respectively, by:

Yu =HyHrX + Ny (D
Yy =HH;X + Ng )

where Y € C"¥ and Yg € C"F are the vectors of receive
symbols, X € C™ is the vector of independent, zero-mean and
unit-variance transmit symbols, and N, € C™ and Ny €
C"# are circularly symmetric complex Gaussian random vector
with zero mean and identity covariance matrix!. The nz; X m
matrix H s and the n g x m matrix H g contain the deterministic
gains from each main and eavesdropper channel input to each

_ IThe models in (1) and in (2) follow from the more general models Y ; =
HyH, X + Ny and Y, = HoH,;- X + Ny, respectively, where N
and N g are circularly symmetric complex Gaussian random vectors with mean

& (N M) =0and & (N p) = 0, and covariance matrices & (N M NL) =
X, and & (NENL) = X, respectively, by using pre-whitening filters
i,e.,YM = ER,}‘;ZYM’ = EELJQHJ\IHTX +2;1’,\/;2NM = HMHTX +

Nuy and Yz = HpHoX £ Ny These transformations are information
lossless [37].
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main and eavesdropper channel output, respectively. The m xm
matrix Hr represents Alice’s transmit filter.

We assume that Hy;Hy and HgH7 are full column rank,
which implies that n3; > m and ng > m. This is necessary to
guarantee the existence of some solutions. We further assume
that, in a realistic scenario, the channel matrices Hy; and Hg
are not a multiple of each other. We also assume that the channel
state is known by all the parties, i.e., Alice, Bob and Eve have
perfect knowledge about the channel matrices Hy; and Hg.
This is often a common assumption in the physical layer secu-
rity literature (see e.g., [7] and [38]). The assumption that the
legitimate receiver knows the state of the main channel and the
eavesdropper receiver knows the state of the wiretap channel is
realistic, because the receivers can always estimate the channels
in slow fading conditions. The assumption that the transmitter
knows the state of the main channel and, more importantly, the
wiretap channel or that the legitimate receiver knows the state
of the wiretap channel and the eavesdropper knows the state of
the main channel can be justified in wireless networks where the
eavesdropper is another network active user (e.g., in the scenario
of Fig. 1). In particular, in time division duplex (TDD) environ-
ments Alice can estimate the state of Bob’s and Eve’s channels
and inform the receivers accordingly. However, we will also
generalize the framework to incorporate possible channel un-
certainties in the sequel.

Bob’s and Eve’s estimate of the vector of input symbols are,
respectively, given by:

Xy =Hry Yy 3)
Xg=HgpgYgp 4

where the m X npy; matrix Hg 3; and the m x ng matrix Hy g
represent Bob’s and Eve’s receive filters, respectively.

In this setting, we take, as a performanpe metric, the MSE
between the estimate of the input vector X and the true input
vector X given by:

MSE = & [||X7X||2}. )

The objective is to design, for specific receive filter choices,
the transmit filter that solves the optimization problem:

min MSEy; = € [||X - XM||2} )

subject to the security constraint:
MSEx = € [IX — Xgll?] 25 ™)

where v represents an MSE threshold, and to the total power
constraint:

wr {HHL < P, ®)

where P, , represents the available power.

We restrict our attention to two specific design scenarios:
i) the situation where both the legitimate receiver and the
eavesdropper receiver are constrained to obey ZF constraints;
and ii) the situation where the legitimate receiver uses a ZF
filter whereas the eavesdropper receiver uses the optimal linear
Wiener filter. For these receiver filter choices, the optimization
problem in (6) —(8) is convex thus enabling the characterization
of optimal designs; for other receiver filter choices, and to the
best of our knowledge, the optimization problem in (6) —(8) is
only convex for special scenarios, e.g., the degraded parallel
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Gaussian wiretap channel, or the degraded MIMO wiretap
channel (see [39] and [40]) 2.

We recognize that our formulation assumes the so-called
eavesdropper to perform a certain linear action whereas the
traditional information-theoretic formulation—in view of the
fact that it is based on the equivocation metric—pdoes not
assume the eavesdropper to perform any specific operation.
However, in the scenario where the eavesdropper is another
user of the network as in Fig. 1, it seems appropriate to assume
a certain action by this user. We also recognize the fact that
a more sophisticated eavesdropper would possibly leverage
nonlinear techniques to estimate the information. This issue is
also discussed in the sequel.

It is also important to note that, and in contrast to the artificial
noise approach in [19]-[22] and [41], our filter design approach
does not impose a limitation on the ability of transmitting infor-
mation along all the dimensions that the MIMO channel has to
offer and, therefore, we can expect to achieve higher data rates.
However, by imposing a threshold on the eavesdropper MSE
we may also naturally constraint the performance of the main
channel.

III. ZERO FORCING FILTERS AT THE RECEIVERS

We now consider the scenario where both the legitimate re-
ceiver and the eavesdropper receiver use ZF filters, thus obeying
the ZF constraints given by:

HzpyHyHr =1 ©
HppHpHy =1 (10)

The rationale for including the ZF constraints in (9) and (10) is
to eliminate crosstalk between the various streams (e.g., [42]).
Note also that the performance of ZF linear receivers is equiv-
alent to that of optimal Wiener linear receivers in the regime
of high SNR. Yet, one may still argue that a eavesdropper will
always adopt the optimal linear receive filter (or the optimal
non-linear receive filter), rather than the sub-optimal ZF receive
filter. These particular cases will be addressed in Section IV and
VIIL.

A. Optimal Receive Filters

Let us consider the design of the receive filters. Bob uses the
receive filter that, for any fixed transmit filter Hz, minimizes:

MSEy = € [||X - XM||2} =&

X — Hgpy Yul?] (11)

2We prove the convexity of the filter design with secrecy constraints opti-
1

mization problem by using the change of variables Z = (HTH;> . This

change of variables leads to convex objective functions as well as convex fea-
sible regions when both the legitimate receiver and the eavesdropper receiver
use ZF filters (see (17) , (18) and (19) ) and when the legitimate receiver uses
a ZF filter but the eavesdropper receiver uses a Wiener filter (see (43), (44)
and (45)). However, such a change of variables does not lead immediately to a
convex optimization problem when both the legitimate receiver and the eaves-
dropper receiver adopt the Wiener filter (the feasible region is still convex but
the objective function is concave rather than convex). Thus—with the exception
of [39] and [40] — it is not entirely clear whether other change of variables lead
to a convex optimization problem in such a case.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 15, AUGUST 1, 2013

subject to the ZF constraint in (9) and Eve uses the receive filter
that, for any fixed transmit filter H7, minimizes:

MSEp = £ [IX — Xpl’| = € [IX - HapYs[?] (2

subject to the ZF constraint in (10) .

In particular, the receive filters, which follow immediately
from (9) and (10) , are given by [37]:

Hy

M

-1

= (HyHr)" = (alalHyEy)  HlED 03)
Tgt et et

5. = (HgHp)" = (HTHEHEHT) HHL (14)

The MSEs in the main and eavesdropper channels, upon sub-
stituting (13) and (14) in (11) and (12), respectively, are then
given by:

MSEn =€ [||IX — Hj,, Y]

—1

—tr { (w1, ) } (15)
MSEp = £ [||X — Hy, Ygl]

—tr { (H;HLHEHT)—I} . (16)

B. Optimal Transmit Filter

In view of (15) and (16), the form of the optimal transmit filter
corresponds to the solution of the optimization problem:

—1
lﬁiTn tr{(H;HLHMHT) } (17)
subject to the constraints:
Tt o
trq (AP HLHEH,) >4 (18)
tr {HTH,TF} < Py, (19)

and HyHI = 0 (Note that H7H, > 0, because H,Hy and
HzH7 are full column rank by assumption). Note that—due
to the channel knowledge assumptions—the legitimate trans-
mitter, the legitimate receiver and the eavesdropper can all set
up this optimization problem in order to determine the transmit
filter and hence the receive filters via (13) and (14).

It is now possible to reduce this optimization problem to a
standard convex optimization Problem by adopting the change

of variables Z = (HTH;) , thereby paving the way to the
characterization of the optimal transmit filter.

The following Theorem, which stems directly from the
Karush-Kuhn-Tucker optimality conditions [43], defines the
form of the optimal transmit filter.

Theorem 1: Assume that the legitimate transmitter, the le-
gitimate receiver and the eavesdropper know the exact channel
matrices Hp; and Hg. Assume also that the legitimate receiver
and the eavesdropper receiver use ZF filters. Then, an optimal
transmit filter that solves the optimization problem in (17)—(19)
is, without loss of generality, given by the equation at the bottom



REBOREDO et al.: FILTER DESIGN WITH SECRECY CONSTRAINTS: THE MIMO GAUSSIAN WIRETAP CHANNEL

of the page, where the value of the Lagrange multiplier » is such
that:

tr { (HEHE> -1 ((HLHM)_l » (HLHE) _1> _1/2}
i tr{( (H“TMHM) S (HEHE) 1) 1/2} =7+ Pauy. (20)

Note that the right multiplication of the transmit filter in The-
orem 1| by any unitary matrix produces another optimal filter.
Proof: By (ionsidering the change of variables
Z = (HTH;) it is possible to rewrite the optimiza-
tion problem in (17)—(19) as follows:

min tr { (HLHM) - Z} @1

-1
subject to the constraints tr{(HLHE> Z} > 7,

tr {Z’l} < Payg, and Z > 0. Note that this represents a
standard convex optimization problem, so that the solution
follows directly from the Karush-Kuhn-Tucker optimality
conditions [43].

The Lagrangian of the optimization problem is given by:

S(Zov. ) =tr { (HLHM)A Z}

iy (fy—tr{(HTEHE>—1 Z})

+u(tr{Z7} = Payy) (22)

where v and ¢ are the Lagrange multipliers associated with the
problem constraints. The Karush-Kuhn-Tucker optimality con-
ditions are given by:

VoL (Z v p) = (HLHMY1

v (HLHE) -
(23)
(24)

(25
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—1
and Z > 0,tr{<H};HE) Z} > 4, tr{Z 1) < Pa,.

The Karush-Kuhn-Tucker optimality conditions reveal that
the solution of this problem exhibits two distinct regimes only:
i) the regime where the secrecy constraint is not active (v = 0)
; and ii) the regime where the secrecy constraint is met with
equality (v > 0)3.

When v = 0, then (23) reduces to:

-1
(ulHy) - pz 2 =0 (26)
and the optimal solution is given by:
.I. —-1/2
tr { (HLMHM) } T 1/2
7" = 5 (mLHN) . @)
avyg

This solution is valid if and only if:

tr { (HLHW) 1/2}

tr { (HLHx) - Ginim 1/2} >1.

P(l'Ug
(28)
On the other hand, when v > 0, then (23) reduces to:
-1 -1
(HLHM) —v (H],LEHE> —uZ72=0  (29)
and the optimal solution is given by:
1
_I_ —1 _i_ —17 2
wd [(H}Hy)  —v (HLHE)
7Zr =
Pavg
1
_i_ —1 _i, —17 2
X (HMHM) —v (HEHE) . (30)

3In each case the power constraint is met with equality i.e., # > 0. Note that
a scenario where the # = 0 would require either the channel matrices to be a
multiple of each other (¢ > 0 and #+ = 0), or HLHM =0 = 0and
o =0).

T
Dﬂ*
|

tr{ (HNJrfN,)E}tr { (HLHE)J (HLHM)

[

} “HLHM} o [mba] 1} "
-

(S
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This solution is valid if and only if:

tr { (HJQ[HM) 1/2} -1 1/2
tr{(HTEHE> (HLHM> }

pm;g
<7

€3]

|

Note that the optimal transmit filter obeys a simple opera-

tional interpretation. In the regime where the secrecy constraint
is inactive, i.€.,:

i { (HTLIHU) 1/2} » y
o (k) () ) >

Pavg
(32)
which typically occurs for low available powers, the filter per-
forms two simple operations: i) conversion of the main channel

(ie., HyHy;) into a set of parallel independent channels
whose power gains correspond to the eigenvalues of the matrix

H;,H},,; and ii) power allocation, by dividing the total power
inversely proportionally to the power gains of the set of parallel
channels. This solution corresponds to the solution in [37].

In contrast, in the regime where the secrecy constraint is ac-
tive, 1.e.,:

tr { <HTU H,,
P,

avg

)1/2}
tr { (uLH:) - (|l ) 1/2} <

(33)
which typically occurs for high available powers, the filter can
be seen to perform the operations: i) conversion of an equiva-

-1
lent channel (i.e., (HLHM) —v (H};HE> ) into a set of
parallel independent channels whose power 1gains correspond to

the eigenvalues of the matrix (H],;H u) —v (H],LEH E)
and; ii) power allocation, by dividing the total power inversely
proportionally to the power gains of the set of parallel channels.
This result, which is based on the equivalent channels (rather
than on the main channel), immediately generalizes the result
in [37].

Note also that, in the scenario where both receivers use ZF
filters the power constraint is always active, i.e., the transmitter
uses all the available power. We will observe in the sequel that
this is not the case in other scenarios.

C. Computational Procedure

The computation of the optimal transmit filter embodied in
Theorem 1 requires finding the solution of the non-linear equa-
tion in (20), in order to determine the value of the Lagrange
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multiplier . We shall now put forth a simpler procedure to de-
sign the optimal transmit filter and hence the receive filters via
(13) and (14), based on the dual of the optimization problem.

Consider again the Lagrangian of the optimization problem
in (22). Consider also the dual function of the optimization
problem in(21):

L{v,u) = Zu;fo L£(Z,v, 1) (34)

where v > 0 and ¢ > 0. It is straightforward to show that the
dual function reduces to the equation at the bottom of the page.

The dual problem of the optimization problem in (21) is now
given by:

n’}’z}lx 2/ tr { ((HKIHM) -1 _y (H};HE> 1) %}

_.U'Paug + 4 (35)

-1

subject to » > 0, o > 0 and ((HJ{IHU)
_i_ -1

—v (HLHE) ) > 0.

We can now employ a two step procedure to express the so-
lution of this optimization problem: i) optimization over z for a
fixed v; ii) optimization over v for the optimal . It is straight-
forward to show that the optimal value of 1, for a fixed v, is
given by:

AN

(36)

p=

Consequently, the dual optimization problem reduces to:

max Pjug (tr {((HLHM> - _ (H]‘LEHE> 1) %}) 2 + vy

1 1
subject to > 0.and ( (HLHa ) — v (HLHE) )to

or, equivalently:
2
}) + vy

o {(tone) "t )

Wi

IIIIZ}X
g
(38)
subject to:
0<v< Auin ((H};HE) (HLHM)A (H]:;HE)
(39)

L(v,p) =

—00, otherwise.

0 tr { ((HLHM)1 —v (HTEHE)l)
<(HLHM)1 — (HTEHE)l) >0

W=

} - /l‘Pu'Ug + vy,
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This is due to the fact1 that the positilve semidefinite
constraint ((HJK[HU) —D(HTEHE) ) > 0

is equivalent to the

o (b () (silme))

where Ay, (M) denotes the minimum eigenvalue of the
positive definite matrix M. The solution to the optimization
problem (38) —(39) can be computed in a straightforward
manner using, for example, the bisection method [44], which
represents a much simpler procedure than any method that
solves the non-linear equation in (20) .

The optimal values of y in (36) and v, which corresponds
to the solution of (38) subject to (39) then define the optimal
transmit filter. In turn, the optimal transmit filter defines the ZF
receive filters through (13) and (14).

constraint v <

-

IV. OPTIMAL LINEAR RECEIVE FILTER AT THE EAVESDROPPER

We now consider the scenario where the legitimate receiver
uses a ZF filter, whilst the eavesdropper receiver uses the op-
timal linear Wiener filter. This corresponds to a generalization
of the previous scenario where both the receivers are restricted
to obey ZF constraints.

A. Optimal Linear Receive Filter Design

Let us consider the design of the eavesdropper optimal linear
receive filter. Eve now uses the receive filter that, for any fixed
transmit filter Hy, minimizes:

MSEg =€ [||IX —HppYg|?] . (40)

This corresponds to the Wiener filter given by (see e.g., [45]):

. -1
Hj = HyHY (T+ HpHAHDHE) . (4D
In turn, the MSE in the eavesdropper channel, upon substituting
(41) in (40), is given by:
1 A
MSEp =trq (I+ HLHEH HY) 0 (42)
Note that the expressions for the legitimate receive filter and

for the MSE in the the main channel are already given in (13)
and (15).

B. Optimal Transmit Filters

We now consider the design of the optimal linear transmit
filter. This, in view of (15) and (42), corresponds to the solution
of the optimization problem given by:

min tr { (HTTHTMHUHT) 1} (43)
subject to the secrecy constraint:
tr { (1+ HLHEHTHl)l} > (44)
and to the power constraint:
w{HHL) < P, (45)
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with HTH; >~ 0. Note that—due to the channel knowledge
assumptions—the legitimate transmitter, the legitimate receiver
and the eavesdropper can also all set up this optimization
problem to compute the transmit filter and receive filters via
(13) and (41).

It is also possible to reduce this optimization problem to a
standard convex optimization problem, by adopting the change

Hr H;L together with the Woodbury
matrix identity [46]. Thus, the optimization problem reduces to:

-1
mzin tr{(HLHM> Z}

subject to the constraints:

of variables Z =

(46)

tr (T} —tr { (HTEHE) (z n (HLHE))l} >y (47)
tr{Z '} < Poug (48)

and Z = 0. The solution follows from the Karush-Kuhn-Tucker
optimality conditions given by:

i)
_ [(Z+ (HJ][:HE))A (HLHE) (z+ (H;[:HE) )1]
—pZ 2=0 (49)
v {tr {I} —tr { (HJ][;HE) (Z + (HTEHE))l} - ny}
=0,r>0 (50)
pPavg —tr{Z71}] =0, p 20 (51)

and Z > 0, tr {I} — tr { (HI:HE) (Z n (HLHE))l} >

v, tr{Z '} < P,,,, where v ans y are the Lagrange mul-
tipliers associated with the secrecy and power constraints, re-
spectively.

It is clear from the Karush-Kuhn-Tucker conditions above
that there are three operational regimes: i) the scenario where
the transmitter can use all the available power without violating
the secrecy constraint, so that the secrecy constraint is not active
(v = 0) and the power constraint is active (x> 0); ii) the sce-
nario where both the secrecy and power constraints are active
(v > 0 and i > 0); and iii) the scenario where the transmitter
cannot use all the available power without violating the secrecy
constraint, so that the secrecy constraint is active (7 > 0) and
the power constraint is inactive (¢+ = 0). Note that this situa-
tion differs from the previous scenario (with ZF filters at both
receivers) where it was possible to use all the power available
without violating the secrecy constraint. The difference derives
from the use of a more powerful receive filter by the eaves-
dropper.

It is difficult to extract a characterization of the optimal filter
design from the Karush-Kuhn-Tucker optimality conditions
above in the general scenario, even though the problem is
convex. Consequently, we concentrate on scenarios i) and iii)
only.
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1) Power Constraint Active/Secrecy Constraint Inactive:
This situation arises typically in a regime of low available
power, due to the fact that the power, injected into the channel,
is not enough to meet or violate the secrecy constraint.

The following Theorem, which stems directly from the
Karush-Kuhn-Tucker optimality conditions above, defines the
form of the optimal transmit filter, in such a regime.

Theorem 2: Assume that the legitimate transmitter, the le-
gitimate receiver and the eavesdropper know the exact channel
matrices Hp; and Hg. Assume also that the legitimate receiver
uses a ZF filter whereas the eavesdropper receiver uses the op-
timal linear Wiener filter. Then, an optimal transmit filter in the
scenario where the power constraint is active whilst the secrecy
constrain is inactive is, without loss of generality, given by:

IS

Hj = o (H Hy ) (52)

Loy

tion of the transmit filter in(52) by any unitary matrix produces
another optimal filter.

Proof: This Theorem follows from the Karush-Kuhn-
Tucker conditions by using the fact that # = 0, so that we can
rewrite (49) as follows:

where o = . Note that the right multiplica-

(rlHL) -~z =0 (53)
|
Note that, as expected, this solution corresponds to the so-

lution embodied in Theorem 1, when the secrecy constraint is

inactive.

2) Power Constraint Inactive/Secrecy Constraint Active:
This is a situation that typically arises in a regime of high
available power; in fact, the use of all the available power
would immediately violate the secrecy constraint.

The following Theorem, which also stems directly from the
Karush-Kuhn-Tucker optimality conditions, defines the form of
the optimal transmit filter, in such a regime. In particular, we use
the fact that there exists a non-singular m X m matrix C that di-

agonalizes both HLH s and H H simultaneously [46], i.e.,

CTHLHEC = AE and CTH:LHMC = AA[, where AN[ and
A are m X m positive definite diagonal matrices, with diag-
onal elements Aps,, ¢ = 1,2,...,mand A\g,, 1 = 1,2,...,m,
respectively.

Theorem 3: Assume that the legitimate transmitter, the le-
gitimate receiver and the eavesdropper know the exact channel
matrices Hp; and Hg. Assume also that the legitimate receiver
uses a ZF filter whereas the eavesdropper receiver uses the op-
timal linear Wiener filter. Then, an optimal transmit filter in the
scenario where the power constraint is inactive whilst the se-
crecy constrain is active is, without loss of generality, given by:

1
2

7 =C (0A{Af - Ar) (54)

1
2

tr AéA

where @ = — =

Note that the right multiplication of the transmit filter in (54)
by any unitary matrix produces another optimal filter.

M
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Proof: This Theorem also follows from the Karush-Kuhn-
Tucker conditions by using the fact that ;1 = 0, so that we can
rewrite (49) as follows:

(HLHM) a

. {(z N (H};HE))71 (aLmz) (2 + (HLHE))I}

=0 (55)
or equivalently:

Ayt - v [(CTZC = Ap) "Ag (CTZC+AR) | =0
(56)
|

3) Interpretation: It is interesting to contrast the operational
principle of the optimal transmit filter design when the secrecy
constraint is inactive (in Theorem 2) to that when the secrecy
constraint is active (in Theorem 3).

In the regime where the power constraint is active and the
secrecy constraint is inactive, the optimal transmit filter decom-
poses the MIMO main channel into a set of parallel channels
using an orthonormal transformation that does not affect the
transmit power. The optimal transmit filter then weighs the in-
dividual subchannels, such that the power constraint is met with
equality. The optimal weights depend only on the eigenvalues

of the matrix Hj, Hy;.

In the regime where the power constraint is inactive and
the secrecy constraint is active, the optimal transmit filter
decomposes simultaneously the MIMO main channel and the
MIMO eavesdropper channel into a set of parallel channels
using an in general non-orthonormal transformation. Note that,
even though such a transformation may affect the transmit
power, this is not a concern in this regime. The optimal transmit
filter then weighs the individual subchannels further, such that
the secrecy constraint is met with equality. Interestingly, the
optimal weights now depend on the generalized eigenvalues of
the matrices HJ{IH a and HJ[EH E.

It is also interesting to contrast the transmit filter design when
the eavesdropper employs a ZF filter (in Theorem 1) to that
when the eavesdropper employs a Wiener filter. In the ZF case,
when the secrecy constraint is active, the transmit filter uses
an orthonormal transformation to decompose an equivalent
channel in view of the fact that the power constraint is always
active. In the Wiener case, when the secrecy constraint is active,
the transmit filter uses a non-singular matrix to decompose
simultaneously both channels.

C. A Note on the Validity of the Operational Regimes

It is now relevant to establish conditions, which are a func-
tion of the system parameters, that identify the exact regions of
validity of the operational regimes unveiled in the previous sub-
section.

1) Power Constraint Active/Secrecy Constraint Inactive: To
identify the validity of this regime we minimize the objective
function in (43), subject to the power constraint in (45) only.
Note that this constitutes a relaxation of the original optimiza-
tion problem so the solution of this new optimization problem
can never lead to a worse MSE than the solution of the original
problem. In turn, this solution is also a solution of the original
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optimization problem provided that it does not violate the se-
crecy constraint.

It is easy to show that this regime is valid if, for a fixed set of
system parameters, Py.q, v, Has and Hg, the following condi-
tion holds:

_ -1
tr {I} —tr {H};HE [(H*TH*TT> 1-I— HLHE} } > (57)

where H7. corresponds to the design embodied in Theorem 2
given by:

1
3

Pavg

tr { in: } (

Note that (57) and (58) can be used to determine a threshold
secrecy constraint, Vimax e g1 below which we operate under
this regime, or equivalently, a threshold power constraint,
Povge > below which we operate under this same regime.
The threshold secrecy constraint is given by equation (59) at
the bottom of the page.

2) Power Constraint Inactive/Secrecy Constraint Active: To
identify the validity of this regime we now minimize the objec-
tive function in (43), subject to the secrecy constraint in (44)
only. This also constitutes a relaxation of the original optimiza-
tion problem so the solution of this new optimization problem
can never lead to a worse MSE than the solution of the original
problem. Moreover, this solution is also a solution of the orig-
inal optimization problem provided that it does not violate the
power constraint.

It is also straightforward to show that this regime is valid if,
for a fixed set of system parameters, F,.q, v, Has and Hp, the
following condition holds:

HI, Hy) (58)

K=

tr {HTHTT} < Payg (60)

where HY. corresponds to the design embodied in Theorem 3,
given by:

=

w{AjA7 )
tr{I} — v

e

H: = C AZAZ —Ap 61)

Similarly to the previous case, (60) and (61) can be used to de-
termine a threshold secrecy constraint, Yuin,.,;, above which
we operate under this regime, or equivalently, a threshold
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power constraint, Pyyg . .., above which we operate in the
same regime. The threshold power constraint is given by:

tr{AgA“?}A% Al _Ag| Cf
m MBE T AE

-1

Pﬂ'vglnin R3 tr
(62)

V. GENERALIZATIONS

It is also of interest to generalize the filter design problem to
scenarios that involve some degree of channel uncertainty. We
consider two cases:

1) The legitimate receiver knows the exact state of the main
channel and the statistics of the eavesdropper channel, the
eavesdropper receiver knows the exact state of the eaves-
dropper channel and the statistics of the main channel, and
the transmitter knows only the statistics of the main and
eavesdropper channels;

2) The legitimate receiver knows the exact state of the main
channel and the statistics of the eavesdropper channel, the
eavesdropper receiver knows the exact state of the eaves-
dropper channel and the statistics of the main channel, and
the transmitter knows the exact state of both channels.

These scenarios arise naturally in the “’secure” video broad-
casting model depicted in Fig. 1, where both receivers—even
though they may have subscribed to different services—are ac-
tive users of the network: in case 1), it is assumed that the
receivers convey information about the statistics of their own
channels to the transmitter via a feedback path (this information
is then relayed to the other receivers) ; in case 2), it is assumed
that the receivers convey information about the exact state of
their own channels to the transmitter also via a feedback path
(this information is not relayed to the other receivers though)
4. In addition, these scenarios can also be used to capture some
of the uncertainty about the state of the eavesdropper channel
leading to filter designs with considerable operational signifi-
cance.

We also comment on more efficient mechanisms to use the
available resources, due to the fact that some of the solutions
unveiled earlier have demonstrated that the transmitter does not
always use all the available power in order to meet the security
constraints.

The ensuing formulations are based on the assumption that
the so-called eavesdropper adopts a linear receiver. Once again,
the implications of the use, by the eavesdropper, of a non-linear
rather than linear estimator are also discussed in the Section VI.

“Note that the transmitter may also be able to capture an estimate of the sta-
tistics of the channels or the state of the channels in time division duplex (TDD)
environments.

tr { (HLHU)

-1

b=

Ymaxyeg1 — tr {I} —tr H—LHE

Pa,vg

} (HLHM)% +HLH (59)
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A. Scenario 1

A possible formulation of the filter design problem when the
receivers know the exact state of their own channels and the dis-
tribution of the other channels, whereas the transmitter knows
only the distribution of the channels, is given by:

II%iTD MSEy = &m,, 1, {MSEy; (Hy,Hg)}  (63)
subject to the security constraint:
MSEg = €u,, 1y {MSEg (Hy, HE)} > (64)
and the total power constraint:
tr {HTHJ_;} < Py (65)

where MSEy is the expected value, with respect to Hy; and
Hp, of the MSE in the main channel for fixed channel ma-
trices Hy; and Hp, i.e,, MSE; (Hyy, Hg), and MSEg is the
expected value, with respect to Hp; and Hg, of the MSE in the
eavesdropper channel for fixed channel matrices Hy; and Hg,
i.e., MSEE (H]\,[7 HE)

By assuming that the legitimate receiver uses a ZF filter and
the eavesdropper uses either a ZF filter or a Wiener filter, then
the optimization problem reduces to:

win {tr { (ufml H, ) - } } (66)
subject to:
tr {HTH;} < Pav, (67)
and:
Eu, {tr { (H}HLHEHT) B }} > ~ (68)
or:
Eu, {tr { (1+ HLHEHTHD 1}} >n o (69)

depending on whether it is assumed that the eavesdropper
adopts a ZF or a Wiener filter, respectively.

The significance of this formulation relates to the fact that
the legitimate transmitter, the legitimate receiver and the eaves-
dropper receiver all have the necessary information to set up
this optimization problem in order to conceive the transmit filter
and therefore the receive filters via (13) and (14) or (41), respec-
tively. In addition, as long as the legitimate transmitter and the
legitimate receiver agree to use this formulation to perform the
legitimate transmit and receive filter designs, there is no incen-
tive for the eavesdropper to adopt any other formulation beyond
this one to design its own filter.

In particular, assume that the legitimate transmitter and the
legitimate receiver adopt the formulation based on the use of a
Wiener filter by the eavesdropper. If the eavesdropper adopted
another linear filter, the average value of the MSE of the eaves-
dropper channel would still be above v in view of the optimality
of the Wiener filter.

In contrast, assume that the legitimate transmitter and the le-
gitimate receiver adopt the formulation based on the use of a ZF

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 15, AUGUST 1, 2013

filter by the eavesdropper. In the regime of high available power,
and once again if the eavesdropper used another linear filter,
then the average value of the MSE of the eavesdropper channel
would still be above v in view of the fact that the performance
of a ZF filter approaches that of a Wiener filter in such a regime.
In the regime of low available power, if the eavesdropper used a
Wiener filter instead, then the average value of the eavesdropper
MSE could be evidently below «y. This concern can be bypassed
by operating at high enough available powers.

B. Scenario 2

A formulation of the filter design problem when the receivers
know the exact state of their own channels and the distribution
of the other channels, where as the transmitter knows the exact
state of the channels, is given by:

Iﬂirn MSEy; (Hyr. Hi) (70)
subject to the security constraint:
MSEg = €,y 1y {MSEg (Hp Hp)} > v (71)
and the total power constraint:
w{BHHL) <P, (72)

By assuming once again that the legitimate receiver uses a ZF
filter and the eavesdropper uses either a ZF filter or a Wiener
filter, then the optimization problem reduces to:

min t { (H;HTWHWHT) 1} (73)
subject to:
v {HHL) < P, (74)
and:
£u, {tr { (HZHLHEHT)—l}} >y (75)

or:
Eu, {tr { (I + HTEHEHTHI*> - }} 2~ (76)

depending on whether it is assumed that the eavesdropper
adopts a ZF or a Wiener filter, respectively.

Note now that the legitimate transmitter and the legitimate
receiver can also set up this optimization problem in order to
determine the transmit filter and therefore the legitimate receive
filter via (13). In contrast, the eavesdropper—in view of the ab-
sence of knowledge of the legitimate receiver channel—cannot
set up this optimization problem, so it is bound to use a mis-
matched filter. In view of the previous rationale, as long as the
eavesdropper uses a linear filter and independently of whether
the legitimate parties use the ZF or Wiener based formulation,
we can thus argue that in the regime of high available power
the average value of the eavesdropper MSE is always above v
whereas in the regime of low available power the average value
of the eavesdropper MSE can in principle be below v, e.g., in
the extremely unlikely event that the linear filter chosen (per-
haps randomly) by the eavesdropper corresponds to the Wiener
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filter, but the legitimate parties assume that the eavesdropper
uses a ZF rather than a Wiener filter in the design formulation.

Note also that this formulation does not explore the trans-
mitter knowledge about the exact state of the eavesdropper
channel per se. It is not clear whether or not such knowledge
can be exploited in an operational meaningful way.

C. Towards the Solution of the New Formulations

These problems appear to be difficult